文档库 最新最全的文档下载
当前位置:文档库 › 苏教版九年级数学下册知识点总结(苏科版)

苏教版九年级数学下册知识点总结(苏科版)

苏教版九年级数学下册知识点总结(苏科版)
苏教版九年级数学下册知识点总结(苏科版)

知识点总结

第五章二次函数

一、二次函数概念:

1.二次函数的概念:一般地,形如

的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数,而可以为零.二次函数的定义域是全体实数.

2. 二次函数的结构特征:

⑴等号左边是函数,右边是关于自变量的二次式,的最高次数是2.

⑵是常数,是二次项系数,是一次项系数,是常数项.

二、二次函数的基本形式

1. 二次函数基本形式:的性质:

a 的绝对值越大,抛物线的开口越小。

的符号开口方向顶点坐

对称轴性质

向上轴时,随的增大而增大;时,随的增大而减小;时,有最小值.

向下轴时,随的增大而减小;时,随的增大而增大;时,有最大值.

2. 的性质:上加下减。

的符号开口方向顶点坐

对称轴性质

向上轴时,随的增大而增大;时,随的增大而减小;时,有最小值.

3. 的性质:

左加右减。

1. 平移步骤:

方法一:⑴将抛物线解析式转化成顶点式,确定其顶点坐标;

⑵保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下:

2. 平移规律

在原有函数的基础上“值正右移,负左移;值正上移,负下移”.

概括成八个字“左加右减,上加下减”.

方法二:

⑴沿轴平移:向上(下)平移个单位,变成

(或)

⑵沿轴平移:向左(右)平移个单位,变成(或)

四、二次函数与的比较

从解析式上看,与是两种不同的表达形式,后者通过配方可以得到前者,即,其中.

五、二次函数图象的画法

五点绘图法:利用配方法将二次函数化为顶点式,确定其开口方向、对称轴及顶点

坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与轴的交点、以及关于对称轴对称的点、与轴的交点,(若与轴没有交点,则取两组

关于对称轴对称的点).

画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点.

六、二次函数的性质

1. 当时,抛物线开口向上,对称轴为,顶点坐标为.

当时,随的增大而减小;当时,随的增大而增大;当时,有最小值.

2. 当时,抛物线开口向下,对称轴为,顶点坐标为.当时,随的增大而增大;当时,随的增大而减小;当时,有最大值.

七、二次函数解析式的表示方法

1. 一般式:(,,为常数,);

2. 顶点式:(,,为常数,);

3. 两根式:(,,是抛物线与轴两交点的横坐标).

注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非

所有的二次函数都可以写成交点式,只有抛物线与轴有交点,即

时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三

种形式可以互化.

八、二次函数的图象与各项系数之间的关系

1. 二次项系数

二次函数中,作为二次项系数,显然.

⑴当时,抛物线开口向上,的值越大,开口越小,反之的值越小,开口越大;

⑵当时,抛物线开口向下,的值越小,开口越小,反之的值越大,开口越大.

总结起来,决定了抛物线开口的大小和方向,的正负决定开口方向,的大小决定开口的大小.

2. 一次项系数

在二次项系数确定的前提下,决定了抛物线的对称轴.

⑴在的前提下,

当时,,即抛物线的对称轴在轴左侧;

当时,,即抛物线的对称轴就是轴;

当时,,即抛物线对称轴在轴的右侧.

⑵在的前提下,结论刚好与上述相反,即

当时,,即抛物线的对称轴在轴右侧;

当时,,即抛物线的对称轴就是轴;

当时,,即抛物线对称轴在轴的左侧.

总结起来,在确定的前提下,决定了抛物线对称轴的位置.

的符号的判定:对称轴在轴左边则,在轴的右侧则,概括的说就是“左同右异”

总结:

3. 常数项

⑴当时,抛物线与轴的交点在轴上方,即抛物线与轴交点的纵坐标为正;

⑵当时,抛物线与轴的交点为坐标原点,即抛物线与轴交点的纵坐标为;

⑶当时,抛物线与轴的交点在轴下方,即抛物线与轴交点的纵坐标为负.

总结起来,决定了抛物线与轴交点的位置.

总之,只要都确定,那么这条抛物线就是唯一确定的.

二次函数解析式的确定:

根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:

1. 已知抛物线上三点的坐标,一般选用一般式;

2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;

3. 已知抛物线与轴的两个交点的横坐标,一般选用两根式;

4. 已知抛物线上纵坐标相同的两点,常选用顶点式.

九、二次函数图象的对称

二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达

1. 关于轴对称

关于轴对称后,得到的解析式是;

关于轴对称后,得到的解析式是;

2. 关于轴对称

关于轴对称后,得到的解析式是;

关于轴对称后,得到的解析式是;

3. 关于原点对称

关于原点对称后,得到的解析式是;

关于原点对称后,得到的解析式是;

4. 关于顶点对称(即:抛物线绕顶点旋转180°)

关于顶点对称后,得到的解析式是;

关于顶点对称后,得到的解析式是.

5. 关于点对称

关于点对称后,得到的解析式是

根据对称的性质,显然无论作何种对称变换,抛物线的形状一定

不会发生变化,因此永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.

十、二次函数与一元二次方程:

1. 二次函数与一元二次方程的关系(二次函数与轴交点情况):

一元二次方程是二次函数当函数值时的特殊情况.

图象与轴的交点个数:

①当时,图象与轴交于两点,其中的是一元二次方程的两根.这两点间的距离.

②当时,图象与轴只有一个交点;

③当时,图象与轴没有交点.

当时,图象落在轴的上方,无论为任何实数,都有;

当时,图象落在轴的下方,无论为任何实数,都有.

2. 抛物线的图象与轴一定相交,交点坐标为,;

3. 二次函数常用解题方法总结:

⑴求二次函数的图象与轴的交点坐标,需转化为一元二次方程;

⑵求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;

⑶根据图象的位置判断二次函数中,,的符号,或由二次函数中,,

的符号判断图象的位置,要数形结合;

⑷二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点

对称的点坐标,或已知与轴的一个交点坐标,可由对称性求出另一个交点坐标.

⑸与二次函数有关的还有二次三项式,二次三项式本身就是所含字母的二次函数;下面以时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:

二次函数图像参考:

十一、函数的应用

二次函数应用

十二、二次函数考查重点与常见题型

1.考查二次函数的定义、性质,有关试题常出现在选择题中,

如:

已知以为自变量的二次函数的图像经过原点,则的值

2.综合考查正比例、反比例、一次函数、二次函数的图像,习

题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为

选择题,如:

如图,如果函数的图像在第一、二、三象限内,那么函数的图像大致是()

y y

y y

1

1

0 x o-

1 x 0 x 0 -1 x

A B

C D

3.考查用待定系数法求二次函数的解析式,有关习题出现的频

率很高,习题类型有中档解答题和选拔性的综合题,如:

已知一条抛物线经过(0,3),(4,6)两点,对称轴为,求这条抛物线的解析式。

4.考查用配方法求抛物线的顶点坐标、对称轴、二次函数的极

值,有关试题为解答题,如:

已知抛物线(a≠0)与x轴的两个交点的横坐标是-1、3,与y轴交点的纵坐标是-

(1)确定抛物线的解析式;(2)用配方法确定抛物线的开口方向、对称轴和顶点坐标.

5.考查代数与几何的综合能力,常见的作为专项压轴题。

【例题经典】

由抛物线的位置确定系数的符号

例1 (1)二次函数的图像如图1,则点在()

A.第一象限B.第二象限 C.第三象

限 D.第四象限

(2)已知二次函数y=ax2+bx+c(a≠0)的图象如图2所示,则下列结论:①a、b同号;②当x=1和x=3时,函数值相等;③4a+b=0;

④当y=-2时,x的值只能取0.其中正确的个数是()

A.1个B.2个 C.3个 D.4个

(1)

(2)

【点评】弄清抛物线的位置与系数a,b,c之间的关系,是解决问题的关键.

相关文档