文档库 最新最全的文档下载
当前位置:文档库 › 济南市年降雨量的加权马尔可夫链模型

济南市年降雨量的加权马尔可夫链模型

济南市年降雨量的加权马尔可夫链模型
济南市年降雨量的加权马尔可夫链模型

第23卷 第1期2009年 2月

山 东 轻 工 业 学 院 学 报

J OURNAL OF S HANDONG

I NST I TUTE OF LI GHT

I ND USTRY V o.l 23 N o .1

F eb . 2009

收稿日期:2008-12-08

作者简介:张宗国(1980-),男,山东省滨州市人,山东轻工业学院讲师,硕士,主要从事随机过程方面的研究.

文章编号:1004-4280(2009)01-0069-03

济南市年降雨量的加权马尔可夫链模型

张宗国1

,杨红卫

2

(1.山东轻工业学院数理学院,山东济南210098;2.山东科技大学信息学院,山东青岛266510)

摘要:依据1956~1999年济南市年降雨量,应用加权马尔可夫链预报2000年的降雨量。结果表明:应用马尔可夫链模型预测未来年降雨量状态,显示了较高的可信度及可行性。随着监测数据的增多,不断修正转移概率矩阵,建立年降雨量预测模型群,有效的预测对保障和促进经济的发展无疑有着现实意义。关键词:加权马尔可夫链;转移概率;数字模型中图分类号:O 21 文献标识码:A

The weightedM arkov chai n model of Ji nan annual rai nfall

Z HANG Zong -guo 1

,YANG H ong -w ei

2

(1.Schoo l o fM athe m atics and Physics ,Shandong Institute o f L i ght Industry,Jinan 210098,Ch i na ;2.Schoo l of Informa ti on ,Shandong U n i versity o f Sc i ence and T echno l ogy ,Q i ngdao 266510,Ch i na)

A bstract :A ccordi n g to t h e ra i n fall data o f Ji n an city fro m the year 1956to 1999,the rainfa ll i n 2000w as forecasted by usi n g the w e i g hted M arkov cha i n .The resu lts sho w ed that usi n g M arkov chai n m ode l to pre -dict the f u t u re rainfall has higher cred i b ility and v iability .W ith the increasing of the m on itoring data ,the transfer pr obab ility m atrix can be rev ised constantl y .Then the annual rainfa ll forecastm ode lg r oup w ill be established.E ffective forecast results have practica l si g n ificance i n protecti n g and pro m oti n g the econo m ic

developm en.t K ey words :w e i g hted M ar kov cha i n ;transition probab ility ;digita l code 济南市地处中纬度地带,属暖温带大陆性季风气候。其主要气候特征是:季风明显,四季分明;冬冷夏热,雨量集中。季风明显,四季分明。夏季受热带、副热带海洋气团影响,盛行来自海洋的暖湿气流,天气炎热,雨量充沛,光照充足,多偏南风。春季和秋季是冬季转夏季、夏季转冬季的过渡季节,风向多变。夏季不仅炎热,且多降水,雨热同季。夏季降水量全市各县区平均都在400毫米以上,全年60%的降水量集中在夏季,7月份降水日数平均在15天左右,日降水量\50毫米的暴雨日数集中在7、8两个月,占全年暴雨日数的70%。

1 理论基础

1.1 马尔可夫链

定义1 设有随机过程{X n ,n I T },T ={0,1,2,,},状态空间I ={0,1,2,,},若对任意的m,n

I T 和任意的i 0,i 1,,,i n ,i n +m I I ,有 p {X n +m =i n +m |X 0=i 0,X 1=i i ,+,X n =i m }=

p {X n +m =i n +m |X n =i n }

则称{X n ,n I T }为马尔可夫链,简称马氏链。条件概率p {X n +1=j |X n =i}称为马尔可夫链{X n ,n I T }在时刻n 时的一步转移概率,简称为转移概率,记为p ij (n;1);p {X n +m =j |X n =i}称为时刻n 时的m 步转移概率,记为p ij (n;m )。若p ij (n;m )=

山东轻工业学院学报第23卷

p ij(m),特别地,p ij(n;1)=p ij,则称此链是齐次的,

其中i,j I I。应用上主要研究齐次马尔可夫链[1]。

1.2转移概率矩阵

定义2一步转移概率p ij组成的矩阵

P=

p11p12p13,

p21p22p23,

p31p32p33,

,,,,

称为马氏链{X n,n I T}的一

步转移概率矩阵。它具有性质:(a)p ij\0,i,j I I;

(b)E

j I I

p ij=1,i I I,也可以定义m步转移概率矩阵。

满足性质(a),(b)的矩阵称为随机矩阵。

1.3平稳分布

定义3若P j=E

i I I

P i p ij;E

j I I

P j=1,P j\0,则概率

分布{P j,j I I}称为马尔可夫链的平稳分布。

2数学模型的建立

2.1根据济南市1956~1999年的年降雨量资

料,可算得降雨量的平均值x=643.1,均方差s=

1

n

E n

i I I

(x i-x)2=160,于是,我们可以利用均值方

差[2]将降雨量分为4个等级,如表1所示,根据状态

分级表我们得到济南市1956~1999年各年对应的

状态,如表2所示。

表1降雨量状态分级表

状态强度强度级别分级标准降雨量分级区间4丰涝年x\x+s x\803.1

3偏丰年x[x

2偏旱年x-s[x

1干旱年x

表2济南市年降雨量及其状态表

年份降雨量(mm)状态年份降雨量(mm)状态年份降雨量(mm)状态1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

685.6

587.5

652.2

590.4

459.4

953.9

879.7

784.0

1093.3

457.8

513.8

513.8

366.9

681.7

532.7

3

2

3

2

1

4

4

3

4

1

2

2

1

3

2

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

744.1

528.7

787.9

734.7

564.9

629.9

619.1

748.8

585.6

670.9

386.1

583.3

592.1

682.0

680.9

3

2

3

3

2

2

2

3

2

3

1

2

2

3

3

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

413.3

688.7

489.9

374.7

925.5

689.4

458.5

779.4

846.9

682.1

775.6

598.5

762.4

466.1

651.6

1

3

2

1

4

3

1

3

4

3

3

2

3

1

3

2.2不妨直接对44年的降雨强度指数做马氏

链检验[3]。由上表提供的资料可算得:

(f ij)4@4=

0242

3470

4832

1031

,

(p ij)4@4=

01/41/21/4

3/142/71/20

4/178/173/172/17

1/503/51/5

表3统计量计算表

f i1I n

p i1

p#1

f i2In

p i2

p#2

f i3In

p i3

p#3

f i4In

p i4

p#4

合计

100.26120.42391.79802.4831

20.42400.52252.068203.0147

30.93942.94702.23800.02346.1478

40.072301.43340.54232.0480

合计1.43373.73076.16352.363713.6916

x2=2E4

i=1

E4

j=1

f ij l o g

p ij

p#j

=27.3872,给定显著性70

第1期张宗国,等:济南市年降雨量的加权马尔可夫链模型

水平A=0.05,查表可得分位点x2A=16.919,因为

x2>x2A((m-1)2),故降雨强度指数序列满足马

氏性。

2.3如表4所示,可计算得各阶自相关系数和

各种步长的马尔可夫链权重。

表4各阶自相关系数和各种步长的马尔可夫链权重表

k

r k w k

1234

r k-0.0210.0450.132-0.292

w k0.0430.0920.2690.596

同时根据切普曼-柯尔莫哥洛夫方程[4],计算

可得各种步长的马尔可夫链的一步转移概率矩阵

如下:

步长为1的一步转移概率矩阵

p(1)=

02/73/72/7

3/142/71/20

4/178/173/172/17

1/503/51/5

,

步长为2的一步转移概率矩阵

p(2)=

04/71/72/7

3/142/74/141/7

1/41/41/20

1/51/52/51/5

步长为3的一步转移概率矩阵

p(3)=

01/74/72/7

2/134/136/131/13

1/87/161/43/16

1/52/51/51/5

,

步长为4的一步转移概率矩阵

p(4)=

01/74/72/7

3/134/135/131/13

1/52/51/31/15

2/51/51/51/5

2.4依据1956~1999年的资料及其对应的状

态转移概率矩阵对2000年的降雨量所对用状态进

行预测,结果如表5所示:

表52000年降雨量强度状态预测表

初始年状态滞时(年)

状态

权重

1234概率来源1999110.04302/73/72/7p1

1998320.0921/41/41/20p2

1997230.2692/134/136/131/13p3

1996340.5961/52/51/31/15p4

p

i

(加权和)0.1830.3570.3870.073

2.5由表5可知,m ax{p

i

,i I E}=0.387,此时

i=3,即2000年的降雨量对应与状态3,降雨量满足

范围:643.1[x<803.1。2000年实际降雨量为

651.6mm,预测准确。

3结语

由于以若干阶的自相关系数为权重,用各种步

长的马尔可夫链加权和来预测年降雨量状态,与普

通的马氏链预测方法相比,能更充分合理得利用信

息,是对建立马尔可夫链与相关分析相结合的预测

方法的尝试。

参考文献:

[1]刘次华.随机过程[M].武汉:华中科技大学出版社,2001.

[2]冯利华,王德华.金衢盆地洪水的马尔可夫链预测[J].地域研

究与开发,1997,(2):87-89.

[3]丛树铮.水文学中的概率统计基础[M].北京:水利出版

社,1981.

[4]夏乐天,朱永忠.工程随机过程[M].南京:河海大学出版

社,2000.

71

隐马尔可夫模型及其应用

小论文写作: 隐马尔可夫模型及其应用 学院:数学与统计学院专业:信息与计算科学学生:卢富毓学号:20101910072 内容摘要:隐马尔可夫模型是序列数据处理和统计学习的重要概率模型,已经成功被应用到多工程任务中。本小论文首先从隐马尔可夫模型基本理论和模型的表达式出发,进一步阐述了隐马尔可夫模型的应用。 HMM 隐马尔可夫模型(Hidden Markov Model,HMM)作为一种统计分析模型,创立于20世纪70年代。80 年代得到了传播和发展,成为信号处理的一个重要方向,现已成功地用于语音识别,行为识别,文字识别以及故障诊断等领域。 隐马尔可夫模型状态变迁图(例子如下) x—隐含状态 y—可观察的输出 a—转换概率(transition probabilities) b—输出概率(output probabilities) 隐马尔可夫模型它用来描述一个含有隐含未知参数的马尔可夫过程。其难点是从可观察的参数中确定该过程的隐含参数。然后利用这些参数来作进一步的分析,例如模式识别。 在正常的马尔可夫模型中,状态对于观察者来说是直接可见的。这样状态的转换概率便是全部的参数。而在隐马尔可夫模型中,状态并不是直接可见的,但受状态影响的某些变量则是可见的。每一个状态在可能输出的符号上都有一概率分布。因此输出符号的序列能够透露出状态序列的一些信息。 HMM的基本理论 隐马尔可夫模型是马尔可夫链的一种,它的状态不能直接观察到,但能通过观测向量序列观察到,每个观测向量都是通过某些概率密度分布表现为各种状态,每一个观测向量是由一个具有相应概率密度分布的状态序列产生。所以,隐马尔可夫模型是一个双重随机过程----具有一定状态数的隐马尔可夫链和显示随机函数集。自20世纪80年代以来,HMM被应用于语音识别,取得重大成功。到了

马尔可夫链模型简介

马尔可夫链模型简介 设考察对象为一系统,若该系统在某一时刻可能出现的事件集合为,}{N N E E E E E E ??????,2,1,2,1,两两互斥,则陈i E 为状态。N i ???=,2,1。称该系统从一种状态i E 变化到另一状态j E 的过程称为状态转移,并把整个系统不断实现状态转移的过程称为马尔可夫过程。 定义1 具有下列两个性质的马尔可夫过程称为马尔可夫链: (1)无后效性,即系统的第n 次实验结果出现的状态,只与第1-n 次有关,而与它以前所处的状态无关; (2)具有稳定性,该过程逐渐趋于稳定状态,而与初始状态无关。 定义2 向量),,,(21n u u u u ???= 成为概率向量,如果u 满足: ?? ???=???=≥∑=n j j j u n j u 11,,2,10 定义3 如果方阵P 的每行都为概率向量,则称此方阵为概率矩阵。 如果矩阵A 和B 皆为概率矩阵,则AB ,k A ,k B 也都是概率矩阵(k 为正整数)。 定义4 系统由状态i E 经过一次转移到状态j E 的概率记为ij P ,称矩阵 ????????????????????????=32 12222111211N N N N N P P P P P P P P P P 为一次(或一步)转移矩阵。 转移矩阵必为概率矩阵,且具有以下两个性质: 1、P P P k k )1()(-=; 2、k k P P =)(

其中)(k P 为k 次转移矩阵。 定义5 对概率矩阵P ,若幂次方)(m P 的所有元素皆为正数,则矩阵P 称为正规概率矩阵。(此处2≥m ) 定理1 正规概率矩阵P 的幂次方序列P ,2P ,3P ,…趋近于某一方阵T ,T 的每一行均为同一概率向量t ,且满足t tP = 。 马尔可夫链模型如下: 设系统在0=k 时所处的初始状态 ),,() 0()0(2)0(1)0(N S S S S ???=为已知,经过k 次转移后的状态向量 ),,()()(2)(1)(k N k k k S S S S ???=),2,1(???=k ,则 ??????? ?????? ?????????????=NN N N N N k P P P P P P P P P S S 212222111211)0() ( 此式即为马尔可夫链预测模型。 由上式可以看出,系统在经过k 次转后所处的状态)(k S 取决与它的初始状态)0(S 和转移矩阵P 。 马尔可夫引例 例1:市场占有率预测 设有甲、乙、丙三家企业,生产同一种产品,共同供应1000家用户,各用户在各企业间自由选购,但不超出这三家企业,也无新的用户,假定在10月末经过市场调查得知,甲,乙,丙三家企业拥有的客户分别是:250户,300户,450户,而11月份用户可能的流动情况如下表所示:

马尔可夫链模型

马尔可夫链模型 马尔可夫链模型(Markov Chain Model) 目录 [隐藏] ? 1 马尔可夫链模型概述 ? 2 马尔可夫链模型的性质 ? 3 离散状态空间中的马尔可夫链 模型 ? 4 马尔可夫链模型的应用 o 4.1 科学中的应用 o 4.2 人力资源中的应用 ? 5 马尔可夫模型案例分析[1] o 5.1 马尔可夫模型的建 立 o 5.2 马尔可夫模型的应 用 ? 6 参考文献 [编辑] 马尔可夫链模型概述 马尔可夫链因安德烈·马尔可夫(Andrey Markov,1856-1922)得名,是数学中具有马尔可夫性质的离散时间随机过程。该过程中,在给定当前知识或信息的情况下,过去(即当期以前的历史状态)对于预测将来(即当期以后的未来状态)是无关的。 时间和状态都是离散的马尔可夫过程称为马尔可夫链, 简记为。 马尔可夫链是随机变量的一个数列。这些变量的范围,即他们所有可能 取值的集合,被称为“状态空间”,而Xn的值则是在时间n的状态。如果Xn + 1对于过去状态的条件概率分布仅是Xn的一个函数,则 这里x为过程中的某个状态。上面这个恒等式可以被看作是马尔可夫性质。

马尔可夫在1906年首先做出了这类过程。而将此一般化到可数无限状态空间是由柯尔莫果洛夫在1936年给出的。 马尔可夫链与布朗运动以及遍历假说这两个二十世纪初期物理学重要课题是相联系的,但马尔可夫寻求的似乎不仅于数学动机,名义上是对于纵属事件大数法则的扩张。 马尔可夫链是满足下面两个假设的一种随机过程: 1、t+l时刻系统状态的概率分布只与t时刻的状态有关,与t时刻以前的状态无关; 2、从t时刻到t+l时刻的状态转移与t的值无关。一个马尔可夫链模型可表示为=(S,P,Q),其中各元的含义如下: 1)S是系统所有可能的状态所组成的非空的状态集,有时也称之为系统的状态空间,它可以是有限的、可列的集合或任意非空集。本文中假定S是可数集(即有限或可列)。用小写字母i,j(或S i,S j)等来表示状态。 2)是系统的状态转移概率矩阵,其中P ij表示系统在时刻t处于状态i,在下一时刻t+l处于状态i的概率,N是系统所有可能的状态的个数。对于任意i∈s,有 。 3)是系统的初始概率分布,q i是系统在初始时刻处于状态i的概率, 满足。 [编辑] 马尔可夫链模型的性质 马尔可夫链是由一个条件分布来表示的 P(X n + 1 | X n) 这被称为是随机过程中的“转移概率”。这有时也被称作是“一步转移概率”。二、三,以及更多步的转移概率可以导自一步转移概率和马尔可夫性质:

隐马尔可夫模型

隐马尔可夫模型 维基百科,自由的百科全书 跳转到:导航, 搜索 隐马尔可夫模型状态变迁图(例子) x—隐含状态 y—可观察的输出 a—转换概率(transition probabilities) b—输出概率(output probabilities) 隐马尔可夫模型(Hidden Markov Model,HMM)是统计模型,它用来描述一个含有隐含未知参数的马尔可夫过程。其难点是从可观察的参数中确定该过程的隐含参数。然后利用这些参数来作进一步的分析,例如模式识别。 在正常的马尔可夫模型中,状态对于观察者来说是直接可见的。这样状态的转换概率便是全部的参数。而在隐马尔可夫模型中,状态并不

是直接可见的,但受状态影响的某些变量则是可见的。每一个状态在可能输出的符号上都有一概率分布。因此输出符号的序列能够透露出状态序列的一些信息。 目录 [隐藏] ? 1 马尔可夫模型的演化 ? 2 使用隐马尔可夫模型 o 2.1 具体实例 o 2.2 隐马尔可夫模型的应用 ? 3 历史 ? 4 参见 ? 5 注解 ? 6 参考书目 ?7 外部连接 [编辑]马尔可夫模型的演化 上边的图示强调了HMM的状态变迁。有时,明确的表示出模型的演化也是有用的,我们用x(t1)与x(t2)来表达不同时刻t1和t2的状态。 在这个图中,每一个时间块(x(t), y(t))都可以向前或向后延伸。通常,时间的起点被设置为t=0 或t=1.

另外,最近的一些方法使用Junction tree算法来解决这三个问题。[编辑]具体实例 假设你有一个住得很远的朋友,他每天跟你打电话告诉你他那天作了什么.你的朋友仅仅对三种活动感兴趣:公园散步,购物以及清理房间.他选择做什么事情只凭天气.你对于他所住的地方的天气情况并不了解,但是你知道总的趋势.在他告诉你每天所做的事情基础上,你想要猜测他所在地的天气情况. 你认为天气的运行就像一个马尔可夫链.其有两个状态 "雨"和"晴",但是你无法直接观察它们,也就是说,它们对于你是隐藏的.每天,你的朋友有一定的概率进行下列活动:"散步", "购物", 或 "清理".

连续隐马尔科夫链模型简介

4.1 连续隐马尔科夫链模型(CHMM) 在交通规划和决策的角度估计特定出行者的确切的出行目的没有必要,推测出行者在一定条件下会有某种目的的概率就能够满足要求。因此本文提出一种基于无监督机器学习的连续隐马尔科夫链模型(CHMM)来识别公共自行车出行链借还车出行目的,根据个人属性、出行时间和站点土地利用属性数据,得到每次借还车活动属于某种出行目的的概率,进一步识别公共自行车出行链最可能的出行目的活动链。 4.1.1连续隐马尔科夫链模型概述 隐马尔可夫链模型(Hidden Markov Model,HMM)是一种统计模型,它被用来描述一个含有隐含未知状态的马尔可夫链。隐马尔可夫链模型是马尔可夫链的一种,其隐藏状态不能被直接观察到,但能通过观测向量序列推断出来,每个观测向量都是通过状态成员的概率密度分布表现,每一个观测向量是由一个具有相应概率密度分布的状态序列产生。 本文将隐马尔科夫链和混合高斯融合在一起,形成一个连续的隐马尔科夫链模型(CHMM),并应用该模型来识别公共自行车出行链借还车活动目的。连续隐马尔科夫链模型采用无监督的机器学习技术,用于训练的数据无需是标记的数据,该模型既不需要标记训练数据,也没有后续的样本测试,如提示-回忆调查。相反,该模型仅利用智能卡和总的土地利用数据。后者为隐藏活动提供额外的解释变量。出行链内各活动的时间和空间信息是从IC卡数据获得,相关土地利用数据是根据南京土地利用规划图和百度地图POI数据获得。 在本文的研究中,一个马尔可夫链可以解释为出行者在两个连续活动状态之间的状态转换,确定一个状态只取决于它之前的状态,一个状态对应一个出行者未知的借还车活动[48-50]。本研究坚持传统的马尔可夫过程的假设,将它包含进无监督的机器学习模型。“隐藏马尔可夫”源于一个事实,即一系列出行链的活动是不可观察的。 对于CHMM,高斯混合模型负责的是马尔可夫链的输入端,每一个活动模式下的隐藏状态都有属于一个特征空间的集群输出概率,每个集群是观察不到的,隐藏状态集群的数量必须事先给出。一些研究者称这些集群为二级隐状态[51]。

5马尔可夫链模型

马尔可夫链模型 在考察随机因素影响的动态系统时,常常碰到这样的情况,系统在每个时期所处的状态是随机的,从这个时期到下个时期的状态按照一定的概率进行转移,并且下个时期的状态只取决于这个时期的状态和转移概率,与以前各时期的状态无关。这种性质称为无后效性或马尔可夫性。通俗的说就是已知现在,将来与历史无关。 具有马氏性的,时间、状态无为离散的随机转移过程通常用马氏链(Markov Chain)模型描述。 马氏链模型在经济、社会、生态、遗传等许多领域中有着广泛的应用。值得提出的是,虽然它是解决随机转移过程的工具,但是一些确定性系统的状态转移问题也能用马氏链模型处理。 马氏链简介: 马氏链及其基本方程:按照系统的发展,时间离散化为 0,1,2,n = ,对每个n ,系统的状态用随机变量n X 表示,设n X 可以 取k 个离散值1,2,,n X k = ,且n X i =的概率记作() i a n ,称为状态概 率,从n X i =到1 n X j +=的概率记作ij p ,称为转移概率。如果1 n X +的 取值只取决于n X 的取值及转移概率,而与1 2,,n n X X -- 的取值无关, 那么这种离散状态按照离散时间的随机转移过程称为马氏链。 由状态转移的无后效性和全概率公式可以写出马氏链的基本方程为 1 (1)()1,2,,k i j ij j a n a n p i k =+= =∑

并且() i a n 和ij p 应满足 1 1 ()10,1,2,;0 ;1 1,2,,k k j ij ij j j a n n p p i k ====≥==∑∑ 引入状态概率向量和转移概率矩阵 12()((),(),,()) {}k ij k a n a n a n a n P p == 则基本方程可以表为1 (1)()(0)n a n a n P a P ++== 例1:某商店每月考察一次经营情况,其结果用经营状况好与孬表示。若本月经营状况好,则下月保持好的概率为0.5,若本月经营状况不好,则下月保持好的概率为0.4,试分析该商店若干时间后的经营状况。 解:商店的经营状况是随机的,每月转变一次。用随机变量n X 表示第n 个月的经营状况,称为经营系统的状态.1,2 n X =分别表示 好与不好,0,1,n = 。用() i a n 表示第n 月处于状态i 的概率(1,2i =) 即()()i n a n P X i ==,ij p 表示本月处于状态i ,下月转为状态j 的概率。 这里1 n X +无后效性,只取决于n X 和ij p 。 112112220.5,0.4,0.5,0.6p p p p ==∴== 根据全概率公式可以得到: 11112212112222 (1)()()0.50.5(1)()(1)()()0.4 0.6a n a n p a n p a n a n P P a n a n p a n p +=+??? ?+==? ?+=+?? ? 假设这个递推公式存在极限w ,有w w P = ,即()0w P E -=。于 是当经营状况好或孬时,经计算可以得到下面的结果

Matlab2011b的HMM(隐马尔可夫模型)相关函数介绍

Matlab 2011b Statistics Toolbox HMM 作者:yuheng666 Email:wuyuheng666@https://www.wendangku.net/doc/586681853.html, 关键字:HMM,隐马尔科夫模型,Matlab,Statistics Toolbox 声明:本文主要介绍Matlab2011b中Statistics Toolbox工具箱里与隐马尔科夫模型相关的函数及其用法(请勿与其它HMM工具箱混淆)。本文的主要内容来自Matlab 2011b的帮助文档,为作者自学笔记。水平有限,笔记粗糙,本着“交流探讨,知识分享”的宗旨,希望对HMM感兴趣的同学有些许帮助,欢迎指教,共同进步。 有关马尔科夫模型的基本知识,请参考其他资料。如: https://www.wendangku.net/doc/586681853.html,/~lliao/cis841s06/hmmtutorialpart1.pdf https://www.wendangku.net/doc/586681853.html,/~lliao/cis841s06/hmmtutorialpart2.pdf https://www.wendangku.net/doc/586681853.html,/section/cs229-hmm.pdf http://jedlik.phy.bme.hu/~gerjanos/HMM/node2.html https://www.wendangku.net/doc/586681853.html,/dugad/hmm_tut.html ....... 变量说明: 设有M个状态,N个符号Markov模型。 TRANS:对应状态转移矩阵,大小为M*M,表示各状态相互转换的概率,TRANS(i,j)表示从状态i转换到状态j的概率。 EMIS:对应符号生成矩阵,又叫混淆矩阵,观察符号概率分布。EMIS(i,j)代表在状态i时,产生符号j的概率。 函数介绍: hmmgenerate — Generates a sequence of states and emissions from a Markov model 从一个马尔科夫模型产生状态序列和输出序列,该序列具有模型所表达的随机性特征。 A random sequence seq of emission symbols A random sequence states of states 用法:

马尔科夫链模型及其在基因遗传分析中的应用研究

马尔科夫链模型及其在基因遗传分析中的应用研究 内容提要 文中简述了马尔科夫链模型的基本原理,介绍了利用马尔科夫链对农作物基因遗传过程进行的分析研究,从而得出了基因类型的分布情况和农作物种植最适宜的换种代数间隔,使得可以更好的种植农作物。 关键词 马尔可夫链模型 基因遗传 换种间隔 一、引言 对基因遗传的分析一直是人们较为关心的话题。在研究出某物种基因的遗传分布后,对人们今后的对该物种进行的各种改良提供了良好的依据,尤其是对农作物基因类型的研究。在研究出农作物的各代之间基因类型的关系和分布情况之后,我们可以据此改善农作物的种植方法,从而提高产量。本文依据马尔科夫链的两种重要类型对农作物的基因遗传进行了分析研究,同时,分析研究马尔科夫链在一对父母的大量后代中,雌雄随机的配对繁殖,一系列后代的基因类型的演变过程中的应用。 二、马尔科夫链 1.马尔可夫链的基本概念 定义 ①.设{(),0,1,2,}n X X w n ==???是定义在概率空间(,,)F P Ω上,取值在非负整数上的随机变量序列,其表示对每个n 系统的状态。当状态1,2,,(1,2,)n X k n =???=???时表示共有k 个状态;n 时刻由状态n X i =,下一个时刻n+1变到状态1n X j +=的概率记作ij p ,则1(|)i j n n p P X j X i +===表示在事件n X i =出现的条件下,事件1n X j +=出现的条件概率,又称它为系统状态X 的一步转移概率。如果对任意的非负整数121,,,,,n i i i i j -???及一切0n ≥有 1(|,,1,2,,1)n n k k P X j X i X i k n +====???-=1(|)()n n ij ij P X j X i p n p +====, 则称X 是马尔科夫链。 ②.矩阵(ij p )称为马尔科夫链X 的一步转移概率矩阵。称10()(|)(|)ij n n m m p n P X j X i P X j X i ++======为马尔科夫链X 的n 步转移概率,而(()ij p n )为X 的n 步转移矩阵。

马尔可夫链

3.5 马尔可夫链预测方法 一、基于绝对分布的马尔可夫链预测方法 对于一列相依的随机变量,用步长为一的马尔可夫链模型和初始分布推算出未来时段的绝对分布来做预测分析方法,称为“基于绝对分布的马尔可夫链预测方法”,不妨记其为“ADMCP 法”。其具体方法步骤如下: 1.计算指标值序列均值x ,均方差s ,建立指标值的分级标准,即确定马尔可夫链的状态空间I ,这可根据资料序列的长短及具体间题的要求进行。例如,可用样本均方差为标准,将指标值分级,确定马尔可夫链的状态空间 I =[1, 2,…,m ]; 2.按步骤1所建立的分级标准,确定资料序列中各时段指标值所对应的状态; 3.对步骤2所得的结果进行统计计算,可得马尔可夫链的一步转移概率矩阵1P ,它决定了指标值状态转移过程的概率法则; 4.进行“马氏性” 检验; 5.若以第1时段作为基期,该时段的指标值属于状态i ,则可认为初始分布为 (0)(0,,0,1,0,0)P = 这里P (0)是一个单位行向量,它的第i 个分量为1,其余分量全为0。于是第2时段的绝对分布为 1(1)(0)P P P =12((1),(1),,(1))m p p p = 则第2时段的预测状态j 满足:(1)max{(1),}j i p p i I =∈; 同样预测第k +1时段的状态,则有 1()(0)k P k P P =12((),(),,())m p k p k p k = 得到所预测的状态j 满足: ()max{(),}j i p k p k i I =∈ 6.进一步对该马尔可夫链的特征(遍历性、平稳分布等)进行分析。 二、叠加马尔可夫链预测方法 对于一列相依的随机变量,利用各种步长的马尔可夫链求得的绝对分布叠加来做预测分析,的方法,称为“叠加马尔可夫链预测方法”,不妨记其为“SPMCP 法’。其具体方法步骤如下: 1) 计算指标值序列均值x ,均方差s ,建立指标值的分级标准(相当于确定马尔可夫链的状态空间),可根据资料序列的长短及具体问题的要求进行; 2) 按1)所建立的分级标准,确定资料序列中各时段指标值所对应的状态; 3) 对2)所得的结果进行统计,可得不同滞时(步长)的马尔可夫链的转移概率矩阵,它决定了指标值状态转移过程的概率法则; 4) 马氏性检验; 5) 分别以前面若干时段的指标值为初始状态,结合其相应的各步转移概率矩阵即可预测出该时段指标值的状态概率 (6)将同一状态的各预测概率求和作为指标值处于该状态的预测概率,即 ,所对应的i 即为该时段指标值的预测状态。待该时段的指标值确定之后,将其加 入到原序列之中,再重复步骤"(1)一(6)",可进行下时段指标值状态的预测。 (7)可进一步对该马尔可夫链的特征(遍历性、平稳分布等)进行分析。

马尔可夫链模型

马尔可夫链 在自然界与社会现象中,许多随机现象遵循下列演变规律,已知某个系统(或过程)在时刻0t t =所处的状态,与该系统(或过程)在时刻0t t >所处的状态与时刻0t t <所处的状态无关。例如,微分方程的初值问题描述的物理系统属于这类随机性现象。随机现象具有的这种特性称为无后效性(随机过程的无后效性),无后效性的直观含义:已知“现在”,“将来”和“过去”无关。 在贝努利过程(){} ,1X n n ≥中,设()X n 表示第n 次掷一颗骰子时出现的点数,易见,今后出现的点数与过去出现的点数无关。 在维纳过程(){} ,0X t t ≥中,设()X t 表示花粉在水面上作布朗运动时所处的位置,易见,已知花粉目前所处的位置,花粉将来的位置与过去的位置无关。 在泊松过程(){,0}N t t ≥中,设()N t 表示时间段[0,]t 内进入某商店的顾客数。易见,已知时间段0[0,]t 内进入商店的顾客数()0N t ,在时间段()0[0,]t t t >内进入商店的顾客数 ()N t 等于()0N t 加上在时间段0(,]t t 内进入商店的顾客数()()0N t N t -,而与时刻0t 前进 入商店的顾客无关。 一、马尔可夫过程 定义:给定随机过程 (){},X t t T ∈。如果对任意正整数3n ≥,任意的 12,,1, ,n i t t t t T i n <<<∈=,任意的11, ,,n x x S -∈S 是()X t 的状态空间,总有 ()()()1111|,n n n n P X x X t x X t x --≤== ()() 11|,n n n n n P X x X t x x R --=≤=∈ 则称(){} ,X t t T ∈为马尔可夫过程。 在这个定义中,如果把时刻1n t -看作“现在”,时刻n t 是“将来”,时刻12, ,n t t -是“过 去”。马尔可夫过程要求:已知现在的状态()11n n X t x --=,过程将来的状态()n X t 与过程过去的状态()()1122, ,n n X t x X t x --==无关。这就体现了马尔可夫过程具有无后效性。 通常也把无后效性称为马尔可夫性。 从概率论的观点看,马尔可夫过程要求,给定()()1111,,n n X t x X t x --==时,() n X t 的条件分布仅与()11n n X t x --=有关,而与()()12, ,n X t X t -无关。

隐马尔可夫模型(HMM)简介

隐马尔可夫模型(HMM)简介 (一) 阿黄是大家敬爱的警官,他性格开朗,身体强壮,是大家心目中健康的典范。 但是,近一个月来阿黄的身体状况出现异常:情绪失控的状况时有发生。有时候忍不住放声大笑,有时候有时候愁眉不展,有时候老泪纵横,有时候勃然大怒…… 如此变化无常的情绪失控是由什么引起的呢?据警队同事勇男描述,由于复习考试寝室不熄灯与多媒体作业的困扰,阿黄近日出现了失眠等症状;与此同时,阿黄近日登陆一个叫做“xiaonei 网”的网站十分频繁。经医生进一步诊断,由于其他人也遇到同样的考试压力、作息不规律的情况而并未出现情绪失控;并且,其它登陆XIAONEI网的众多同学表现正常,因此可基本排除它们是情绪失控的原因。黄SIR的病情一度陷入僵局…… 最近,阿黄的病情有了新的眉目:据一位对手相学与占卜术十分精通的小巫婆透露,阿黄曾经私下请她对自己的病情进行诊断。经过观察与分析终于有了重大发现:原来阿黄的病情正在被潜伏在他体内的三种侍神控制!他们是:修罗王、阿修罗、罗刹神。 据悉,这三种侍神是情绪积聚激化而形成的自然神灵,他们相克相生,是游离于个体意识之外的精神产物,可以对人的情绪起到支配作用。每一天,都会有一位侍神主宰阿黄的情绪。并且,不同的侍神会导致不同的情绪突然表现。然而,当前的科技水平无法帮助我们诊断,当前哪位侍神是主宰侍神;更糟的是,不同的侍神(3个)与不同的情绪(4种)并不存在显而易见的一一对应关系。 所以,乍看上去,阿黄的病情再次陷入僵局…… 我们怎样才能把握阿黄情绪变化的规律? 我们怎样才能通过阿黄的情绪变化,推测他体内侍神的变化规律? 关键词:两类状态: 情绪状态(观察状态):放声大笑,愁眉不展,老泪纵横,勃然大怒 侍神状态(隐状态):修罗王,阿修罗,罗刹神 (二) 阿黄的病情引来了很多好心人的关心。这与阿黄真诚善良的品格不无关系。 关于侍神的特点,占卜师和很多好心人找来了许多珍贵资料。其中很多人经过一段时间的观察与记录后,在貌似毫无规律的数据背后,发现了侍神与情绪之间的内在规律!!他们在多次观测后,

马尔可夫链模型讲解

马尔可夫链模型(Markov Chain Model) 目录 [隐藏] 1 马尔可夫链模型概述 2 马尔可夫链模型的性质 3 离散状态空间中的马尔可夫链模 型 4 马尔可夫链模型的应用 o 4.1 科学中的应用 o 4.2 人力资源中的应用 5 马尔可夫模型案例分析[1] o 5.1 马尔可夫模型的建立 o 5.2 马尔可夫模型的应用 6 参考文献 [编辑] 马尔可夫链模型概述 马尔可夫链因安德烈·马尔可夫(Andrey Markov,1856-1922)得名,是数学中具有马尔可夫性质的离散时间随机过程。该过程中,在给定当前知识或信息的情况下,过去(即当期以前的历史状态)对于预测将来(即当期以后的未来状态)是无关的。 时间和状态都是离散的马尔可夫过程称为马尔可夫链, 简记为 。 马尔可夫链是随机变量的一个数列。这些变量的范围,即他们所有可能取值的集合,被称为“状态空间”,而Xn的值则是在时间n的状态。如果Xn + 1对于过去状态的条件概率分布仅是Xn的一个函数,则 这里x为过程中的某个状态。上面这个恒等式可以被看作是马尔可夫性质。

马尔可夫在1906年首先做出了这类过程。而将此一般化到可数无限状态空间是由柯尔莫果洛夫在1936年给出的。 马尔可夫链与布朗运动以及遍历假说这两个二十世纪初期物理学重要课题是相联系的,但马尔可夫寻求的似乎不仅于数学动机,名义上是对于纵属事件大数法则的扩张。 马尔可夫链是满足下面两个假设的一种随机过程: 1、t+l时刻系统状态的概率分布只与t时刻的状态有关,与t时刻以前的状态无关; 2、从t时刻到t+l时刻的状态转移与t的值无关。一个马尔可夫链模型可表示为=(S,P,Q),其中各元的含义如下: 1)S是系统所有可能的状态所组成的非空的状态集,有时也称之为系统的状态空间,它可以是有限的、可列的集合或任意非空集。本文中假定S是可数集(即有限或可列)。用小写字母i,j(或S i,S j)等来表示状态。 2)是系统的状态转移概率矩阵,其中P ij表示系统在时刻t处于状态i,在下一时刻t+l处于状态i的概率,N是系统所有可能的状态 的个数。对于任意i∈s,有。 3)是系统的初始概率分布,q i是系统在初始时刻处 于状态i的概率,满足。 [编辑] 马尔可夫链模型的性质 马尔可夫链是由一个条件分布来表示的 P(X | X n) n+ 1 这被称为是随机过程中的“转移概率”。这有时也被称作是“一步转移概率”。二、三,以及更多步的转移概率可以导自一步转移概率和马尔可夫性质:

隐马尔可夫模型及其最新应用与发展

2010 年 第19卷 第 7 期 计 算 机 系 统 应 用 Special Issue 专论·综述 255 隐马尔可夫模型及其最新应用与发展① 朱 明 郭春生 (杭州电子科技大学 通信工程学院 浙江 杭州 310018) 摘 要: 隐马尔可夫模型是序列数据处理和统计学习的一种重要概率模型,已被成功应用于许多工程任务中。 首先介绍了隐马尔可夫模型的基本原理,接着综述了其在人的行为分析、网络安全和信息抽取中的最新应用。最后对最近提出来的无限状态隐马尔可夫模型的原理及最新发展进行了总结。 关键词: 隐马尔可夫模型;行为分析;网络安全;信息抽取;无限状态隐马尔可夫模型 Hidden Markov Model and Its latest Application and Progress ZHU Ming, GUO Chun-Sheng (College of Communication Engineering, Hangzhou Dianzi University, Hangzhou 310018, China) Abstract: Hidden Markov Model (HMM) is an important probabilistic model of sequential data processing and statistical study. It has already been successfully applied in many projects in practice. Firstly, this paper introduces the basic principles of the Hidden Markov Model, and then gives a review to its latest application in the human activity analysis, network security and information extraction. Finally it summarizes the theory and latest progress of the recently proposed infinite Hidden Markov Model (iHMM). Keywords: HMM ;activity analysis ;network security ;information extraction ;iHMM 1 引言 隐马尔可夫模型(Hidden Markov Model, HMM)作为一种统计分析模型,创立于20世纪70年代,80年代得到了传播和发展并成功应用于声学信号的建模中,到目前为止,它仍然被认为是实现快速精确语音识别系统最成功的方法。作为信号处理的一个重要方向,HMM 广泛应用于图像处理,模式识别,语音人工合成和生物信号处理等领域的研究中,并取得了诸多重要的成果[1]。近年来,很多研究者把HMM 应用于计算机视觉、金融市场的波动性分析和经济预算等新兴领域中,因此,结合实际应用,进一步研究各种新型HMM 及其性质,具有重要的意义。文章首先介绍了HMM 的基本理论,接着对其在人的行为分析、网络安全和信息抽取中的最新应用进行了综述。针对经典HMM 应用中存在的两大问题,近年来提出了无限状态隐马尔可夫模型(infinite Hidden Markov Model ,iHMM),文章的最后对其基本理论及最新发展进行了总结。 ① 收稿时间:2009-10-25;收到修改稿时间:2009-12-06 2 HMM 的基本原理及结构 2.1 HMM 的基本原理 HMM 由两个随机过程组成,其中一个是状态转移序列,它是一个单纯的马尔可夫过程;另一个是与状态对应的观测序列,如图1为一状态数为3的HMM 示意图,其中为状态序列,它们之间的转移是一个马尔可夫过程,为各状态下对应的观测值。在实际问题中,我们只能看到观测值,而不能直接看到状态,只能是通过观测序列去推断状态的存在及转移特征,即模型的状态掩盖在观测序列之中,因而称之为“隐”Markov 模型。 图1 状态数为3的HMM 示意图 设模型的状态数目为,可观测到的符号数目为,

马尔可夫链

马尔可夫过程 一类随机过程。它的原始模型马尔可夫链,由俄国数学家A.A.马尔可夫于1907年提出。该过程具有如下特性:在已知目前状态(现在)的条件下,它未来的演变(将来)不依赖于它以往的演变 ( 过去 ) 。例如森林中动物头数的变化构成——马尔可夫过程。在现实世界中,有很多过程都是马尔可夫过程,如液体中微粒所作的布朗运动、传染病受感染的人数、车站的候车人数等,都可视为马尔可夫过程。关于该过程的研究,1931年 A.H.柯尔莫哥洛夫在《概率论的解析方法》一文中首先将微分方程等分析的方法用于这类过程,奠定了马尔可夫过程的理论基础。 目录 马尔可夫过程 离散时间马尔可夫链 连续时间马尔可夫链 生灭过程 一般马尔可夫过程 强马尔可夫过程 扩散过程 编辑本段马尔可夫过程 Markov process 1951年前后,伊藤清建立的随机微分方程的理论,为马尔可夫过程的研究开辟了新的道路。1954年前后,W.费勒将半群方法引入马尔可夫过程的研究。流形上的马尔可夫过程、马尔可夫向量场等都是正待深入研究的领域。 类重要的随机过程,它的原始模型马尔可夫链,由俄国数学家Α.Α.马尔可夫于1907年提出。人们在实际中常遇到具有下述特性的随机过程:在已知它目前的状态(现在)的条件下,它未来的演变(将来)不依赖于它以往的演变(过去)。这种已知“现在”的条件下,“将来”与“过去”独立的特性称为马尔可夫性,具有这种性质的随机过程叫做马尔可夫过程。荷花池中一只青蛙的跳跃是马尔可夫过程的一个形象化的例子。青蛙依照它瞬间或起的念头从一片荷叶上跳到另一片荷叶上,因为青蛙是没有记忆的,当现在所处的位置已知时,它下一步跳往何处和它以往走过的路径无关。如果将荷叶编号并用X0,X1,X2,…分别表示青蛙最初处的荷叶号码及第一次、第二次、……跳跃后所处的荷叶号码,那么{Xn,n≥0} 就是马尔可夫过程。液体中微粒所作的布朗运动,传染病受感染的人数,原子核中一自由电子在电子层中的跳跃,人口增长过程等等都可视为马尔可夫过程。还有些过程(例如某些遗传过程)在一定条件下可以用马尔可夫过程来近似。

相关文档