文档库 最新最全的文档下载
当前位置:文档库 › 直埋蒸汽管道在设计中注意事项

直埋蒸汽管道在设计中注意事项

直埋蒸汽管道在设计中注意事项
直埋蒸汽管道在设计中注意事项

直埋蒸汽管道在设计中注意事项

蒸汽直埋管道在全国应用的范围越来越广,要使工程正常运行,减少投资,以最经济的的设计,选定处理方案,使工程简便化,保证质量,设计是关键。

一、补偿器、节点、端点的设计

1.设计时,施工图要在选定工艺后,与制作单位结合后再设计出图,这样可以减少施工安装时很多麻烦及不必要的设计变更,造成误工及扯皮现象,因为现场施工安装时有很多难以想像的问题。

2.在满足膨胀系数及推力允许的范围内,墩距越长越好,应以钢管的定尺长度的系数+补偿器长+固定墩长为最佳。

3.补偿器。要选择不带预拉伸固定螺丝为好,不然限制补口时间,大部分施工现场的条件都很复杂,一旦固定墩固定不好,预拉伸螺丝就不能割去,补口就无法进行,只有待固定墩连接后,才能补口,因不能及时补口回填恢复,会造成雨后水泡、扰民。

4.固定墩选用内固定加外固定辅助为最好。其优点:可以减少土方及混凝土量,适用于城市地理条件窄、不易大面积开挖的地段。

5.蒸汽直埋最难解决的是补口、节点、端点部位处理,也是最易进水的部位,一旦处理不好,工程就会遭到整体失败,所以设计时应尽量减少其数量。

二、保温结构的选择

保温结构的优劣是决定管道运行成本、用户能否满负荷用汽和供热半径大小的关键。设计计算以最经济的保温厚度作计算依据,尽量减少投资成本,略加相应的保险系数即可,不易过以保守。

1保温结构及材料的选定

多年的实践证明,选用多阻式复合保温结构为最佳,一般为:

2.隔热层。材料选用有机硬质保温材料,微孔硅酸钙瓦块。

此材料的主要优点:耐温适中,强度高,导热系数偏低,在内滑动结构中,容易形成一个通行地沟,使工作钢管能自由伸缩,外滑动结构中易与工作钢管捆为一体,能和工作管同步运动,滑动支架紧固在其外层,容易紧固,少加冷桥处理,长时间运行不易脱落。

其缺点:由于制作工艺问题,每层一般要3——6块瓦块组合成,瓦块长度按国际标准仅610mm长,这样,每1km管道要有4——7km缝隙,加之瓦块属硬对硬,不易挤严,扣瓦抹缝都是人工,工作量太大,很难全部抹严,一旦有一点缝隙,高压发泡时,聚氨酯泡沫就会顺着缝挤进去。

3.半硬质密闭隔热层

其材料选用半硬脂保温管壳,容重不能低于65kg。经实践证明,岩棉吸水易结板,不可取。离心玻璃棉管为最好,既有强度,导热系数又低。

其优点:1.它可完全把隔热层微空硅酸钙瓦块的缝挤死,使热气不会歪斜;

2.由于离心玻璃棉会谈率是100%,即使吸水后也不半截,烘干后各种性能指标不边,体积不会因其因素变形;

3.它又是一个很畅通的排潮通道,进水后可在最短时间排出去,不会因水排不出去造成爆管,使管道很快处于正常状态。(一般吸水后,一周内排完);

4.由于离心玻璃棉是柔性材料,运行中管子的热涨位移可随之拉伸,不至于把保温层拉坏。

4.在离心玻璃棉外层。加上一层铝箔反射层,作用有二:1.可使热量反射减小热阻;2.又使聚氨脂保温层的一层屏障,蒸汽热蒸后不使气息水、保温层一旦西水,它会永远排不出,即使排除一般,由于聚氨脂泡墨宝问曾保温效果好,外层的一般就很难烘干,会失去最佳的保温效果,使表面温度加大,热损加大。

5.保温层。采用当今最好的保温材料,聚氨脂泡墨塑料。

此保温参不一太后,最好不要超过35mm,由于其保温效果好,后了热组大,导致层间截面温度增高,破坏保温层、防水层。

6.保温结构的层间温度计算,要设定最经济的保温后,不一过后,防止热祖师见曾截面问。

7.有了最佳的经济保温厚度,那么最重要的也是蒸汽直埋保温管成败的关键一环--防水层;设计时一定要在外防水层上下大功夫,把有些不必要环节的经费省到防水层上,因为“水”是直埋工程的天敌,实践证明:用钢外护内滑动结构,由于受刚套的标定尺寸、厚度、直径的限制,只能就大不就小,保温厚度自然加大,不经济,关键是防腐问题不好解决,上述D N300的保温厚度计算,如果按标准钢管就得用D N700*8钢管,就此一项就加大了投资。由于埋地钢管的防腐问题难以解决,需加强防腐,此项费用也相当高,加大了建设方的投资。信阳二期工程设计是钢外护,加强防腐(三布五油环氧煤沥青漆)。外钢套管径大,保温层加厚,加强防腐、喷砂除锈几项,每公里就加大投资35万元左右。安阳县电厂DN350的设计,每km就加大投资80万元左右。其原因:设计提供的参数不合理,埋深2m,土壤温度(实际提供地表温度)20°C,土壤导热系数1.2W/m.k(沙质粘土),表面温度50°C,这样,保温厚度单边加大了130mm。因此对各地的土壤温度及导热系数一定要参照建设部有关资料提供的数据为计算依据,现场实测为最好。

8.防腐要采用强度高的防腐层,三布五油,一般用环氧煤沥青漆或沥青漆,用手糊易下淌、上部会出现气孔,保温管运至现场安装完毕,占30%以上的防腐层都要重新修补,即费工又费钱,一旦发现不了,后患无穷。

其优点:一可借鉴钢外护强度高、密封好、不进水的特性,二可借鉴玻璃钢整体性好、防腐防水性能好、粘合力强的特性。

实例:单纯钢外护,一旦有一点点小孔没焊好,运行时就会烘吸式进水,无法检出其位置,不易修复,信阳一期个别地方就是光看到冒气多次挖开就是找不到漏点。

纯玻璃钢外护,安装时一旦进水,排潮时由于保温层聚氨酯泡沫被热烘吸水,使介面温度上升,玻璃钢长期在超越极限温度中,导致软化、老化,最后被破坏进水,实例:信阳一期由于安装时大量进水,运行中长时间排潮后导致部分玻璃钢外护破坏,结果不得不权宜之计加上刚套。

即墨热电厂供热工程,由于业主施工时没按设计要求安装疏水装置,设计为13个疏水装置,但只安了三个,在二次起动运行时,造成连续2次水冲击(水锤),结果把主管与支线钢管焊接缝震裂,使周边近四百多米的玻璃钢外护,也相继造成不同程度的破坏,进水、冒气,后来在其段加上钢套,但由于焊接、防腐问题难解决,一下雨就冒气。

直埋蒸汽管道设计与施工分析

直埋蒸汽管道设计与施工分析 在工程中针对不同的地质情况及设计条件采用了多种结构型式的直埋蒸汽管道,并在工程建设中总结了一些经验。 1 管道保温结构的选择 目前直埋蒸汽管道根据其保温结构的不同可分为以下4类: ①工作钢管+软质保温层+外护钢管+防腐层; ②工作钢管+软质绝热层+外护钢管+聚氨酯保温层+缠绕玻璃钢夹克; ③工作钢管+软质保温层+真空层+外护钢管+防腐层; ④工作钢管+硬质绝热层+聚氨酯保温层+缠绕玻璃钢夹克。 保温结构的选择应充分结合当地的土壤条件、地下水位条件,考虑管网安全性和工程造价,其中管网的安全性应作为首要条件给予足够的重视,特别是在选用外护钢管直埋蒸汽管道时。为保证安全性应

考虑在固定节处将外护钢管隔断,以确保在管道及节点(如补偿器) 处出现泄漏的情况下保温层受到的破坏只是局部的。由于各个地区地下水位情况不一,土壤酸碱度和热导率也不样,应根据具体情况选择合适的保温结构。地下水位高的地区可考虑选用外护钢管结构,地下水位低的地区可与虑选用玻璃钢外壳结构,二者单位成本相差较大。以DN 400 mm管道为例,工作钢管+软质保温层+外护钢管+防腐层和工作钢管+软质绝热层+外护钢管+聚氨酯保温层+缠绕玻璃钢夹克两 种保温结构的直埋蒸汽管道平均造价(含固定节、固定墩、补偿器、疏水器及保温补口等)为2233元/m,而工作钢管+硬质绝热层+聚氨酯保温层+缠绕玻璃钢夹克保温结构的直埋蒸汽管道平均造价为1500 元/m。工作钢管+软质保温层+真空层+外护钢管+防腐层保温结构的直埋蒸汽管道由于结构及施工工艺较为复杂,其平均造价在前3种直埋蒸汽管之上。 2 管道节点的处理 2. 1 排潮管 近几年,城市道路改造频繁,排潮管(用于排出保温层中的潮气)若直接引出地面,人为毁坏严重,从而给管网安全造成极大隐患。因此,排潮管以接入小井室为宜,且应增加阀门,做法见图1。小井室中的阀门在管道定期排潮时打开,待潮气排完后及时关闭,以防止排潮井中进水形成倒灌。 2.2 疏水井

压力管道设计说明

压力管道设计说明 Revised by Chen Zhen in 2021

1、工程概况 本工程为射阳港经济区射阳金鹤纤维素有限公司蒸汽管网设计工程。蒸汽管网利用三通由原厂区内蒸汽管道接出,通至新库房。 2、设计参数 工作压力:MPa 工作温度: 160℃ 设计压力: MPa 设计温度: 300℃ 工作管道直径:Φ108×5 过路段埋地外护管直径:Φ219×6 保温材料:超细离心玻璃棉δ=60-70mm(详见图纸列表) 保护层:镀锌彩钢板δ=0.5mm 3、本设计遵照以下标准规范 1、《压力管道规范-工业管道》(GB/T20801-2006); 2、《压力管道安全技术监察规程-工业管道》(TSGD0001-2009); 3、《城镇供热直埋蒸汽管道技术规程》(CJJ104-2005); 4、《工业金属管道工程施工及验收规范》(GB50235-97); 5、《工业设备及管道绝热工程施工及验收规范》(GB50126-2008);

6、《工业金属管道工程施工质量验收规范》(GB50184-2011); 7、《工业设备及管道绝热工程设计规范》(GB50264-97); 8、《现场设备、工业管道焊接工程施工规范》(GB50236-2011); 9、《压力管道设计许可规范》(TSGR1001-2008); 10、《特种设备安全监察条例》 549号国务院令; 11、《承压设备无损检测》(JB/T4730-2005); 4、输送介质为蒸汽的管道,管道分类为GC3。 5.蒸汽管道安装 蒸汽管道的施工验收应符合《压力管道规范-工业管道》(GB/T20801-2006)和《压力管道安全技术监察规程-工业管道》(TSG D0001-2009)的有关规定。 材料:工作管采用20#(Φ108×5)无缝钢管,管道标准为GB/T8163-2008或GB3087-2008。焊接采用氩弧焊打底,焊丝为H08Mm2Si,盖面采用手工电弧焊,焊条型号为 E4303,对应牌号为J422;埋地外护管均采用螺旋钢管(Q235B),管道标准号为 SY/T5037-2000,采用手工电弧焊,焊条型号为E4303,对应牌号为J422。 蒸汽管道的弯头采用热压弯头(GB12459-2005),除特殊注明外,弯头弯曲半径R=。三通采用标准无缝三通(GB12459-2005)。管件壁厚不小于直管段壁厚。 全部钢管、管件以及预制件等应有制造厂的合格证书或复印件,在安装前应进行外观检查,并将内部清洗干净,不得留有杂质;保温制品需有性能检测报告,保温表面不得有裂纹、坑洞、破坏等现象。

直埋供热管道设计

热水直埋供热管网的设计 天津市热电设计院 李春庆 1 概述: 国内外直埋技术的发展已有60余年的历史,由于直埋管道具有不影响环境美化、施工简便、工期短、维修工作量少的特点,因此特别是近三十年来热水供热管道直埋敷设发展迅速,相应形成了一整套直埋敷设的设计原理和计算方法。80年代初,我国首次在一些城市的热网工程中采用从北欧国家引进的直埋保温管进行直埋敷设,经历了二十年的发展,无论在预制保温管的生产和安装技术上,还是在直埋供热管网的设计理论和方法上,我国的供热管道直埋技术都得到了飞速发展,直埋敷设现已成为我国城市热网的主要敷设方式。 早在70年代,北京煤气热力设计研究院就将当时已应用于火力发电厂汽水管道上的应力分类法推广到直埋供热管网上,其最显著的特点是对温度应力采用安定性分析,这样,直管段通常可采用既不预热也不补偿的无补偿冷安装方式。然而,在80年代中,我国很多的直埋供热管网使用的都是从北欧引进的预制保温管,这样,很多设计单位也相应地采用了北欧的弹性分析法进行直埋管网设计。采用弹性分析时,为保证管道始终处于弹性状态,直管段通常要采用设置补偿装置、预热或设置一次性补偿器的安装方式。进入90年代,多年的直埋热网运行经验,让我国大多数设计人员认识到,在直管段对温度应力采用弹性分析的确过于保守,越来越多的设计人员开始应力分类法进行直埋管道的强度设计。此时,北欧也已意识到这一点,1993年版的《ABB供热手册》中介绍了一种管道应力已超过弹性范围的冷安装方式,接着在1996年版的欧洲标准《区域供热整体式预制保温管的设计、计算和安装》和1997年为解释该标准而出版的《集中供热手册》中则明确地提出应力分类法。 1999年,在唐山市热力公司、北京市煤气热力设计研究院、哈尔滨建筑大学和沈阳市热力设计研究院等单位的努力下,历经六年的国家行业标准《城镇直埋供热管道工程技术规程》(CJJ/T81-98)颁布实施,标准明确规定了采用应力分类法进行直埋热力管道的强度设计,标准的颁布也标志着我国直埋管道设计理论进入了国际先进水平。但目前国内《规程》中所给定的管道受力等计算图表中数据均限制管径在DN500以下。然而随着我国供热事业的飞速发展,规程适用范围已不能满足实际热网的需要,城市热网

2019新蒸汽管道设计计算

项目名称:XX蒸汽管网 设计输入数据: ⒈管道输送介质:蒸汽 工作温度:240℃设计温度260℃ 工作压力: 0.6MPa 设计压力:0.6MPa 流量:1.5t/h 比容:0.40m3/kg 管线长度:1500米。 设计计算: ⑴管径: Dn=18.8×(Q/w)0.5 D n—管子外径,mm; D0—管子外径,mm; Q—计算流量,m3/h w—介质流速,m/s ①过热蒸汽流速 DN》200 流速为40~60m/s DN100~DN200 流速为30~50m/s DN<100 流速为20~40m/s ②w=20 m/s Dn=102.97mm w=40 m/s Dn=72.81mm ③考虑管道距离输送长取D0 =133 mm。 ⑵壁厚: ts=PD0/{2(〔σ〕t Ej+PY)} tsd=ts+C C=C1+C2 ts —直管计算厚度,mm; D0—管子外径,mm; P —设计压力,MPa; 〔σ〕t—在操作温度下材料的许用压力,MPa;

Ej—焊接接头系数; tsd—直管设计厚度,mm; C—厚度附加量之和;: mm; C1—厚度减薄附加量;mm; C2—腐蚀或磨蚀附加量;mm; Y—系数。 本设计依据《工业金属管道设计规范》和《动力管道设计手册》在260℃时20#钢无缝钢管的许用应力〔σ〕t为101Mpa,Ej取1.0,Y取0.4,C1取0.8,C2取0. 故ts=1.2×133/【2×101×1+1.1×0.4】=0.78 mm C= C1+ C2 =0.8+0=0.8 mm Tsd=0.78+0.8=1.58 mm 壁厚取4mm 所以管道为φ133×4。 ⑶阻力损失计算 3.1按照甲方要求用φ89×3.5计算 ①φ89×3.5校核计算: 蒸汽流量Q= 1.5t/h 粗糙度K=0.002m 蒸汽密度v=2.5kg/m3 管内径82mm 蒸汽流速32.34m/s 比摩阻395.85Pa/m ②道沿程阻力P1=395.85×1500=0.59MPa; 查《城镇热力管网设计规范》,采用方形补偿器时, 局部阻力与沿程阻力取值比0.8,P2=0.8P1; 总压力降为P1+P2=1.07Mpa; 末端压力为0.6-1.07=-0.47Mpa 压力不可能为负值,说明蒸汽量不满足末端用户需求。 3.2按照φ108×4校核计算: ①φ108×4计算: 蒸汽流量Q= 1.5t/h 粗糙度K=0.002m 蒸汽密度v=2.5kg/m3 管内径100mm

蒸汽管道计算实例(DOC)

、尸, 、■ 前言 本设计目的是为一区VOD-40t 钢包精练炉提供蒸汽动力。设计参数是由动力一车间和西安向阳喷射技术有限公司提供的。 主要参数:蒸汽管道始端温度250C,压力1.0MP;蒸汽管道终端温度240C,压力0.7MP (设定); VOD用户端温度180C,压力0.5MP; 耗量主泵11.5t/h 辅泵9.0t/h 、蒸汽管道的布置 本管道依据一区总体平面布置图所描述的地形进行的设计,在布置管道时本设计较周详地考虑到了多方面的内容: 1、蒸汽管道布置时力求短、直,主干线通过用户密集区,并靠 近负荷大的主要用户; 2、蒸汽管线布置时尽量减少了与公路、铁路的交叉。 3、在布置蒸汽管线时尽量利用了自然弯角作为自然补偿。并在 自然补偿达不到要求时使用方型补偿器。 4、在蒸汽管道相对位置最低处设置了输水阀。 5、蒸汽管道通过厂房内部时尽量使用厂房柱作为支架布置固定、 滑动支座。

6、管道与其它建、构筑物之间的间距满足规范要求。 二、蒸汽管道的水力计算 已知:蒸汽管道的管径为Dg200,长度为505m。 蒸汽管道的始端压力为1.0MP,温度为250C查《动力管道设计手册》第一册热力管道(以下简称《管道设计》)1 —3得蒸汽在该 状态下的密度P为4.21kg/m3。 假设:蒸汽管道的终端压力为0.7MP,温度为240C查《管道设 计》表1 —3得蒸汽在该状态下的密度P为2.98kg/m3。 (一)管道压力损失: 1、管道的局部阻力当量长度表(一) 2、压力损失 5化』Ifp x 廿證丁?叫2—1

式中△ p—介质沿管道内流动的总阻力之和,Pa; Wp—介质的平均计算流速,m/s;查《管道设计》表5-2 取Wp=40m/s ; g—重力加速度,一般取9.8m/s2; U P—介质的平均比容,m3/kg; 入—摩擦系数,查《动力管道手册》(以下简称《管道》) 表4—9得管道的摩擦阻力系数入=0.0196; d—管道直径,已知d=200mm ; L—管道直径段总长度,已知L=505m ; 2E—局部阻力系数的总和,由表(一)得2E =36 H1、H2—管道起点和终点的标高,m; 1/Vp二P p—平均密度,kg/m3; 1.15—安全系数。 在蒸汽管道中,静压头(H2-H1)10/VP很小,可以忽略不计所以式2—1变为 叫d 2—2 在上式中:5 Wp2/g U p=5 ? 2PnD /g表示速度头(动压头) 入l^/d为每根管子摩擦阻力系数。 把上述数值代入2—2 中得

直埋蒸汽管道各种结构形式的比较和分析

精心整理直埋蒸汽管道各种结构形式的比较和分析 浙江省华业建筑设计研究院陆建初 一、前言 蒸汽管道直埋敷设技术随着我国国民经济的发展,人民生活水平不断提高,人们对环境和城市景观要求也越来越高的情况下,已开始在城市热网中逐步取代传统的蒸汽管道架空敷设方式。这项 国内目前蒸汽管道直埋敷设技术主要有二种类型: 1、高温型直埋蒸汽复合保温管它有塑套钢、玻璃钢套钢、钢套管 连、烟台、天津等城市工程应用比较多。 2、钢套管直埋蒸汽管,它实际上就是把架空蒸汽管道敷设到地底下去,钢套管相当于全封闭地沟。上海浦东金桥开发区热网部分管道在前几年采用了此项技术进行工程试验, ??? ? 1、高温型直埋蒸汽复合管,由金属钢管一般采用无缝钢管或螺旋钢管,外涂防锈漆和无机润滑剂, 式:(1 ?2 (1)整个管网由固定支墩,分隔成若干管段,即二个固定支墩为一段,分段进行设计考虑。 (2)每个管段单独进行防腐防水设计,包括弯头、异径管、分支管、补偿器、疏放水装置。 (3)内管每一管段设补偿器,外保护管也应考虑温度补偿,设一次性补偿器。 (4)疏放水装置、设置位置及制作详图设计。

(5)固定支墩设计,在强度和推力外,还应考虑防止热桥传递和高温下混凝土结构耐热性问 题。 (6)每一管段在城市规划、市政管理部门允许情况下,尽可能在保温层外,设专门排湿管,同时也起管道损坏报警显示作用,排除管道内潮气。 3、高温型直埋蒸汽复合管施工要注意事项 (1)选好高温型直埋蒸汽复合管 高温型直埋蒸汽复合管,目前全国生产厂家很多,国家也没有统一标准。作为用户,选购时应 ( ( ( ( ( ?? 1、产品构造 钢套钢直埋式预制蒸汽管道一般适用于输送温度在150~300℃之间,压力小于1.6MPa的蒸汽。该产品,在技术上解决了埋地管道在防水、防腐、热桥、疏水等方面关键性问题,使蒸汽管道全线处于全密封状态下运行,经过工程实践证明是安全、可靠。钢套钢直埋式预制蒸汽管道:由输送介质内钢管、憎水复合硅酸盐保温层、钢套管及防腐层构造,其结构见下页图:内钢管:公称直径

室内蒸汽管道及附属装置安装工艺标准--最新版

室内蒸汽管道及附属装置安装工艺 11适用范围 本工艺标准适用于民用及一般工业建筑蒸汽压力不大于0.8MPa管道及附属装置安装工程。 22施工准备 2.1 材料设备要求 2.1.1 管材:碳素钢管、无缝钢管、管材不得弯曲、锈蚀、无飞刺、重皮及凹凸不平现象。 2.1.2 管件:无偏扣、方扣、乱扣、断丝和角度不标准等缺陷。 2.1.3 阀门:铸造规矩,无毛刺、裂纹,开并灵活严密,丝扣无损伤,直度和角度正确,强度符合要求,手轮无损伤。 2.1.4 附属装置:减压器、疏水器、过滤器、补偿器等应符合设计要求,并有出厂合格证和说明书。 2.1.5 其它材料:型钢、圆钢、管卡子、螺栓、螺母、衬垫、电气焊条等选用符合标准要求。 2.2 2.2主要机具: 2.2.1 机具:砂轮锯、套丝机、电锤、台钻、电焊机、煨弯器、千斤顶。 2.2.2 工具:管钳、压力案、台虎钳、气焊工具、手锯、手锤、活扳子、倒链。 2.2.3 2.2.3其它:水平尺、錾子、钢卷尺、线坠、小线等。 2.3 作业条件: 2.3.1 位于地沟内的干管安装,应在清理好地沟,安装好托吊卡架,未盖沟盖板前安装。 2.3.2 架空的干管安装,应在管支托架稳固定后,搭好脚手架再进行安装。 2.3.3 架空的干管安装,应在管支托架稳固定后,搭好脚手架再进行安装。 3 操作工艺 3.1 3.1工艺流程: 安装准备→预制加工→卡架安装→管道安装→ 附属装置安装→试压冲洗→防腐保温→调试验收 3.2 安装准备:

3.2.1 认真熟悉图纸,根据土建施工进度,预留槽洞及预埋件。 3.2.2 按设计图纸画出管路的位置、管径、变径、预留口、坡向、卡架位置画出施工昌图。把干管起点、末端和拐弯、节点、预留口、坐标位置等找好。 3.3 蒸汽管道安装: 3.3.1 水平安装的管道要有适当的坡度,当坡向与蒸汽流动方向一致时,应采用I=0.003的坡度,当坡向与蒸汽流动方向相反时,坡度应加大到I=0.005~0.01。干管的翻身处及末端应设置疏水器(图1-35)。 蒸汽管末管疏水器 说明:1.疏水器安装距离;高压50~60m;低压30~40m 2.高压管道时,活接头改用法兰盘 图1-35 3.3.2 蒸汽干管的变径、供汽管的变径应为下平安装,凝结水管的变径为同心。管径大于或等于70mm,变径管长度为300mm;管径小于或等于50mm变径管长度为200mm(图1-36)。 图1-36

蒸汽管线正确疏水方案

蒸汽管线正确疏水方案 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

蒸汽管线正确疏水方案 蒸汽输送管道的主要目的就是将高质量、且可靠的蒸汽输送到用汽设备。为达到这一目的,我们就必须在恰当的位置设置疏水点,将蒸汽系统中的冷凝水更快,更有效率的排出。 当然,我们不能随心所欲的安装疏水阀,并就此轻易的忘记它们。我们有着规范的设计准则规定它们应该如何安装。为了保证疏水阀能正常稳定的工作,我们必须遵守这些规范来选择疏水点。 蒸汽在主管中的流速比在设备中快很多,有时甚至超过30 m/s。此时如果管道中有冷凝水积存,就会被蒸汽快速带起形成水锤,撞击管道壁和阀门,造成设备损坏甚至人身伤害。因此在设计疏水点的时候也要同样将其列入考虑因素。 接下来的四篇“正确疏水方案”将指导您如何正确和合适的将冷凝水排出蒸汽管道,从而防止系统中产生水锤和空气绑之类的问题。 正确输水方案#1:谨慎选择疏水点位置 即使蒸汽输送管道完全笔直,我们也会推荐每隔30到50 米安装一个疏水阀。在提升管和下降管道的底部也同样需要。

除此之外值得特别注意的是,在有些冷凝水容易积聚的地方设置一个疏水点能有效防止蒸汽快速将水带起。 在下列情况下需要安装疏水阀: 每隔30到50米 蒸汽管线每隔30到50米应当设置一个疏水点。 在减压阀和控制阀前段 在减压阀和控制阀关闭时,前方管道会积聚冷凝水,因此在它们的前段也应该设置疏水点。快速的排出冷凝水还能防止冷凝水腐蚀它们的阀座。当然,在串联的减压阀之间最好也安装疏水阀,这样就可以将减压阀之间的冷凝水排出管道。 在可能长时间关闭的手动阀前段 在手动阀前段也同样需要安装疏水阀,当阀长时间关闭后,冷凝水会积存在前方的管道内,当手动打开阀门时,蒸汽会带起冷凝水撞击阀门,造成阀门损坏。同样的,在蒸汽管道末端设置疏水点能有效提高系统安全性,并提高生产效率。 在提升管或下降管底部 在提升管和下降管的底部,冷凝水会由于重力和管道变向原因积聚,因此在这里我们也需要安装疏水阀。 正确输水方案#2:对蒸汽管道进行正确的支撑

直埋供热管道设计浅析

直埋供热管道设计浅析 发表时间:2018-02-11T14:33:29.480Z 来源:《建筑学研究前沿》2017年第28期作者:刘欣 [导读] 随着《城镇直埋供热管道工程技术规程》(以下简称为规程)的发布,技术已经很成熟,实际运用也越来越广泛。鹤壁市淇滨热力有限公司河南鹤壁 458030 摘要:直埋供热管道的设计要按照《城镇直埋供热管道工程技术规程》的条文规定来执行。本文简要的分析了直埋供热管道的设计、施工,以供参考。 关键词:直埋;供热管道;设计 1设备安装、材料说明 近年来,在供热外网工程中普遍采用直埋供热管道,直埋敷设方法同传统的地沟敷设方法相比具有占地少、施工周期短、维护量小、寿命长等诸多优点,近些年来预制保温管施工技术也有了很大的发展,已颁布的《城镇直埋供热管道工程技术规程》标志着直埋技术在我国已经趋于成熟,因此,在供热管道的施工中,直埋敷设越来越多地被采用。 (1)供热管线采用钢管,外管道连接均采用焊管;阀门与管材采用法兰连接。材料供应方式:主材及配件均由业主供应,施工单位只负责安装。 (2)材料进场:进场的所有材料均分类堆放整齐。钢管、水泥,底部均设垫木,砂石料底部进行平整后铺垫红砖,配件及零星材料均堆放在库房的架了上,对场地精心布局、合理使用,材料现场应保持清洁,归类整齐,并有排水设施,为保持现场环境清洁,所有拉运材料的车辆均加以覆盖,避免在置办期间管道内进入杂物,造成施工完毕后清扫不便,也避免了抛撒和爆灰,影响当地居民的正常生活。2材料设备验收 管材、管件及设备运至现场后,必须由材料员(质检员配合)逐根、逐件的检查外保温层、防腐层及管口椭圆度、壁厚等质量指标并做好标记记录,检验记录包括验收项目,标准、结果、检验人和检验日期,不合格品不准使用。管材管件设备进场后,应备有合格证、材质单无产品合格证的不能接收。 3管材的运输与储存 供热管材管件均有规格、生产厂的厂名和执行的标准号,在管件上有明显的商标和规格,并符合 GB/T29047-2012 标准的规定,管材管件具体要求指标如下:管材应水平堆放在平整的地面上,不得不规则堆放。当用支垫物支垫时,支垫宽度不得小于75mm,其间距不得大于 1m,外悬的端部不宜大于500mm。管材储存时,摆放应平整,撂放高度不超过2米。管材在运输时及装卸过程中,禁止剧烈撞击抛掷。管材运输时,管与管之间需留有一定的间隙,层与层之间用垫木隔开,并且高度不超过2米。在管材运输过程中,保证管壁不受损伤前提下不同直径的管材允许套装。管材与管件在运输、装卸和搬运时应采用不小于50mm的吊装带轻放,不得抛、摔、拖。4《城镇直埋供热管道工程技术规程》规程适用条件 《城镇直埋供热管道工程技术规程》适用于供热介质温度≤150℃、公称直径≤DN500的钢制内管、保温层、保护外壳结合为一体的预制保温直埋热水管道。这里对适用条件提出了两个界限,即温度界限和管径界限。在规程总则的条文说明中给出了详细的解释,温度条件是设计热网经济性和安全性的重要参数,针对的是预制保温管的保温材料耐温能力、使用寿命,另外根据现有理论在强度方面这个温度也是安全的;采用管径界限是因为规程中在强度计算、管道热伸长计算中对荷载做了简化,对小管径误差不大,对大管径而言计算结果会有较大偏差,是不安全的。在使用本规程时必须满足其适用条件。 5直埋敷设方式 直埋敷设分有补偿敷设和无补偿敷设两种。无补偿敷设具有投资省、工期短和施工简便的优点;有补偿敷设相对于无补偿敷设来说,投资较大、占地较多、工期较长、施工较复杂。因此在满足管网安全的前提下,要优先采用无补偿敷设方式,近几年来在工程实践中应用的越来越多。 6管网的布置与敷设 在确定了各单体建筑的入口之后,结合管网综合图来布置管线,满足热力管道与其他管线的间距要求。管网的其他要求如管道覆土深度、排气泄水、分支管三通弯头的保护、阀门附件的要求等详见规程中的具体要求。 规程中明确提出,应力验算采用目前国内外先进的应力分类法。应力分类法是将管道上的应力分为一次应力、二次应力和峰值应力三类,并采用相应的应力验算条件。 一次应力:是由管道内压及持续外载产生的应力(力作用)。当应力达到甚至超过屈服极限时,管道将产生较大变形甚至破坏。这种应力是非自限性的,应力验算采用弹性分析或极限分析。 二次应力:是由于管道热胀冷缩等变形受约束而产生的应力(位移作用)。当部分材料超过屈服极限时,由于产生小量的塑性变形,变形协调得到满足,变形就不再继续发展。它具有自限的特点,采用安定性分析。 峰值应力:指管道或附件(如三通等)由于局部结构不连续或局部热应力效应而产生的应力增量。它的特点是不引起显著的变形,是一种导致疲劳裂纹或脆性破坏的可能原因,必须根据管道整个使用期限所受的循环荷载进行疲劳分析。但对低循环次数的供热管道,对在管道上出现峰值应力的三通、弯头等局部应力集中处,可采用简化公式,计入应力加强系数进行应力计算。在计算中,直埋供热管道的一次应力的当量应力不应大于钢材在计算温度下的基本许用应力;二次应力及一次应力的当量应力变化范围不应大于钢材在计算温度下基本许用应力的三倍;管道局部应力集中部位的一次应力、二次应力和峰值应力的当量应力变化幅度不应大于钢材在计算温度下基本许用应力的三倍。 根据安定性理论,当直管段的当量应力变化范围满足下列表达式的要求时,管系中允许有锚固段存在:бj=(1-v)бt-αE(t2-t1)≤3[б] 式中бj——内压、热胀应力的当量应力变化范围,MPa; v——钢材的泊松系数;

蒸汽管道设计计算

项目名称:XX 蒸汽管网设计输入数据: 1.管道输送介质:蒸汽 工作温度:240 C 工作压力: 0.6MPa 流量:1.5t/h 管线长度:1500 米设计计算: 设计温度260 C 设计压力:0.6MPa 比容:0.40m 3/kg ⑴管径: Dn=18.8 X(Q/w) 0-5 D n —管子外径,mm ; D0 —管子外径,mm ; Q —计算流量,m3/h w —介质流速,m/s ①过热蒸汽流速 DN》200 流速为40?60m/s DN v 100 流速为20 ?40m/s ②w=20 m/s Dn=102.97mm w=40 m/s Dn=72.81mm ⑵壁厚: DN100~DN200 流速为30 ?50m/s

ts = PD o/{2 (〔c〕Ej+PY)} tsd=ts+C C=C1+C2 ts —直管计算厚度,mm ; D0 —管子外径,mm ; P —设计压力,MPa ; 〔c〕t —在操作温度下材料的许用压力,MPa ; Ej—焊接接头系数; tsd —直管设计厚度,mm ; C—厚度附加量之和;:mm ; C1—厚度减薄附加量;mm ; C2—腐蚀或磨蚀附加量;mm ; 丫一系数。 本设计依据《工业金属管道设计规范》和《动力管道设计手册》在260 C 时20#钢无缝钢 管的许用应力〔c〕t为101Mpa , Ej取1.0 , Y取0.4 , C i 取0.8 , C2 取0. 故ts = 1.2 X133/【2 X101 x i+1.1 X0.4】=0.78 mm C= C 1+ C 2 =0.8+0=0.8 mm Tsd=0.78+0.8=1.58 mm 壁厚取4mm 所以管道为? 133 X4。

直埋供热管道工程设计

直埋管断面布置尺寸参考(mm) 注:放坡角60°,或放坡比1:1.5。 弹性分析法直埋管过渡段长度(m)驻点轴向应力(kN)及热伸长量(mm) 注:工作压力1.6MPa、温差130℃,摩擦系数0.4,热胀系数12.6×10-6℃-1。

安定分析法直埋管过渡段长度(m)驻点轴向应力(kN)及热伸长量(mm) 注:工作压力1.6MPa、温差130℃,摩擦系数0.4,热胀系数12.6×10-6℃-1。 热水管网水力计算表

注:一次网(130℃/70℃,Kd=0.5mm,γ=958.4kg/m3) 热水管网允许流速(《城市供热手册》汤惠芬范季贤) 热水管网经济比压降(《城市供热手册》汤惠芬范季贤) 注:使用范围7~10km,设一级中继泵站时比压降取推荐值的1.2倍,设有两级时取1.4倍。 直埋热水管道工程设计 医药化工项目外管设计工作中,常会出现直埋热水管道的设计方案,针对该设计工作,综合规范、标准图集、论文、制造商等各渠道而来的技术资料、工程案例和经验,现做如下初步概括的总结和阐述: 直埋热力管道分为无补偿直埋敷设和有补偿直埋敷设。无补偿直埋敷设又可分为冷安装无补偿、预应力无补偿。预应力无补偿有分为机械拉伸、敞槽预热、一

次补偿等多种形式。预热方式又分为热水、热风和电热等。一般DN800以下的管道可设计为冷安装无补偿方式。 一、直埋管的稳定性验算 (1)整体稳定性分析:直埋管最小覆土深度应满足垂直稳定性要求,一般而言,大于DN700的直管道不必从垂直稳定性考虑限制其埋深。 (2)局部稳定性分析:公称直径不大于DN800、工作温差小于85℃时,不会出现局部失稳;当供水温度大于130℃、公称直径大于DN800时,采用标准壁厚的钢管,在锚固段可能会出现局部皱结。 二、直埋管的强度验算 无补偿管段强度验算有两种强度验算理论:弹性分析法(第四强度理论)和安定分析法(弹塑性分析,第三强度理论)。 直埋管的安定条件判断,根据应变大小可分为不发生任何塑性变形 (△ε≤2εs,|ε|<εs,安定状态)、发生有限塑性变形(△ε≤2εs,|ε|>εs安定状态),发生循环塑性变形(△ε>2εs,不安定状态) (1)极限分析:为防止管道出现塑性流动,必须保证一次应力小于屈服极限σs。考虑安全因素后,设计应保证一次应力不大于许用应力[σ]。 (2)安定分析:为使管道处于安定,必须保证一次应力(工作压力产生的内力,包括轴向应力和环向应力)与二次应力(热应力,升温产生轴向压应力,降温产生轴向拉应力)共同作用下当量应力变化范围小于2倍屈服极限σs。考虑安全因素后,用抗拉强度σb代替2σs。管道安定条件:当量应力变化范围不大于 3[σ]。

蒸汽管道计算实例

、尸■、亠 前言 本设计目的是为一区VOD-40t 钢包精练炉提供蒸汽动力。设计参数是由动力一车间和西安向阳喷射技术有限公司提供的。 主要参数:蒸汽管道始端温度250C,压力1.0MP;蒸汽管道 终端温度240C,压力0.7MP (设定); VOD用户端温度180C,压力0.5MP; 耗量主泵11.5t/h 辅泵9.0t/h 一、蒸汽管道的布置 本管道依据一区总体平面布置图所描述的地形进行的设计,在布置管道时本设计较周详地考虑到了多方面的内容: 1、蒸汽管道布置时力求短、直,主干线通过用户密集区,并靠 近负荷大的主要用户; 2、蒸汽管线布置时尽量减少了与公路、铁路的交叉 3、在布置蒸汽管线时尽量利用了自然弯角作为自然补偿。并在自然补偿达

不到要求时使用方型补偿器。 4、在蒸汽管道相对位置最低处设置了输水阀。 5、蒸汽管道通过厂房内部时尽量使用厂房柱作为支架布置固定、滑动支座。 6、管道与其它建、构筑物之间的间距满足规范要求。 二、蒸汽管道的水力计算 已知:蒸汽管道的管径为Dg200,长度为505m。 蒸汽管道的始端压力为1.0MP,温度为250C查《动力管道设计手册》第一册热力管道(以下简称《管道设计》)1 —3得蒸汽在该状态下的密度p为 4.21kg/m3。 假设:蒸汽管道的终端压力为0.7Mp,温度为240C查《管道设计》表1 —3得蒸汽在该状态下的密度p为2.98kg/m3。 (一)管道压力损失:

2、压力损失 式中△ p —介质沿管道内流动的总阻力之和,Pa; Wp —介质的平均计算流速,m/s ;查《管道设计》表5-2 取 Wp=40m/s ; g —重力加速度,一般取 9.8m/s "; u p —介质的平均比容,m 3/kg ; 入—摩擦系数,查《动力管道手册》(以下简称《管道》) 表4— 9得 管道的摩擦阻力系数 入=0.0196 ; d —管道直径,已知d=200mm ; L —管道直径段总长度,已知 L=505m ; 艺E —局部阻力系数的总和,由表(一)得 艺E =36 H 1、战一管道起点和终点的标高,m ; 1/Vp= p p —平均密度,kg/m 3 ; 1.15—安全系数。 在蒸汽管道中,静压头(H2-H1)10/Vp 很小,可以忽略不计所以 2 103 d 厶+工? + (禺+駕)-1。5 2— 1

压力管道设计说明

1、工程概况 本工程为射阳港经济区射阳金鹤纤维素有限公司蒸汽管网设计工程。蒸汽管网利用三通由原厂区内蒸汽管道接出,通至新库房。 2、设计参数 工作压力:0.8MPa 工作温度: 160℃ 设计压力: 1.6 MPa 设计温度: 300℃ 工作管道直径:Φ108×5 过路段埋地外护管直径:Φ219×6 保温材料:超细离心玻璃棉δ=60-70mm(详见图纸列表) 保护层:镀锌彩钢板δ=0.5mm 3、本设计遵照以下标准规范 1、《压力管道规范-工业管道》(GB/T20801-2006); 2、《压力管道安全技术监察规程-工业管道》(TSGD0001-2009); 3、《城镇供热直埋蒸汽管道技术规程》(CJJ104-2005); 4、《工业金属管道工程施工及验收规范》(GB50235-97); 5、《工业设备及管道绝热工程施工及验收规范》(GB50126-2008);

6、《工业金属管道工程施工质量验收规范》(GB50184-2011); 7、《工业设备及管道绝热工程设计规范》(GB50264-97); 8、《现场设备、工业管道焊接工程施工规范》(GB50236-2011); 9、《压力管道设计许可规范》(TSGR1001-2008); 10、《特种设备安全监察条例》 549号国务院令; 11、《承压设备无损检测》(JB/T4730-2005); 4、输送介质为蒸汽的管道,管道分类为GC3。 5.蒸汽管道安装 5.1蒸汽管道的施工验收应符合《压力管道规范-工业管道》(GB/T20801-2006)和《压力管道安全技术监察规程-工业管道》(TSG D0001-2009)的有关规定。 5.2材料:工作管采用20#(Φ108×5)无缝钢管,管道标准为GB/T8163-2008或GB3087-2008。焊接采用氩弧焊打底,焊丝为H08Mm2Si,盖面采用手工电弧焊,焊条型号为E4303,对应牌号为J422;埋地外护管均采用螺旋钢管(Q235B),管道标准号为SY/T5037-2000,采用手工电弧焊,焊条型号为E4303,对应牌号为J422。 5.3蒸汽管道的弯头采用热压弯头(GB12459-2005),除特殊注明外,弯头弯曲半径R=1.5DN。三通采用标准无缝三通(GB12459-2005)。管件壁厚不小于直管段壁厚。 5.4全部钢管、管件以及预制件等应有制造厂的合格证书或复印件,在安装前应进行外观检查,并将内部清洗干净,不得留有杂质;保温制品需有性能检测报告,保温表面不得有

直埋蒸汽管道工程设计应注意的若干问题探讨

直埋蒸汽管道工程设计应注意的若干问题探讨 发表时间:2017-09-21T11:50:08.607Z 来源:《防护工程》2017年第12期作者:董磊 [导读] 在设计上还需要考虑工程的实际施工情况和管线的施工走向,对工程管道的布置进行合理的设计。山东天润热电设计院有限公司山东省济南市 250022 摘要:针对直埋蒸汽管道的生产和应用进行了分析,对当前的蒸汽直埋管道的施工和工程设计进行了探讨,对工程中存在的问题进行了分析,并对工程进行中要遵守的原则进行了介绍。 关键词:直埋;蒸汽管道;工程设计 一、直埋蒸汽管道工程设计 在保证直埋蒸汽管道的使用质量和设计强度之后,工程人员需要对工程中蒸汽管道系统的整体结构进行设计,在管道的布置和设计上要合理,在实际设计中,设计人员要针对建筑的布局和周边的环境来发现和改正设计中的管线,在发现管线排布上的矛盾时要及时予以修正,对管道线路的走向和位置与工程的结构建设出现交叉问题时也要及时的调整,并与有关建设部门进行设计上的商讨,使管线设计在建筑空间之中易于检修和使用,为管线未来的使用维修做好准备。设计工作要在对蒸汽管道内部应力的计算和管线强度进行计算之后完成,在设计上还需要考虑工程的实际施工情况和管线的施工走向,对工程管道的布置进行合理的设计。 1、将管网进行合理划分 施工时为了防止不同温度的蒸汽管道相互影响,工程设计人员会根据管道使用过程中的不同温度将管道网络合理划分为多个相互之间封闭的保温管网段。实际施工中使用的蒸汽管道是复合预制保温管道,其管道和保温层之间存在孔隙,这就使得一旦蒸汽管网在运行使用时发生蒸汽的外泄或是管道存在漏点就会造成管道中的高温蒸汽通过管道和保温层之间的孔隙在整个管网中泄漏,引起管网的整体温度上升,严重时会导致一定区域内的管网出现大量的损失。为了防止这种事故的发生,在工程设计过程之中技术人员会将蒸汽管网划分为多个互相封闭的保温段,不同的管网段之间互不联系,一旦事故发生,泄漏的蒸汽也只能在很小的区段之间移动,不会造成大面积的管道损坏,缩小了事故的影响范围,也降低了在检修之中寻找蒸汽管道泄漏点的难度。工程设计中,要降低管道泄漏的危害,技术人员可以根据施工的现场环境将管网的主干线和直线之间设置成互相封闭的保温管段。 2、管网热补偿 由于管道需要进行保温设计,其结构限制了施工方式,在实际工程之中,管网直管段的补偿器只能采用直埋式轴向型的施工方式。在通常的工程设计过程中,技术人员使用的补偿器补办是轴向型波纹补偿器,施工中需要将补偿器布置在管道的固定支架处,防止工程施工和管道使用中出现轴向的失稳,影响热补偿的效果。这种补偿器的安装方式对补偿器的波节吸收位移的能力有较大的影响,会造成波节在工作之中受力传递的不均匀,补偿效果较差。要解决这一问题,设计员认为需要在改善施工安装位置的同时提升补偿器的实际作用性能。因此,在工程设计之中首先要选择高质量的补偿器,补偿器的性能指标主要是其自身的自导向性能和抗失稳能力,尽量挑选这两方面性能较好的补偿器。除此之外,补偿器的保温结构一定要满足工程的强度和温度控制要求,且避免影响补偿器工作性能。而补偿器的安装需要根据工程情况灵活判断,工程人员可以根据建设管线的分段长度以及实际建设条件,将补偿器安装在两个固定支架之间的任意一端位置,这样做的好处是既可以避免地下障碍影响补偿器安装,又能满足管线的补偿要求。工程设计中还要注意的是避免将补偿器布置在管道的弯头或是折点旁,这些位置都是管段的应力集中位置,极易出现损坏。 3、管线疏水网布置合理 蒸汽管网由于其中介质的性质不稳定,常会出现管线内部的运行负荷变动频繁的情况,甚至会出现零负荷状态,在这种情况之下管线内部的凝结水会增加,假如不及时进行处理就会造成管道内部出现水击,对管线的结构造成破坏。夏季蒸汽管网低负荷工作时,凝结水较多,内管汽水冲击对保温层、保护层产生震动,冲击力较大,此时,保温、保护层处于最不利状态下工作。因此,夏季是发生问题较多的时期,应采取行之有效的措施,保证管网顺利度夏。良好运行管理不仅减少了问题的发生,而且有效地延长了管网的使用寿命。因此,一般在工程设计之中为了避免这种情况的发生,设计人员会在管网工程施工之中对疏水点的数量和位置进行合理的设计。一般在布置疏水点是技术人员需要考虑以下的问题:第一,疏水点的设置沿着管网的起源方向进行,根据蒸汽管道内的路由高将管网进行坡度设计,顺流疏水。第二,在管网系统工程建设之中建设环境的复杂性会影响疏水点的设置。假如施工环境之中地下的障碍物较多,且管道铺设起伏较多,这样的情况之下需要采用多低点疏水的设计方式,在管道的逆流段可以加大坡度以便于疏水的正常进行。第三,管道的疏水设施除了疏水点之外,技术人员还会在管道的底部设置集水罐,以便于对凝结水进行收集。管道之中存在凝结水时会出现反复的热位移,这种现象会影响疏水管的结构,非常容易使得疏水管出现泄漏现象,为了避免这种情况出现影响疏水功能的正常实现,技术人员会将疏水节设置在管道的固定节旁边。为了蒸汽管网的运行安全,设计之中可以使用背压疏水设计,将疏水井固定设置在地下0.5m-0.8m深的位置,并在每一个疏水节处设置自动疏水器,保证疏水网的安全可靠。 4、合理设计管道深度 直埋蒸汽管道的埋深是决定管道外表面温度的条件之一,因为土壤的导热系数不仅与土壤的种类、化成分、含水量有关,还与土壤的埋设深度有关,实验证明,随着埋深的增加,土壤的导热系数降低,因此,管道埋得过深会使管道的外表面温度升高。我们在设计时,在保证管道不被地上荷载破坏,即满足强度要求的前提下,应尽量浅埋,实际工程设计之中一般认为在地下条件允许的地方,管道的埋深以0.8一1.0m为宜。 5、管道固定支架 直埋蒸汽管道的固定节存在的问题是环板温度很高,并且由于热桥的作用,环板两侧管道的外表面温度也很高。国内目前较多采用的做法是在固定节处采用钢外套,并增加固定节的长度以保证管道和固定节的接口部分的外表面温度不超过设计要求。对于钢外套的预制复合保温管,固定节处的钢外套的防腐应考虑到耐高温问题。 对于钢外套的预制复合保温管,设计时还要考虑钢外套管的应力分布。直埋蒸汽管道的外表面设计温度一般是50℃,除应考虑固定墩两侧管道补偿器的弹性反力、不平衡内压力及管道的摩擦力外,对钢外套的预制复合保温管还应考虑钢外套管对固定墩的推力。直埋复合保温管的整体稳定性也应该纳入工程的设计中,其稳定性可以用土壤作用在钢套管上的被动土压力来保证,在实际建设之中使用全部固定的方式可以有效提升工程建设质量,解决了地下建设条件恶劣对施工的影响,也缩短了施工时间。

蒸汽伴热管道规范

蒸汽伴热管道规范 范围 本规范涵盖了管道、仪表和相关设备的蒸汽伴热设计和安装的一般要求。 与本规范、图纸或其它用于此工作的规范有偏差时,应在工作前向授权技师提交书面申请以获得相关批准。 参考文献 在这方面相关的规范如下: (1)X-MAPJ-S500-0018,管道检查验收施工规范 (2)X-MAPJ-S500-0011,绝缘规范 (3)GB50234-97,施工规范及工业金属管道的验收 基本概要 所有要求伴热的管线或其相关的设备和仪器,应有适用的管道和仪表流程图以及管线列表。 本规范适用32℉以及更高时的“低环境设计温度”。 设计 蒸汽伴热管道设计时应布置有序,并考虑到热膨胀并且易于通向所有的法兰、阀门、U型弯管、滤水器和仪器。为对阀门、U型弯管或滤水进行测试或易于拆除,应提供阀门、法兰。 实际操作时,伴热应从管线的最高点开始终止于最低点。蒸汽供应连接应采取最近的车间蒸汽管集箱到管线的最高点,且需有隔离阀。 当要求两个或更多的蒸汽伴热供应点时,集合管通常用于伴热供应及冷凝水回水。 实际操作时,蒸汽伴热供应集合管应能自排水到主蒸汽管。然而在操作及停工期间,如果布局允许将冷凝物收集到主蒸汽管,应在集合管的最低点安装排水阀,此时应在集合管为伴热系统最低点的地方安装U型弯管,连续不断地排出冷凝物,从而形成集合管。 蒸汽供应连接以及集合管应位于允许短期运行的伴热管道。所有集合管的规格为附加伴热器的25%。 从经济角度来说,节约能源应收集蒸汽伴热的冷凝水,并排入同蒸汽伴热有相同压力水平的冷凝水总管。冷凝水管线及冷凝水收集总管应尺寸应合适,防止收集操作的两相流动产生过多的回压。 所有要求伴热的管线应提供独立的伴热器,或伴热器不得伸至不同体系或系统的其它管线。除了有调节阀或其它类似连接外,所有伴热器应单独密封。 所有的调节阀、管线阀门、配件、仪表和相关设备等,应同连接的管道一样有蒸汽伴热。 管线保护的绝缘厚度以及类型应遵循工程隔热规范。 如果可以自由排水,伴热系统的流动与伴热管线的流动应为逆流。 表1为蒸汽伴热最大允许长度,当伴热管线超过了这个限度,伴热器分段,每段有独立的供应线及U型弯管。

城市直埋式供热管道固定墩的结构设计浅析

城市直埋式供热管道固定墩的结构设计浅析 1、城镇供热管道设计 1.1直埋供热管道的应力 无论多大的直径埋管道, 管道内部压力产生的压力主要是管介质和管道轴向摩擦当土壤的轴向位移, 和管土的侧向位移横向压缩反应。压力产生的内部压力和土壤侧向压缩反应引起的二次应力计算方法根据现有“城”的直埋供热管道工程技术规范(CJJ / t81 - 98) 计算, 但现有的土压力引起的轴向摩擦“纪律”忽 略管道本身重量的影响,这在小直接埋管道强度计算是没有问题, 但是对于大直 埋管道由于管道本身自重大, 当发生管道轴向位移时, 由自重产生的管道和土壤之间的摩擦不应被忽视。 1.2过渡段长度计算 当补偿装置的两端直接管间距大于过渡段的长度限制(最大长度的摩擦) 两次, 可以形成两个( 自然)锚点之间的无偿部分( 自然锚固段); 当补偿设备间距小于或等于两次过渡段的长度, 由一个静止的点分为两个过渡段(补偿) 。没有补偿直埋敷设方式冷安装条件: 根据弹性理论分析(1.35 c eq[美国])或更低,只要温差不大于弹性安装温差直管道直埋敷设方式不允许安装补偿器和无偿, 管道在弹性状态下运行。换句话说, 当安装一个温差大于弹性温差, 直部分中不允许存在锚定, 必须安装补偿器, 设置补偿器的最大间距是管存在过渡段的锚固长度的两倍。过渡段长度可以根据现有的停滞时期在单轴应力和摩擦。 弹性温度(58.0 ~ 67.4 C)和管道工作压力(1.0 ~ 2.5 Mpa), 公称直径(dn40 - 1000)。采暖管道安装温度计算在10C ,供水温度的设计一般都大于80C ,温度低于 80E ,因此,无论第二网络,直接埋管供水管道必须安装补偿装置、回水管可以考虑无偿。 根据弹塑性理论分析(c eq 3( c )或更少),等效应力小于屈服极限的两倍,引入安全系数后, 取而代之的是容许应力的 3 倍。基于弹性稳定性分析的温度(121.0?149.3 C )也增加了许多,这样,即使水温高达140C,采用直线冷段和安装没有补偿直埋敷设方式。然而,由于高应力检查值,需要三通,弯头等应力集中 在本地配件在必要的加强措施。基于弹塑性理论分析, 类似于弹性理论, 在安装温

相关文档