文档库 最新最全的文档下载
当前位置:文档库 › 间歇降雨中土壤含水量分布及其对入渗的影响

间歇降雨中土壤含水量分布及其对入渗的影响

间歇降雨中土壤含水量分布及其对入渗的影响
间歇降雨中土壤含水量分布及其对入渗的影响

矿山涌水量计算总结

露天采矿场总涌水量计算 露天采矿场总涌水量是由地下水涌水量和降雨迳流量两部分组成。 一、地下水涌水量的计算 露天采矿场地下涌水量与地下开采矿坑地下水涌水量计算方法基本相同。 二、降雨迳流量计算 露天采矿场降雨迳流量,应按正常降雨迳流量和设计频率暴雨迳流量分别计算。 (一)计算方法 1、正常降雨迳流量(Qz)计算公式 Qz=FH 式中 F——泵站担负的最大汇水面积,m2; H——正常降雨量,m; ——正常地表迳流系数,%。 2、设计频率暴雨迳流量(Qp)计算公式 Qp=FHp′ 式中 Hp——设计频率暴雨量,m; ′——暴雨地表迳流系数,%; 其它符号同前。 (二)计算参数的选取 1、汇水面积(F)的圈定

(

( ( (

注:1、本表内数值适用于暴雨径流量计算,对正常降雨量计算应将表中数值减去0.1~0.2。 2、表土指腐植土,表中未包括的岩土则按类似岩土性质采用。 3、当岩石有少量裂隙时,表中数值减去0.1~0.2,中等裂隙减去0.2,裂隙发育时减去0.3~0.4。 4、当表土、粘性土壤中含砂时,按其含量适当将表中地表迳流系数减去0.1~0.2。 3、正常降雨量的选择 一般矿区可按雨季平均降雨量作为正常降雨量,而对非雨季节经常出现较大降雨地区的露天矿,可选用控制雨量进行设计。 1)雨季平均降雨量的推求 收集历年(一般要有10~15年)雨季各月降雨量及降雨天数,用下式求得。 式中 H——历年雨季日平均降雨量,m; N——历年降雨系列资料中某一年的雨季天数,d; Hi——历年降雨系列资料中某一年的雨季总降雨量,m; n——降雨系列资料统计年数。 2)控制雨量的推求

土壤含水量的测定(烘干法)

土壤含水量的测定(烘干法) 进行土壤水分含量的测定有两个目的: 一是为了解田间土壤的实际含水状况,以便及时进行灌溉、保墒或排水,以保证作物的正常生长;或联系作物长相、长势及耕栽培措施,总结丰产的水肥条件;或联系苗情症状,为诊断提供依据。 二是风干土样水分的测定,为各项分析结果计算的基础。前一种田间土壤的实际含水量测定,目前测定的方法很多,所用仪器也不同,在土壤物理分析中有详细介绍,这里指的是风干土样水分的测定。 风干土中水分含量受大气中相对湿度的影响。它不是土壤的一种固定成分,在计算土壤各种成分时不包括水分。因此,一般不用风干土作为计算的基础,而用烘干土作为计算的基础。分析时一般都用风干土,计算时就必须根据水分含量换算成烘干土。 测定时把土样放在105~110℃的烘箱中烘至恒重,则失去的质量为水分质量,即可计算土壤水分百分数。在此温度下土壤吸着水被蒸发,而结构水不致破坏,土壤有机质也不致分解。下面引用国家标准《土壤水分测定法》。 2.3.1适用范围 本标准用于测定除石膏性土壤和有机土(含有机质20%以上的土壤)以外的各类土壤的水分含量。 2.3.2方法原理 土壤样品在105±2℃烘至恒重时的失重,即为土壤样品所含水分的质量。 2.3.3仪器设备 ①土钻;②土壤筛: xx1mm;③铝盒:

小型直径约40mm,高约20mm;大型直径约55mm,高约28mm;④分析天平: 感量为 0.001g和 0.01g;⑤小型电热恒温烘箱;⑥干燥器: xx变色硅胶或无水氯化钙。 2.3.4试样的选取和制备 2.3. 4.1风干土样选取有代表性的风干土壤样品,压碎,通过1mm筛,混合均匀后备用。 2.3. 4.2新鲜土样在田间用土钻取有代表性的新鲜土样,刮去土钻中的上部浮土,将土钻中部所需深度处的土壤约20g,捏碎后迅速装入已知准确质量的大型铝盒内,盖紧,装入木箱或其他容器,带回室内,将铝盒外表擦拭干净,立即称重,尽早测定水分。 2.3.5测定步骤 2.3. 5.1风干土样水分的测定将铝盒在105℃恒温箱中烘烤约2h,移入干燥器内冷却至室温,称重,准确到至 0.001g。用角勺将风干土样拌匀,舀取约5g,均匀地平铺在铝盒中,盖好,称重,准确至 0.001g。将铝盒盖揭开,放在盒底下,置于已预热至105±2℃的烘箱中烘烤6h。取出,盖好,移入干燥器内冷却至室温(约需20min),立即称重。风干土样水分的测定应做两份平行测定。

降水方案

一、编制依据 1、本次基坑降水方案主要依据规范标准如下: 《建筑基坑支护技术规程》 JGJ120-2012 《建筑与市政工程降水技术工程技术规范》 JGJ\T111-98 《工程地质手册》第四版 《宁夏水利调度中心岩土工程勘察报告》 《宁夏水利调度中心施工图纸》 二、工程概况 1、拟建建筑物概况 本工程为宁夏青少年足球训练基地和体育科技监测中心项目—体育科技监测中心工程,建筑面积9860㎡,地上六层,框架结构,基础为独立柱基础。本工程基础面积为1919.2㎡,基础结构东西长64.8m,南北宽36.6m。本工程建筑±0.000绝对高程为1110.64m,现有室外地坪约为-1m,基槽开挖至-4.5米(按±0计算)。 2、场地地质条件概况 本工程所在地貌上属黄河冲积平原Ⅲ级阶地,无不良工程地质作用。场区地层自上而下为人工及第四系冲积相黏性土、粉土和砂土层。根据地勘报告,整个场区自上而下可分为:素填土、粉细砂层。本场地土层分布连续,持力层及主要受力层连续稳定,无不良工程地质作用和地质灾害等不稳定因素。 根据本工程基础和基坑深度,场区地下水可简单考虑为潜水类型,地下水储量较丰富。场区地下水的补给来源主要是引黄渠系渗漏、灌溉入渗补给、大气降水入渗补给、侧向径流补给及洪水散失补给。引黄渠系渗漏及灌溉入渗补给是地下水主要的补给源,其补给量约占地下水总补给量的80%。根据地质勘查报告,场区实测稳定水位埋深1.50-3.60米左右,地下水动态年幅变化在1.5m左右。勘察时期该地区水位为1106.60米。但该场区历史

最高水位为1107.50米,故潜水水位埋深按2.30m考虑。 3、场区周边环境情况 建筑场地位于银川市西夏区,北邻学院路,西靠金波北街,东接丽子园北街,南为贺兰山西路。拟建的场地地势平坦,周边相对开阔。整个场区周边无临近建筑物或地下埋藏物,周边条件优越。 三、降水目的 1、将基坑水位降低至基坑开挖底面以下,为基础工程施工提供条件; 2、疏干基坑侧壁地下水,提高边坡稳定性。 四、降水工程设计 根据场区自然条件和建筑物的实际情况,并结合当地施工经验,确定采用无砂混凝土大口径管井外围降水,同时结合坑内疏干降水方案,降水井布置在基坑开挖上口线外侧2-4m处。 1、已知条件 布井轮廓尺寸:长90m,宽60m; 自然水位深度: 4m考虑; 基坑降水深度:基础埋深2.3米,砂夹石换填2.2m,故基坑开挖深度为4.5m。根据有关规定,降水后水位应保持在基坑开挖底面下0.5-1.5m,本工程取1.5m,所以降水后水位深度需达到6m。 五、主要计算参数的确定 1、基础内水位总降深S' S’=4.5(基坑最大开挖深度)+1.5(降水后基坑中心水位需保持在基坑底面下的深度)-2(当前自然水位,自±0算起)+1(降水期间的水位变幅) =5m 2、渗透系数K 按照下表参考值,根据本场地含水层岩性以细砂土为主的实际情况,

降雨入渗法涌水量计算

二、涌水量的预测 拟采用大气降水渗入量法对隧道进行涌水量计算 1.大气降水渗入法(DK291+028-DK292+150段) Q = 2.74*α*W*A Q—采用大气降水渗入法计算的隧道涌水量(m3/d) α—入渗系数 W—年降雨量(mm) A—集水面积(km2) 参数的选用: α—入渗系数选用0.16; W—隧址多年平均降雨量为508.7m,最大年降雨量为1496.88mm(月平均最大降雨量×12)。 A—集水面积:根据1:10000地形平面图,含水岩组分布面积圈定为0.33km2 最大涌水量为: Q= 2.74*α*W*A = 2.74*0.16*1496.88*0.33= 216.56(m3/d),平均每延米每天涌水量为:0.19(m3/m.d)。 正常涌水量为: Q= 2.74*α*W*A= 2.74*0.16*508.7*0.33=73.59(m3/d),平均每延米每天涌水量为:0.07(m3/m.d)。 2. 大气降水渗入法(DK292+150-DK293+440段) Q = 2.74*α*W*A Q—采用大气降水渗入法计算的隧道涌水量(m3/d) α—入渗系数 W—年降雨量(mm) A—集水面积(km2) 参数的选用:

α—入渗系数选用0.18; W—隧址多年平均降雨量为508.7m,最大年降雨量为1496.88mm(月平均最大降雨量×12)。 A—集水面积:根据1:10000地形平面图,含水岩组分布面积圈定为0.79km2 最大涌水量为: Q= 2.74*α*W*A = 2.74*0.18*1496.88*0.79= 583.23(m3/d),平均每延米每天涌水量为:0.45(m3/m.d)。 正常涌水量为: Q= 2.74*α*W*A = 2.74*0.18*508.7*0.79= 198.2(m3/d),平均每延米每天涌水量为:0.15(m3/m.d)。 3.大气降水渗入法(DK293+440- DK293+870段) Q = 2.74*α*W*A Q—采用大气降水渗入法计算的隧道涌水量(m3/d) α—入渗系数 W—年降雨量(mm) A—集水面积(km2) 参数的选用: α—入渗系数选用0.12; W—隧址多年平均降雨量为508.7mm,最大年降雨量为1496.88mm(月平均最大降雨量×12)。 A—集水面积:根据1:10000地形平面图,含水岩组分布面积圈定为0.25km2 最大涌水量为: Q= 2.74*α*W*A = 2.74*0.12*1496.88*0.25 = 123.04(m3/d),平均每延米每天涌水量为:0.29(m3/m.d)。 正常涌水量为: Q= 2.74*α*W*A = 2.74*0.12*508.7*0.25= 41.82(m3/d),平均每延米每天涌水量为: 0.1 (m3/m.d)。

土壤含水量及 求 农田作物需水量

土壤含水量及农田作物需水量 一、土壤含水量的计算 1.土壤重量含水量(重量百分数) 指一定重量的土壤中水分重量占干土重的百分数。干土指在105℃ 下烘干的土壤(干土≠风干土),通常要求烘干时间达8小时以上,准 确则要求烘至衡重。它是普遍应用的一种表示方法,也是经典方法。 一般情况下,如果文献中未做任何说明,则均表示“重量含水量”。如 烘干法测定的结果,其含水量的重量百分数(水重%)可由下式求得: 例1:测得湿土重为95克,烘干后重79克,求重量含水量。 %3.20%10079 7995%=?-=水重 2.土壤容积含水量(水容积百分数) 指一定土壤水的容积占土壤容积的百分数。它可以表明土壤水充满 土壤孔隙的程度及土壤中水、气的比率。常温下如土壤的密度为1 克/ 厘米3,因此土壤容积含水量或水容积百分数(水容积%)可由下式求 得: 土壤容重 自然状态下,单位体积内干土重,单:g/cm 3。容重是土壤的一个 十分重要的基本参数,在土壤工作中用途较广,以下举例说明。 (1)判断土壤的松紧程度 容重可用来表示土壤的松紧程度,疏 蓊或有团粒结构的土壤容重小,紧实板结的土壤则容重大,如下表。 容重(g/cm 3) 松紧程度 孔隙度 (%) < 1.00 最松 > 60 1.00~1.14 松 60~56 1.14~1.26 适合 56~52 1.26~1.30 稍紧 52~50 > 1.30 紧 < 50

(2)计算土壤重量 每公顷或每亩耕层土壤有多重,可用土壤的 平均容重来计算,同样一定面积土壤(地)上的挖土或盆裁填土量, 也要利用容重来计算。 例1:一个直径为40cm ,高为50cm 的盆,如果按1.15g/cm 3容重 计算,问需装多少(干)土? 解:(40/2)2 ? 3.14 ? 50 ? 1.15 = 72220克 = 72公斤 如一亩地面积(6.67?106cm 2)的耕层厚度为20cm ,容重为 1.15g/cm 3,其总重量为: 6.67 ? 106 ? 20 ? 1.15 = 1.5 ? 108(g) = 150(t) = 150000kg = 30 万 斤土 (3)计算土壤各组分的数量 根据土壤容重,可以计算单位面积 土壤的水分、有机质含量、养分和盐分含量等,作为灌溉排水、养分 和盐分平衡计算和施肥的依据。 如上例中的土壤耕层,现有土壤含水量为5%,要求灌水后达到 25%,则每亩的灌水定额为: 6.67 ? 106 ? 20 ? 1.15 ? (25% - 15%) = 30(m 3) 又如上例,土壤耕层的全N 含量为0.1%,则土壤耕层(0~20cm ) 含N 素总量为: 6.67 ? 106 ? 20 ? 1.15 ? 0.1% = 150t ? 0.1% = 150kg 例2:如某土壤水含量(水重%)为20.3%,土壤容重为1.20(克/ 厘米3),求土壤容积百分数(水容%) 水容% = 20.3% ? 1.2 = 24.4% 又如某土壤容重为1.20,该土的总孔隙度为%10065.220.11???? ??- = 55%,则其土壤容积饱和含水量为55%,饱和重量含水量为37.7%,空气所 占的容积为55% - 24.4% = 30.6% 3.土壤水贮量(农田贮水深) 以水层厚度(水毫米)表示。指一定厚度土层内土壤水的总贮量相当 多少水层厚度(毫米)。它便于与气象资料-降水量、蒸发量及作物耗 水量等进行比较。土壤水贮深(水毫米)可同下式求得:

涌水量计算案例

集水面积 集水面积是指流域分水线所包围的面积。集水面积大都先从地形图上定出分水线用求积仪或其它方法量算求得,计算单位为平方公里。如长江集水面积180万 分水线图 平方公里,黄河集水面积约75万平方公里。 地面分水线 地下分水线

计算:复核: 引文一: 4.3隧道涌水量预测 隧道区以根据地质调查结果分析,目前隧道涌水量暂按降水入渗法和地下径流模数法进行预测计算。等深孔水文地质试验参数出来后再按地下水动力法核算。 (1)大气降水入渗法 采用公式:Q=2.74 a W A(m'/d) 采用公式:Q=2.74 a W A(m3/d) a:降水入渗系数。全隧道地表为可溶岩,裂隙发育、岩溶化程度高。DK63+165至DK64+600段洞身大部处于石英砂页岩、炭质页岩夹煤系下,考虑到断层构造影响严 重,降水入渗系数a取值0.25 ;DK64+600至DK67+651隧道处岩溶强烈发育的可溶岩中,降水入渗系数a取值0.5。W:年平均降水量,本测区取1448mm

A:集水面积。 DK63+165 ?DK64+600 段:计算集水面积2.79km2; DK64+600?DK67+651 段;计算集水面积7.32 km2; 涌水量分别计算如下: Q=2.74 汉0.25江1448^.79 =2767(m'/d)?2800 (m3/d) Q=2.74 0.5 1448 7.32 =14521(m'/d)?14500 (m3/d) 两项合计Q 平常=2800+14500=17300(m7d) 考虑到岩溶区有暗河发育并构造发育,影响入渗系数的因素可能要大,DK64+600?DK67+651段雨季涌水量期倍增系数按3考虑,DK63+165?DK64+600段按系数2 考虑; 隧道雨季涌水量Q洪=2800X2+14500X3 =5600+4350009100 (m3/d) ( 2)地下径流模数法 Q=86.4X M X A M—地下径流模数(m/d ? Km) A—为隧道通过含水体的地下集水面积( Km2) 测区集水面积A=10.11 (Knn)(大致估算),地下水径流模数M枯=10.3( 升/秒?平方公里)(依据都匀幅《区域水文地质普查报告》)则: Q 枯= M 枯X A =86.4 X10.3X 10.11 =9000 ( m3/d ) 考虑到岩溶区有暗河发育并构造发育,其雨季涌水量期倍增系数按 3 考虑 隧道雨季涌水量Q洪=9000X3 3 =27000( m3/d)

土壤含水量测量实验报告

土壤水分的测定实验 一、实验目的 1、了解土壤的实际含水情况,以便适时灌排,保证植物生长对水分的需求。 2、风干土样水分的测定,是各项分析结果计算的基础。土壤水分含量的多少,直接影响土壤的固、液、气三相比例,以及土壤的适耕性和植物的生长发育。 二、实验原理 土壤水分大致分为化学结合水、吸湿水和自由水三类。自由水是可供植物自由利用的有效水和多余水,可以通过土壤在空气中自然风干的方法从土壤中释放出来;吸湿水是土壤颗粒表面被分子张力所吸附的单分子水层,只有在105-110℃下才能摆脱土壤颗粒表面分子力的吸附,以气态的形式释放出来,由于土粒对水汽分子的这种吸附力高达成千上万个大气压,所以这层水分子是定向排列,而且排列紧密,水分不能自由移动,也没有溶解能力,属于无效水;而化学结合水因为参与了粘土矿物晶格的组成,所以是以OH-的形式存在的,要在600--700℃时才能脱离土粒的作用而释放出来。 土壤含水量的测定方法很多,如烘干法、酒精燃烧法和中子测量法等,其中烘干法是目前国际上土壤水分测定的标准方法,虽然需要采集土样,并且干燥时间较长但是因为它比较准确,且便于大批测定,故为常用的方法。 将土壤样品放在105℃±2℃的烘箱中烘至恒重,求出土壤失水重量占烘干重量的百分数。在此温度下,包括吸湿水(土粒表面从空气中吸取活动力强的水汽分子而成的一种水分)在内的所有水分烘掉,而一般土壤有机质不致分解。 三、实验器材 铝盒、烘箱、干燥器、天平、小铲子、小刀。 四、实验步骤 1、在室内将铝盒编号并称重,重量记为W0 。 2、用已知重量的铝盒在天平上称取欲测土样15—20克,称量铝盒与新鲜土壤样

关于降雨入渗补给系数的讨论

关于降水入渗系数的测定方法的讨论 陈晓成林高聪王楠052081班摘要:在水文水资源的评价中,降雨入渗补给系数是一个非常重要的参数,由入渗补给系数的定义可知,求得降雨入渗补给系数的关键为降雨总量和降雨入渗补给量。本文探讨了几种常见的流域平均降雨总量的测定方法和降雨入渗补给量的测定方法,分别采用了平均值法、等雨量线法、泰森多边形法测定流域的平均降雨量,采用动态分析法(年水位升幅累积法、前期影响降水量法)、区域水量均衡法和数值分析法测定降雨入渗补给量最终得到降雨入渗补给系数。 关键字:流域平均降雨总量降入入渗补给量降雨入渗补给系数 降雨入渗补给系数的变化范围在0~1之间。由于降雨入渗补给量取决于某一时段内总雨量、雨日、雨强、包气带的岩性及降水前该带的含水量、地下水埋深和下垫面及气候因素,因此降雨入渗补给系数是随时间和空间变化的。不同地区具有不同的降雨入渗补给系数,即使同一地区,不同时段降雨入渗补给系数也不尽相同。因此,根据不同的计算时段,确定相应的降雨总量和降雨入渗补给量。本文采取年降雨总量和年降雨入渗补给量确定年降雨入渗补给系数。 一次降雨首先要满足截留、地面产流及填洼等后才可能形成下渗,同时受包气带对下渗水量的在分配作用,只有下渗水量超过包气带最大持水能力时才能入渗补给地下水。降雨雨入渗补给到地下水的水量即为降雨入渗补给量,用P r(mm)表示,则 α=P r/P (1)α:年降雨入渗补给系数;P r年降雨入渗补给量;P年流域内降雨总量由公式可知测定降雨入渗补给系数的关键为测定流域内的降雨总量和降雨入渗总量。 一、流域内降雨总量的测定方法 从理论上说,降雨两的空间分布可表达为: P=f(x,y)(2)p流域平均降雨量(mm);A流域面积。P时段或降雨量;x,y地面一点的纵横坐标;

降水计算公式

一、潜水计算公式 1、公式1 Q k H S S R r r =-+-1366200.()lg()lg() 式中: Q 为基坑涌水量(m 3/d); k 为渗透系数(m/d); H 为潜水含水层厚度(m); S 为水位降深(m); R 为引用影响半径(m); r 0为基坑半径(m)。 2、公式2 Q k H S S b r =--1366220.()lg()lg() 式中: Q 为基坑涌水量(m 3/d); k 为渗透系数(m/d); H 为潜水含水层厚度(m); S 为水位降深(m); b 为基坑中心距岸边的距离(m); r 0为基坑半径(m)。 3、公式3 Q k H S S b r b b b =--????????1366222012.()lg 'cos ()'ππ 式中: Q 为基坑涌水量(m 3 /d); k 为渗透系数(m/d); H 为潜水含水层厚度(m); S 为水位降深(m); b 1为基坑中心距A 河岸边的距离(m);

b 2为基坑中心距B 河岸边的距离(m); b ' =b 1+b 2; r 0为基坑半径(m)。 4、公式4 Q k H S S R r r b r =-+-+1366220200.()lg()lg ('') 式中: Q 为基坑涌水量(m 3/d); k 为渗透系数(m/d); H 为潜水含水层厚度(m); S 为水位降深(m); R 为引用影响半径(m); r 0为基坑半径(m); b '' 为基坑中心至隔水边界的距离。 5、公式5 Q k h h R r r h l l h r =-++--+--136610222 000.lg lg(.) h H h -=+2 式中: Q 为基坑涌水量(m 3 /d); k 为渗透系数(m/d); H 为潜水含水层厚度(m); R 为引用影响半径(m); r 0为基坑半径(m); l 为过滤器有效工作长度(m); h 为基坑动水位至含水层底板深度(m); h - 为潜水层厚与动水位以下的含水层厚度的平均值(m)。

几个重要的土壤水分常数和土壤含水量的表示方法

几个重要的土壤水分常数和土壤含水量的表示方法 一、田间蓄水量= 666."7×土层深度(m)×容重×含水量(…%)/.067 二、生育期耗水量=播前土壤水分储量+生育期(阶段)降水量—收获期各处理土壤水分储量 三、生产年度耗水量=播前土壤水分储量+前茬作物收获后降水量—收获期各处理土壤水分储量 四、水分生产效率(Kg/mm)=处理产量/耗水量 五、提高水分转化效率(%)=(处理水分生产效率—ck水分生产效率)/ ck 水分生产效率 六、1㎜降雨相当于 666."7㎡土壤中增加了 0."67方水,即, 666."7㎡土壤中每增加1方水,相当于降雨增加 1."5㎜ 七、土壤蓄水量(立方米/亩)=每亩面积(平方米)×土层深度×土壤容重×土壤重量含水量 八、W= h×p×b%×10 式中: W为土壤贮水量(mm);h为土层深度(cm);p为土壤容重(g/cm3);b%为土壤水分重量百分数。 九、常用的土壤水分常数有以下几种:

①最大分子持水量: 当膜状水达到最大数量时的土壤含水量称为最大分子持水量。 ②田间持水量: 当毛管悬着水达到最大数量时的土壤含水量称为田间持水量。③毛管持水量: 当毛管上升水达到最大数量时的土壤含水量称为毛管持水量。 ④饱和含水量: 当土壤全部孔隙被水分所充满时,土壤便处于水分饱和状态,这时土壤的含水量称为饱和含水量或全持水量。 ⑤凋萎系数: 当土壤含水量降至一定程度时,由于植物的吸水力小于土壤的持水力,植物便因水分亏缺而发生永久性凋萎,此时的土壤含水量称做凋萎系数,也叫永久凋萎含水量。 十、土壤含水量表示方法 土壤含水量表示方法有以下几种,为了描述的方便,我们以汉字的形式表示它的计算公式 ①以重量百分数表示土壤含水量 土壤含水量以土壤中所含水分重量占烘干土重的百分数表示,计算公式如下: 土壤含水量(重量%)=(原土重-烘干土重)/烘干土重×100%=水重/烘干土重×100% ②以容积百分数表示土壤含水量

地下矿山涌水量计算实例

矿井水文地质类型: 矿井水文地质划分为简单的、中等的、复杂的和极复杂四种类型。1、简单:受采掘破坏或影响的孔隙、裂隙、熔岩含水层,补给条件差,补给水源少或极少。单位涌水量q≤0.1。无老空积水。 2、中等:受采掘破坏或影响的孔隙、裂隙、熔岩含水层,补给条件一般,有一定的补给水源。单位涌水量0.15。存在大量老空积水,位置、范围、积水量不清楚。 还有矿山水文地质类型: 固体矿山一般可划分为三大类型。①充水岩层以孔隙岩层为主的矿山。涌水量主要取决于岩层孔隙率的大小、岩层的厚度、分布范围以及自然地理条件。②充水岩层以裂隙岩层为主的矿山。涌水量主要取决于岩体结构、裂隙发育程度、裂隙力学性质、构造的复合情况、裂隙发育的宽度、深度及充填情况和自然地理条件。③充水岩层以溶洞岩层为主的矿山。涌水量主要取决于溶洞发育情况、充填情况、地质构造、古地理和自然地理条件。根据水文地质、工程地质条件又可进一步划分为简单的、中等的和复杂的三种类型。

4.3.2 井下涌水量 (一)矿床充水因素 矿区位于区域水文地质单元的补给区,矿床主要矿体位于965m 以上,高于矿区最低排泄基准面标高,地形有利于排水,矿区附近无地表水体分布,地下水的补给条件差,大气降水是地下水补给的唯一来源。因此,矿床为裂隙充水矿床。 地下水以风化裂隙潜水和局部构造裂隙水为主,地下水位埋深较大,含水层(带)一般富水性较差,水量较小。变质岩裂隙水因岩石坚硬而无含水层与隔水层。坚硬岩石裂隙充水就成含水层。厚层坚硬岩石裂隙不发育就构成相对隔水层。 (二)井下涌水量估算 (1)开采方式与中段划分 本矿为地下开采,1310m为回风水平,分7个开采阶段。在1210m 和1135m中段设置水仓。 (2)矿床充水影响因素 矿床开采充水因素有大气降水和基岩裂隙水,此外旧采区积水也是充水来源之一,不能忽视。具体阐述如下。 五采区附近无地表水体。当地最高洪水位标高为1200.05m。 矿区位于区内南山基岩山区,在区域水文地质单元中属基岩补给山区。 矿区内无常年性地表水体。存在黑山沟和云雾村沟谷,两沟谷均为季节性流水沟谷。两沟谷在夏季强降雨时,发生暂时性洪水,平时为干谷。 地下水类型主要为浅部风化裂隙潜水和深部构造裂隙水。风化裂

测量土壤含水量的方法汇总

测量土壤含水量的方法有哪些 土壤水分是指由地面向下至地下水面(浅水面)以上的土壤层中的水分,它能够供给 作物生产,是农业生产的必要条件,也是土壤肥力的重要组成部分。在农业生产种植中,对土壤水分进行有效的监测,有利于及时了解土壤的肥力状况,为合理施肥、科 学灌溉、加强土壤环境管理起到重要作用。 目前,用于监测土壤含水量的方法很多种,但归纳起来主要有以下几大类: (1)烘干法:又称重量测定法,即取土样放入烘箱,烘干至恒重。此时土壤水分中自由态水以蒸汽形式全部散失掉,再称重量从而获得土壤水分含量。烘干法还有红外法、酒精燃烧法和烤炉法等一些快速测定法。 (2)中子仪法:将中子源埋入待测土壤中,中子源不断发射快中子,快中子进入土壤介质与各种原子离子相碰撞,快中子损失能量,从而使其慢化。当快中子与氢原子碰 撞时,损失能量最大,更易于慢化,土壤中水分含量越高,氢原子就越多,从而慢中

子云密度就越大。中子仪测定水分就是通过测定慢中子云的密度与水分子间的函数关系来确定土壤中的水分含量。 (3)γ射线法:与中子仪类似,γ射线透射法利用放射源137Cs放射出γ线,用探头接收γ射线透过土体后的能量,与土壤水分含量换算得到。 (4)土壤水分传感器法:目前采用的传感器多种多样,有陶瓷水分传感器,电解质水分传感器、高分子传感器、压阻水分传感器、光敏水分传感器、微波法水分传感器、电容式水分传感器等等。 (5)时域反射法:即TDR(Time Domain Reflectometry)法,它是依据电磁波在土壤介质中传播时,其传导常数如速度的衰减取决于土壤的性质,特别是取决于土壤中含水量和电导率。 (6)频域反射法:即FDR(Frequency Domain Reflectometry)法,该系统是通过测量电解质常量的变化量测量土壤的水分体积含量,这些变化转变为与土壤湿度成比例的毫伏信号。

降雨强度与稳定入渗率关系的公式化分析

142 2010年第10期(总第46期) 降雨强度与稳定入渗率关系的公式化分析 福建省水利水电勘测设计研究院 刘正风 [摘要] 稳定入渗率在设计洪水的计算中起着将一次净雨过程分割为地表净雨过程与地下净雨过程的作用,以前稳定入渗率fc 的确定是由i~fc 经验关系曲线人工读出的,对工程计算带来诸多不便,该文拟合了某地区i~fc 经验关系曲线的一个表达式,并对此表达式与经验关系曲线的符合效果进行分析。 [关键词] 稳定入渗率 降雨强度 经验关系曲线 公式化 1 降雨强度i 与稳定入渗率fc 的经验关系 稳定入渗率fc 在设计洪水的计算中起着将一次净雨过程分割为地表净雨过程与地下净雨过程的作用,通常我们将各 站各次洪水以次净雨平均强度i 为纵坐标,以稳定入渗率fc 为横坐标,点绘相关图进行综合分析。相关点子数据见表1,相关点子图如图1所示(本文示例数据采为某地区的50次洪水的统计数据)。 表 1 实测降雨强度i 与稳定入渗率fc 的关系表 单位:mm/h 项目 i ~fc 关系数据 i (测) 0.0 4.0 4.0 4.4 4.4 4.6 4.8 5.0 5.0 5.5 fc (测) 0.00 2.00 3.98 3.20 5.00 2.20 2.10 3.40 4.80 4.80 i (测) 5.6 5.7 5.8 6.7 6.8 7.2 7.4 7.9 8.2 8.5 fc (测) 3.10 5.20 1.70 4.60 2.80 7.80 6.30 2.90 3.40 2.10 i (测) 8.8 9.0 9.1 9.2 9.3 9.5 9.8 9.9 10.2 10.5 fc (测) 4.10 4.70 3.80 5.20 2.70 6.90 2.40 8.30 4.90 3.90 i (测) 11.0 11.3 11.7 11.8 12.5 13.8 15.1 16.1 16.5 16.6 fc (测) 5.70 6.20 4.70 7.10 7.70 9.60 12.50 4.90 4.50 9.70 i (测) 17.4 18.2 18.6 19.0 28.2 31.0 35.0 40.0 50.0 60.0 fc (测) 8.10 9.30 8.70 12.00 7.90 8.80 9.60 10.40 11.80 12.90 图1 净雨平均强度i 与稳定入渗率fc 相关点子图 稳定下渗率fc 是由地下径流分析得来,往往稳定下渗率fc 大地下径流也大,在分割地表与地下径流时,退水段第二拐点位置的确定带来一定的任意性,所以i ~ fc 的相关点在小洪水时比较散乱。从设计安全考虑,通常人们会定出一条综合的i ~fc 相关曲线,如图2所示。 图2 净雨平均强度i 与稳定入渗率fc 关系曲线图 图2中所示i ~fc 曲线为随机经验型光滑曲线,当降雨强度i 较小时,稳定入渗率fc 迅速增大;之后随着降雨强度i 的增大,稳定入渗率fc 增速逐渐减小;当降雨强度i 增大

涌水量计算

第三节、隧道洞室涌水量预测 一、水文地质参数计算 为取得计算洞室涌水量的水文地质参数,进行钻孔提(抽)水试验,利用提水试验和抽水试验结果,采用地下水动力学方法及相关计算公式,大部分按潜水非完整井计算出提水的渗透系数K 抽水,另外根据提水后的恢复水位与时间的关系,即s~t 关系计算出恢复的渗透系数K 恢复 ,并参照当地岩性的渗透系数K , 将该三种方法求得的渗透系数K 值并结合钻探过程中冲洗液的消耗量,岩体的破碎性、岩性的矿物组成及充填胶结情况,给定一个建议的渗透系数K 值。求得水文地质参数, 其提水时K 值计算公式如下: K= 2 2) lg (lg 733.0h H r R Q --ω 其中:K ——渗透系数(m/d )。 Q ——出水量(m 3/d )。 R ——影响半径(此值根据《工程地质手册》第二版表9-3-12查得) r ω——钻孔半径(m )。 H ——自然情况下潜水含水层的厚度(m )。 h ——抽水稳定时含水层的厚度(m )。 恢复水位计算渗透系数K 值公式如下: ()2 12 ln 25.3S S t r H r K ωω+= (完整井) 其中:K ——渗透系数(m/d )。 r ω——钻孔半径(m )。 H ——自然情况下潜水含水层的厚度(m )。 S 1——抽水稳定时的水位降深(m )。 S 2——地下水恢复时间t 后水位距离静止水位的深度(m )。 t ——水位从S 1恢复到S 2的时间(d )。 具体计算过程及计算结果见附表5:钻孔提(抽)水试验渗透系数(恢复水位)计算成果表。 二、洞室涌水量的估算方法 (一)、洞室涌水量的补给来源 为了更准确预测隧道洞室涌水量,通过野外水文地质调绘,并分析洞室地下水的补给来源,含水岩性的空间分布、富水性,结合钻孔对地下深处地质情况的揭露,参考物探测井成果,我们认为隧道洞室涌水量的补给来源由以下几部分组成: a .洞室影响范围内汇集的大气降水渗漏补给量; b .洞室附近地下水的补给量(包含隧道上行线、下行线间含水层的静储量及洞室两侧地下水的侧向补给量); c .地表水流过洞室上方时的渗入补给量; d .地表水通过节理裂隙、断层破碎带给洞室的侧向补给量; e .断层破碎带导入洞室的地下水量。 (二)、洞室涌水量的估算方法 根据以上对洞室涌水量补给来源的分析,结合隧址区工程地质、水文地质条件及隧址区气候、大气降雨等特征,本次计算我们按隧道开挖正常涌水量及特大暴雨、地表水沿断层或溶洞导入洞室等极端特殊情况下极端涌水量两种情况考虑。 1、正常涌水量 正常涌水量的计算我们选择以下的计算方法: (1)大气降水入渗法:

土壤含水量的表达方式

土壤含水量(soil moisture content)的表示方法 1 质量含水量:土壤中所含水质量与烘干土质量的比值。 土壤质量含水量(%)= 用数学公式表示为: ——质量含水量(自然含水率或绝对含水量)(%); 式中:θ m w ——湿土质量; 1 ——烘干土质量。 w 2 2 容积含水量:单位土壤总容积中水分所占的容积分数。 土壤容积含水量(%)= 其数学表达式为: ——土壤实际含水量的体积百分率,(%); 式中:θ v ——土壤总体积,cm3; V s V ——水所占的体积,cm3。 w 土壤含水量的质量含水量与容积含水量之间的换算关系如下: 式中:ρ——土壤容重,g/cm3。

多数土壤密度(容重)在1~1.8之间,沙质土密度多在1.4~1.7g/cm3,壤质土在前两者之间 3 相对含水量(relative moisture):指土壤含水量占田间持水量的百分数。 土壤相对含水量(%)= 4 土壤水层厚度:指一定面积一定土层厚度的土壤中所含土壤水量相当于相 同面积下水层的厚度,多用mm 表示。 式中:T ——水层厚度,mm; w ——土层厚度,mm; T s 采用土壤水层厚度的方便之处在于它可直接用于与大气降水量、土壤蒸发散的比较、计算。 5 绝对水体积(容量):指一定面积一定厚度土壤中所含水量的体积,量纲 为「L3」。它主要用于确定灌水量和排水量,一般在不标明土壤厚度 时,通常指1米土深。 在农业生中,及时掌握封墒情情很重要。利用感官检验土壤墒情,具有简便、快速度等特点。 饱墒含水量18.5%~20%,土色深暗发黑,用手捏之成团,抛之不散,可搓成条,手上有明显的水迹。饱墒为适耕上限,土壤有效含水量最大。 适墒含水量15.5%~18.5%,土色深暗发暗,手捏成团,抛之破碎,手上留有湿印。适墒是播种耕作适宜的墒情,有效含水量较高。 黄墒含水量12%~15%,土色发黄,手捏成团,易碎,手有凉爽感觉。黄墒适宜耕作,有效含水量较少,播种出苗不齐,需要灌溉。 干土含水量在8%以下,土色灰白,土块硬结,细土松散。干土无作物可吸收的水分,不适宜耕作和播种。

土壤含水量测量方法

土壤含水量测量方法 ( 1 )称重法(Gravimetric) 也称烘干法,这是唯一可以直接测量土壤水分方法,也是目前国际上的标准方法。用土钻采取土样,用0.1g 精度的天平称取土样的重量,记作土样的湿重 M,在 105℃的烘箱内将土样烘 6~8 小时至恒重,然后测定烘干土样,记作土样的干重 Ms 土壤含水量=(烘干前铝盒及土样质量-烘干后铝盒及土样质 量)/(烘干后铝盒及土样质量-烘干空铝盒质量)*100% ( 2 )张力计法(Tensiometer) 也称负压计法,它测量的是土壤水吸力测量原理如下:当陶土头插入被测土壤后,管内自由水通过多孔陶土壁与土壤水接触,经过交换后达到水势平衡,此时,从张力计读到的数值就是土壤水(陶土头处)的吸力值,也即为忽略重力势后的基质势的值,然后根据土壤含水率与基质势之间的关系(土壤水特征曲线)就可以确定出土壤的含水率 ( 3 ) 电阻法(Electricalresistance) 多孔介质的导电能力是同它的含水量以及介电常数有关的,如果忽略含盐的影响,水分含量和其电阻间是有确定关系的电阻法是将两个电极埋入土壤中,然后测出两个电极之间的电阻。但是在这种情况下,电极与土壤的接触电阻有可能比土壤的电阻大得多。因此采用将电极嵌入多孔渗水介质(石膏、尼龙、玻璃纤维等)中形成电阻块以解决这个问题 ( 4 ) 中子法(Neutronscattering) 中子法就是用中子仪测定土壤含水率中子仪的组成主要包括:一个快中子源,一个慢中子检测器,监测土壤散射的慢中子通量的计数器及屏蔽匣,测试用硬管等。快中子源在土壤中不断地放射出穿透力很强的快中子,当它和氢原子核碰撞时,损失能量最大,转化为慢中子(热中子),热中子在介质中扩散的同时被介质吸收,所以在探头周围,很快的形成了持常密度的慢中子云

土壤自然含水量的测定

土壤自然含水量的测定(烘干法) 一、仪器设备。 1、铝盒:大型的、小型的、玻璃的。 2、天平:感量为0.01g(百分之一)。 3、电热恒温鼓风干燥箱。 4、干燥器:内有变色硅胶或无水氯化钙。 二、土壤样品:通过2㎜筛(10目)的土壤样。 三、操作步骤。 1、小型铝盒的烘干及称量。①编号,将铝盒标记好实验号。②取小型铝盒在恒温干燥箱中于105℃±2℃烘约2小时。③用钳子将空铝盒移入干燥内冷却至室温(约20分钟)称重,精确至0.0001g,作好记录。 2、称土样,称取土样约5g,精确至0.0001g,作好记录。 3、土样装盒及烘干。将称好的土壤样,均匀地平铺装在铝盒内,铝盒盖倾斜放在铝盒上,置于已预热至105℃±2℃的恒温干燥箱中烘约6小时。 4、土样盒称重。将烘干的土样盒取出,盖好,移入干燥器内冷至室温(约20分钟),立即称重,精确到0.0001g,作好记录。 5、结果计算:结果保留小数点后一位。 6、注意事项: ①保持干燥内的干燥剂整洁。 ②试样必须烘6小时。 ③严格控制恒温温度在105℃±2℃范围内。

土壤有机质的测定 (油溶加热重铬酸钾—容量法) 一、仪器设备。 1、油溶锅。用20—26㎝的不锈钢锅代替,内装固体石蜡(工业用)。 2、硬质试管。18—25㎜×200㎜。 3、铁丝笼。大小和形状与油溶锅配套。 4、滴试管。10.00ml、25.00ml。 5、温度计。300℃。 6、电炉。1000W,配套有消毒柜。 二、试剂。 1、重铬酸钾消煮用液[1/6K2Cr2O7=0.8mol.L-1]; 称取40.0g重铬酸钾溶于600—800mL水中,过滤到1L量筒内,用水洗涤滤纸,并加水至1L。 2、浓硫酸消煮用液。取密度为1.84的浓硫酸加水定容至1L,保存待用。 3、重铬酸钾标准溶液(0.2000mol.L-1)。 称取经130℃烘2-3小时的重铬酸钾(优级纯)9.807克,先用少量水溶解,然后无损地移入1000ml容量瓶中,加水定容。 4、硫酸亚铁铵标准溶液(0.2mol.L-1) 称取硫酸亚铁铵78.4g,溶解于600—800ml水中,加浓硫酸20ml,搅拌均匀,定容至1000ml,贮于棕色瓶中保存。 每次使用时标定其浓度。吸取0.2000 mol.L-1重铬酸钾标准液25.00ml于150ml三角瓶中,加入浓硫酸3-5ml和邻菲罗啉指示剂2-3滴,用硫酸亚铁铵标准溶液滴定,由橙黄-蓝绿-棕红即可,根据硫酸亚铁铵溶液消耗量计算其浓度,取中间值 C=G·V1/V2=0.2×25÷V2 V2=滴定时消耗硫酸亚铁铵标准液的体积(ml)。 5、邻菲罗啉指示剂。

确定干旱_半干旱地区降水入渗补给量的新方法_氯离子示踪法

第15卷 第3期1996年 9月 地质科技情报 Geolo gical Science and Techno logy Info rmatio n Vol.15 No.3 Sep.1996 确定干旱—半干旱地区降水入渗补给量的 新方法——氯离子示踪法① 陈植华 徐恒力 (中国地质大学环境科学与工程学院,武汉,430074) 摘 要 在干旱—半干旱地区由于入渗水分大部分滞留在包气带中,强烈地蒸发、蒸腾作用导致包气带中土 壤水的氯离子浓度改变。氯离子示踪方法从质量守恒角度,通过比较土壤水分的氯离子浓度和降水输入的氯离 子浓度大小,可以定量确定降水入渗量和降水入渗补给的历史变化过程。本文介绍了目前国外应用较普遍的氯 离子均衡法和氯离子累积法,并讨论了方法应用时存在的一些问题。 关键词 氯离子 示踪 入渗补给 包气带 降水入渗是地下水资源的主要补给来源,有时甚至为唯一的补给来源。降水入渗补给量的确定是地下水资源评价及水资源科学管理的重要基础工作。然而,在许多情况下,入渗补给量的确定不是一件容易的工作,特别是在干旱、半干旱气候条件下。这是由于:①降水量偏小,有效补给份额偏低;②埋深大,入渗水量在到达地下水面之前存在明显的滞后和减量效应;③地面蒸发、植物蒸腾作用强烈,大量补给水分在包气带便以蒸发、蒸腾的形式直接返回大气圈。因此,一般用来确定入渗补给量的方法、手段因各种原因而不具有普适性。例如水均衡法,因补给份额少,相应的水文地质参数变化微小而难以测定,降水入渗前后变化非常缓慢,往往需要数年,甚至十几年时间方能获取一个估算的平均值。此外,因地形、包气带岩性及植被类型的空间变化,需要在不同地点测试参数以评价空间不同位置的补给能力〔1〕。 某些物理方法的应用也同样因入渗补给水量微弱而难以观测其变化,如渗透计的使用,不但成本较高,观测时间长,而且安装过程中不可避免地要扰动土壤,影响到估算结果。 利用环境同位素氚(3H)作为示踪剂来确定降水入渗补给量,在70~80年代应用非常普遍。虽然这是有效的手段之一,但即使不考虑测试分析成本较昂贵这一因素,由于氚自身的衰减(半衰期12.26a),目前环境中氚的含量已经很小而不易测定。若考虑应用人工同位素作为示踪剂,不但费力费钱,同时,示踪剂从施放到达预定点需要很长时间,而且污染环境。 上述的这些不利方面,却恰恰成为氯离子示踪方法用来确定入渗补给量的有利条件。环境中的氯离子因其具有的高溶解性和稳定性,成为一种理想的天然示踪剂,目前在国外已广泛地用来研究干旱、半干旱气候条件下降水入渗补给量的计算以及包气带中水分运移过程,如澳大利亚、美国、墨西哥、以色列及非洲的博茨瓦纳等地。在我国,关于氯离子示踪研究的报道甚为 ①中荷科技合作项目(1995—1996) 收稿日期:1966-03-15 编辑:曲梅兰

相关文档