文档库 最新最全的文档下载
当前位置:文档库 › 中国水稻功能基因组研究进展与展望_肖景华

中国水稻功能基因组研究进展与展望_肖景华

中国水稻功能基因组研究进展与展望_肖景华
中国水稻功能基因组研究进展与展望_肖景华

2019年刨花板现状及发展趋势分析共21页

中国刨花板行业现状分析与发展前景研究 报告(2015年版) 报告编号:1590A30

行业市场研究属于企业战略研究范畴,作为当前应用最为广泛的咨询服务,其研究成果以报告形式呈现,通常包含以下内容: 一份专业的行业研究报告,注重指导企业或投资者了解该行业整体发展态势及经济运行状况,旨在为企业或投资者提供方向性的思路和参考。 一份有价值的行业研究报告,可以完成对行业系统、完整的调研分析工作,使决策者在阅读完行业研究报告后,能够清楚地了解该行业市场现状和发展前景趋势,确保了决策方向的正确性和科学性。 中国产业调研网Cir基于多年来对客户需求的深入了解,全面系统地研究了该行业市场现状及发展前景,注重信息的时效性,从而更好地把握市场变化和行业发展趋势。

一、基本信息 报告名称:中国刨花板行业现状分析与发展前景研究报告(2015年版) 报告编号:1590A30←咨询时,请说明此编号。 优惠价:¥6750 元可开具增值税专用发票 网上阅读:http://cir/R_JianZhuFangChan/30/BaoHuaBanDeXianZhuangHeFaZhanQuShi. html 温馨提示:如需英文、日文等其他语言版本,请与我们联系。 二、内容介绍 刨花板又叫微粒板、蔗渣板,由木材或其他木质纤维素材料制成的碎料,施加胶粘剂后在热力和压力作用下胶合成的人造板,又称碎料板。主要用于家具和建筑工业及火车、汽车车厢制造。 改革开放以来,我国人造板工业得到了突飞猛进的发展。作为人造板三大主体产品之一的刨花板,无论在企业数量、生产产量、产品质量以及市场容量等方面,还是在进出口贸易方面,都已经跨上了一个新的台阶,取得了令人瞩目的进步。一方面我国的刨花板生产在满足国内需要的同时,也在努力提高质量,加大出口力度,积极参与国际市场的竞争。另一方面,我国家具业和装饰装修行业发展迅速,对近年来国际上不断涌现出的刨花板新产品有着强烈需求。我国已经成为一个刨花板生产和消费的大国。 中国刨花板生产经历了由20世纪80年代的上升,到90年代的下降再由2000年的再上升的反复过程。刨花板由于质量差和其它一些原因,被市场抛弃后,许多刨花板企业吸取教训,引进国外的先进生产线和提高工艺水平后,近年中国的刨花板质量有了明显提高,又重新被市场所接受。2019年,我国刨花板产量达到1357.84万立方米,同比增加5.33%;2019年生产刨花板16728560.05立方米,同比增长12.83 %。 据中国产业调研网发布的中国刨花板行业现状分析与发展前景研究报告(2019年版)显示,我国刨花板工业的进步还仅仅是个开始,虽然目前中国人均消费的刨花板水平还比较低,但是随着国家加快建设小康社会步伐,积极推进城市化进程,加大城市公用设施固定资产投资,建设保障性住房,给刨花板行业发展带来机遇,装饰、家具、包装、造船、汽车、建筑等各个行业对刨花板的需求将迎来新的增长高峰,刨花板产品应用领域会越来越大。未来几年刨花板的需求将大幅上升,成为人造板产品中增长最快的板种,发展前景十分广阔。

水稻基因组学的的研究进展

基因组学课程论文 所在学院生命科学技术学院 专业14级生物技术(植物方向) 姓名金祥栋 学号2014193012

水稻基因组学的研究进展 摘要:随着模式植物——拟南芥和水稻基因组测序的完成,近年来关于植物基因组学的研究越来越多。水稻是世界上重要的粮食作物之一,养活着全世界近一半的人口。同时南于水稻基冈组较小、易于转化及与其他禾本科植物基因组的同线性和共线性等特点,一直被作为禾本科植物基因组研究的模式作物。水稻基因组测序的完成及种质资源的基因组重测序,为水稻功能基因组研究奠定了基础。现综述我国水稻基因组测序和功能基因组研究历史,重点介绍了近年来在水稻基因组序列分析中获得的几项最新的研究结果。 关键词:水稻;基因组测序;功能基因组;研究历史;基因组学;研究进展 The recent progress in rice genomics research Abstract: With the completion of genome sequencing ofthe model plant-- Arabidopsis and rice,more and more researches on plant genomics emerge in recent years. Rice i s one of the most important crops in the world, raised nearly half of the world popul ation. At the same time in south rice Keegan group is smaller, with linear and linear features such as easy transformation and other gramineous plant genome, has been use d as a model crop for plant genome research of Gramineae. Genome sequencing and germplasm resources the rice genome sequencing completed laid the foundation for ric e functional genomics research. This article reviews the history and function of our ge nome sequencing of rice genome research, introduces several latest research results in recent years in the analysis of rice genome sequences. 前言 基因组是1924年提出用于描述生物的全部基因和染色体组成的概念,是研究生物基因结构与功能的学科,是在遗传学的基础上发展起来的一门现代生物技术前沿科学,也是现代分子生物学和遗传工程技术所必要学科,是当今生物学研究领域最热门、最有生命力、发展最快的前沿科学之一。基因组学的主要任务是研究探索生物基因结构与功能,生物遗传和物理图谱构建,建立和发展生物信息技术,为生物遗传改良及遗传病的防治提供相关技术依据。 进入21 世纪,随着全球化、市场化农业产业发展和全球贸易一体化格局的逐步形成,我国种业正面临前所未有的严峻挑战,主要表现在:依靠传统育种技术难以大幅度提高粮食单产;土地资源短缺,农业环境污染日益突出;种质资源发掘、基因组育种技术亟需创新等。水稻不仅是重要的粮食作物,由于其基因组较小且与其他禾本科作物基因组存在共线性,以及具有成熟高效的遗传转化体系,已成为作物功能基因组研究的模式植物。因此,水稻基因组研究对发展现代农作物育种技术、提升种业国际竞争力和保障粮食有效供给具有重大战略意义。 基因组研究主要包括三个层次:①结构基因组学,以全序列测序为目标,构建高分辨率的以染色体重组交换为基础的遗传图谱和以DNA 的核苷酸序列为基础的物理图谱。②功能

中国化学发展史

浅谈中国化学发展史 武瞳 兰州城市学院甘肃兰州 730070 摘要:化学的发展,对人类社会的进步至关重要。化学与人们的生活息息相关,了解化学的发展史,有助于我们更好的利用化学。化学的历史渊源非常古老,可以说自从有了人类,化学便与人类结下了不解之缘。钻木取火,用火烧煮食物,烧制陶器,冶炼青铜器和铁器等等。当时只是一种经验的积累,化学知识的形成和发展经历了漫长而曲折的道路。而它的发展,又极大地促进了当时社会生产力的发展,成为人类进步的标志。 关键词:萌芽炼丹燃素定量化学化学史化学家侯德榜张青莲侯氏制碱法 化学史大致分为以下几个时期: (一)化学的萌芽时期:从远古到公元前1500年,人类学会在熊熊的烈火中由黏土制出陶器、由矿石烧出金属,学会从谷物酿造出酒、给丝麻等织物染上颜色,等等。这些都是在实践经验的直接启发下经过长期摸索而来的最早的化学工艺,但还没有形成化学知识,只是化学的萌芽时期。 (二)炼丹和医药化学时期:约从公元前1500年到公元1650年,化学被炼丹术、炼金术所控制。为求得长生不老的仙丹或象征富贵的黄金,炼丹家和炼金术士们开始了最早的化学实验,虽然他们都以失败告终,但在炼制长生不老药的过程中,在探索“点石成金”的方法中实现了物质间用人工方法进行的相互转变,积累了许多物质发生化学变化的条件和现象,为化学的发展积累了丰富的实践经验。在欧洲文艺复兴时期,出版了一些有关化学的书耕,第一次有了“化学”这个名词。英语的chemistry起源于alchemy,即炼金术。chemist 至今还保留昔两个相关的含义:化学家和药剂师。但随着炼丹术、炼金术的衰落,人们更多地看到它荒唐的一面,化学方法转而在医药和冶金方面得到正当发挥,中、外药物学和冶金学的发展为化学成为一门科学准备了丰富的素材。 (三)燃素化学时期:从1650年到1775年,是近代化学的孕育时期。随着冶金工业和实验室经验的积累,人们总结感性知识,进行化学变化的理论研究,使化学成为自然科学的一个分支。这一阶段开始的标志是英国化学家波义耳为化学元素指明科学的概念。继之,化学又借燃素说从炼金术中解放出来。燃素说认为可燃物能够燃烧是因为它含有燃素,燃烧过程是可燃物中燃素放出的过程,尽管这个理论是错误的,但它把大量的化学事实统一在一个概念之下,解释了许多化学现象。在燃素说流行的一百多年间,化学家为解释各种现象,做了大量的实验,发现多种气体的存在,积累了更多关于物质转化的新知识。特别是燃素说,认为化学反应是一种物质转移到另一种物质的过程,化学反应中物质守恒,这些观点奠定了近代化学思维的基础。这

【免费下载】真菌基因组学研究进展

真菌基因组学研究进展 真菌为低等真核生物,种类庞大而多样。据估计,全世界约有真菌150万种,已被描述的约8万种。真菌在自然界分布广泛,存在于土壤、水、空气和生物体内外,与人类生产和生活有着非常密切的关系。许多真菌在自然界的碳素和氮素循环中起主要作用,参与淀粉、纤维素、木质素等有机含碳化合物及蛋白质等含氮化合物的分解。有些真菌如蘑菇、草菇、木耳、麦角、虫草、茯苓等可直接供作食用和药用,或在发酵工业、食品加工业、抗生素生产中具有重要作用。然而,也有些种类引起许多植物特别是重要农作物的病害,如水稻稻瘟病、小麦锈病、玉米腥黑穗病、果树病害等。少数真菌甚至是人类和动物的致病菌,如白色假丝酵母Candida albicans等。因此,合理利用有益真菌,控制和预防有害 真菌具有重要意义。 本文整理了已完成基因组序列测定的真菌的信息,并对真菌染色体组的历史、测序策略及其基因组学的研究进展进行了评述。 1真菌染色体组的研究历史和资源 1986年美国科学家Thomas Rodefick提出基因组学概念,人类基因组计划带动了模式生物和其它重要生物体基因组学研究。阐明各种生物基因组DNA中碱基对的序列信息及破译相关遗传信息的基因组学已经成为与生物学和医学研究不可分割的学科。由欧洲、美国、加拿大和日本等近百个实验室六百多位科学家通力合作,1996年完成第一个真核生物酿酒酵母Saccharomyces cerevisiae的基因组测序,这 对于酵母菌类群来说是一个革命性的里程碑,并且激起了真核基因功能和表达的第一次全球性研究(Goffeau etal,1996)。随后粟酒裂殖酵母Schizosaccharomyces pombe(Wood etal.2002)和粗糙脉孢 霉Neurospora crassa(Galagan etal.2003)染色体组的完成显露出酿酒酵母作为真菌模式生物的局限性。尽管如此,真菌染色体组测序的进展最初是缓慢的。为加快真菌染色体组研究的步伐,2000年由 美国Broad研究所与真菌学研究团体发起真菌基因组行动(fungal genome initiative,FGI),目的是 促进在医药、农业和工业上具有重要作用的真菌代表性物种的基因组测序。2002年2月FGI发表了第 一份关于测定15种真菌基因组计划的白皮书。2003年6月,真菌基因组行动发表了第二份白皮书,列 出了44种真菌作为测序的目标,强调对其中10个属即青霉属Penicillium、曲霉属Aspergillus、组 织胞浆菌属Histoplasma、球孢子菌Coccidioides、镰刀菌属Fusarium、脉孢菌属Neurospora、假丝 酵母属Candida、裂殖酵母属Schizosaccharomyces、隐球酵母属Cryptococcus和柄锈病菌属Puccin& 的物种优先进行测序。之后,经过FGI、法国基因组学研究项目联(G6nolevures Consortium)、美国能 源部联合基因组研究所(The DOE Joint Genome Institute,JGI)DOE联合基因组研究所、基因组研究 院(The Institute for Genomic Research,TIGR)、英国The Wellcome Trust Sanger InstimteSanger和华盛顿大学基因组测序中心等共同努力;得到包括美国国家人类染色体研究所、国 家科学基金会、美国农业部和能源部等的资助,也有来自学术界和产业集团如著名的 Monsanto、Syngenta、Biozentrum、Bayer Crop Science AG和Exelixis等公司的持续合作,在最近 的几年里,真菌基因组学研究取得重大突破。至2008年6月1日,共有3734种生物的全基因组序列测定工作已经完成或正在进行,公开发表812个完整的基因组,其中,70余种真菌基因组测序工作已经 组装完成或正在组装,分别属于子囊菌门、担子菌门、接合菌门、壶菌门和微孢子虫(Microsporidia) 的代表。此外,还有Ajellomyces dermatitidis和Antonospora locustae等20余种真菌基因组序列 正在测定中(Bemal etal.2001)。这些真菌都是重要的人类病原菌、植物病原菌、腐生菌或者模式生物,基因组大小为2.5—81.5Mb,包含酵母或产生假菌丝的酵母、丝状真菌,或者具有二型性(或多型性) 生活史的真菌,拥有与动物和植物细胞一样的的细胞生理学和遗传学特征,包括多细胞性、细胞骨架结

中国生物化学的发展与展望

中国生物化学的发展与展望 历史的回顾 生物化学是一门比较年轻的学科,在我国正处于发展阶段。它是在化学、生物学和生理学中孕育出生而成长起来的。生理学之父法国拉瓦锡(Lavaisier 1743-1794)在恐怖政权迫害之下,敢于冒天下之大不匙.首先提出了呼吸和新陈代谢的正确概念。这就给生理学和生物化学莫定了良好的基石.十九世纪德国化学家莱比锡(Liebig)在拉瓦锡学派影响下,开始注意动植物机体的化学组成成分。他Ai慕尼黑建立了第一个类似生物化学的有机化学实验室,许多国家的学者纷纷来到莱比踢的实}fL室学习因而形成了慕尼黑学派。学派中伏依提(Voit)提出了营养和能量代谢的重要性。这些冲国学者回到本国后都成为生物化学的创始人。当时这些学者和他们的学生的工作特卢、,是在理论的塞础上创立了许多生物化学技术和方法。际上著名的我国生物化学家即孙弗林的亲宇学生和同工者,他们在血液分析方法中作出了巨大贡敲.文献中以弗林一一吴(Fol inwu)法名之。 美国洛克菲勒研究所的万斯赖克(Vanslyke)在弗林的鼓舞下对血液气沐介析、氛毯陡分析等方法不出了很大贡献。万氏在二十年代曾来中国任北京协和医院生物化学系教授兼主任。1.123年吴宪教授自哈佛大学回国后即继承万氏职务。我国在廿年代尚无生物化学专业教学和杆研机构r仅少教医学院设有生物化学系。在30年代我国著名生物学家秉志教授主持之中国科学社生物研究所.由怅宗汉教授筹备成二了生理学研究室,由郑集教授筹备生物化学研究室.这个研究室可算是我国第一个生物飞学专业机构01937年日本军国主义入侵我国叶,中央大学医学院及生物研完室的两个生物化学实脸室均迁入成都华丙大学校园继续工作,齐晋大学同时亦迁入华大佼地,于是提供了学术合作的良好机会。这不(q 4-现在教学科研上,还体现在生物化学的学术活动上。例如由郑集倡导之“生物化学报告讨论会”和约同成都 生物化学及营养工作者组织之“成都生物化学会”,以及生物化学文献讨论会。这些学术活动对发展我la生物化学起了一定的良好作用。当时的“成都生物化学会”是我国第一个生417 St学专业的学术组织。1948牟郑集教授约同林国fl,,、万听等倡汉组织中国生物化学学会,并推万听、林国镐、李纷文、郑集、il f-树模、刘思职、兰天鹤等七人为筹备委员。当时正值解放战争即将全而胜刊,学会茧未正式成立但已有萌芽。郑集教授于1940年在中央天学医学院于成都布后街成立生物化学研完听‘这是我国生物化学发展史上第一个生物化学专业研完沂,先后培养硕士级研完生川余名、其中有国内冲知名之生物化学家、营养学家。1947年兰天鹤留美归国,随身带回友人赠之一批生物化学基本仪器,即在华丙大学成立生物化学研究听。这是在郑集教授影响下医学院内设立之第二个生物化学研究所。除上述两个研究所冲.中央研究院化学研究所还有一个小的生物化学研究室。英国在上海设立之雷士德研究所(Listerinstitute)在侯祥川教授主持下,对我国生物化学及营养学的发展作出了巨大贡献。解放前我国没有一本中文的生物化学教科书和实验教程。1938年郑集编写了“生物化学实p1手j}j,l (A Laboratory Manual of Biochemistry)正式在.成都华英书局出版。这是我国第一本自编的生物化学实验手册。 12

中国化学灌浆行业现状分析与发展前景研究报告2018年版

文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 中国化学灌浆行业现状分析与发展前景研究报告(2018年版)

报告简介 【名称】中国化学灌浆行业现状分析与发展前景研究报告(2018年版) 【编号】1373722 【价格】纸质版:19000元电子版:20000元纸质+电子版:21000元 【优惠价】¥13600 元 【电话】400 612 8668、、传真: 【邮箱】 【网址】-04/HuaXueGuanJiangDiaoChaFenXi.html 【提示】如需英文、日文等其他语言版本报告,请向客服咨询。 《中国化学灌浆行业现状分析与发展前景研究报告(2018年版)》是专门针对化学灌浆产业的调研报告,采用客观公正的方式对化学灌浆产业的发展走势进行深入分析阐述,为客户进行竞争分析、发展规划、投资决策提供支持和依据,本项目在运作过程中得到了众多化学灌浆产业链各环节技术人员及营销人员的支持和帮助,在此再次表示谢意。 中国市场报告网发布的中国化学灌浆行业现状分析与发展前景研究报告(2018年版)首先介绍了化学灌浆的背景知识,包括化学灌浆的相关概念、分类、应用、产业链结构,国际市场动态分析,国内市场动态分析,宏观经济环境分析及经济形势对化学灌浆行业的影响,化学灌浆行业国家政策及规划分析,化学灌浆产品技术参数,生产工艺技术,产品成本结构等;接着统计了中国主要企业化学灌浆产能、产量、成本、价格、毛利、产值等详细数据,同时统计了这些企业化学灌浆产品、客户、应用、产能、市场地位、企业联系方式等信息,最后通过对这些企业相关数据进行汇总统计和总结分析,得出中国化学灌浆产能市场份额,产量市场份额,供应量、需求量、供需关系,进口量、出口量、消费量等数据统计,同时介绍中国化学灌浆行业近几年产能、产量、售价、成本、毛利、产值等,之后分析了化学灌浆产业上游原料、下游客户及产业调查分析,并介绍化学灌浆营销渠道,行业发展趋势及投资策略建议,最后还采用案例的模式分析了化学灌浆新项目投资可行性研究及SWOT分析。 第一章化学灌浆产业概述

进化基因组学研究进展

研究进化基因组学进展 摘要:进化基因组学是利用基因组数据研究差异基因功能、生物系统演化、从基因在水平探索生物进化的学科。随着近年来基因组数据的不断增加,进化基因组学得到了长足的发展。进化基因组学主要包括从基因组水平理解和诠释生物进化和新基因分析研究探索两方面的内容。本文介绍了进化基因组学研究的主要内容和较为常用的方法,以及近年来在细菌、酵母、果蝇进化基因组学方面的研究进展。 关键词:进化基因组学系统进化比较基因组学新基因 正文 随着基因测序技术的不断进步以及基因组学的飞速的发展,人们积累了大量的基因组学数据,利用所得的大量的基因组数据与进化生物学相结合,在基因组水平研究生物进化机制,随即产生了进化基因组学。 近年来进化基因组学取得了长足的进展,在研究差异基因功能、生物系统演化、从基因在水平探索生物进化的终极方式等方面有重大突破,对人类理解生命现象和过程有重要作用。 研究系统进化学通常包括两个关键步骤:一方面,在不同物种中鉴定同源性特佂,另一方面利用构建系统进化树的方法比较这些特征,进而重新构建这些物种的进化历史[1]。针对这两个关键步骤,传统系统进化学,常采用基于形态学数据和单个基因研究的同源性状鉴定和重建系统进化树(常包括距离法、最大简约法、概率法)[1]的方法来研究。在目前拥有丰富基因组数据的条件下,我们可以分析基因组数据,利用进化基因组学研究系统进化。 一、目前进化基因组学的研究内容主要集中于两个方面:(1)在比较不同生物的基因数据的基础上,从基因组水平理解和诠释生物进化;(2)通过对新基因的分析研究探索基因进化过程的规律两个方面。在进行全基因组进化分析方面,进化基因组学主要集中于构建系统进化树、研究基因组进化策略、研究生物功能变化和进化机制、进化和生态功能基因组学、基因注释的等方面;在新基因方面

化学工程的发展与展望

化学工程的发展与展望 化学工程的发展与展望 化学工程是将化学过程和物理过程的基础理论研究与工业化学相结合的学科,不仅是一门具有百年历史的成熟基础学科,也是充满朝气、与时俱进的学科。 1 化学工程的兴起 几千年来过滤、蒸发、结晶等操作在生产中被广泛的应用,但在相当长的时期里,这些操作都是规模很小的手工作业。化学工程这一学科,是在19世纪后期随着大规模制造化学工业产品的生产过程的发展而诞生的。 19世纪70年代,各种基础化学品的生产等都有了相当的规模,化学工业有了许多杰出的成就。如索尔维法制碱中所用的纯碱碳化塔,高20余米,在其中同时进行化学吸收、结晶、沉降等过程,但是人们还没有从其中找出共有的规律。1880年,“化学工程”第一次被英国学者George E.Davis正式提出,1888年,美国麻省理工学院开设了第一个以“化学工程”命名的课程,标志着化学工程学科的诞生。1915年,本文由收集整理美国学者Arthur D. Little提出了“单元操作”,将各种化学品的工业生产工艺分解为若干独立的物理操作单元,并阐明了即使是不同的工艺,只要是相同操作单元就遵循的相同原理。 1920年,在美国麻省理工学院,化学工程从化学系分离出来,成为一个独立的系。1923年华克尔、刘易斯和W.H.麦克亚共同写的

《化工原理》一书出版,奠定了化学工程作为一门独立的工程学科的基础。 2 化学工程的发展 2.1 20世纪前叶,化学工程二级学科应运而生 在20世纪前叶,化学工程学科的发展促进了许多化学工艺的问世,如美国用丙烯合成出异丙醇,被誉为是石油化工的开端。这些化学工艺的出现,许多化学工程二级学科应运而生。 化学热力学,化学反应工程,传递过程,化工系统工程,化工控制工程等多个二级学科相继诞生。 2.2 20世纪50~60年代,化学工程完成了从单元操作到 三传一反 传递过程中动量传递的理论基础是流体力学,热量传递的理论基础是传热学,质量传递的理论基础是传质学,20世纪50~60年代,科学家将数学和物理的方法引入传递过程的研究,使传递过程学科有了较大的发展。1957年在第一届化学反应工程会议上确定了化学反应学科的研究内容和范围,从而确定化学反应工程学科的概念。化学工程完成了从单元操作到三传一反的过渡。 20世纪60年代以后,化学工程的各个主要部分,石油化工,煤化工,有机合成,工业催化等蓬勃发展,化学工程作为化学工艺和化学工业的理论指导,化学工艺对化学工程的过程体现,化学工业对化学工程的广泛应用,三者相互促进,化学工程达到一个新的高度。 2.3 20世纪末至今,化学工程与新技术学科和计算相结合

世界人造板工业发展现状与趋势

世界人造板工业发展现状与趋势 摘自《中国木业国际网》 在当今气候变化受到全球关注,保护森林成为人类共识,而世界可采森林资源日益减少、社会经济发展对木材及其制品需求不断增加的情况下,充分利用人工速生商品林、森林培育和采伐剩余物及生产建设、更新改造过程中废弃的木质纤维等资源发展人造板,以替代传统木材产品,对保护天然林资源、改善生态环境,同时满足经济建设和社会发展对林产品的需求,具有不可替代的作用和长期持续发展的能力。 1、世界人造板工业发展现状 进入21世纪以来,世界人造板产量以年均7%的速度持续增长,2007年产量超过2.8亿m3。受全球金融危机的影响,2008年人造板产量下挫6.36%,但随着新兴经济体、特别是金砖四国经济在全球金融危机中逆市强劲发展,人造板工业在亚洲、特别是中国的强劲拉动下,2009年全球产量回升了5个百分点,重新步入快速发展轨道。2010年世界人造板产量再创历史新高,超过3亿m3。 1.1三大人造板生产概况

近十年来,全球刨花板年产量始终保持在1亿m3左右,金融危机前,年均增长4.78%,2007年产量高达1.11亿m3。受危机冲击,三年来刨花板产量不断下滑,2010年降到9000万m3左右。2009年全球刨花板、胶合板、中密度纤维板三大板比例为40:35:25,2010年在中国胶合板产量增长60%的冲击下,三大板比例调整为35:38:27,但刨花板依然是全球人造板生产的主要品种。胶合板受金融危机影响最大,2008年产量下降9.45%,但在亚州经济复苏的带动下迅速反弹,2010年产量达到1亿m3,超过刨花板成为第一大板种。中密度纤维板受金融危机影响不大,进入21世纪以来一直持续平稳增长,年均增长率高达11.8%,全球产量从2001年的2362万m3提高到2010年的7000万m3,十年增长了近两倍。 1.2 洲际人造板工业格局 从五大洲地域来看,亚洲始终占据着世界人造板的主导地位。金融危机对欧洲和美洲的人造板生产影响很大,但对其他三大洲几乎没有影响,其中亚洲人造板工业逆市拉升,其产量占全球总产量份额,由2007年的42%增长到了2009年的50%。 2007年前,欧洲、美洲的刨花板产量占全球总量的82.3%,由于金融危机导致欧美建筑行业不景气,引起人造板需求下

水稻基因组进化的研究进展

水稻基因组进化的研究进展 水稻是世界上重要的粮食作物之一,养活着全世界近一半的人口。同时南于水稻基冈组较小、易于转化及与其他禾本科植物基因组的同线性和共线性等特点,一直被作为禾本科植物基因组研究的模式作物。水稻是第一个被全基因组测序的作物,目前栽培稻2个亚种全基因组测序工作已经完成:粳稻品种日本晴(Nipponbare)通过全基因组鸟枪法和逐步克隆法被测序,籼稻品种扬稻6号(9311)通过全基因组鸟枪法被测序。除核基因组外,水稻叶绿体和线粒体基因组也于1989年和2002年分别被测序。水稻2个亚种的全基因组测序完成,一方面开启了植物比较基因组学的大门,另一方面为人们在基冈组水平上鉴定出所有水稻基因并分析其功能奠定了基础,同时也使得人们对植物进化的认识,尤其是对禾本科植物进化的了解,逐步从系统分类和分子标记水平进入到了基因组序列水平。许多研究者通过对水稻基因组序列的分析,利用生物信息学工具,对水稻在基因组水平上的进化进行了大量研究。 1 水稻及其他禾本科植物基因组的古多倍体化过程 水稻是典型的二倍体植物,其核基因组中共有12条染色体。在水稻基因组被完整测序之前,人们就已经采用分子标记、DNA重复元件等方法探究水稻基因组的古多倍体化(polyploidization)过程,并发现了一些重复的染色体片段。随着水稻基因组测序计划的完成,越来越多的证据表明水稻基因组曾发生过全基因组复制(whole genome duplication),即古多倍体化过程。 Golf等利用鸟枪法完成了粳稻品种日本晴全基因组的测序工作,并利用同义替换率分布方法(Ks- based age distribution)提出水稻基因组可能发生过一次全基因组复制过程。此后多家研究机构和一些研究者对水稻基因组中的重复片段进行了研究,虽然得出的结论不尽相同,但均发现水稻基因组中存在大量的重复片段。根据所采用方法和参数的不同,这些重复片段占整个水稻基因组的15%~62%。Yu 等在水稻基因组中发现了18对大的重复片段,大约占整个基因组的65.7%。其中17对重复片段形成的时间很相近,发生在禾本科物种分化之前;最近的一次片段复制事件发生在水稻11和12号染色体之间,在禾本科物种分化之后。 水稻基因组被测序之后,许多科研机构对基因组数据进行了详尽的注释。其中应用比较广泛的是美国基因组研究院(the institute for genome research,TIGR)和日本农业生物科学研究所(national in- stitute of agrobiological sciences,NIAS)的水稻基因组注释信息。TIGR根据其注释的结果和基因相似性矩阵(gene homology matrix,GHM)方法,检测到大量染色体间的重复片段,这些重复片段几乎覆盖了整个水稻基因组。TIGR水稻基因组注释数据库从第4版开始便增加了对片段重复的注释,该分析是利用DAGChainer程序进行的,重复片段采用100 kb和500 kb 2种参数模型进行了染色体片段的基因共线性分析(图1),这是全基因组复制的有力证据。根据复制片段上同源基因的分子进化分析,估计全基因组复制发生在大约7 000万年前,在禾本科物种分化之前。此外,Zhang等利用TIGR更新的数据进行分析,采用同义替换率分布方法检测到另一次更古老的(单、双子叶植物分化前)基因组复制事件,说明水稻基因组至少经历了2次全基因组复制过程。 全基因组复制或多倍体化是植物尤其是禾本科作物物种形成和进化过程中非常重要的事件,大部分开花植物在进化过程中均经历了多倍体化过程。基因组加倍后,再经历所谓的二倍体化过程(diploidization),进化成当代的二倍体物种,并造成大量重复片段中基因的重排和丢失。Salse等研究发现基因组复制事件对禾本科植物的物种形成和演变具有重要作用。他们认为禾本科植物的祖先物种是一个基因组内包含5条染色体的物种,在进化过程中,首先在距今5 000~7 000万年前经基因组复制产生了10条染色体;此后,在基因组内发生了2次染色体置换和融合而形成了12条中间态染色体。以这12条中间态染色体为基础,逐渐分化出水稻、小麦、玉米和高粱的基因组,其中水稻基因组保留了原有的12条中间态染色体,而小麦、玉米和高粱均又发生了染色体丢失和融合才形成了现有的基因组。水稻全基因组复制片段是至今为止在动、植物基因组中发现的最为清晰、完整的基因组复制的遗迹。水稻之所以保存这么完整,一方面是水稻基因组保持了12条中间态染色体的基本形态,另一方面可能与水稻基因组相对较稳定有关。 2水稻籼粳2个亚种的分化 水稻是世界上最重要的粮食作物之一,在其11 500多年的栽培历史中,因适应不同的农业生态环境而产生了丰富的遗传多样性和明显的遗传分化。长期以来,基于形态性状、同工酶以及对一些化合物不同反应的研究,把亚洲栽培稻(Oryza sativa L.)分为籼稻(indica)和粳稻(japonica)2个亚种。其中籼亚种耐湿耐热,主要适应于热带和亚热带等低纬度地区,而粳亚种则耐寒耐弱光,适应于高纬度和高海拔地区种植。这2个亚种间不仅产生了生殖隔离的基因库,还在形态特征、农艺性状和生理生化反应等方面存在明显的差异。近期群体

基因组学研究的应用前景

基因组学研究的应用前景摘要:基因组学是一门研究基因组的结构,功能及表达产物的学科,基因组的结构不仅是蛋白质,还有许多复杂功能的RNA,包括三个不同的亚领域,及结构基因组学,功能基因组学和比较基因组学。近几年,基因组学在微生物药物,细菌,病毒基因,营养基因方面都有进展,其前景是光明的。 关键词:基因研究未来结构 一、微生物药物产生菌功能基因组学研究进展 微生物药物是一类化学结构和生物活性多样的次级代谢产物,近年来多个产生菌基因组序列已经被测定完成,在此基础上开展的功能基因组研究方兴未艾,并在抗生素生物合成,形态分化,调控,发育与进化及此生代谢产物挖掘等方面有着新的发现,展现出广阔的研究前景,青霉素及其衍生的《》内酰胺类抗生素极大地改善了人类的卫生保健和生活质量,并促进研究人员不断对其工业生产菌株类黄青霉进行遗传改良和提高其产量,从而降低生产成本。经过60年的随机诱变筛选,当前青霉素产量至少提高了三个数量级,同时,青霉素的生物合成机理也得到了较为清晰的阐述,其pcbAB编码的非核糖体肽合酶ACVS~DPcbc编码的异青霉素N合成酶IPNS位于细胞质中,而苯乙酸COA连接酶PenDE编码的IPN酰基转移酶位于特殊细胞器一微体中。 研究发现,青霉素合成基因区域串联扩增,产黄青细霉胞中微体含量增加都可显著提高青霉素产量。然而随机诱变筛选得到的黄青霉工业菌株高产的分子机制尚不明确。为此,2008年荷兰研究人员联合国美国venter基因组研究所对黄青霉wisconsin54—1225进行了基因组测试和分析,并进一步利用DNA芯片技术研究了wisconsin54—1255及其高产菌株DS17690在培养基中是否添加侧链前体苯乙酸情况下的转录组变化,四组数据的比较分析发现,有2470个基因至少在其中一个条件下是差异表达的,根据更为严格的筛选标准,在PPA存在的条件下,高产菌相比测序菌株有307个基因转录是上调的,和生长代谢,青霉素前体合成及其初级代谢和转运等功能相关,另有271个基因显著下调,主要是与生长代谢及发育分化相关的功能基因。 二、乳酸菌基因组学的研究进展

2019年中国人造板行业发展现状及趋势分析 定制家具需求带来全新发展机遇

2019年中国人造板行业发展现状及趋势分析定制家具需求 带来全新发展机遇 人造板行业基本概况分析 人造板制造是指用木材及其剩余物、棉秆、甘蔗渣和芦苇等植物纤维为原料,加工成符合国家标准的胶合板、纤维板、刨花板、细木工板和木丝板等产品的生产,以及人造板二次加工装饰板的制造。人造板的生产应用提高了木材综合利用率,2-3立方米的木材可生产1立方米的人造板,但1立方米的人造板相当于3-6立方米的木材的使用效果。因此,人造板制造业的发展为缓解木材类产品供求矛盾、保护森林资源和生态环境、促进可持续发展发挥了突出的作用。 根据国家统计局制定的《国民经济行业分类与代码》(GB/T4754-2017),中国把人造板制造归入木材加工及木、竹、藤、棕、草制品业(国统局代C20),其三级代码为C202。 中国人造板产量分析预测 据前瞻产业研究院发布的《中国人造板制造行业发展前景预测与投资战略规划分析报告》统计数据显示,2015年中国人造板产量已达2.87亿立方米,同比增长4.8%。到了2016年中国人造板产量达到3.00亿立方米,同比增长4.7%。截止至2017年中国人造板产量达到了2.95亿立方米,同比减少1.9%。预测2019年我国人造板产量将达到3.25亿立方米,未来五年(2019-2023)年均复合增长率约为3.57%,并预测在2023年我国人造板产量将达到3.74亿立方米。 2015-2023年我国人造板产量统计情况及预测

数据来源:前瞻产业研究院整理 预测2019年中国中国人造板消费量超3亿立方米 2015年中国人造板消费量为2.71亿立方米,同比增长8.1%。到了2016年中国人造板消费量达到2.81亿立方米,同比增长3.4%。截止至2017年中国人造板消费量达到了2.91亿立方米,同比增长3.9%。预计2019年我国人造板消费量将达到3.12亿立方米,未来五年(2019-2023)年均复合增长率约为3.86%,并预测在2023年我国人造板消费量将达到3.63亿立方米。 2015-2023年我国人造板消费量统计情况及预测

8种水稻基因组DNA提取方法的比较

8种水稻基因组DNA提取方法的比较 朱世杨;罗天宽;张小玲;陈海英;唐征;刘庆 【期刊名称】《安徽农业科学》 【年(卷),期】2009(037)005 【摘要】[目的]寻找操作简便、耗时短、成本低的水稻基因组DNA提取方法,[方法]分别以水稻幼嫩黄化叶片和老叶片为材料,用8种方法提取其中的DNA,测定所提DNA的浓度和纯度,并对其进行PCR扩增和电泳检测,比较各方法的提取效果.[结果]8种方法提取的DNA浓度分别为35.15、30.80、67.30、26.15、23.55、8.95、48.0.5、54.26 μg/ml,方法③提取的DNA浓度最大,但PCR扩增效果较差;改进的SDS法(方法⑦、⑧)提取的DNA纯度较高,PCR扩增产物电泳条带较亮,但这2种方法操作程序复杂,成本较高,提取每份样品的成本分别为14、31元,远高于其他提取方法.[结论]除方法③外,其余5种简化方法均能得到较高质量的水稻基因组DNA,且提取成本远低于传统SDS法. 【总页数】3页(1929-1931) 【关键词】水稻;基因组DNA;提取 【作者】朱世杨;罗天宽;张小玲;陈海英;唐征;刘庆 【作者单位】温州科技职业学院农业与生物技术系,浙南作物育种重点实验室,浙江温州,325006;温州科技职业学院农业与生物技术系,浙南作物育种重点实验室,浙江温州,325006;温州科技职业学院农业与生物技术系,浙南作物育种重点实验室,浙江温州,325006;温州科技职业学院农业与生物技术系,浙南作物育种重点实验室,浙江温州,325006;温州科技职业学院农业与生物技术系,浙南作物育种重点实验室,浙江温州,325006;温州科技职业学院农业与生物技术系,浙南作物育种重

化学发展简史

化 学 发 展 简 史 中国化学发展史重要人物及其贡献 关于化学的进展,我国古代在化学的发展过程中作出了重要的贡

献,体现在冶金、造纸、陶瓷和中草药方面。改革开放以来特别是新世纪中国化学发展迅速,不仅在基础研究领域取得了一批国际上有相当影响的成果,而且在国民经济发展中作出了重要贡献,产生了一大批有重要影响的成果。下面按时间前后简单介绍一下中国化学发展史重要人物及其主要贡献: 1.墨翟 墨翟(公元前479—381),先秦时期墨派思想的创始人,著有《墨经》。在该书中说到:“非半不昔斤则不动,说在端。……昔斤必半,毋与非半,不可昔斤也。……端,是无间也。”意思是说物质到一半的时候,就不能斫开它了。物质如果没有可分的条件,那就不能再分了。墨子的“端”即为物质的最小单位,有现代原子的意义,意味着他对物质非连续性的认识。他的这一认识和古希腊哲学家德漠克利特所提出的原子(不能再分)基本上是同时代的,所以说原子概念的最先提出不能抹煞墨子的功劳。 2.刘安 我国西汉时的炼丹家。他著的《淮南万毕术》中记载着“曾青得铁,则化为铜。”意思是说铜遇到铁时,就有铜生成。实质就是我们现在所说的铁和可溶性的铜盐发生的置换反应。这一发现要比西方国家早1700多年。在宋朝时采用这一方法炼铜已有相当规模,每年炼铜达5×105kg,占当时铜产量的15%—25%。这种炼铜方法在我国最早,是湿法冶金的先驱。 刘安在他的《淮南子》中写到:“老槐生火,久血为磷。”这句话

实质说的是磷的自燃现象。磷的最早发现者应该是刘安。 3.蔡伦 他总结了西汉以来的造纸经验,改用便宜的材料为原料,经过精工细作,造出优质纸,被称为“蔡伦纸”。后世人们将蔡伦称为造纸技术的发明人。1000多年来,我国的造纸材料大致都是依照蔡伦的办法加以推广的。 4.魏伯阳 我国东汉时期炼丹家。撰有《周易参同契》,此书是现存世界上最早的一部炼丹术专著。其中化学知识丰富。记载着“丹鼎”这一化学反应装置,记述了汞易挥发的特性以及汞和硫化合为丹砂(硫化汞)、汞和铅汞齐(汞铅合金)等化学知识。 5.华佗 据《后汉记·华佗传》中记载,在公元200年时,我国外科鼻祖华佗就能用全身麻醉来施行外科手术,这是世界上施用临床麻醉最早的人,所用麻沸散是最早的麻醉药物。 6.葛洪 我国晋代炼丹家。著有《抱朴子》一书,所含化学知识丰富。他曾谈到:“丹砂烧之成水银,积变又还成丹砂。”这句话所指的化学反应是:①红色硫化汞(丹砂)在空气中加热生成汞:HgS+O2 ====== Hg + SO2↑②汞和硫在一起研磨生成黑色HgS:Hg + S ====== HgS ③黑色HgS隔绝空气加热(升华)变成红色晶体HgS: HgS HgS 这一事实说明葛洪对化学反应的可逆性初步有所了解,这一了解

进化基因组学研究进展

进化基因组学研究进展 刘超 (山东大学生命科学学院济南250100) 摘要:进化基因组学是利用基因组数据研究差异基因功能、生物系统演化、从基因在水平探索生物进化的学科。随着近年来基因组数据的不断增加,进化基因组学得到了长足的发展。进化基因组学主要包括从基因组水平理解和诠释生物进化和新基因分析研究探索两方面的内容。本文介绍了进化基因组学研究的主要内容和较为常用的方法,以及近年来在细菌、酵母、果蝇进化基因组学方面的研究进展。 关键词:进化基因组学系统进化比较基因组学新基因 前言 随着基因测序技术的不断进步以及基因组学的飞速的发展,人们积累了大量的基因组学数据,利用所得的大量的基因组数据与进化生物学相结合,在基因组水平研究生物进化机制,随即产生了进化基因组学(Evolutional Genomics)。 近年来进化基因组学取得了长足的进展,在研究差异基因功能、生物系统演化、从基因在水平探索生物进化的终极方式等方面有重大突破,对人类理解生命现象和过程有重要作用。 1进化基因组学研究内容 研究系统进化学通常包括两个关键步骤:一方面,在不同物种中鉴定同源性特佂,另一方面利用构建系统进化树的方法比较这些特征,进而重新构建这些物种的进化历史[1]。针对这两个关键步骤,传统系统进化学,常采用基于形态学数据和单个基因研究的同源性状鉴定和重建系统进化树(常包括距离法、最大简约法、概率法)[1]的方法来研究。在目前拥有丰富基因组数据的条件下,我们可以分析基因组数据,利用进化基因组学研究系统进化。

目前进化基因组学的研究内容主要集中于两个方面:(1)在比较不同生物的基因数据的基础上,从基因组水平理解和诠释生物进化;(2)通过对新基因的分析研究探索基因进化过程的规律两个方面[2](如图1)。在进行全基因组进化分析方面,进化基因组学主要集中于构建系统进化树、研究基因组进化策略、研究生物功能变化和进化机制、进化和生态功能基因组学[2]、基因注释的等方面;在新基因方面主要分析基因产生机制和新基因固定及其动力学研究。 图1 进化基因组学主要研究内容 目前进化基因组学的研究有力的解决了一些基础性的进化问题,但也出现了一些未来需要急需解决的挑战。例如生物进化的本质和目前重建系统进化树方法的限制[1]。 2研究进化基因组学的方法 研究进化基因组学的方法主要包括利用基因组数据分析和研究新基因的产生和演化两种。 2.1利用基因组数据进行系统进化分析 利用基因组数据进行系统进化分析,常有基于基因序列的方法和基于全基因特征的方法。(如图2)

相关文档