文档库 最新最全的文档下载
当前位置:文档库 › 数据结构各种排序实验报告

数据结构各种排序实验报告

数据结构各种排序实验报告
数据结构各种排序实验报告

目录

1.引言............................................................................................................................ 错误!未定义书签。

2.需求分析 (2)

3.详细设计 (2)

3.1 直接插入排序 (2)

3.2折半排序 (2)

3.3 希尔排序 (4)

3.4简单选择排序 (4)

3.5堆排序 (4)

3.6归并排序 (5)

3.7冒泡排序 (7)

4.调试 (8)

5.调试及检验 (9)

5.1 直接插入排序 (9)

5.2折半插入排序 (9)

5.3 希尔排序 (10)

5.4简单选择排序 (10)

5.5堆排序 (11)

5.6归并排序 (12)

5.7冒泡排序 (12)

6.测试与比较................................................................................................................ 错误!未定义书签。

6.1调试步骤......................................................................................................... 错误!未定义书签。

6.2结论 (13)

7.实验心得与分析 (13)

8.附录 (15)

8.1直接插入排序 (15)

8.2折半插入排序 (16)

8.3希尔排序 (18)

8.4简单选择排序 (20)

8.5堆排序 (21)

8.6归并排序 (24)

8.7冒泡排序 (27)

8.8主程序 (28)

1.需求分析

课程题目是排序算法的实现,课程设计一共要设计八种排序算法。这八种算法共包括:堆排序,归并排序,希尔排序,冒泡排序,快速排序,基数排序,折半插入排序,直接插入排序。

为了运行时的方便,将八种排序方法进行编号,其中1为堆排序,2为归并排序,3为希尔排序,4为冒泡排序,5为快速排序,6为基数排序,7为折半插入排序8为直接插入排序。

软件环境:

Windows-7操作系统,所使用的软件为c-Free;

2.概要设计

2.1 直接插入排序

⑴算法思想:直接插入排序是一种最简单的排序方法,它的基本操作是将一个记录插入到一个已排好序的有序表中,从而得到一个新的、记录数增一的有序表。在自i-1起往前搜索的过程中,可以同时后移记录。整个排序过程为进行n-1趟插入,即:先将序列中的第一个记录看成是一个有序的子序列,然后从第二个记录起逐个进行插入,直至整个序列变成按关键字非递减有序序列为止。

⑵程序实现及核心代码的注释:

for (i = 1 ; i < r.length ;++i )

for(j=0;j < i;++j)

if(r.base[i] < r.base[j])

{

temp = r.base[i]; //保存待插入记录

for(i= i ;i > j; --i )

r.base[i] = r.base[i-1]; //记录后移

r.base[j] = temp; //插入到正确的为位置

}

r.base[r.length] ='\0';

2.2折半排序

⑴算法思想:由于折半插入排序的基本操作是在一个有序表中进行查找和插入,这个“查找”操作可利用折半查找来实现,由此进行的插入排序称之为折半插入排序。折半插入排序所需附加存储空间和直接插入排序相同,从时间上比较,这般插入排序仅减少了关键字间的比较次数,而记录的移动次数不变。因此,这般插入排序的时间复杂度仍为O(n2)。

⑵程序实现及核心代码的注释:

void zb(FILE *fp)

{ //对顺序表作折半插入排序for ( i = 1 ; i < r.length ; i++ )

{

temp=r.base[i]; //将r.base[i]寄存在temp中

low=0;

high=i-1;

while( low <= high ) //在base[low]到key[high]中折

半查找有序插入的位置{

m = (low+high)/2; //折半

if ( temp < r.base[m] )

high = m-1; //插入低半区

else

low = m+1; //插入高半区

}

for( j=i-1; j>=high+1; --j )

r.base[j+1]= r.base[j]; //记录后移

r.base[high+1]=temp; //插入

}

2.3 希尔排序

⑴算法思想:先将整个待排记录序列分割成为若干子序列分别进行直接插入排序,待整个序列中的记录“基本有序”时,再对全体记录进行一次直接插入排序。其中,子序列的构成不是简单的“逐段分割”,而是将分隔某个“增量”的记录组成一个子序列。

⑵程序实现及核心代码的注释:

for(k = 0; k < 10 ; k++)

{

m = 10 - k;

for( i = m ; i < r.length; i ++ )

if(r.base[i] < r.base[i - m])

{

temp = r.base[i]; //保存待插记录

for(j = i - m ; j >= 0 && temp < r.base[j]; j -= m)

r.base[ j + m ] = r.base[j]; //记录后移,查找插入位置

r.base[ j + m ] = temp; //插入

}

}

2.4简单选择排序

⑴算法思想:在要排序的一组数中,选出最小的一个数与第一个位置的数交换;然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环到倒数第二个数和最后一个数比较为止。

⑵程序实现及核心代码的注释:

for ( i = 0 ; i < r.length ; i++ )

{ //i为排好序的数的下标,依次往后存放排

//好序的数

temp=r.base[i]; //将待放入排好序的数的下标的数保存

for( j = i,m = j +1 ; m < r.length ; m++) //找出未排序的数中最小的数的循环;

if(r.base[j] > r.base[m])

j = m;

r.base[i] = r.base[j]; //把下标为j的数与i数互换;

r.base[j] = temp;

}

2.5堆排序

⑴算法思想:堆排序只需要一个记录大小的辅助空间,每个待排序的记录仅占有一个存储空间。将序列所存储的元素A[N]看做是一棵完全二叉树的存储结构,则堆实质上是满足如下性质的完全二叉

树:树中任一非叶结点的元素均不大于(或不小于)其左右孩子(若存在)结点的元素。算法的平均时间复杂度为O(N log N)。

⑵程序实现及核心代码的注释:

void dp(FILE *fp)

{

for(i = r.length / 2;i >= 1 ; --i) //把r.base[1...r.length]建成大顶堆

HeapAdjust(r.base,i,r.length);

for(i = r.length ;i >= 2 ; --i)

{

temp = r.base[1];

r.base[1] = r.base[i];

r.base[i] = temp;

HeapAdjust(r.base,1,i-1); //将r.base[1...i-1]重新调整为大顶堆}

void HeapAdjust(char *r,int k,int m)

{

i=k; x=r[i]; j=2*i; //沿key 较大的孩子节点向下筛选

while(j<=m) //j为key较大的记录的下标

{

if( (jr[j+1]) )

j++;

if(x>r[j])

{ //插入字符比当前的大,交换

r[i] =r[j];

i = j;

j *= 2;

}

else //否则比较停止。

j = m + 1;

}

r[i] = x; //把字符x插入到该位置,元素插入实现

}

2.6归并排序

⑴算法思想:先将相邻的个数为1的每两组数据进行排序合并;然后对上次归并所得到的大小为2

的组进行相邻归并;如此反复,直到最后并成一组,即排好序的一组数据。

⑵程序实现及核心代码的注释:

void merge(SqList6 r,int h ,int m ,int w ,SqList6 t)

{ //对相邻两组数据进行组合排序;

int i,j,k;

i = h ;

j = m + 1; //j为合并的第二组元素的第一个数位置k =h-1;// k为存入t中的数的位置;

while((i <= m)&&(j <= w))

{ //依次排列两组数据

k++;

if(r.base[i] <= r.base[j]) //将第一组数据与第二组数据分别比较;

t.base[k] = r.base[i++];

else

t.base[k] = r.base[j++];

}

if(i > m) //第一组数据先排完的情况while(j <= w) t.base[++k]=r.base[j++];

else

while(i <= m) t.base[++k]=r.base[i++];

}

void tgb(int s,int n,SqList6 r,SqList6 t)

{ //对数据进行每组s个数的归并排序;

int i=1; //i为要合并两组元素的第一个数位置;

while(i<=(n-2*s+1))

{

merge(r,i,i+s-1,i+2*s-1,t); //i+s-1为要合并的第一组元素的最后一

//数位置、i+2*s-1 为要合并的两组元素

//最后一个数位置;

i=i+2*s;

}

if(i<(n-s+1)) //考虑n不能被s整除,如果余下的数少于

//2*s 但大于s,也就是余下的数不能凑成

//两组,凑一组有余,则把余下的数进行组

//合,并对其进行排序;

merge(r,i,i+s-1,n,t);

else //如果余下的数少于s,则余下的数进行组//合,

并进行排序;

while(i<=n)

t.base[i]=r.base[i++];

}

void gb(FILE *fp) // 归并主函数;

{

n = r.length;

SqList6 t;

t.base=(char *) malloc(r.stacksize*sizeof(char));

//给待排序的数组t申请内存;

while(s

{

tgb(s,n,r,t); // s为每组元素的个数、n为元素总个数、r

//为原数组,t为待排序的数组,进行归并排s*=2; //序;把元素个数相同的两组合并并进行重新

//定义成新的一组,此组元素个数为2*s;

if(s

//当元素个数小于n时,对其进行合并排序;

else //当元素个数大于n时,对剩下的数排序;

{

i=0;

while(i<=n)

{

r.base[i]=t.base[i+1];

i++;

}

}

}

}

2.7冒泡排序

⑴算法思想:1、先将一组未排序的数组的最后一个数与倒数第二个数进行比较,并将较小的数放于

两个数中较前的位置,然后将比较后的较小的数与倒数第三个进行比较,依次比较到第一个数,即可得到第一个数是所有数中最小的数;2、然后再将数组的最后一个数与倒数第二个数进行比较,并将较小的数放于两个数中较前的位置,依次比较到第二个数,3、如此循环到只剩最后两个比较,即得到排好序的一组数。

⑵程序实现及核心代码的注释:

for( i=0; i < r.length ;i++ ) // i为排好序的数的下标,依次往后存放排好序的数;{

for( j = r.length-2;j >= i;j -- ) //从后往前依次两两比较,较小的被调换到前面;

if(r.base[j+1] < r.base[j]) //比较相邻两个数,如果后面的小于前面的,向下执行;

{

temp = r.base[j+1]; //将后面的较小的数保存起来;

r.base[j+1] = r.base[j]; //将前面的较大的数放在后面较小的数的位置;

r.base[j] = temp; //将较小的数放在前面的较大的数的位置;

}

}

3.调试

检测主函数是否能够稳定运行(如图4-1):

图4-1

5.调试及检验

5.1 直接插入排序

输入字符并保存(如图5-1.1):

调用算法【1】处理文件(如图5-1.2):

处理结果(如图5-1.3):

图5-1.1 图5-1.2

图5-1.3

5.2折半插入排序

输入字符并保存(如图5-2.1):

调用算法【2】处理文件(如图5-2.2):

处理结果(如图5-2.3):

图5-2.1图5-2.2

图5-2.3

5.3 希尔排序

输入字符并保存(如图5-3.1):

调用算法【3】处理文件(如图5-3.2):

处理结果(如图5-3.3):

图5-3.1图5-3.2

图5-3.3

5.4简单选择排序

输入字符并保存(如图5-4.1):

调用算法【4】处理文件(如图5-4.2):

处理结果(如图5-4.3):

图5-4.1图5-4.2

图5-4.3

5.5堆排序

输入字符并保存(如图5-5.1):

调用算法【5】处理文件(如图5-5.2):

处理结果(如图5-5.3):

图5-5.1图5-5.2

图5-5.3

5.6归并排序

输入字符并保存(如图5-6.1):

调用算法【6】处理文件(如图5-6.2):

处理结果(如图5-6.3):

图5-6.1图5-6.2

图5-6.3

5.7冒泡排序

输入字符并保存(如图5-7.1): 调用算法【7】处理文件(如图5-7.2): 处理结果(如图5-7.3):

图5-7.1 图5-7.2

图5-7.3

6.2结论

通过实验结果的比较与分析我们发现:直接插入排序、冒泡排序、简单选择排序及折半插入排序

是低效率的排序方式;所以我们实际编程重要尽可能的避免他们的出现;我们应该用较先进的归并排序及堆排序。

7.实验心得与分析

通过本次课程设计,我们小组的每个成员都学到了很多东西。首先要说的是我们的编程能力,在这一次的课程设计中我们的编程能力均得到了一定程度的提升。并且通过这次课程设计,我们更加熟悉了如何使用Header File 文件。本次课程设计,让我们对于直接插入排序,折半插入排序,希尔排序,简单选择排序,堆排序,归并排序,冒泡排序等七种排序算法的思想有了进一步的认识,同时对七种算法的应用有了更进一步的掌握。通过这次课程设计,我们对于解决实际问题的能力有了进一步提高。最重要的是,这次课程设计大大的训练了我们的小组团队协作能力。通过这次课程设

计我们小组各成员的团队协作能力都有了很大的提升。这种团队协作能力对于我们学编程的来说是极其重要的,同时也是必不可少的。

当然,我们写程序的时候遇到了很多困难。而且在程序调试过程中出现了很多错误与警告,不过在队员及老师的帮助下均得到了解决。当程序可以运行后,程序的运行过程中同样也也出现了很多错误,甚至出现了不兼容的情况。不过,后来在队员及老师的帮助下也均得到了解决。然而,我们的程序还有一点瑕疵让我们感到美中不足。那就是在归并算法运行过程中,当输入为9个字符时,排序结果会出现偶然误差。经过分析,我们认为这点是系统的问题。不过,这仍然是一点让我们感到遗憾的地方。

8.附录

8.1直接插入排序

#include

#include

#define Q 1000

typedef struct {

char *base ;

int stacksize ;

int length;

}SqList1;

void zj(FILE *fp)

{

SqList1 r;

int i,j;

char temp,*p;

r.base=(char *) malloc(Q*sizeof(char));

r.stacksize = Q;

r.length = 0;

while(!feof(fp))

{

fscanf(fp,"%c",r.base);

r.base++;

r.length++;

if(r.length == r.stacksize )

{

r.base= r.base - r.length;

r.base=(char *) realloc(r.base,(r.stacksize + Q) * sizeof(char));

if(!r.base)

{

printf("ERROR");

return ;

}

r.base = r.base + r.stacksize;

r.stacksize += Q;

}

}

r.length --;

r.base --;

r.base= r.base - r.length;

for (i = 1 ; i < r.length ;++i )

for(j=0;j < i;++j)

if(r.base[i] < r.base[j])

{

temp = r.base[i];

for(i= i ;i > j; --i )

r.base[i] = r.base[i-1];

r.base[j] = temp;

}

r.base[r.length] ='\0';

rewind(fp);

fprintf(fp,"%s",r.base);

fclose(fp);

free(r.base);

}

8.2折半插入排序

#include

#include

#define Q 1000

typedef struct {

char *base ;

int stacksize ;

int length;

}SqList2;

void zb(FILE *fp)

{

SqList2 r;

int i,j ,m, low, high;

char temp;

r.base=(char *) malloc(1000*sizeof(char));

r.stacksize = 1000;

r.length = 0;

while(!feof(fp))

{

fscanf(fp,"%c",r.base);

r.base++;

r.length++;

if(r.length == r.stacksize )

{

r.base= r.base - r.length;

r.base=(char *) realloc(r.base,(r.stacksize + Q) * sizeof(char));

if(!r.base)

{

printf("ERROR");

return ;

}

r.base = r.base + r.stacksize;

r.stacksize += Q;

}

}

r.length --;

r.base --;

r.base= r.base - r.length;

for ( i = 1 ; i < r.length ; i++ )

{

temp=r.base[i];

low=0;

high=i-1;

while( low <= high )

{

m = (low+high)/2;

if ( temp < r.base[m] )

high = m-1;

else

low = m+1;

}

for( j=i-1; j>=high+1; --j )

r.base[j+1]= r.base[j];

r.base[high+1]=temp;

}

r.base[r.length] ='\0';

rewind(fp);

fprintf(fp,"%s",r.base);

fclose(fp);

free(r.base);

}

8.3希尔排序

#include

#include

#define Q 1000

typedef struct {

char *base ;

int stacksize ;

int length;

}SqList3;

void xe(FILE *fp)

{

SqList3 r;

int i,j,k,m;

char temp;

r.length = 0;

r.base=(char *) malloc(1000*sizeof(char));

r.stacksize = 1000;

while(!feof(fp))

{

fscanf(fp,"%c",r.base);

r.base++;

r.length++;

if(r.length == r.stacksize )

{

r.base= r.base - r.length;

r.base=(char *) realloc(r.base,(r.stacksize + Q) * sizeof(char));

if(!r.base)

{

printf("ERROR");

return ;

}

r.base = r.base + r.stacksize;

r.stacksize += Q;

}

}

r.length --;

r.base --;

r.base= r.base - r.length;

for(k = 0; k < 10 ; k++)

{

m = 10 - k;

for( i = m ; i < r.length; i ++ )

if(r.base[i] < r.base[i - m])

{

temp = r.base[i];

for(j = i - m ; j >= 0 && temp < r.base[j]; j -= m)

r.base[ j + m ] = r.base[j];

r.base[ j + m ] = temp;

}

}

rewind(fp);

fprintf(fp,"%s",r.base);

fclose(fp);

free(r.base);

}

8.4直接选择排序

#include

#include

#define Q 1000

typedef struct {

char *base ;

int stacksize ;

int length;

}SqList4;

void jd(FILE *fp)

{

SqList4 r;

int i,j ,m;

char temp;

r.base=(char *) malloc(1000*sizeof(char));

r.stacksize = 1000;

r.length = 0;

while(!feof(fp))

{

fscanf(fp,"%c",r.base);

r.base++;

r.length++;

if(r.length == r.stacksize )

{

r.base= r.base - r.length;

数据结构课程设计(内部排序算法比较_C语言)

数据结构课程设计 课程名称:内部排序算法比较 年级/院系:11级计算机科学与技术学院 姓名/学号: 指导老师: 第一章问题描述 排序是数据结构中重要的一个部分,也是在实际开发中易遇到的问题,所以研究各种排算法的时间消耗对于在实际应用当中很有必要通过分析实际结合算法的特性进行选择和使用哪种算法可以使实际问题得到更好更充分的解决!该系统通过对各种内部排序算法如直接插入排序,冒泡排序,简单选择排序,快速排序,希尔排序,堆排序、二路归并排序等,以关键码的比较次数和移动次数分析其特点,并进行比较,估算每种算法的时间消耗,从而比较各种算法的优劣和使用情况!排序表的数据是多种不同的情况,如随机产生数据、极端的数据如已是正序或逆序数据。比较的结果用一个直方图表示。

第二章系统分析 界面的设计如图所示: |******************************| |-------欢迎使用---------| |-----(1)随机取数-------| |-----(2)自行输入-------| |-----(0)退出使用-------| |******************************| 请选择操作方式: 如上图所示该系统的功能有: (1):选择1 时系统由客户输入要进行测试的元素个数由电脑随机选取数字进行各种排序结果得到准确的比较和移动次数并 打印出结果。 (2)选择2 时系统由客户自己输入要进行测试的元素进行各种排序结果得到准确的比较和移动次数并打印出结果。 (3)选择0 打印“谢谢使用!!”退出系统的使用!! 第三章系统设计 (I)友好的人机界面设计:(如图3.1所示) |******************************| |-------欢迎使用---------| |-----(1)随机取数-------| |-----(2)自行输入-------| |-----(0)退出使用-------|

数据结构各种排序算法的时间性能

HUNAN UNIVERSITY 课程实习报告 题目:排序算法的时间性能学生姓名 学生学号 专业班级 指导老师李晓鸿 完成日期

设计一组实验来比较下列排序算法的时间性能 快速排序、堆排序、希尔排序、冒泡排序、归并排序(其他排序也可以作为比较的对象) 要求 (1)时间性能包括平均时间性能、最好情况下的时间性能、最差情况下的时间性能等。 (2)实验数据应具有说服力,包括:数据要有一定的规模(如元素个数从100到10000);数据的初始特性类型要多,因而需要具有随机性;实验数据的组数要多,即同一规模的数组要多选几种不同类型的数据来实验。实验结果要能以清晰的形式给出,如图、表等。 (3)算法所用时间必须是机器时间,也可以包括比较和交换元素的次数。 (4)实验分析及其结果要能以清晰的方式来描述,如数学公式或图表等。 (5)要给出实验的方案及其分析。 说明 本题重点在以下几个方面: 理解和掌握以实验方式比较算法性能的方法;掌握测试实验方案的设计;理解并实现测试数据的产生方法;掌握实验数据的分析和结论提炼;实验结果汇报等。 一、需求分析 (1) 输入的形式和输入值的范围:本程序要求实现各种算法的时间性能的比 较,由于需要比较的数目较大,不能手动输入,于是采用系统生成随机数。 用户输入随机数的个数n,然后调用随机事件函数产生n个随机数,对这些随机数进行排序。于是数据为整数 (2) 输出的形式:输出在各种数目的随机数下,各种排序算法所用的时间和 比较次数。 (3) 程序所能达到的功能:该程序可以根据用户的输入而产生相应的随机 数,然后对随机数进行各种排序,根据排序进行时间和次数的比较。 (4)测试数据:略 二、概要设计

数据结构第十章习题课

1.下列排序算法中,其中()是稳定的。 A. 堆排序,冒泡排序 B. 快速排序,堆排序 C. 直接选择排序,归并排序 D. 归并排序,冒泡排序 2.若需在O(nlog2n)的时间内完成对数组的排序,且要求排序是稳定的,则可选择的排序方法是()。 A. 快速排序 B. 堆排序 C. 归并排序 D. 直接插入排序3.排序趟数与序列的原始状态有关的排序方法是( )排序法。 A.插入 B. 选择 C. 冒泡 D. 快速4.对一组数据(84,47,25,15,21)排序,数据的排列次序在排序的过程中 的变化为(1)84 47 25 15 21 (2)15 47 25 84 21 (3)15 21 25 84 47 (4) 15 21 25 47 84 则采用的排序是( )。 A. 选择 B. 冒泡 C. 快速 D. 插入5.对序列{15,9,7,8,20,-1,4}进行排序,进行一趟后数据的排列变为{4,9,-1,8,20,7,15};则采用的是()排序。 A. 选择 B. 快速 C. 希尔 D. 冒泡6.若上题的数据经一趟排序后的排列为{9,15,7,8,20,-1,4},则采用的 是()排序。 A.选择 B. 堆 C. 直接插入 D. 冒泡 7.在文件“局部有序”或文件长度较小的情况下,最佳内部排序的方法是()A.直接插入排序B.冒泡排序C.简单选择排序 8.下列排序算法中,()算法可能会出现下面情况:在最后一趟开始之前,所有元素都不在其最终的位置上。 A. 堆排序 B. 冒泡排序 C. 快速排序 D. 插入排序 9. 下列排序算法中,占用辅助空间最多的是:( ) A. 归并排序 B. 快速排序 C. 希尔排序 D. 堆排序10.用直接插入排序方法对下面四个序列进行排序(由小到大),元素比较次数 最少的是()。 A.94,32,40,90,80,46,21,69 B.32,40,21,46,69,94,90,80 C.21,32,46,40,80,69,90,94 D.90,69,80,46,21,32,94,40 11. 若用冒泡排序方法对序列{10,14,26,29,41,52}从大到小排序,需进行()次比较。 A. 3 B. 10 C. 15 D. 25 12.对n个记录的线性表进行快速排序为减少算法的递归深度,以下叙述正确

中南大学数据结构与算法第10章内部排序课后作业答案

第10章内部排序习题练习答案 1.以关键字序列(265,301,751,129,937,863,742,694,076,438)为例,分别写出执行以下排序算法的各趟排序结束时,关键字序列的状态。 (1) 直接插入排序(2)希尔排序(3)冒泡排序(4)快速排序 (5) 直接选择排序(6) 堆排序(7) 归并排序(8)基数排序 上述方法中,哪些是稳定的排序?哪些是非稳定的排序?对不稳定的排序试举出一个不稳定的实例。 答: (1)直接插入排序:(方括号表示无序区) 初始态: 265[301 751 129 937 863 742 694 076 438] 第一趟:265 301[751 129 937 863 742 694 076 438] 第二趟:265 301 751[129 937 863 742 694 076 438] 第三趟:129 265 301 751[937 863 742 694 076 438] 第四趟:129 265 301 751 937[863 742 694 076 438] 第五趟:129 265 301 751 863 937[742 694 076 438] 第六趟:129 265 301 742 751 863 937[694 076 438] 第七趟:129 265 301 694 742 751 863 937[076 438] 第八趟:076 129 265 301 694 742 751 863 937[438] 第九趟:076 129 265 301 438 694 742 751 863 937

(2)希尔排序(增量为5,3,1) 初始态: 265 301 751 129 937 863 742 694 076 438 第一趟:265 301 694 076 438 863 742 751 129 937 第二趟:076 301 129 265 438 694 742 751 863 937 第三趟:076 129 265 301 438 694 742 751 863 937 (3)冒泡排序(方括号为无序区) 初始态[265 301 751 129 937 863 742 694 076 438] 第一趟:076 [265 301 751 129 937 863 742 694 438] 第二趟:076 129 [265 301 751 438 937 863 742 694] 第三趟:076 129 265 [301 438 694 751 937 863 742] 第四趟:076 129 265 301 [438 694 742 751 937 863] 第五趟:076 129 265 301 438 [694 742 751 863 937] 第六趟:076 129 265 301 438 694 742 751 863 937 (4)快速排序:(方括号表示无序区,层表示对应的递归树的层数)

数据结构实验八内部排序

实验八内部排序 一、实验目的 1、掌握内部排序的基本算法; 2、分析比较内部排序算法的效率。 二、实验内容和要求 1. 运行下面程序: #include #include #define MAX 50 int slist[MAX]; /*待排序序列*/ void insertSort(int list[], int n); void createList(int list[], int *n); void printList(int list[], int n); void heapAdjust(int list[], int u, int v); void heapSort(int list[], int n); /*直接插入排序*/ void insertSort(int list[], int n) { int i = 0, j = 0, node = 0, count = 1; printf("对序列进行直接插入排序:\n"); printf("初始序列为:\n"); printList(list, n); for(i = 1; i < n; i++) { node = list[i]; j = i - 1; while(j >= 0 && node < list[j]) { list[j+1] = list[j]; --j; } list[j+1] = node; printf("第%d次排序结果:\n", count++); printList(list, n); } } /*堆排序*/ void heapAdjust(int list[], int u, int v)

数据结构 各种排序算法

数据结构各种排序算法总结 2009-08-19 11:09 计算机排序与人进行排序的不同:计算机程序不能象人一样通览所有的数据,只能根据计算机的"比较"原理,在同一时间内对两个队员进行比较,这是算法的一种"短视"。 1. 冒泡排序 BubbleSort 最简单的一个 public void bubbleSort() { int out, in; for(out=nElems-1; out>0; out--) // outer loop (backward) for(in=0; in a[in+1] ) // out of order? swap(in, in+1); // swap them } // end bubbleSort() 效率:O(N2) 2. 选择排序 selectSort public void selectionSort() { int out, in, min; for(out=0; out

swap(out, min); // swap them } // end for(out) } // end selectionSort() 效率:O(N2) 3. 插入排序 insertSort 在插入排序中,一组数据在某个时刻实局部有序的,为在冒泡和选择排序中实完全有序的。 public void insertionSort() { int in, out; for(out=1; out0 && a[in-1] >= temp) // until one is smaller, { a[in] = a[in-1]; // shift item to right --in; // go left one position } a[in] = temp; // insert marked item } // end for } // end insertionSort() 效率:比冒泡排序快一倍,比选择排序略快,但也是O(N2) 如果数据基本有序,几乎需要O(N)的时间

数据结构中的内部排序算法及性能分析

数据结构中的排序算法及性能分析 一、引言 排序(sorting )是计算机程序设计中的一种重要操作,它的功能是将一个数据元素(或记录)的任意序列,重新排列成一个按关键字有序的序列。为了查找方便通常希望计算机中的表是按关键字有序的。因为有序的顺序表可以使用查找效率较高的折半查找法。 在此首先明确排序算法的定义: 假设n 个记录的序列为 { 1R ,2R ,…n R } (1) 关键字的序列为: { 1k ,2k ,…,n k } 需要确定1,2,…,n 的一种排列:12,n p p p ,…,使(1)式的序列成为一个按关键字有序的序列: 12p p pn k k k ≤≤≤… 上述定义中的关键字Ki 可以是记录Ri (i=1,2,…,n )的主关键字,也可以是记录i R 的次关键字,甚至是若干数据项的组合。若在序列中有关键字相等的情况下,即存在i k =j k (1,1,i n j n i j ≤≤≤≤≠),且在排序前的序列中i R 领先于j R 。若在排序后的序列中Ri 仍领先于j R ,则称所用的排 序方法是稳定的;反之若可能使排序后的序列中j R 领先于i R ,则称所用的排序方法是不稳定的。 一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法的时间与算法中语句执行次数成正比,那个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度,记为T(n)。 在刚才提到的时间频度中,n 称为问题的规模,当n 不断变化时,时间频度T(n)也会不断变化。但有时我们想知道它变化时呈现什么规律。为此,我们引入时间复杂度概念。 一般情况下,算法中基本操作重复执行的次数是问题规模n 的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n 趋近于无穷大时,T (n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。

数据结构各种排序方法的综合比较

数据结构各种排序方法的综合比较 结论: 排序方法平均时间最坏时间辅助存储 简单排序O(n2) O(n2) O(1) 快速排序O(nlogn)O(n2)O(logn) 堆排序O(nlogn)O(nlogn)O(1) 归并排序O(nlogn)O(nlogn)O(n) 基数排序O(d(n+rd))O(d(n+rd))O(rd) PS:直接插入排序、冒泡排序为简单排序,希尔排序、堆排序、快速排序为不稳定排序 一、时间性能 按平均的时间性能来分,有三类排序方法: 时间复杂度为O(nlogn)的方法有:快速排序、堆排序和归并排序,其中以快速排序为最好;时间复杂度为O(n2)的有:直接插入排序、起泡排序和简单选择排序,其中以直接插入为 最好,特别是对那些对关键字近似有序的记录序列尤为如此; 时间复杂度为O(n)的排序方法只有,基数排序。 当待排记录序列按关键字顺序有序时,直接插入排序和起泡排序能达到O(n)的时间复杂度;而对于快速排序而言,这是最不好的情况,此时的时间性能蜕化为O(n2),因此是应该尽量避免的情况。简单选择排序、堆排序和归并排序的时间性能不随记录序列中关键字的分布而改变。 二、空间性能 指的是排序过程中所需的辅助空间大小。 1. 所有的简单排序方法(包括:直接插入、起泡和简单选择)和堆排序的空间复杂度为O(1); 2. 快速排序为O(logn),为栈所需的辅助空间; 3. 归并排序所需辅助空间最多,其空间复杂度为O(n ); 4.链式基数排序需附设队列首尾指针,则空间复杂度为O(rd)。 三、排序方法的稳定性能 1. 稳定的排序方法指的是,对于两个关键字相等的记录,它们在序列中的相对位置,在排序之前和经过排序之后,没有改变。 2. 当对多关键字的记录序列进行LSD方法排序时,必须采用稳定的排序方法。 3. 对于不稳定的排序方法,只要能举出一个实例说明即可。 4. 快速排序和堆排序是不稳定的排序方法

数据结构课程设计(内部排序算法比较 C语言)

课题:内部排序算法比较 第一章问题描述 排序是数据结构中重要的一个部分,也是在实际开发中易遇到的问题,所以研究各种排算法的时间消耗对于在实际应用当中很有必要通过分析实际结合算法的特性进行选择和使用哪种算法可以使实际问题得到更好更充分的解决!该系统通过对各种内部排序算法如直接插入排序,冒泡排序,简单选择排序,快速排序,希尔排序,堆排序、二路归并排序等,以关键码的比较次数和移动次数分析其特点,并进行比较,估算每种算法的时间消耗,从而比较各种算法的优劣和使用情况!排序表的数据是多种不同的情况,如随机产生数据、极端的数据如已是正序或逆序数据。比较的结果用一个直方图表示。 第二章系统分析 界面的设计如图所示: |******************************| |-------欢迎使用---------| |-----(1)随机取数-------|

|-----(2)自行输入-------| |-----(0)退出使用-------| |******************************| 请选择操作方式: 如上图所示该系统的功能有: (1):选择 1 时系统由客户输入要进行测试的元素个数由电脑随机选取数字进行各种排序结果得到准确的比较和移动次数并打印出结果。 (2)选择 2 时系统由客户自己输入要进行测试的元素进行各种排序结果得到准确的比较和移动次数并打印出结果。 (3)选择0 打印“谢谢使用!!”退出系统的使用!! 第三章系统设计 (I)友好的人机界面设计:(如图3.1所示) |******************************| |-------欢迎使用---------| |-----(1)随机取数-------| |-----(2)自行输入-------| |-----(0)退出使用-------| |******************************| (3.1) (II)方便快捷的操作:用户只需要根据不同的需要在界面上输入系统提醒的操作形式直接进行相应的操作方式即可!如图(3.2所示) |******************************| |-------欢迎使用---------| |-----(1)随机取数-------| |-----(2)自行输入-------| |-----(0)退出使用-------|

数据结构-各类排序算法总结

数据结构-各类排序算法总结 原文转自: https://www.wendangku.net/doc/5c6871749.html,/zjf280441589/article/details/38387103各类排序算法总结 一. 排序的基本概念 排序(Sorting)是计算机程序设计中的一种重要操作,其功能是对一个数据元素集合或序列重新排列成一个按数据元素 某个项值有序的序列。 有n 个记录的序列{R1,R2,…,Rn},其相应关键字的序列是{K1,K2,…,Kn},相应的下标序列为1,2,…,n。通过排序,要求找出当前下标序列1,2,…,n 的一种排列p1,p2,…,pn,使得相应关键字满足如下的非递减(或非递增)关系,即:Kp1≤Kp2≤…≤Kpn,这样就得到一个按关键字有序的记录序列{Rp1,Rp2,…,Rpn}。 作为排序依据的数据项称为“排序码”,也即数据元素的关键码。若关键码是主关键码,则对于任意待排序序列,经排序后得到的结果是唯一的;若关键码是次关键码,排序结果可

能不唯一。实现排序的基本操作有两个: (1)“比较”序列中两个关键字的大小; (2)“移动”记录。 若对任意的数据元素序列,使用某个排序方法,对它按关键码进行排序:若相同关键码元素间的位置关系,排序前与排序后保持一致,称此排序方法是稳定的;而不能保持一致的排序方法则称为不稳定的。 二.插入类排序 1.直接插入排序直接插入排序是最简单的插入类排序。仅有一个记录的表总是有序的,因此,对n 个记录的表,可从第二个记录开始直到第n 个记录,逐个向有序表中进行插入操作,从而得到n个记录按关键码有序的表。它是利用顺序查找实现“在R[1..i-1]中查找R[i]的插入位置”的插入排序。

数据结构第九、十章 作业答案

第九章 查找 一、填空题 1. 在数据的存放无规律而言的线性表中进行检索的最佳方法是 顺序查找(线性查找) 。 2. 线性有序表(a 1,a 2,a 3,…,a 256)是从小到大排列的,对一个给定的值k ,用二分法检索 表中与k 相等的元素,在查找不成功的情况下,最多需要检索 8 次。设有100个结点,用二分法查找时,最大比较次数是 7 。 3. 假设在有序线性表a[1..20]上进行折半查找,则比较一次查找成功的结点数为1;比较两次查找成功的结点数为 2 ;比较四次查找成功的结点数为 8 ,其下标从小到大依次是1,3,6,8,11,13,16,19______,平均查找长度为 3.7 。 解:显然,平均查找长度=O (log 2n )<5次(25)。但具体是多少次,则不应当按照公式 )1(log 12++=n n n ASL 来计算(即(21×log 221)/20=4.6次并不正确!)。因为这是在假设n =2m -1 的情况下推导出来的公式。应当用穷举法罗列: 全部元素的查找次数为=(1+2×2+4×3+8×4+5×5)=74; ASL =74/20=3.7 !!! 4.折半查找有序表(4,6,12,20,28,38,50,70,88,100),若查找表中元素20,它 将依次与表中元素 28,6,12,20 比较大小。 5. 在各种查找方法中,平均查找长度与结点个数n 无关的查找方法是 散列查找 。 6. 散列法存储的基本思想是由 关键字的值 决定数据的存储地址。 7. 有一个表长为m 的散列表,初始状态为空,现将n (n

南邮数据结构上机实验四内排序算法的实现以及性能比较

实验报告 (2015 / 2016学年第二学期) 课程名称数据结构A 实验名称内排序算法的实现以及性能比较 实验时间2016 年 5 月26 日 指导单位计算机科学与技术系 指导教师骆健 学生姓名耿宙班级学号B14111615 学院(系) 管理学院专业信息管理与信息系统

—— 实习题名:内排序算法的实现及性能比较 班级 B141116 姓名耿宙学号 B14111615 日期2016.05.26 一、问题描述 验证教材的各种内排序算法,分析各种排序算法的时间复杂度;改进教材中的快速排序算法,使得当子集合小于10个元素师改用直接插入排序;使用随即数发生器产生大数据集合,运行上述各排序算法,使用系统时钟测量各算法所需的实际时间,并进行比较。系统时钟包含在头文件“time.h”中。 二、概要设计 文件Sort.cpp中包括了简单选择排序SelectSort(),直接插入排序InsertSort(),冒泡排序BubbleSort(),两路合并排序Merge(),快速排序QuickSort()以及改进的快速排序GQuickSort()六个内排序算法函数。主主函数main的代码如下图所示: 三、详细设计 1.类和类的层次设计 在此次程序的设计中没有进行类的定义。程序的主要设计是使用各种内排序算法对随机 生成的数列进行排列,并进行性能的比较,除此之外还对快速排序进行了改进。下图为主函 数main的流程图:

——

main() 2.核心算法 1)简单选择排序: 简单选择排序的基本思想是:第1趟,在待排序记录r[1]~r[n]中选出最小的记录,将它与r[1]交换;第2趟,在待排序记录r[2]~r[n]中选出最小的记录,将它与r[2]交换;以此类推,第i趟在待排序记录r[i]~r[n]中选出最小的记录,将它与r[i]交换,使有序序列不断增长直到

目前最完整的数据结构1800题包括完整答案 第十章 排序

第10章排序 一、选择题 1.某内排序方法的稳定性是指( )。【南京理工大学 1997 一、10(2分)】A.该排序算法不允许有相同的关键字记录 B.该排序算法允许有相同的关键字记录 C.平均时间为0(n log n)的排序方法 D.以上都不对 2.下面给出的四种排序法中( )排序法是不稳定性排序法。【北京航空航天大学 1999 一、 10 (2分)】 A. 插入 B. 冒泡 C. 二路归并 D. 堆积 3.下列排序算法中,其中()是稳定的。【福州大学 1998 一、3 (2分)】 A. 堆排序,冒泡排序 B. 快速排序,堆排序 C. 直接选择排序,归并排序 D. 归并排序,冒泡排序 4.稳定的排序方法是()【北方交通大学 2000 二、3(2分)】 A.直接插入排序和快速排序 B.折半插入排序和起泡排序 C.简单选择排序和四路归并排序 D.树形选择排序和shell排序 5.下列排序方法中,哪一个是稳定的排序方法?()【北方交通大学 2001 一、8(2分)】 A.直接选择排序 B.二分法插入排序 C.希尔排序 D.快速排序6.若要求尽可能快地对序列进行稳定的排序,则应选(A.快速排序 B.归并排序 C.冒泡排序)。 【北京邮电大学 2001 一、5(2分)】 7.如果待排序序列中两个数据元素具有相同的值,在排序前后它们的相互位置发生颠倒,则称该排序算法是不稳定的。()就是不稳定的排序方法。【清华大学 1998 一、3 (2分)】 A.起泡排序 B.归并排序 C.Shell排序 D.直接插入排序 E.简单选择排序 8.若要求排序是稳定的,且关键字为实数,则在下列排序方法中应选()排序为宜。 A.直接插入 B.直接选择 C.堆 D.快速 E.基数【中科院计算所 2000 一、5(2分)】 9.若需在O(nlog2n)的时间内完成对数组的排序,且要求排序是稳定的,则可选择的排序方法是()。 A. 快速排序 B. 堆排序 C. 归并排序 D. 直接插入排序【中国科技大学 1998 二、4(2分)】【中科院计算所 1998 二、4(2分)】 10.下面的排序算法中,不稳定的是()【北京工业大学 1999 一、2 (2分)】 A.起泡排序 B.折半插入排序 C.简单选择排序 D.希尔排序 E.基数排序 F.堆排序。 11.下列内部排序算法中:【北京工业大学 2000 一、1 (10分每问2分)】A.快速排序 B.直接插入排序 C. 二路归并排序 D. 简单选择排序 E. 起泡排序F. 堆排序 (1)其比较次数与序列初态无关的算法是()(2)不稳定的排序算法是()(3)在初始序列已基本有序(除去n个元素中的某k个元素后即呈有序,k<

数据结构课程设计(内部排序算法比较-C语言)

` 课题:内部排序算法比较… 第一章问题描述 排序是数据结构中重要的一个部分,也是在实际开发中易遇到的问题,所以研究各种排算法的时间消耗对于在实际应用当中很有必要通过分析实际结合算法的特性进行选择和使用哪种算法可以使实际问题得到更好更充分的解决!该系统通过对各种内部排序算法如直接插入排序,冒泡排序,简单选择排序,快速排序,希尔排序,堆排序、二路归并排序等,以关键码的比较次数和移动次数分析其特点,并进行比较,估算每种算法的时间消耗,从而比较各种算法的优劣和使用情况!排序表的数据是多种不同的情况,如随机产生数据、极端的数据如已是正序或逆序数据。比较的结果用一个直方图表示。 第二章系统分析 界面的设计如图所示: !

|******************************| |-------欢迎使用---------| |-----(1)随机取数-------| |-----(2)自行输入-------| |-----(0)退出使用-------| |******************************| ~ 请选择操作方式: 如上图所示该系统的功能有: (1):选择 1 时系统由客户输入要进行测试的元素个数由电脑随机选取数字进行各种排序结果得到准确的比较和移动次数并打印出结果。 (2)选择 2 时系统由客户自己输入要进行测试的元素进行各种排序结果得到准确的比较和移动次数并打印出结果。 (3)选择0 打印“谢谢使用!!”退出系统的使用!! 、 第三章系统设计 (I)友好的人机界面设计:(如图所示) |******************************| |-------欢迎使用---------| |-----(1)随机取数-------| |-----(2)自行输入-------| |-----(0)退出使用-------| |******************************| : ()

数据结构第10章 内部排序习题

第10章内部排序 一、单项选择题 1.若要尽可能地完成对实数数组得排序,且要求排序是稳定的,则应选______。 A.快速排序 B.堆排序 C.归并排序 D.基数排序 2.如果只想得到1000个元素组成的序列中第5个最小元素之前的部分排序的序列,用______方法最快。 A.冒泡排序 B.快速排序 C.希尔排序 D.堆排序 E.简单选择排序 3.将两个各有N个元素的有序表归并成一个有序表,其最小的比较次数是______。 A.N B.2N-1 C.2N D.N-1 4.就平均性能而言,目前最好的内排序方法是______排序法。 A.冒泡排序 B.希尔排序 C.插入排序 D.快速排序 5.若需要在O(nlog2n)的时间内完成对数据的排序,且要求排序是稳定的,则可选择的排序方法是______。 A.快速排序 B.堆排序 C.归并排序 D.直接插入排序 6.下面给出的四种排序方法中,排序过程中的比较次数与排序方法无关的是______。 A.选择排序法 B.插入排序法 C.快速排序法 D.堆排序法 7.数据序列{8,9,10,4,5,6,20,1,2}只能是下列排序算法中的()的两趟排序后的结果。

A.选择排序 B.冒泡排序 C.插入排序 D.堆排序 8.对一组数据{84,47,25,15,21}排序,第一趟的排序结果为15,47,25,84,21;第二趟排序的结果为15,21,25,84,47;第三趟排序的结果为15,21,25,47,84,则采用排序的方法是______。 A.选择排序 B.冒泡排序 C.快速排序 D.插入排序 9.下列排序算法中______排序在一趟结束后不一定能选出一个元素放在其最终位置上。 A.选择排序 B.冒泡排序 C.归并排序 D.堆排序 10.在下面的排序方法中,辅助空间为O(n)的是______。 A.希尔排序 B.堆排序 C.选择排序 D.归并排序 11.直接插入排序在最好的情况下的时间复杂度为______。 A.O(log2n) B.O(n) C. O(nlog2n) D.O(n2) 12.若用冒泡排序方法对序列{10,14,26,29,41,52}从大到小排序,需进行______次比较。 A.3 B.10 C.15 D.25 13.对序列{15,9,7,8,20,-1,4}用希尔排序方法排序,经过一趟后序列变为{15,-1,4,8,20,9,7},则该次采用的增量是 ______。 A.1 B.4 C.3 D.2 14.对下列关键字序列用快速排序法进行排序,速度最快的情形是

数据结构严蔚敏版第十章答案

第十章内部排序 10.23 void Insert_Sort1(SqList &L)//监视哨设在高下标端的插入排序算法 { k=L.length; for(i=k-1;i;--i) //从后向前逐个插入排序 if(L.r[i].key>L.r[i+1].key) { L.r[k+1].key=L.r[i].key; //监视哨 for(j=i+1;L.r[j].key>L.r[i].key;++j) L.r[j-1].key=L.r[j].key; //前移 L.r[j-1].key=L.r[k+1].key; //插入 } }//Insert_Sort1 10.24 void BiInsert_Sort(SqList &L)//二路插入排序的算法 { int d[MAXSIZE]; //辅助存储 x=L.r.key;d=x; first=1;final=1; for(i=2;i<=L.length;i++) { if(L.r[i].key>=x) //插入前部 { for(j=final;d[j]>L.r[i].key;j--) d[j+1]=d[j]; d[j+1]=L.r[i].key; final++; } else //插入后部 { for(j=first;d[j]

数据结构第九章排序习题及答案

习题九排序 一、单项选择题 1.下列内部排序算法中: A.快速排序 B.直接插入排序 C. 二路归并排序 D. 简单选择排序 E. 起泡排序 F. 堆排序 (1)其比较次数与序列初态无关的算法是() (2)不稳定的排序算法是() (3)在初始序列已基本有序(除去n个元素中的某k个元素后即呈有序,k<

数据结构内部排序比较分析

数据结构实训报告 实验名称:数据结构 题目:内部排序比较 专业:班级:姓名:学号:实验日期: 一、实验目的:通过随机数据比较各内部排序算法的关键字比较次数和关键字移动的次数,以取得直观感受。训练学生综合设计算法能力。 二、实验要求:待排序长度不小于100,数据可有随机函数产生,用五组不同输入数据做比较,比较的指标为关键字参加比较的次数和关键字移动的次数;对结果做简单的分析,包括各组数据得出结果的解释;设计程序用顺序存储。 三、实验内容 1、待排序表的表长不小于100;至少要用5组不同的输入数据作比较;排序算法不少于3种; 2 、待排序的元素的关键字为整数; 3 、比较的指标为有关键字参加的比较次数和关键字的移动次数(关键字交换以3次计)。 4、演示程序以人机对话的形式进行。每次测试完毕显示各种比较指标的列表,以便比较各种排序的优劣。 5、最后要对结果作简单的分析。 6、测试数据:用伪随机数产生程序产生。 四、实验编程结果或过程: 1. 数据定义 typedef struct { KeyType key; }RedType; typedef struct { RedType r[MAXSIZE+1]; int length; }SqList; 2. 函数如下,代码详见文件“排序比较.cpp” int Create_Sq(SqList &L) void Bubble_sort(SqList &L)//冒泡排序void InsertSort(SqList &L)//插入排序 void SelectSort(SqList &L) //简单选择排序int Partition(SqList &L,int low,int high) void QSort(SqList &L,int low,int high)//递归形式的快速排序算法 void QuickSort(SqList &L) void ShellInsert(SqList &L,int dk)//希尔排序 void ShellSort(SqList &L,int dlta[ ]) 3. 运行测试结果,运行结果无误,如下图语速个数为20

数据结构内排序实验报告

一、实验目的 1、了解内排序都是在内存中进行的。 2、为了提高数据的查找速度,需要对数据进行排序。 3、掌握内排序的方法。 二、实验内容 1、设计一个程序e xp10—1.cpp实现直接插入排序算法,并输出{9,8,7,6,5,4,3,2,1,0}的排序 过程。 (1)源程序如下所示: //文件名:exp10-1.cpp #include #define MAXE 20 //线性表中最多元素个数 typedef int KeyType; typedef char InfoType[10]; typedef struct //记录类型 { KeyType key; //关键字项 InfoType data; //其他数据项,类型为InfoType } RecType; void InsertSort(RecType R[],int n) //对R[0..n-1]按递增有序进行直接插入排序 { int i,j,k; RecType temp; for (i=1;i=0 && temp.key

相关文档
相关文档 最新文档