文档库 最新最全的文档下载
当前位置:文档库 › 半导体制冷片工作原理(精)

半导体制冷片工作原理(精)

半导体制冷片工作原理(精)
半导体制冷片工作原理(精)

半导体制冷片工作原理

致冷器件是由半导体所组成的一种冷却装置, 随着近代的半导体发展才有实际的应用, 也就是致冷器的发明。其工作原理是由直流电源提供电子流所需的能量,通上电源后,电子负极 (-出发,首先经过 P 型半导体,于此吸热量,到了 N 型半导体,又将热量放出,每经过一个 NP 模块,就有热量由一边被送到令外一边造成温差而形成冷热端。冷热端分别由两片陶瓷片所构成, 冷端要接热源, 也就是欲冷却之。在以往致冷器是运用在 CPU 的,是利用冷端面来冷却 CPU ,而热端面散出的热量则必需靠风扇来排出。致冷器也应用于做成车用冷 /热保温箱,冷的方面可以冷饮机,热的方面可以保温热的东西。

半导体致冷器的历史

致冷片是由半导体所组成的一种冷却装置,于 1960左右才出现,然而其理论基础Peltier effect 可追溯到 19世纪。下图 (1是由 X 及 Y 两种不同的金属导线所组成的封闭线路,通上电源之后, A 点的热量被移到 B 点,导致 A 点温度降低, B 点温度升高,这就是著名的 Peltier effect。这现象最早是在 1821年,由一位德国科学家Thomas Seeback 首先发现,不过他当时做了错误的推论,并没有领悟到背后真正的科学原理。到了 1834年,一位法国表匠,同时也是兼职研究这现象的物理学家

JeaNPeltier ,才发现背后真正的原因,这个现象直到近代随着半导体的发展才有了实际的应用,也就是「致冷器」的发明。

一、因半导体致冷片薄而轻巧,体积很小,不占空间,并可以携带,做成车用电冷 /热保温箱,放置车上,不占空间,并可变成冰箱及保温箱,夏天可以摆上几瓶饮料,就可以便冰饮,在冬天就可以变成保温箱。

图 (1 致冷器件的作用原理致冷器的名称相当多,如 Peltier cooler、

thermoelectric 、 thermoelectric cooler (简称 T.E 或 T.E.C、 thermoelectric module ,另外又称为热帮浦 (heat pump。二、致冷器件的结构与原理

下图 (2是一个制冷器的典型结构。

图 (2 致冷器的典型结构

致冷器是由许多 N

型和 P 型半导体之颗粒互相排列而成,而 NP 之间以一般的导体相连接而成一

完整线路,通常是铜、铝或其它金属导体, 最后由两片陶瓷片像夹心饼干一样夹起来, 陶瓷片必须绝缘且导热良好,

外观如

下图 (3所示,看起来像三明治。

图 (3 致冷器的外观

以下详细说明 N 型和 P 型半导体的原理 :

三、 N 型半导体

(1 如果在锗或硅中均匀掺杂五价元素, 由于价电子间会

互相结合而形成共价键, 故每个五价元素会与邻近四价之

锗或硅原子互成一共价键,而多出一个电子来,如图 (4

所示,这就称为 N 型半导体。 (N表示 negative ,电子带

负电。

图 (4 N型半导体

(2 由于加入五甲元素后会添加电子,故五价元素又被称为施体原子。

(3 加入五价元素而产生之自由电子,在 N 型半导体里又占大多数,故称为多数载体 (majority carriers 。由温度的引响所产生之电子─电洞对是少数,所以 N 型半导体中称电洞为少数载体 (minority carriers 。

四、 P 型半导体

(1 如果在锗或硅中均匀掺杂三价元素, 由于价电子间会互相结合而形成共价键, 故每个三价元素会与邻近四价之锗或硅原子互成一共价键, 而多缺少一个电子, 在原子中造成一个空缺来, 这个空缺我们称为电洞,如图 (5B 所示,加入三价元素之半导体就称为 P 型半导体。 (P表示 positive ,电洞视为正电荷。

图 (5 P型半导体

(2 由于加入三价元素后会造成一个空缺,故三价元素又被称为受体原子。

(3加入三价元素而产生之电洞,在 P 型半导体中是多数载体。受热使共价键破坏而产生的电子电洞为少数,故 P 型半导体中称电子为少数载体。

(4 通常我们都用正电荷代表电洞。但侍体中的原子不能移动, 所以电洞 (一个空位也应该是不能移动的。

五、 P-N 结合

(1 当 P 型半导体或 N 型半导体被单独使用时,由于其导电力比铜、银等不良,但却比绝缘体的导电力良好,故实际上,就等于一个电阻器一样,如下图 (6所示。

图 (6 P-N结合

(2 但若将数片 P 或 N 型半导体加以适当的组合, 则会产生各种不同的电气特性,而使半导体零件的功能更多彩多姿。今天我们要先看看把一块 P 型半导体与 N 型半导体结合起来的情况。

(3 当一块 P 型半导体与 N 型半导体结合起来时,如下图所示,由于 P 型半导体中有很多的电

洞,而 N 型半导体中有许多电子,所以当 P-N 结合起来时,结合面附近的电子会

填入电洞中, P-N 结合起来时,如下图 (7(a所示。

图 (7

或许你会以为 N 型半导体中的电子会不断的透过接合面与电洞结合,直到所有的电子或电洞消失为止。事实上,靠近接合面的 N 型半导体失去了电子后就变成正离子, P 型半导体失去了一些电洞后就变成负离子,如上图 (7 (b所示。

此时正离子会排斥电洞, 负离子会排斥电子, 因而阻止了电子、电洞的继续结合, 而产生平衡之状态。 (4 在 P-N 接合面 (P-Njunction附近没有载体 (电子或电洞 ,只有离子之区域称为空乏区 (depletioNregion 。

(5 空乏区的离子所产生的阻止电子、电洞通过接合面的力量, 称为障碍电位(potential barrier 。障碍电位视半导体的掺杂程度而定,一般而言, Ge 的 P-N 接合面约为 0.2~0.3V,而 Si 的 P-N 接合面约为 0.6~0.7V。六、正向偏压

(1 若把电池的正端接 P 型半导体,而把负端接 N 型半导体,如下图 (8所示,则此时 P-N 接合面的偏压型式称为”正向偏压” 。

图 (8加上正向偏压 E (2 若外加电源 E 足够大而克服了障碍电位, 则由于电池

的正端具有吸引电子而排斥电洞的特性, 电池的负端有吸引电洞而排斥电子之特性, 因此 N 型半导体中的电子会越过 P-N 接合面而进入 P 型半导体与电洞结合,同时,电洞也会通过接合面而进入 N 型半导体内与电子结合,造成很大的电流通过 P-N

接合面。

(3

因为电池的负端不断的补充电子

给 N 型半导体,电池的正端则不断的补充电洞给 P 型半导体, (实际上是电池的

正端不断的吸出 P 型半导体中之电子,使 P 型半导体中不断产生电洞 ,所以通过 P-N 接合面的电流将持续不断。 (4 P-N接合在加上正向偏压时,所通过之电流称为正向电流 (IF 。七、反向偏压

(1 现在如果我们把电池的正端接 N 而负端接 P ,则电子、电洞将受到 E 之吸引而远离接合面,空乏区增大,而不会有电子或电洞越过接合面产生接合,如下图 (9所示,此种外加电压之方式称为反向偏压。

图 (9加上反向偏压 E

(2 当 P-N 接合面被加上反向偏压时, 理想的情形应该没有反向电流 (IR=0才对, 然而, 由于温度的引响, 热能在半导体中产生了少数的电子─电洞对, 而于半导体中有少数载体存在。在 P-N 接合面被接上反向偏压时, N 型半导体中的少数电洞和 P 型半导体中的少数电子恰可以通过 P-N 接合面而结合, 故实际的 P-N 接合再加上反向偏压时, 会有一” 极小” 之电流存在。

此电流称为漏电电流,在厂商的资料中多以 IR 表之。 [注 ] :在实际应用时多将

I R忽略 , 而不加以考虑。

(3 IR与反向偏压之大小无关,却与温度有关。无论或硅,每当温度升高 10℃, IR 就增加为原来的两倍。

八、崩溃 (Breakdown

(1 理想中, P-N 接合加上反向偏压时,只流有一甚小且与电压无关之漏电电流IR. 。但是当我们不断把反向电压加大时, 少数载体将获得足够的能量而撞击、破坏共价键, 而产生大量的电子一对洞对。此新生产之对子及电洞可从大反向偏压中获得足够的能量去破坏其它共价键, 这种过程不断重复的结果,反向电流将大量增加,此种现象称为崩溃。

(2 P-N接合因被加上「过大」的反向电压而大量导电时,若不设法限制通过 P-N 接合之反向电流, 则 P-N 接合将会烧毁。

九、二极管之 V-1(电压 -电流特性

把 P-N 接合体加上两根引线,并用塑料或金属壳封装起来,即成为二极管。二极管的电路符号如图 (10(b所示,两支引线分别称为阳极和阴极。

图 (10 二极管

欲详知一个组件之特性并加以应用, 较佳的方法是研究此组件之 V-I (电压 -电流特性线。

下图 (11为二极管之正向特性曲线。由特性曲线可看出二极管所加之正向偏压低于切入电压 (cutiNvoltage时,电流很小,一旦超过切入电

图 (11 典型的二极管正向特性

压, 电流 IF 既急速上升 (此时 IF 的最大值是由外部电阻 R 加以限制。硅二极管的切入电压为 0.6V , 锗二极管的切入电压为 0.2V 。二极管流有正向电流时,其正向压降 VF 几乎为一定数,不易受正向电流的变化所影响,设计电路时,可以采用表 (1的数据。

表 (1 常温时二极管的正向压降

注意!当温度升高的时候,二极管的正向压降 VF 会降低,其降低量为

ΔVF = K ×Δ

ΔT = 温度变化量,℃

K = 硅为 -2 mV /℃,锗为 -1.3 mV/℃

由于晶体管的 B-E 极间也为 P-N 接合,故也有负温度特性,这使得晶体管电路的性能受到温度所影响,故吾人常使用与晶体管同质料(锗或硅的二极管作为晶体管的偏压,以使两者之△ VF 互相抵消。

图 (12 典型的二极管反向特性

上图 (12为二极管的反向特性曲线图。由此图可得知:

(1 未崩溃以前,反向电流 IR 为固定值,不随反向电压而变动。

(2 硅之 IR 甚小,通常小于10μA,锗之 IR 则高达数百倍。整流二极体很少以锗制造,也就是为了这个缘故。 (3 二极管,无论锗或硅,当温度每增高 10℃时,IR 约升为原来的两倍。 (4 当反向偏压达到崩溃电压 VBD 后,电流会迅速增加,此时必须由外加电阻 R 限制住 IR,否则二极管会烧毁。十、二极管的规格整流二极管之主要规格有: (1 额定电流-以电阻为负载时,二极管所能通过的最大「平均电流」,厂商的规格表中多以 IO 表。 (2 耐压-亦称为最大反向耐压(peak inverse

voltage;简称 PIV,此电压乃指不令二极管产生崩溃的最大反向电压,规格表中多以 VR 表之。十一、致冷晶片作工的原理以及运用实例直流电源提供了电子流动所需的能量,通上电源之后,电子由负极(-出发,首先经过 P 型半导体,于此吸收热量,到了 N 型半导体,又将热量放出,每经过一个 NP 模块,就有热量由一边被送到另外一边,造成温差,而形成冷热端。冷热端分别由两片陶瓷片所构成,冷端要接热源,也就是欲冷却之物,如 CPU,而热端要接散热片风扇,将热量排出。于各接面之间,一样要涂上散热膏,以利热量之传导。以上就是致冷器的基本架构。致冷器的用途很多,其中一个主要的用途就是超频,而听说现在市面上卖的车用冰热保温箱也是使用这种芯片。目前致冷器所采用的半导体材料最主要为碲化铋 (Bismuth Telluride,加入不纯物经过处理而成 N 型或 P 型半导体,听说市面上的致冷芯片都竖外进口,并氟内制造,因为成本昂贵。十二、热能转换能转换(冰块溶解:一物体历经一传递能量的交互作用过程后,内能的变化为 E,假设在此过程中,外对物体所做的功为 W,则传入物体或传出体之热量 Q 定义为

Q= E-W 当 Q 为正时,物体吸热;Q 为负值时,物体放热。 E=Q-W:为热力学第一定律。 E=Q+W:可看出热力学第一定律表示能量守恒的关系,即物体内能的增加 E 等于传入物体的热量 Q 与外界物体所做之功 W 的总和。物体升高温度一度所须吸收的热量,定义为物体的热容。热容量=limQ/T 十三、水冷系统水冷系统:水冷系统是以水冷式散热法,顾名思义,此方法自然是利用水带走热量,相当于汽车引擎散热所用的水箱,原理类似.与散热风扇不同的是,利用水循环系统,由水带走热,取代空气.水温越低,平衡温度越低,水温越高,平衡温度越高。

半导体制冷片工作原理

半导体制冷片工作原理 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

半导体制冷片工作原理 致冷器件是由半导体所组成的一种冷却装置,随着近代的半导体发展才有实际的应用,也就是致冷器的发明。其工作原理是由直流电源提供电子流所需的能量,通上电源后,电子负极(-)出发,首先经过P型半导体,于此吸热量,到了N型半导体,又将热量放出,每经过一个NP模块,就有热量由一边被送到令外一边造成温差而形成冷热端。冷热端分别由两片陶瓷片所构成,冷端要接热源,也就是欲冷却之。在以往致冷器是运用在CPU的,是利用冷端面来冷却CPU,而热端面散出的热量则必需靠风扇来排出。致冷器也应用于做成车用冷/热保温箱,冷的方面可以冷饮机,热的方面可以保温热的东西。 半导体致冷器的历史 致冷片是由半导体所组成的一种冷却装置,于1960左右才出现,然而其理论基础Peltier effect 可追溯到19世纪。下图(1)是由X及Y两种不同的金属导线所组成的封闭线路,通上电源之后,A 点的热量被移到B点,导致A点温度降低,B点温度升高,这就是着名的Peltier effect。这现象最早是在1821年,由一位德国科学家Thomas Seeback首先发现,不过他当时做了错误的推论,并没有领悟到背后真正的科学原理。到了1834年,一位法国表匠,同时也是兼职研究这现象的物理学家JeaNPeltier,才发现背后真正的原因,这个现象直到近代随着半导体的发展才有了实际的应用,也就是「致冷器」的发明。 一、因半导体致冷片薄而轻巧,体积很小,不占空间,并可以携带,做成车用电冷/热保温箱,放置车上,不占空间,并可变成冰箱及保温箱,夏天可以摆上几瓶饮料,就可以便冰饮,在冬天就可以变成保温箱。 图(1) 致冷器件的作用原理致冷器的名称相当多,如 Peltier cooler、thermoelectric、thermoelectric cooler (简称或、thermoelectric module,另外又称为热帮浦 (heat pump)。 二、致冷器件的结构与原理 下图(2)是一个制冷器的典型结构。 图(2) 致冷器的典型结构 致冷器是由许多N型和P型半导体之颗粒互相排列而 成,而NP之间以一般的导体相连接而成一完整线路,通 常是铜、铝或其它金属导体,最后由两片陶瓷片像夹心 饼干一样夹起来,陶瓷片必须绝缘且导热良好,外观如 下图(3)所示,看起来像三明治。 图(3) 致冷器的外观 以下详细说明N型和P型半导体的原理: 三、N型半导体 (1) 如果在锗或硅中均匀掺杂五价元素,由于价电子间 会互相结合而形成共价键,故每个五价元素会与邻近四 价之锗或硅原子互成一共价键,而多出一个电子来,如图(4)所示,这就称为N型半导体。(N表示negative,电子带负电) 。 图(4) N型半导体 (2) 由于加入五甲元素后会添加电子,故五价元素又被称为施体原子。 (3) 加入五价元素而产生之自由电子,在N型半导体里又占大多数,故称为多数载体(majority carriers) 。由温度的引响所产生之电子─电洞对是少数,所以N型半导体中称电洞为少数载体(minority carriers) 。 四、P型半导体 (1) 如果在锗或硅中均匀掺杂三价元素,由于价电子间会互相结合而形成共价键,故每个三价元素会与邻近四价之锗或硅原子互成一共价键,而多缺少一个电子,在原子中造成一个空缺来,这个空

半导体制冷片工作原理

半导体制冷片工作原理 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

半导体制冷片工作原理 致冷器件是由半导体所组成的一种冷却装置,随着近代的半导体发展才有实际的应用,也就是致冷器的发明。其工作原理是由直流电源提供电子流所需的能量,通上电源后,电子负极(-)出发,首先经过P型半导体,于此吸热量,到了N型半导体,又将热量放出,每经过一个NP模块,就有热量由一边被送到令外一边造成温差而形成冷热端。冷热端分别由两片陶瓷片所构成,冷端要接热源,也就是欲冷却之。在以往致冷器是运用在CPU的,是利用冷端面来冷却CPU,而热端面散出的热量则必需靠风扇来排出。致冷器也应用于做成车用冷/热保温箱,冷的方面可以冷饮机,热的方面可以保温热的东西。 半导体致冷器的历史 致冷片是由半导体所组成的一种冷却装置,于1960左右才出现,然而其理论基础Peltier effect可追溯到19世纪。下图(1)是由X及Y两种不同的金属导线所组成的封闭线路,通上电源之后,A点的热量被移到B点,导致A点温度降低,B点温度升高,这就是着名的Peltier effect。这现象最早是在1821年,由一位德国科学家Thomas Seeback首先发现,不过他当时做了错误的推论,并没有领悟到背后真正的科学原理。到了1834年,一位法国表匠,同时也是兼职研究这现象的物理学家JeaNPeltier,才发现背后真正的原因,这个现象直到近代随着半导体的发展才有了实际的应用,也就是「致冷器」的发明。 一、因半导体致冷片薄而轻巧,体积很小,不占空间,并可以携带,做成车用电冷/热保温箱,放置车上,不占空间,并可变成冰箱及保温箱,夏天可以摆上几瓶饮料,就可以便冰饮,在冬天就可以变成保温箱。 二、致冷器件的结构与原理

半导体制冷片的利弊(精)

原理: 半导体制冷片的工作运转是用直流电流 , 它既可制冷又可加热, 通过改变直流电流的极性来决定在同一制冷片上实现制冷或加热,这个效果的产生就是通过热电的原理。 优点 半导体制冷片作为特种冷源,在技术应用上具有以下的优点和特点: 1、不需要任何制冷剂 ,可连续工作,没有污染源没有旋转部件,不会产生回转效应,没有滑动部件是一种固体片件,工作时没有震动、噪音、寿命长,安装容易。 2、半导体制冷片具有两种功能,既能制冷,又能加热,制冷效率一般不高,但制热效率很高,永远大于 1。因此使用一个片件就可以代替分立的加热系统和制冷系统。 3、半导体制冷片是电流换能型片件,通过输入电流的控制,可实现高精度的温度控制,再加上温度检测和控制手段,很容易实现遥控、程控、计算机控制,便于组成自动控制系统。 4、半导体制冷片的温差范围,从正温 90℃到负温度 130℃都可以实现。 缺点: 1、半导体制冷片热惯性非常小,制冷制热时间很快,在热端散热良好冷端空载的情况下, 通电不到一分钟,制冷片就能达到最大温差。 2、半导体制冷片的反向使用就是温差发电,半导体制冷片一般适用于中低温区发电。 3、半导体制冷片的单个制冷元件对的功率很小,但组合成电堆,用同类型的电堆串、并联的方法组合成制冷系统的话, 功率就可以做的很大, 因此制冷功率可以做到几毫瓦到上万瓦的范围。

4、半导体制冷的热面温度不应超过 60℃ ,否则就有损坏的可能。若在额定的工作电压(12V 下,一般的散热风扇根本无法为制冷片提供足够的散热能力,容易造成制冷片过热损坏。同时千万不要在无散热器的情况下为致冷器长时间通电, 否则会造成致冷器内部过热而烧毁。半导体制冷片具有两种功能, 既能制冷, 又能加热,制冷效率一般不高,但制热效率很高,永远大于 1。要是这样的话安 全问题有代考虑! 其次散热片由于间距太小, 很容易被灰尘堵住, 而且清洗不了, 这样就很容易因为温度过高而烧毁,从而影响整车的安全。 使用说明: 一、正确的安装、组装方法:1、制冷片一面安装散热片,一面安装导冷系统,安装表面平面度不大于 0.03mm ,要除去毛刺、污物。 2、制冷片与散热片和导冷块接触良好,接触面须涂有一薄层导热硅脂。 3、固定制冷片时既要使制冷片受力均匀,又要注意切勿过度,以防止瓷片压裂。 二、正确的使用条件:1、使用直流电源电压不得超过额定电压 ,电源波纹系数小于 10%。 2、电流不得超过组件的额定电流。 3、制冷片正在工作时不得瞬间通反向电压 (须在 5分钟之后。 4、制冷片内部不得进水。 5、制冷片周围湿度不得超过 80%。

半导体制冷片工作原理

半导体制冷片工作原理 致冷器件是由半导体所组成的一种冷却装置,随着近代的半导体发展才有实际的应用,也就是致冷器的发明。其工作原理是由直流电源提供电子流所需的能量,通上电源后,电子负极(-)出发,首先经过P型半导体,于此吸热量,到了N型半导体,又将热量放出,每经过一个NP模块,就有热量由一边被送到令外一边造成温差而形成冷热端。冷热端分别由两片陶瓷片所构成,冷端要接热源,也就是欲冷却之。在以往致冷器是运用在CPU的,是利用冷端面来冷却CPU,而热端面散出的热量则必需靠风扇来排出。致冷器也应用于做成车用冷/热保温箱,冷的方面可以冷饮机,热的方面可以保温热的东西。 半导体致冷器的历史 致冷片是由半导体所组成的一种冷却装置,于1960左右才出现,然而其理论基础Peltier effect可追溯到19世纪。下图(1)是由X及Y两种不同的金属导线所组成的封闭线路,通上电源之后,A点的热量被移到B点,导致A点温度降低,B点温度升高,这就是着名的Peltier effect。这现象最早是在1821年,由一位德国科学家Thomas Seeback首先发现,不过他当时做了错误的推论,并没有领悟到背后真正的科学原理。到了1834年,一位法国表匠,同时也是兼职研究这现象的物理学家JeaNPeltier,才发现背后真正的原因,这个现象直到近代随着半导体的发展才有了实际的应用,也就是「致冷器」的发明。 一、因半导体致冷片薄而轻巧,体积很小,不占空间,并可以携带,做成车用电冷/热保温箱,放置车上,不占空间,并可变成冰箱及保温箱,夏天可以摆上几瓶饮料,就可以便冰饮,在冬天就可以变成保温箱。 图(1) 致冷器件的作用原理致冷器的名称相当多,如 Peltier cooler、thermoelectric、thermoelectric cooler (简称或、thermoelectric module,另外又称为热帮浦 (heat pump)。 二、致冷器件的结构与原理

冷冻式干燥机工作原理.

◎冷冻式干燥机工作原理 喷涂的原材料是否干净(可现场试验) 喷枪是否有问题(可现场操作) 清洗喷枪的清洗剂是否的问题(可现场操作) 现场喷漆人员的操作是否有问题(可向用户了解) 一、工况条件与技术指标 Working condition and technical data 进气温度(Inlet temperature): ≤80℃ 冷却方式(Cooling method): 风冷(Air-cooling) 进气压力(Inlet pressure): 0.4~1.0MPa 压力损失(Pressure drop): ≤0.03MPa 压力露点(Dew point): 2~10℃ 制冷剂(Refrigerant): R22 二、伽利略冷冻式干燥机产品特点: 1)人性化设计:科学合理结构设计,外型新颖,美观大方,操作、维护、保养方便,安装简便(无基础)。2)机器制冷系统及空气系统经专家结合全国各地不同工况的差异性进行综合准确计算,设计参数留20%以上的裕量。 3)制冷压缩机:采用国际知名品牌,如:松下、谷轮、泰康、美优乐公司等高性能制冷压缩机,低震动、低噪音、性能可靠、节能高效,确保整机的使用寿命长。压缩机防护等级为IP54级。 4)特殊热交换设计,可降低入口温度,并提高出口空气温度,可避免管路产生水滴,影响生产环境。5)多种形式(单、集、联控、PLC、变频等)的控制线路。适合不同用户的选用。 6)完善的智能保护装置:特设冷媒高低压保护、相序缺相保护、过低温保护以及自动融霜、故障自动停机、自动报警、电机过热保护等保护功能。 7)自动排水器按需设置,除水效率高。浮球式、电子定时可根据机器工况选择设置。 8)本机组采用独特的旋风式分离器。可将冷凝水从空气中彻底分离出来,并在各种气流条件下防止液态水份随压缩空气带出,保持高效的运行,达到最佳之干燥除水目的。 三、型号规格与性能参数 Model,size & technical data

半导体制冷片选择

致冷片的性能 在应用致冷片前,要进一步的了解它的性能,实际上致冷片的冷端从周围吸收的热Qπ外,还有两个,一个是焦耳热QJ;另一个是传导热QK。电流从元件内部通过就产生焦耳热,焦耳热的一半传到冷端,另一半传到热端,传导热从 热端传到冷端。 产冷量QC=Qπ-QJ-QK=(2P-2n).Tc.I-1/2j2R-K(Th-Tc) 式中,R表示一对电偶的总电阻,K是总热导。 热端散掉的热Qh=Qπ+Qj-Qk=(2p-2n).Th.I+1/2I2R-K(Th-Tc) 从上面两公式中可以看出,输入的电功率恰好就是热端散掉的热与冷端吸收的热之差,这就是“热泵”的一种: Qh-Qc=I2R=P 由上式得出一个电偶在热端放出的热量Qh等于输入电功率与冷端产冷量之和,相反得出冷端产冷量Qc等于热 端放出的热量与输入电功率之差。 Qh=P+Qc Qc=Qh-P 致冷片的选择过程 半导体致冷应用产品的心脏部分是半导体致冷片,根据半导体温差电堆的特点,弱点及应用范围,选用电堆时首 先应确定以下几个问题: 1、确定电堆的工作状态。根据工作电流的方向和大小,就可以决定电堆的致冷,加热和恒温性能,尽管最常用 的是致冷方式,但也不应忽视它的致热和恒温性能。 2、确定致冷时热端实际温度。因为电堆是温差片件,要达到最佳的致冷效果,电堆必须安装在一个良好的散热片上,根据散热条件的好坏,决定致冷时电堆热端的实际温度,要注意,由于温度梯度的影响,电堆热端实际温度总是要比散热片表面温度高,通常少则零点几度,多则高几度、十几度。同样,除了热端存在散热梯度以外,被冷却的 空间与电堆冷端之间也存在温度梯度。 3、确定电堆的工作环境和气氛。这包括是工作在真空状况还是在普通大气,干燥氮气,静止或流动空气及周围 的环境温度,由此来考虑保温(绝热)措施,并决定漏热的影响。 4、确定电堆工作对象及热负载的大小。除了受热端温度影响以外,电堆所能达到的最低温度或最大温差是在空 载和绝热两个条件下确定的,实际上工作的,电堆既不可能真正绝热,也必须有热负载,否则无意义。 5、确定致冷片的级数。电堆级数的选定必须满足实际温差的要求,即电堆标称的温差必须高于实际要求的温差, 否则达不到要求,但是级数也不能太多,因为电堆的价格随着级数的增加而大大提高。 6、电堆的规格。选定电堆的级数以后,就可以选定电堆的规格,特别是电堆的工作电流。因为同时能满足温差及产冷的电堆有好几种,但是由于工作条件不同,通常选用工作电流最小的电堆,因为这时配套电源费用较小,然而电堆的总功率是决定因素,同样的输入电功率减少工作电流就得增加电压(每对元件0.1v),因而元件对数就得增加。 7、确定电堆的数量。这是根据能满足温差要求的电堆产冷总功率来决定的,它必须保证在工作温度时电堆产冷量的总和大于工作对象热负载的总功率,否则无法达到要求。电堆的热惯性非常小,空载下不大于一分钟,但是由于负载的惯性(主要是由于负载的热容量造成的),因此实际要达到设定温度时的工作速度要远远大于一分钟,多时达几小时。如工作速度要求愈大,电堆的数量也就愈多,热负载的总功率是由总热容量加上漏热量(温度愈低、漏热量 愈大)。 上述七个方面是选用电堆时考虑的一般原则,根据上述原用户首先应根据需要提出要求来选择致冷片件。一般的 要求:

氨制冷系统四大部件及其制冷工作原理

氨制冷系统四大部件及其制冷工作原理制冷是指用机械方法,从一个有限的空间取出热量,使该处的温度降低到所要求的程度,这个过程是靠热传递来完成的。制冷技术是一项工艺极其复杂,具有一定危险性的工作,尤其是系统中的氨气,是一种易燃易爆,有毒,使人窒息的气体,对人体健康和安全生产都有潜在的较大的危害性。所以要求制冷操作人员必须熟悉所属冷库设备的构造、结构、性能、特点、分布情况、工艺流程、运行原理,掌握安全操作技术,并具备查患排险能力,这样才能胜任制冷运行和管理工作。下面就围绕察尔森水库管理局冷库氨制冷设备四大主要部件及其制冷工作原理谈谈自己粗浅的理解和看法。 一、制冷工作原理 察尔森水库冷库属蒸汽压缩制冷系统。它主要由压缩机、冷凝器、贮氨罐、油分离器、节流阀、氨液分离器、蒸发器、中间冷却器、紧急泄氨器、空气分离器、集油器,水冷却装置,各种阀门、压力表、测温仪和高低压管道组成。其中,压缩机、冷凝器、节流阀和蒸发器是制冷系统中最基本的部件。它们之间用管道依次连接,形成一个密闭的系统。制冷剂氨在系统中不断循环流动,发生状态变化,与外界进行热量交换,其工作过程是:液态氨在蒸发器中吸收被冷却物的热量之后,汽化成低压低温的氨气,被压缩机吸入,压缩成高压高温的氨气后排入冷凝器。在冷凝器中被冷却水降温放热冷凝为高压氨液,经节流阀节流为低压低温的氨液,再次进入蒸发器吸热汽化,达到循环制冷的目的。这样,氨在系统中经过蒸发、压缩、冷凝、节流四个基本过程完成一个制冷循环。 在实际的制冷系统中,完成一次制冷循环,制冷剂需要通过上述四大件之外,

还通过许多辅助设备,这些设备是为了提高运行的经济性,可靠性和安全性而设置的,实际制冷工艺流程是较为复杂的。制冷学原理是一个能量转化过程,即电能转化为机械能,机械能转化为热能,热能又通过氨液在系统内不断地发生形态变化,进行冷热变换完成制冷。 二、活塞式压缩机的基本结构及其工作原理 活塞式压缩机是目前广泛用于大中型冷库的制冷机型。察尔森水库安装了一台6AW10型单级氨压缩机和一台8ASJ10型双极氨压缩机,均是大连冷冻机厂生产的。活塞式压缩机主要由机体、曲轴、连杆、活塞、进排气阀组、安全阀、能量调节机构,润滑系统和直联式电动机配装而成。 6AW10型压缩机的总体结构是:“ 6”表示压缩机有6缸(3个排气缸,3个吸气缸),“ A”表示以氨制冷剂,“W表示气缸排列的样式如果字母W型,“10”表示汽缸直径为10厘米。该机活塞行程为200毫米,转速为960转/分,标准制冷量为2900000千焦/ 小时, 电动机功率为37千瓦/小时, 该机能将库温降至-30C。 8ASJ10型压缩机的总体结构是:“8”表示压缩机为8个汽缸,“A”表示氨制冷剂,“ S”表示汽缸排列样式像扇子型,“J”表示单机两级,即在一台机体上没有低压级和高压级,两次压缩制冷。其中6个缸(3个低压吸气缸,3 个低压排气缸)为低压级,2 个缸(1 个高压吸气缸,1 个高压排气缸)为高压级,该机分设高压腔和低气腔两次分别做工制冷的目的是:分割高低压缸压力差,做梯级压缩制冷,以取得较低的温度,该机能将库温降至 -45C,标准制冷量为4100000千焦/小时,电动机功率为31千瓦/小时.

制冷片工作原理

.

制冷片工作状态是一面制冷一面发热,在制冷片工作时必须给热面良好散热,严禁在无散热条件下给制冷片通电超过2秒,造成过热烧坏!测试制冷片好坏可用一节电池试验 .

. 操作方法是:一只手捏住制冷片的两面,另一只手把制冷片的导线按在电池的两极上,若能 感觉到一面微冷一面微热就说明制冷片是好的,能够正常工作。 制冷片按尺寸分: 10*1015*1520*2023*2330*3040*4050*5062*62双层长方形 制冷片按电流分: 2A 3A 4A5A 6A 7A 8A 9A 10A12A14A15A18A 半导体制冷器给我们带来散热新概念 半导体制冷器在通电的情况下,两端极板会产生一定的温差,人们正是利用它的冷 凝面为物体提供一个低温环境、发热面提供热源能量。 倒是效果非常明显,使用极其方便。这里谈到的半导体制冷器是根据热电效应技术的特点,采用特殊半导体材料热电堆来制冷,能够将电能直接转换为热能,效率较高。 半导体制冷器的用途很多,可用于制作便携冷藏/保温箱、冷热饮 水机等。也用于电子器件的散热。目前制冷器所采用的半导体材料最主 要为碲化铋,加入不纯物经过特殊处理而成N型或P型半导体温差元件。 它的工作特点是一面制冷而一面发热。接通直流电源后,电子由负极(-) 出发,首先经过P型半导体,在此吸收热量,到了N型半导体,又将热 量放出,每经过一个NP模组,就有热量由一边被送到另外一边,造成 温差,从而形成冷热端。 .

. 安装使用 制冷片的安装及使用很简单。在安装前,最好准 备一点导热硅脂,然后,找一节干电池,接在制冷器 两根引线上,就可感觉到一端明显发凉而另一端发热, 记住引线的极性并确定好制冷器的冷、热端。正式安 装时,在制冷器两端均匀涂上导热硅脂,在物体与散 热器之间插入制冷片,请注意先试好的冷热面方向,冷面贴着物体,热面与强力的(功率越高 越好)散热片接触。然后想法固定好三者。固定好后,就可以给制 冷片和风扇接上电源了(一定要注意极性)。使用 12V左右的电压,在此电压下制冷片的制冷量和冷热 面温差都比较合适。 热电致冷芯片(ThermoelectricCoolingModule) 及温差发电芯片(ThermoelectricPowergeneratingModule)的理论基础早在19世纪初即被科学家发现。公元1821年(约180年前)德国科学家ThomasJohannSeebeck(1770-1831)发布塞贝克效应(SeebackEffect)此效应为日后研发温差发电芯片的基础。随后不久(1834),法国表匠JeanCharlesAthanase Peltier 也发布了珀尔帖效应(PeltierEffect) 此效 应为日后研发致冷芯片的基础。但是当时并无今日发 展神速的半导体工业,科学家无法利用以上两个效应 .

冷水机工作原理

冷水机作用 冷水机是一种水冷却设备,冷水机是一种能提供恒温、恒流、恒压的冷却水设备。冷水机工作原理是先向机内水箱注入一定量的水,通过冷水机制冷系统将水冷却,再由水泵将低温冷却水送入需冷却的设备,冷水机冷冻水将热量带走后温度升高再回流到水箱,达到冷却的作用。冷却水温可根据要求自动调节,长期使用可节约用水。因此,冷水机是一种标准的节能设备。 冷水机的冷却原理: 冷水机系统的运作是通过三个相互关联的系统:制冷剂循环系统、水循环系统、电器自控系统。 冷水机制冷剂循环系统: 蒸发器中的液态制冷剂吸收水中的热量并开始蒸发,最终制冷剂与水之间形成一定的温度差,液态制冷剂亦完全蒸发变为气态后被压缩机吸入并压缩(压力和温度增加),气态制冷剂通过冷凝器(风冷/水冷)吸收热量,凝结成液体,通过热力膨胀阀(或毛细管)节流后变成低温低压制冷剂进入蒸发器,完成制冷剂循环过程。 冷水机制冷系统基本组成: 压缩机:压缩机是整个制冷系统中的核心部件,也是制冷剂压缩的动力之源。它的作用是将输入的电能转化为机械能,将制冷剂压缩。 冷凝器:在制冷过程中冷凝器起着输出热能并使制冷剂得以冷凝的作用。从制冷压缩机排出的高压过热蒸气进入冷凝器后,将其在工作过程吸收的全部热量,其中包括从蒸发器和制冷压缩机中以及在管道内所吸收的热量都传递给周围介质(水或空气)带走;制冷剂高压过热蒸气重新凝结成液体。(根据冷却介质和冷却方式的不同,冷凝器可分为三类:水冷式冷凝器、风冷式冷凝器、蒸发式冷凝器。) 贮液器:贮液器安装在冷凝器之后,与冷凝器的排液管是直接连通的。冷凝器的制冷剂液体应畅通无阻地流入贮液器内,这样就可以充分利用冷凝器的冷却面积。另一方面,当蒸

0-15A PID智能半导体制冷片恒流驱动源

0-15A智能PID半导体制冷片恒流驱动源 (型号:TEC-300W-15A-20V) 一:功能描述 半导体制冷是利用帕尔帖效应原理工作的,具有高精度、长寿命、体积小、无噪声、无磨损、无振动、无污染、既可制冷又可加热等特点,是真正的绿色产品。本系列TEC制冷电源带有完美的PID控制软件,智能无级控温,既可制冷又可加热。可用于控制激光器件、医疗器件、半导体器件、红外探测器、光电倍增管、或其它任何需要温度控制的地方。该产品采用现代最新电力电子器件和高速微处理器(MPU)程序控制技术,以及PWM调制、双向电源、PID调节技术,具有优良的电压、电流输出特性,开关机时无过冲、反冲、浪涌现象,并带有过流、过温、欠温等保护电路,以及一组常开/常闭的温度报警信号输出。 TEC-300W-15A-20V使用了单元模块并联技术,基于一个高性能、高精度、高效率的恒流源子模块,通过n个子模块的简单叠加,实现任意大电流输出。相比较传统电源,这一设计具有搭积木式结构,具有很多优点: 第一:结构简单且容易实现任意大小电流输出,使用子模块搭积木式结构,客户维护方便快捷。 第二:基于子模块高精度、高效率的特点,系统也具有精度高,效率超高特点。 第三:相比较传统电压驱动源,恒流驱动源更具有寿命长的特点。 电源输入:24V±0.5V 电流输入:15A 电源输出:0-15A 电压输出:1-20V 慢启动时间:500mS 效率大于:92%

图1 TEC-300W-15A-20V恒流源接线图 二:控制接口 控制接口采用10芯IDC10接口,在线路板的左下角位置,参加图2所示。 图2 控制接口示意图 下面分别介绍各个端口的功能: 3、4脚:+5V输出端口 该端口提供不超过100mA的电流输出, 用于电流显示表头的正极供电。 5、6脚:GND 该端口提供不超过100mA的电流输出, 用于电流显示表头的负极供电和用于连接调节电流的电位器的负极。 7、8脚:V ADJ用于调节电流大小 该端口用于控制电源的电流输出大小,外接可调电位器。电位器的中间抽头和该端口连接,用于控制电源输出电流大小,该端口输入电压不能超过5V。 温控仪整体尺寸48*24*78mm,开孔尺寸:45*22mm,外形示意图和接线头如图3所示。 图3 PID温控仪示意图 三:首次使用步骤 第1步:连接温控仪的控制端口和恒流驱动电源的端子。 第2步:连接TEC(注意正负极)。 第3步:连接24V350W开关电源(注意正负极)。 第4步:将电流调节电位器逆时针调节到零,接通24V电源。 第5步:将PID温度控制仪的4、5脚短路。 第6步:顺时针调节电流调节电位器,使得恒流输出电流和TEC的额定电流匹配。

制冷系统节流机构及工作原理

节流机构 节流是压缩式制冷循环不可缺少的四个主意过程之一。节流机构的作用有两点:一是对从冷凝器中出来的高压液体制冷剂进行节流降压为蒸发压力;二是根据系统负荷变化,调整进入蒸发器的制冷剂液体的数量。 常用的节流机构有手动膨胀阀、浮球式膨胀阀、热力膨胀阀以及阻流式膨胀阀(毛细管)等。它们的基本原理都是使高压液态制冷剂受迫流过一个小过流截面,产生合适的局部阻力损失(或沿程损失),使制冷剂压力骤降,与此同时一部分液态制冷剂汽化,吸收潜热,使节流后的制冷剂成为低压低温状态。 一、手动节流阀手动膨胀阀和普通的截止阀在结构上的不同之处主要是阀芯的结构与阀杆的螺纹形式。通常截止阀的阀芯为一平头,阀杆为普通螺纹,所以它只能控制管路的通断和粗略地调节流量,难以调整在一个适当的过流截面积上以产生恰当的节流作用。而节流阀的阀芯为针型锥体或带缺口的锥体,阀杆为细牙螺纹,所以当转动手轮时,阀芯移动的距离不大,过流截面积可以较准确、方便地调整。 节流阀的开启度的大小是根据蒸发器负荷的变化而调节,通常开启度为手轮的1/8至1 /4周,不能超过一周。否则,开启度过大,会失去膨胀作用。因此它不能随蒸发器热负荷的变动而灵敏地自动适应调节,几乎全凭经验结合系统中的反应进行手工操作。 目前它只装设于氨制冷装置中,在氟利昂制冷装置中,广泛使用热力膨胀阀进行自动调节。 二、浮球节流阀 1、浮球节流阀的工作原理浮球节流阀是一种自动调节的节流阀。其工作原理是利用一钢制浮球为启闭阀门的动力,*浮球随液面高低在浮球室中升降,控制一小阀门开启度的大小变化而自动调节供液量,同时起节流作用的。当容器内液面降低时,浮球下降,节流孔自行开大,供液量增加;反之,当容器内液面上升时,浮球上升,节流孔自行关小,供液量减少。待液面升至规定高度时,节流孔被关闭,保证容器不会发生超液或缺液的现象。 2、浮球节流阀的结构型式与安装要求浮球节流阀是用于具有自由液面的蒸发器,液体分离器和中间冷却器供液量的自动调节。在氨制冷系统中广泛应用的是一种低压浮球阀。低压浮球阀按液体在其中流通的方式,有直通式和非直通式两种。直通浮球节流阀的特点是,进入容器的全部液体制冷剂首先通过阀孔进入浮球室,然后再进入容器。因此,结构和安装比较简单,但浮球室的液面波动大。非直通式浮球节流阀的特点是,阀座装在浮球室外,经节流后的制冷剂不需要通过浮球室而沿管道直接进入容器。因此,浮球室的液面较平稳,但其结构与安装均较复杂。 目前我国冷冻机厂生产的浮球节流阀都是这种非直通式的。这种浮球节流阀的结构是由壳体、浮球、杠杆、阀座、平衡管、阀芯和盖等组成。 浮球节流阀在安装时的要求是浮球室的气体平衡管应接在筒身上,而不应接在液体分离器的吸气管上。液体平衡管不应接在液体分离器与蒸发器之间的供液管上,也不应接在低

半导体制冷技术

半导体制冷技术 实物图 半导体制冷又称电子制冷,或者温差电制冷,是从50年代发展起来的一门介于制冷技术和半导体技术边缘的学科,它利用特种半导体材料构成的P-N结,形成热电偶对,产生珀尔帖效应,即通过直流电制冷的一种新型制冷方法,与压缩式制冷和吸收式制冷并称为世界三大制冷方式。 1834年,法国物理学家帕尔帖在铜丝的两头各接一根铋丝,再将两根铋丝分别接到直流电源的正负极上,通电后,他惊奇的发现一个接头变热,另一个接头变冷;这个现象后来就被称为"帕尔帖效应"。"帕尔帖效应"的物理原理为:电荷载体在导体中运动形成电流,由于电荷载体在不同的材料中处于不同的能级,当它从高能级向低能级运动时,就会释放出多余的热量。反之,就需要从外界吸收热量(即表现为制冷)。 所以,"半导体制冷"的效果就主要取决于电荷载体运动的两种材料的能级差,即热电势差。纯金属的导电导热性能好,但制冷效率极低(不到1%)。半导体材料具有极高的热电势,可以成功的用来做小型的热电制冷器。但当时由于使用的金属材料的热电性能较差,能量转换的效率很低,热电效应没有得到实质应用。直到本世纪五十年代,苏联科学院半导体研究所约飞院士对半导体进行了大量研究,于1945年前发表了研究成果,表明碲化铋化合物固溶体有良好的致冷效果。这是最早的也是最重要的热电半导体材料,至今还是温差致冷中半导体材料的一种主要成份。约飞的理论得到实践应用后,有众多的学者进行研究到六十年代半导体致冷材料的优值系数,达到相当水平,才得到大规模的应用。80年代以后,半导体的热电制冷的性能得到大幅度的提高,进一步开发热电制冷的应用领域。 二、半导体制冷片制冷原理 原理图

半导体加热制冷片

半导体加热制冷片 peltier制冷片安装方法2010-3-13 星期六(Saturday) 晴 致冷器的安装方法一般有三种:焊接、粘合、螺栓压缩固定。在生产上具体用哪一种方法安装,要根据产品的要求来定,总的来说对于这三种的安装时,首先都要用无水酒精棉将致冷器件的两端面擦洗干净,储冷板和散热板的安装表面应加工,表面平面度不大于0.03mm,并清洗干净,以下就是三种安装的操作过程。 1、焊接。 焊接的安装方法要求致冷器件外表面必须是金属化,储冷板和散热板也必须能够上焊料(如:铜材的储冷板或散热板)安装时先将储冷板、散热板、致冷器进行加温,(温度和焊料的熔点差不多)在各安装表面都熔上约70℃——110℃之间的低温焊料0.1mm。然后将致冷器件的热面和散热板的安装面,致冷器件的冷面和储冷板的安装面平行接触并且旋转挤压,确保工作面的接触良好后冷却。该安装方法较复杂,不易维修,一般应用在较特殊的场合。 2、粘合。 粘合的安装方法是用一种具有导热性能较好的粘合剂,均匀的涂在致冷器件、储冷板、散热板的安装面上。粘合剂的厚度在0.03mm,将致冷器的冷热面和储冷板、散热板的安装面平行的挤压,并且轻轻的来...... peltier制冷片TE电源2010-3-13 星期六(Saturday) 晴 半导体致冷器是输入直流电源工作的,必须配备专用电源。 1、直流电源。直流电源的优点是可以直接使用,不需要转换,缺点是电压电流必须适用于半导体致冷器,有些可以通过半导体致冷器的串、并联的方式解决。 2、交流电流。这是一个最普通的电源,使用时必须整流为直流才能供致冷器使用。由于致冷器件是低电压大电流器件,应用时先降压、整流、滤波,有些为了方便使用还要加上温度测量,温度控制,电流控制等。 3、由于半导体致冷器是直流电源供应,电源的波纹系数必须小于10%,否则对致冷效果有较大的影响。 4、半导体致冷器的工作电压及电流必须符合所工作器件的需要,例如:型号为TEC112706的器件,则127为致冷器件,PN的电偶对数,致冷器的工作极限电压V=电偶对数×0.11,06为允许通过最大的电流值。 5、致冷器冷热交换时的通电必须待两端面恢复到室温时(一般需要5分钟以上方可进行),否则易造成致冷器的线路损坏和陶瓷片的破裂。...... peltier制冷片散热方式2010-3-13 星期六(Saturday) 晴 半导体致冷器件的散热是一门专业技术,也是半导体致冷器件能否长期运行的基础。良好的散热才能获得最低冷端温度的先决条件。以下就是半导体致冷器的几种散热方式:

半导体制冷片正确的安装方法电子元器件

半导体制冷片正确的安装方法北京海腾顺达电子 一、正确的安装、组装方法: 1、制冷片一面安装散热片,一面安装导冷系统,安装表面平面度不大于0.03mm,要除去毛刺、污物。 2、制冷片与散热片和导冷块接触良好,接触面须涂有一薄层导热硅脂。 3、固定制冷片时既要使制冷片受力均匀,又要注意切勿过度,以防止瓷片压裂。 二、正确的使用条件: 1、使用直流电源电压不得超过额定电压,电源波纹系数小于10%。 2、电流不得超过组件的额定电流。 3、制冷片正在工作时不得瞬间通反向电压(须在5分钟之后)。 4、制冷片内部不得进水 5、制冷片周围湿度不得超过80%。 三、CDL1系列制冷组件使用中的注意问题: 1、当采用非专用设备检验该器件时,在工作参数下,热端的温度必须低于80℃,(含改变电流方向冷端变成热端)。在热端没有散热条件下,瞬间通电进行试验,即用手触摸制冷器的两个端面,感到有一定

的热感,一面稍有冷感即可。否则由于热端温度太高,极易造成器件短路或断路,使制冷器报废。 2、在一般条件下,鉴别制冷组件的极性时可将制冷组件冷端朝上放置,引线端朝向人体方向,此时右侧引线即为正极,通常用红色表示;左侧为负极,通常用黑色,兰或白色表示,此种极性是制冷组件工作时的接线方法。需制热时,只要改变电流极性即可。制冷工作时,必须采用直流电源,电源的绞波系数应小于10%。 3、制冷电偶对数及极限电压的识别方法,电偶对数即指PN结点的数量。例如:制冷器的型号为CDL1-12703,则127为制冷组件的电偶对数,03为允许电流值(单位安培),制冷组件的极限电压V;电偶对数×0.11,例如:CDLl-12703的极限电压V=l27×0.11=13.97(V)。 4、各种制冷组件不论在使用还是在试验中,冷热交换时必须待两端面恢复到室温时,(一般需要15分钟以上方可进行)。否则易造成陶瓷片炸裂。 5、为了提高制冷组件的寿命,使用前应该对制冷组件四周外露PN 元件进行固化处理。方法用706单组固化橡胶,均匀地涂在制冷组件四周PN元件上,不要涂在两个端面上。所涂的橡胶24小时自然固化,固化后呈乳白色有弹性的固体。固化的目的是使制冷组件电偶与外界空气完全隔离。起防潮的作用,可提高制冷组件寿命约50%。 6、在安装时,首先用无水酒精棉,将制冷组件的两端擦洗干净,均匀的涂上很蒲的一层导热硅脂:安装表面(储冷板、散热板)应加工,

氨制冷设备的构造及制冷工作原理

氨制冷设备的构造及制 冷工作原理 标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

浅谈氨制冷设备的构造及制冷工作原理 一、制冷系统的制冷工作原理: 主要由压缩机、冷凝器、储氨器、油分离器、节流阀、氨液分离器、蒸发器、中间冷却器、紧急泄氨器、集油器、各种阀门、压力表和高低压管道组成。其中,制冷系统中的压缩机、冷凝器、节流阀和蒸发器(冷库排管)是四个最基本部件。它们之间用管道依次连接,形成一个封闭的系统,制冷剂氨在系统中不断循环流动,发生状态变化,与外界进行热量交换,其工作过程是:液态氨在蒸发器中吸收被冷却物的热量之后,汽化成低压低温的氨气,被压缩机吸入,压缩成高压高温的氨气后排入冷凝器,在冷凝器中被冷却水降温放热冷凝为高压氨液,经节流阀节流为低温低压的氨液,再次进入蒸发器吸热气化,达到循环制冷的目的。这样,氨在系统中经过蒸发、压缩、冷凝、节流四个基本过程完成一个制冷循环。 在实际的制冷系统中,完成一次制冷循环,制冷剂需要通过上述四大件外,还通过许多辅助设备,这些设备是为了提高运行的经济性、可靠性和安全性而设置的。以双级压缩机制冷系统为例,完成一次制冷循环,氨必须依次通过低级氨压机、一级油分离器、中间冷却器、高级氨压机、二级油分离器、冷凝器、储氨器、节流阀、氨液分离器、调节站、蒸发器、再回到低级氨压缩机,这样才完成一次循环,实际制冷工艺流程是较为复杂的。 制冷学原理是一个能量转化过程。即电能转化机械能,机械能转化为热能,热能又通过氨的作用进行冷热交换,完成制冷的过程。 二、活塞式压缩机的基本结构及其工作原理: 活塞式压缩机是目前广泛应用于大中型冷库的制冷机型。我局安装的就是一台6AW10型单级氨压缩机和一台8ASJ10型双级氨压缩机,均由大连冷冻机厂生产的。活塞式压缩机主要由机体、曲轴、连杆、活塞、进排气阀组、安全阀、能量调节机构、润滑系统和直连式电动机配装而成的。6AW10型压缩机的总体结构是:“6”表示压缩机有6个缸(3个排气缸、3个吸气缸),“A”表示以氨做制冷剂,“W”表示汽缸排列的样式如同字母W 型,“10”表示汽缸直径为10厘米。该机活塞行程为100毫米,转数960转/分,标准制冷量为2900000千焦/小时,电动机功率为37千瓦/小时,该机能将库温降至-300C。

半导体制冷片工作原理

半导体制冷片工作原理

————————————————————————————————作者: ————————————————————————————————日期:

半导体制冷片工作原理 致冷器件是由半导体所组成的一种冷却装置,随着近代的半导体发展才有实际的应用,也就是致冷器的发明。其工作原理是由直流电源提供电子流所需的能量,通上电源后,电子负极(-)出发,首先经过P型半导体,于此吸热量,到了N型半导体,又将热量放出,每经过一个NP模块,就有热量由一边被送到令外一边造成温差而形成冷热端。冷热端分别由两片陶瓷片所构成,冷端要接热源,也就是欲冷却之。在以往致冷器是运用在CPU的,是利用冷端面来冷却CPU,而热端面散出的热量则必需靠风扇来排出。致冷器也应用于做成车用冷/热保温箱,冷的方面可以冷饮机,热的方面可以保温热的东西。半导体致冷器的历史 致冷片是由半导体所组成的一种冷却装置,于1960左右才出现,然而其理论基础Peltier effect 可追溯到19世纪。下图(1)是由X及Y两种不同的金属导线所组成的封闭线路,通上电源之后,A点的热量被移到B点,导致A点温度降低,B点温度升高,这就是著名的Peltier effect。这现象最早是在1821年,由一位德国科学家ThomasSeeback首先发现,不过他当时做了错误的推论,并没有领悟到背后真正的科学原理。到了1834年,一位法国表匠,同时也是兼职研究这现象的物理学家JeaNPeltier,才发现背后真正的原因,这个现象直到近代随着半导体的发展才有了实际的应用,也就是「致冷器」的发明。 一、因半导体致冷片薄而轻巧,体积很小,不占空间,并可以携带,做成车用电冷/热保温箱,放置车上,不占空间,并可变成冰箱及保温箱,夏天可以摆上几瓶饮料,就可以便冰饮,在冬天就可以变成保温箱。

制冷系统的工作原理及特点

制冷系统主要部件的工作原理及特点 (1)制冷压缩机 制冷压缩机是用以压缩和输送制冷剂的设备。在消耗外界补偿功的条件下,它以机械方法吸入来自蒸发器的低温低压制冷剂蒸汽,将该蒸汽压缩成高温高压的过热蒸汽,并排放到冷凝器中去,使制冷剂能在制冷系统中实现制冷循环。 ①开启式压缩机。 这种压缩机与电动机没有共同外壳。根据曲轴箱形式,又可分为开式曲轴箱压缩机和闭式曲轴箱压缩机。前者因曲轴箱与大气相通,气缸里漏出的制冷剂直接进人大气,泄漏量大,目前已很少应用。后者曲轴箱的曲轴用轴封加以密闭,使曲轴箱封闭,以减少制冷剂的泄漏量。 ②半封闭式压缩机。 这种压缩机与电动机直接连接;一起装在以螺栓连接的密封壳体内,并共用同一主轴,机壳为可拆卸式,便于维修。根据电动机的冷却形式可分为进气冷却式、进气与空气混合冷却式等形式。目前半封闭式压缩机多为高速多缸式。 ③全封闭式压缩机: 这种压缩机和电动机直接连接,并一起装在一个焊接的密封壳体内。这种压缩机结构紧凑、密封性极好。使用方便、振动小、噪音低,适用于小型制冷设备。全封式压缩机有活塞式、旋转式、涡旋式三种。 A、旋转式压缩机 是一种特殊的小型回转式压缩机,如图1-l-2所示。其转子偏心地装在定子内,排气时间长(比往复活塞式长30%左右),流过气阀的流动阻力损失小,缸径行程比大,排气容积和吸气管管径大,吸气过热小,电动机工作温度低,效率高,成本低以及寿命长。 B、活塞式压缩机 外形如图1-l-3所示 C、涡旋式压缩机 是通过涡旋定子和涡旋转子组成涡卷以及构成这个涡卷的端板所形成的空间来压缩气体的回转式压缩机。工作时,随着曲轴的回转,涡旋转子以其中心始终绕涡旋定子中心作一偏心量为半径的圆周运动。它与往复活塞式压缩机相比,其主要特点是:压缩气体几乎不泄漏、不需吸排气阀、绝热效率可提高10%、震动小、扭矩变化小、噪音可降低5dB(A)、体积减小40%、重量减轻15%。它适用于热泵式、吊顶型等空调机上。 系列柔性涡旋压缩机: 超高能效比

普通半导体制冷片型号、规格、参数

普通半导体制冷片型号、规格、参数 普通半导体制冷片型号、规格、参数普通半导体制冷片型号、规格、参数2011-09-25 14:36 半导体制冷片的工作原理是:当一块N 型半导体材料和一块P 型半导体材料联结成电偶对时,在这个电路中接通直流电流后,就能产生能量的转移,电流由N 型元件流向P 型元件的接头吸收热量,成为冷端由P 型元件流向N 型元件的接头释放热量,成为热端。吸热和放热的大小是通过电流的大小以及半导体材料N、P 的元件对数来决定,以下三点是热电制冷的温差电效应。一八二二年德国人塞贝克发现当两种不同的导体相连接时,如两个连接点保持不同的温差,则在导体中产生一个温差电动势:ES=S.△T 式中:ES 为温差电动势S(?)为温差电动势率(塞贝克系数) △T 为接点之间的温差一八三四年法国人珀尔帖发现了与塞贝克效应的效应,即当电流流经两个不同导体形成的接点时,接点处会产生放热和吸热现象,放热或吸热大小由电流的大小来决定。Qл=л.Iл=aTc 式中:Qπ为放热或吸热功率π为比例系数,称为珀尔帖系数I 为工作电流 a 为温差电动势率Tc 为冷接点温度当电流流经存在温度梯度的导体时,除了由导体电阻产生的焦耳热之外,导体还要放出或吸收热量,在温差为△T 的导体两点之间,其放热量或吸热量为:Qτ=τ.I.△T Qτ为放热或吸热功率τ为汤姆逊系数I 为工作电流△T 为温度梯度以上的理论直到本世纪五十年代,苏联科学院半导体研究所约飞院士对半导体进行了大量研究,于一九五四年发表了研究成果,表明碲化铋化合物固溶体有良好的制冷效果,这是最早的也是最重要的热电半导体材料,至今还是温差制冷中半导体材料的一种主要成份。约飞的理论得到实践应用后,有众多的学者进行研究到六十年代半导体制冷材料的优值系数,才达到相当水平,得到大规模的应用,也就是我们现在的半导体制冷片件。中国在半导体制冷技术开始于50 年代末60 年代初,当时在国际上也是比较早的研究单位之一,60 年代中期,半导体材料的性能达到了国际水平,60 年代末至80 年代初是我国半导体制冷片技术发展的一个台阶。在此期间,一方面半导体制冷材料的优值系数提高,另一方面拓宽其应用领域。中国科学院半导体研究所投入了大量的人力和物力,获得了半导体制冷片,因而才有了现在的半导体制冷片的生产及其两次产品的开发和应用。1、不需要任何制冷剂,可连续工作,没有污染源没有旋转部件,不会产生回转效应,没有滑动部件是一种固体片件,工作时没有震动、噪音、寿命长,安装容易。2、半导体制冷片具有两种功能,既能制冷,又能加热,制冷效率一般不高,但制热效率很高,永远大于1。因此使用一个片件就可以代替分立的加热系统和制冷系统。3、半导体制冷片是电流换能型片件,通过输入电流的控制,可实现高精度的温度控制,再加上温度检测和控制手段,很容易实现遥控、程控、计算机控制,便于组成自动控制系统。4、半导体制冷片热惯性非常小,制冷制热时间很快,在热端散热良好冷端空载的情况下,通电不到一分钟,制冷片就能达到最大温差。5、半导体制冷片的反向使用就是温差发电,半导体制冷片一般适用于中低温区发电。6、半导体制冷片的单个制冷元件对的功率很小,但组合成电堆,用同类型的电堆串、并联的方法组合成制冷系统的话,功率就可以做的很大,因此制冷功率可以做到几毫瓦到上万瓦的范围。7、半导体制冷片的温差范围,从正温90℃到负温度130℃都可以实现。1、军事方面:导弹、雷达、潜艇等方面的红外线探测、导行系统。 2、医疗方面;冷力、冷合、白内障摘除片、血液分析仪等。 3、实验室装置方面:冷阱、冷箱、冷槽、电子低温测试装置、各种恒温、高低温实验仪片。 4、专用装置方面:石油产品低温测试仪、生化产品低温测试仪、细菌培养箱、恒温显影槽、电脑等。 5、日常生活方面:空调、冷热两用箱、饮水机、电子信箱等。此外,还有其它方面的应用,这里就不一一提了。半导体制冷片件的散热是一门专业技术,也是半导体制冷片件能否长期运行的基础。良好的散热才能获得最低冷端温度的先决条件。以下就是半导体制冷片的几种散热方式:1、自然散热。采用导热较好的材料,紫铜铝材料做成各种散热片,在静止的空气中自由的散发热量,使用方便,缺点是体积太大。2、充液散热。用较好的散热材料做成水箱,用

相关文档