文档库 最新最全的文档下载
当前位置:文档库 › 桩基计算理论

桩基计算理论

桩基计算理论
桩基计算理论

1、在竖向荷载作用下,单桩受力破坏全过程中,破坏过程与桩土界面特性有何关系?

答:单桩的破坏形态:挠曲,刺入、剪切和失稳。与承载力、桩长、桩型和桩距、施工方法有关。

桩土界面特征就是埋没于土中的桩与桩周土接触面的特征。桩土界面特性包括桩底和桩侧的性质。

首先,描述桩土界面特征有一个参量,为粗糙程度系数,他的含义为桩土之间抗剪强度与庄周土抗剪强度之比。公式Fr=Csp/Cs,这一数值分别介于0~1之间,经试验表明:桩身与周围土体接触面越光滑,即粗糙程度系数越小,桩的竖向承载力越小。反之,桩身与土接触越粗糙,桩的承载力就越大。

其次,桩与土接触面粗糙度越大,则桩身能够承受的侧面剪切应力峰值越大,在破坏时桩身剪应力残余强度越大。反之,桩与土接触面越光滑,桩身能够承受的剪应力峰值与残余强度越小。

第三,随着接触面粗糙程度的提高,强度峰值所产生的跨越位移区间增大,因此,粗糙程度越大时,接触面之间不会发生突然破坏。反之,强度峰值与参与值的跨越位移区间较小,接触面有可能在剪切强度较小的时候突然破坏。

2、竖向荷载作用下在桩尖附近有一层软弱下卧层时,如何确定单桩承载力?需要考虑哪些因素?

答:地基由多层土组成时,持力层以下存在容许承载力小于持力层容许承载力的土层时,这样的土层叫做软弱下卧层。

考虑桩尖距软弱下卧层的距离和桩的承载力大

小确定是否穿过软弱下卧层。下卧层的厚薄对桩

承载力的影响很大,如果下卧层距离桩尖很远则

可以当做没有软弱下卧层考虑。

桩基规范(2008)关于软弱下卧层验算的条文说

明中有这样一条:(1)验算范围。规定在桩端平面

以下受力层范围内存在低于持力层承载力1/3的

软弱下卧层。实际工程持力层以下存在相对软弱

土层是常见现象,只有当强度相差过大时才有必

要验算。

当软弱下卧层距桩端较近时对单桩承载力的影

响较大,一般说,桩进入持力层越深,承载力越

高,但有一个临界深度的问题,超过临界深度以

后承载力不再增大;如果下面有软弱层,那么进入持力层太深了,桩端与软弱层的距离近了,会使承载力降低;因此在桩基设计时要考虑这个影响,设置桩端标高要合适,将这种影响降到比较小的程度。进入持力层不能太深,不是越深越好。这种影响一般来说与软弱层的厚度的定量关系不是非常明显;二是对桩基沉降的影响,这种影响与软弱层厚度的关系比较明显,很薄的软弱层,影响沉降的量不会太大,通过沉降计算可以得到其定量的影响程度,判断是否有危害性。此外,还与软弱下卧层本身的承载力、桩身材料、桩承载力和桩周摩擦力、桩端承载力等有关。在一定条件下可参照桩基规范2008考虑是否穿过下卧层。

3、如何考虑桥梁桩基设计的安全储备问题?主要从哪些方面考虑?

答:桩侧阻力是桩基竖向承载力的重要组成部分。合理确定桩侧阻力是准确计算桩基承载力

的前提。可以从桩型、桩的承载力、桩长、桩径和截面形式,桩的强度指标(E\Q\I l)以及结合工程试验和工程经验来确定桥梁桩的安全储备。也要通过详细的地质勘查等手段来计算出地基的极限承载力。

4、什么是混合桩概念?混合桩刚度与荷载有何关系?

答:混合桩:就是假定当桩受力时,桩周围一定范围内的土将牢固的黏附在桩身随桩身一起移动,这层土与桩身一起组成的混合体即为混合桩(书)。混合桩的模式反应了不同粗糙程度系数,桩受力和变形的特征。混合桩的刚度并非一个固定的常数,而是一个随桩顶荷载,桩顶沉降,桩长桩径桩身弹性模量及传递函数类型等诸多因素不同而改变的量。

1、桩长不同时,刚度与荷载的关系:随着桩顶荷载或桩顶沉降的增大,单桩轴向刚度逐渐减小。但轴向刚度随桩顶荷载的变化趋势又随桩长的不同而不同。当桩长较大时可分为三个阶段:1、直线阶段:桩的轴向刚度随桩顶荷载的增加呈线性减小。

2、曲线阶段:桩的轴向刚度随桩顶荷载的增加迅速变小。

3、桩的轴向刚度随桩顶荷载的增加逐渐趋于常数。相对于长桩而言,短桩的轴向刚度随桩顶荷载的增加而减小的更快更多。

2、桩径的影响:随着桩直径的增加,桩的轴向刚度随桩顶沉降的增加而减小的趋势逐渐加快。但桩的轴向刚度随桩顶荷载的增大而减小的速度似乎改变不大。不同桩径的轴向刚度随桩顶荷载的增大而减小的趋势基本相同。

3、桩身弹性模量Ep响:随着桩身模量Ep的增大,桩的轴向刚度K随桩顶荷载Q的增加而减小的趋势逐渐加大。但最后不同桩身弹性量的K-Q曲线最终趋于同一曲线。变化趋势趋于一致。

4、桩身传递函数的影响:用不同的传递函数,桩侧阻力发挥的速度就不同,侧阻力的发挥越快,最初的轴向刚度K也就越大。轴向刚度随桩顶荷载Q的增加而减小的速度也就越快。

5、推力桩受力破坏的全过程分为哪些阶段?桩和土性状在全过程中如何变化?

答:插入土中的推力桩,在地面处受垂直于桩轴的横向力Q0和力矩M0的作用。通常可实测得Q与桩在地面处的挠度y0的关系如下图:

一、OA阶段(弹性阶段)通过原点,接近直线,可以接近于正比例关系的幂函数表示Q O=T1Y O b. T1是系数,b是指数,接近于1.此时桩的变形很小,桩Y O和桩周土壤都在弹性或近似于弹性的阶段工作。卸载后,桩土体系的变形基本上可全部恢复。

二、AB阶段Q0与y0的关系已进入非线性阶段。此阶段虽处在弹性状态工作。但桩周土壤已向上而下产生了小范围的塑性变形,对于钢桩预应力混凝土桩,以及有较强配筋的钢筋混凝土桩,在此阶段会出现程度不严重的非线性现象,主要是由于地面附近小范围内土体抗力的非线性行为所引起的,对于钻孔灌注少筋混凝土桩,此阶段在最大弯矩截面出现了裂缝。

三、末端BC阶段表面(塑性变形阶段)此阶段Q0与y0的非线性程度大大增加。此时可用Q O=T2Y O a幂函数拟合。此阶段土壤的塑性变形区从地面起沿桩身已经越来越大,致使地面处的位移值随横向应力Q0的增加发展的很快,已不能满足上不结构的荷载要求,对于钻孔灌注桩桩身截面已经有了很大的不容许的裂纹。

推力桩的破坏形式一般分为:剪断、推歪、折断和推到。桩顶位移限制一般的为10mm,重要的为6mm。

6、如何计算摩擦桩的沉降问题?主要从哪些方面考虑?

答:摩擦桩的沉降包括桩身材料弹性压缩,地基产生的弹性变形和地基的压实变形。但主要是考虑两方面桩身混凝土自身的弹性压缩Se和桩端以下土体所产生的桩端沉降S b。单桩沉降S0=Se+S b。常用的计算方法有荷载传递法;剪切位移法;弹性理论法;分层总和法;简化方法和数值计算法。

7、如何考虑竖向荷载下群桩桩间土及桩长度与承载力的关系研究?

答:要确定群桩的承载力就要找到单根桩与群桩承载力的关系。因为在竖向荷载作用下,桩间土,桩长都会影响到单根桩的承载力,进而影响群桩的承载力。

桩长↑-承载力↑—桩顶沉降↓

8、什么是推力桩的综合刚度?提高综合刚度的措施有哪些?

答:推力桩的综合刚度原理即考虑桩土共同作用后桩的计算刚度,它不仅与桩的材料、桩的截面几盒形状与尺寸有关,而且与特定荷载的大小和比值及桩土的物理性质,几何特性有关,它反映了桩土共同作用的一个待定参量。提高综合刚度的措施有:

一、提高桩的刚度和强度:采用较高标号的混凝土预制桩;采用较高配筋率和较小直径的主钢筋;适当选择桩径及合理的布置桩纵向钢筋。二、改善桩身的构造措施:采用刚度交大的承台或帽梁;将各桩顶用连系梁链接起来;适当增加桩身上部8d-12d范围内的桩径;桩身上部侧向加设翼板;增加承台底承阻力;保证桩接头刚度。三、调高桩周围土的抗力(最有效):在桩周围挖3d-6d的圆形坑,填以级配沙石或灰土等低压缩性的材料;在桩身上部4d-8d 范围内将桩侧土挖除,浇筑素混凝土;对低桩承台,承台外侧的回填土可用灰土或炉渣、沙石等材料。

9、什么是推力桩的双参数法?如何确定双参数?

考计算题!

10、推力桩的群桩效率与哪些因素有关,如何计算?

答:群桩效率一般指群桩水平承载力和单桩承载力与桩数乘积之比,也即是如果知道了单桩的水平承载力,就可以根据桩数和群桩效率很方便求出群桩水平承载力。用公式

Hg=mnH0ηH0 Hg表示单桩与群桩承载力。Mn表示群桩纵向和横向桩数η表示群桩效率

钻孔灌注桩设计说明

钻孔灌注桩设计说 、一般说 【一】本说明为通用说明,说明中凡有”符号者适用于本设计 【二】本说明及附图中尺寸均以毫米为单位,标高以米为单位 0.000.004.35米为室内地面标高【三】本工程的绝对高程 设计依 采用中华人民共和国现行国家规程进行设计,主要有 《建筑地基基础设计规范GB5000200 《建筑桩基技术规范JGJ9200 《建筑桩基检测技术规范JGJ10200 、桩体施工说 【一】本工程根据宁波冶金勘察设计研究股份有限公司的本工程《岩土工程勘察报告进行设计,日期201月 【二】根据岩土工程勘察报告,本工程采用钻孔成孔灌注桩,桩长约4~7米 以-层粉土及-层粉土做桩端持力层,桩端以桩长控制 【三】本工程设计转孔灌注桩为端承桩,成孔的控制深度应符合以下要求 1图纸中设计桩长是根据地质资料估计的桩端的终孔标高应以持力层岩样和 孔进尺为主要依据,以设计桩长为参考依据 2桩孔成形后必将孔底沉渣清理干净,清空后孔底沉渣厚度不得大5,桩孔 检合格后立即安放钢筋笼,灌注水下混凝土 【四】本工程设计钻孔灌注桩为摩擦桩,成孔的控制深度应符合以下要求 1施工必须保证图纸设计桩长桩端终孔标高的决定一设计桩长为主,以成孔 尺速度为辅 2桩孔成形后必须讲孔底沉渣晴朗干净,清孔后孔底沉渣厚度不得大15, 孔质检合格后立即安放钢筋笼,灌注水下混凝土 【五】本工程设计钻孔灌注桩为摩擦—端承桩,成孔的控制深度应符合以下要求 1施工必须保证图纸设计桩长桩端终孔标高的决定一设计桩长为主,以成孔 尺速度为辅 2桩孔成形后必须讲孔底沉渣晴朗干净,清孔后孔底沉渣厚度不得大10, 孔质检合格后立即安放钢筋笼,灌注水下混凝土 【六】施工要求 1采用泥浆护壁成孔时,施工期间护筒内泥浆面应高于地下水1.米以上, 受水位涨落影响时,泥浆面应高出最高水1.米以上,泥浆制备和处理详情 JGJ94-2006.3.条6.3.条 2冲击成孔及钻孔成孔灌注桩的机具选择、护筒的埋设、冲(钻)孔施工要领 要求应遵照规JGJ94-200中有关具体条文 】钻孔成孔灌注桩详6.3.条6.3.条 】冲击成孔灌注桩详6.3.1条6.3.1条 3当清孔指标可能超过规定值时,应采取桩端后筑浆技术,清孔后应立即浇灌

桩基设计计算公式.doc

单桩承载力设计计算 ( 建筑桩基技术规范 08版) ⒈单桩竖向极限承载力标准值计算 根据《建筑桩基技术规范》 (JGJ94—2008), 单桩竖向极限承载力标准值按下列公式计算: Q uk u q ski l i q pk A p 式中: Quk —单桩竖向极限承载力标准值 (kN); u —桩身周长 (m); qski —单桩第 i 层土极限侧阻力标准值 (kPa); li —第 i 层土厚度 (m); qpk —持力层端阻力极限标准值 (kPa); Ap —桩身截面积 (m2)。 Quk u qski li qpk Ap 11345.54771 3.76991118 70 1.6 9309.7957 90 2.8 70 0.9 30 0.7 155 5.3 120 10 1800 1.130973355 2469.5 2035.75204 桩长 21.3 m 2 桩身强度设计值计算 N ≤0.9 φ (Apfc+ A ’ sf ’ s) 式中 : N —轴向压力设计值 (kN); φ—钢筋混凝土构件的稳定系数,根据《混凝土结构设计规范》 (GB50010— 2002)第7.3.1条表 7.3.1; fc ——混凝土轴心抗压强度设计值; Ap ——构件截面面积; f ’s ——钢筋 (HRB335) 轴心抗压强度设计值; A ’s ——全部纵向钢筋的截面面积。 N(KN) φ fc (kN/m2)Ap(m2) f ’s(kN/m2) A ’s(m2) 桩直径 (m2) 11518.96362 0.7 11900 1.130973355 300000 0.016084954 1.2 标准值 19006.29 KN 3. 单桩水平承载力特征值计算 (配筋率不小于 0.65%) γH R h I W d/2 EI 0.85E c I 0(钢筋混凝)土桩 I 0 圆形截面 Wd 00/2() I 0 矩形截面 Wb 00/2()

高层公寓楼桩基础设计说明

高层公寓楼桩基础设计 姓名: 班级: 学号: 指导老师:

目录 一、工程概况---------------------------------------------2 二、岩土工程勘察-----------------------------------------2 三、桩基础方案选择---------------------------------------4 四、桩型、桩长和桩的截面尺寸的选择-----------------------5 五、桩基承载力验算(标准组合)---------------------------9 六、桩基沉降验算(准永久荷载)---------------------------12 七、桩身截面强度验算(基本组合)-------------------------15 八、桩基承台验算(基本组合)-----------------------------18 九、参考规及资料---------------------------------------23 十、施工图-----------------------------------------------23 一、工程概况 拟建场地及其周围,除中细砂层为液化土外,未发现有影响场地

稳定性的其他不良地质作用,也无洞穴、孤石、管线临空面等对工程不利的地下埋藏物,场地稳定,适宜拟建筑物建设。 二、岩土工程勘察 根据钻探揭露,场地土层由素填土①、淤泥②、粉质粘土③、中细沙④、残积土⑤、全风化花岗岩⑥、强风化花岗岩⑦和中风化花岗岩⑧组成。其中: 素填土为新近填土,松散。工程地质性能差; 淤泥为流塑状,高压缩性,力学强度低,工程地质性能一般; 粉质粘土呈可塑状,中压缩性,力学强度和工程地质性能一般; 中细沙呈松散-稍密,饱和,局部会产生轻微液化,力学强度和工程地质性能一般; 残积土呈可塑、硬塑状,中的-低压缩性,力学强度和工程地质性能一般; 全风化花岗岩层力学强度和工程地质性能中等; 强风化花岗岩层力学强度高,工程地质性能良好; 中风化花岗岩力学强度高,工程地质性能良好,未钻穿。 综上所述,场地岩土体种类较多,但土层分布均匀,除中细沙局部会产生轻微液化外,各土层工程地质性能变化不大,场地综合性较好。 三、桩基础方案选择 拟建高成建筑物,场地上部土层承载力较低,不具备天然地基的

桩基计算公式

桩基计算公式 混凝土量: 1、挖孔深度=设计桩长+空头高度+锅底 2、有效桩长=挖孔深度-空头高度=设计桩长+锅底 3、直筒深度=挖孔深度-扩高-圆柱高-锅底=设计桩长+空头高度-扩 高-圆柱高 4、大头圆柱=1/4×3.14×扩大头直径(D)×圆柱高(h1) 5、扩大头量=1/12×3.14×(扩高(h)+圆柱高(h1))×(D2+d2+dD)+大头圆柱 6、挖孔半径=(桩径+2a1+2a2)÷2 7、挖孔截面积=3.14×挖孔半径2 8、挖孔量=挖孔截面积×直筒深度+扩大头量 9、桩芯半径=(桩径+2a2)÷2 10、桩芯截面积=3.14×桩芯半径2 11、桩芯砼量=桩芯截面积×(直筒深度-空头深度+超灌深度)+扩大头量 12、护壁截面积=挖孔截面积-桩芯截面积 13、护壁砼量=护壁截面积×直筒深度 14、空头土方=桩芯截面积×空头高度 15、入岩量=挖孔截面积×(入岩直筒深度+扩大头量) 16、空头高度=场地标高-桩顶设计标高 17、设计桩长=承台顶设计标高-桩底设计标高-承台高+桩身锚入承台

的深度 18、实际桩长=实测孔深(挖孔深度)-空头高度 19、桩顶高程=设计桩长+设计桩底高程 20、桩底高程=桩顶高程-实际桩长 21、孔口高程=桩底高程+实测孔深 钢筋量: kg/m=0.00617×钢筋直径2 1、主筋质量:(35D钢筋锚入承台的深度+有效桩长)×kg/m×根数 2、非加密区螺旋筋质量:3.14×(桩径-2×砼保护层厚度)×(有 效桩长-加密区螺旋筋长度)÷非加密区间距×kg/m 3、加密区螺旋筋质量:3.14×(桩径-2×砼保护层厚度)×加密 区螺旋筋长度÷加密区间距×kg/m 4、加劲筋质量:3.14×(桩径-2×砼保护层厚度)×[(有效桩 长÷加劲筋间距)取整数+1]×kg/m 5、护壁纵筋质量:3.14×(桩径+2a1+2a2-2×砼保护层厚度)× 直筒深度÷护壁纵筋间距×kg/m 6、护壁箍筋质量:3.14×(桩径+2a1+2a2-2×砼保护层厚度)× 直筒深度÷护壁箍筋质量×kg/m 7、钢筋量:(主筋质量+非加密区螺旋筋质量+加密区螺旋筋质量+ 加劲筋质量 +护壁纵筋质量+护壁箍筋质量)×1.03钢筋损耗系数8、桩身钢筋量:(主筋质量+非加密区螺旋筋质量+加密区螺旋筋 质量+加劲筋质量)×1.03钢筋损耗系数

基础设计规范(桩基础部分)

建筑地基基础设计规范GB50007-2001——8.5桩基础(一) 8.5 桩基础 8.5.1 本节包括混凝土预制桩和混凝土灌注桩低桩承台基础。 按桩的性状和竖向受力情况可分为摩擦型桩和端承型桩。摩擦型桩的桩顶竖向荷载主要由桩侧阻力承受;端承型桩的桩顶竖向荷载主要由桩端阻力承受。 8.5.2桩和桩基的构造,应符合下列要求: 1摩擦型桩的中心距不宜小于桩身直径的3倍;扩底灌注桩的中心距不宜小于扩底直径的 1.5倍,当扩底直径大于2m时,桩端净距不宜小于1m。在确定桩距时尚应考虑施工工艺 中挤土等效应对邻近桩的影响。 2扩底灌注桩的扩底直径,不应大于桩身直径的3倍。 3桩底进入持力层的深度,根据地质条件、荷载及施工工艺确定,宜为桩身直径的1~3倍。 在确定桩底进入持力层深度时,尚应考虑特殊土、岩溶以及震陷液化等影响。嵌岩灌注桩周边嵌入完整和较完整的未风化、微风化、中风化硬质岩体的最小深度,不宜小于0.5m。 4布置桩位时宜使桩基承载力合力点与竖向永久荷载合力作用点重合。 5预制桩的混凝土强度等级不应低于C30;灌注桩不应低于C20;预应力桩不应低于C40。 6桩的主筋应经计算确。定打入式预制桩的最小配筋率不宜小于0.8%;静压预制桩的最小配筋率不宜小于0.6%;灌注桩最小配筋率不宜小于0.2%~0.65%(小直径桩取大值)。 7配筋长度: 1)受水平荷载和弯矩较大的桩,配筋长度应通过计算确定。 2)桩基承台下存在淤泥、淤泥质土或液化土层时,配筋长度应穿过淤泥淤、泥质土层或液化土层。 3)坡地岸边的桩、8度及8度以上地震区的桩、抗拔桩、嵌岩端承桩应通长配筋。 4)桩径大于600mm的钻孔灌注桩,构造钢筋的长度不宜小于桩长的2/3。 8桩顶嵌入承台内的长度不宜小于50mm。主筋伸入承台内的锚固长度不宜小于钢筋直径(Ⅰ级钢)的30倍和钢筋直径(Ⅱ级钢和Ⅲ级钢)的35倍。对于大直径灌注桩,当采用一柱一桩时,可设置承台或将桩和柱直接连接。桩和柱的连接可按本规范第8.2.6条高杯口基础的要求选择截面尺寸和配筋,柱纵筋插入桩身的长度应满足锚固长度的要求。 9 在承台及地下室周围的回填中,应满足填土密实性的要求。 8.5.3 群桩中单桩桩顶竖向力应按下列公式计算:

桩基设计说明

1.表示静钻根植桩。为端承摩擦桩,以桩端全断面进入卵石层不小于为主要终孔条件。 各楼幢桩长范围及桩数如下: 1#楼:桩长约65~67m;桩数77根; 2#楼:桩长约66~68m;桩数76根; 3#楼:桩长约67~68m;桩数94根; 4#楼:桩长约67~69m;桩数98根; 5#楼:桩长约67~69m;桩数124根; 6#楼:桩长约65~67m;桩数116根; 7#楼:桩长约66~67m;桩数102根; 8#楼:桩长约65~68m;桩数114根; 9#楼:桩长约66~68m;桩数99根; 10#楼:桩长约66~68m;桩数105根;总共1005根. 桩基与承台连接为第一节桩,依次类推.配桩如下:第一,二,三,四节采用:先张法预应力混凝土管桩,(2010浙G22),型号为PHC600 AB

130-15,15,15,X(此X段配桩长度为满足设计终孔条件后,根据各楼幢桩长范围及现场地质状况自行配置);第五节桩采用:静钻根植先张法预应力混凝土竹节桩,(2012浙G37),型号为PHDC 650-500(125)AB-600/500-15 C100,施工时,钻孔直径为%%130750.桩端扩底,扩底直径Db=1125mm,扩底部分高度Lb=。桩顶标高为所在处承台底标高+ 本类型桩为承压桩,单桩竖向受压承载力特征值:3450kN, 桩端持力层为卵石层本类型桩适用于1#~10#楼。 2.表示静钻根植桩。为端承摩擦桩,以桩端全断面进入卵石层不小于为主要终孔条件。桩长约65~69m;桩数为803根。桩基与承台连接为第一节桩,依次类推.配桩如下:第一,二节采用:复合配筋先张法预应力混凝土管桩,(2012浙G-36),型号为PRHC 600(110) I -15,15 C80 第三,四节采用:先张法预应力混凝土管桩,(2010浙G22),型号为PHC600 B 110-15,X(此X段配桩长度为满足设计终孔条件后,根据各区域桩长范围及现场地质状况自行配置);第五节桩采用:静钻根植先张法预应力混凝土竹节桩,(2012浙G37),型号为PHDC 650-500(100)AB-600/500-15 C80 施工时,钻孔直径为%%130700.桩顶标高为所在处承台底标高+ 本桩位平面图中,桩心处索引线上所注内容即为抗拔桩锚固钢筋,此部分钢筋应沿PRHC桩外边均匀布置,未注明桩抗拔锚固钢筋为6%%13220 本类型桩为承压兼抗拔桩,单桩竖向受压承载力特征值:2350kN,单桩竖向抗

最全面的桩基计算总结

最全面的桩基计算总结 桩基础计算 一.桩基竖向承载力《建筑桩基技术规范》 5.2.2 单桩竖向承载力特征值Ra应按下式确定: Ra=Quk/K 式中 Quk——单桩竖向极限承载力标准值; K——安全系数,取K=2。 5.2.3对于端承型桩基、桩数少于4根的摩擦型柱下独立桩基、或由于地层土性、使用条件等因素不宜考虑承台效应时,基桩竖向承载力特征值应取单桩竖向承载力特征值。5.2.4对于符合下列条件之一的摩擦型桩基,宜考虑承台效应确定其复合基桩的竖向承载力特征值: 1 上部结构整体刚度较好、体型简单的建(构)筑物; 2 对差异沉降适应性较强的排架结构和柔性构筑物; 3 按变刚度调平原则设计的桩基刚度相对弱化区; 4 软土地基的减沉复合疏桩基础。 当承台底为可液化土、湿陷性土、高灵敏度软土、欠固结土、新填土时,沉桩引起超孔隙水压力和土体隆起时,不考虑承台效应,取η=0。

单桩竖向承载力标准值的确定: 方法一:原位测试 1.单桥探头静力触探(仅能测量探头的端阻力,再换算成探头的侧阻力)计算公式见《建筑桩基技术规范》5.3.3 2.双桥探头静力触探(能测量探头的端阻力和侧阻力)计算公式见《建筑桩基技术规 范》5.3.4 方法二:经验参数法 1.根据土的物理指标与承载力参数之间的关系确定单桩承载力标准值《建筑桩基技术规范》5.3.5 2.当确定大直径桩(d>800mm)时,应考虑侧阻、端阻效应系数,参见5. 3.6 钢桩承载力标准值的确定: 1.侧阻、端阻同混凝土桩阻力,需考虑桩端土塞效应系数;参见5.3.7 混凝土空心桩承载力标准值的确定: 1.侧阻、端阻同混凝土桩阻力,需考虑桩端土塞效应系数;参见5.3.8 嵌岩桩桩承载力标准值的确定: 1.桩端置于完整、较完整基岩的嵌岩桩单桩竖向极限承载力,由桩周土总极限侧阻力和嵌岩段总极限阻力组成。 后注浆灌注桩承载力标准值的确定: 1.承载力由后注浆非竖向增强段的总极限侧阻力标准值、后注浆竖向增强段的总极限侧阻力标准值,后注浆总极限端阻力标准值; 特殊条件下的考虑 液化效应: 对于桩身周围有液化土层的低承台桩基,当承台底面上下分别有厚度不小于1.5m、1.0m 的非液化土或非软弱土层时,可将液化土层极限侧阻力乘以土层液化折减系数计算单桩

桩基础设计计算书

课程设计(论文) 题目名称钢筋混凝土预制桩基础设计 课程名称基础工程 学生姓名李宇康 学号124100161 系、专业城市建设系土木工程 指导教师周卫 2015年5 月

桩基础设计计算书 一:设计资料 1、建筑场地土层按其成因土的特征和力学性质的不同自上而下划分为四层,物理力学指标见下表。勘查期间测得地下水混合水位深为2.0m,地下水水质分析结果表明,本场地下水无腐蚀性。 建筑安全等级为2级,已知上部框架结构由柱子传来的荷载: V=1765, M=169KN·m,H = 50kN; 柱的截面尺寸为:800×600mm; 承台底面埋深:D = 2.0m。 2、根据地质资料,以黄土粉质粘土为桩尖持力层, 钢筋混凝土预制桩断面尺寸为300×300,桩长为10.0m 3、桩身资料:混凝土为C30,轴心抗压强度设计值f c =15MPa,弯曲强度设计值为 f m =16.5MPa,主筋采用:4Φ16,强度设计值:f y =310MPa 4、承台设计资料:混凝土为C30,轴心抗压强度设计值为f c =15MPa,弯曲抗压强度设 计值为f m =1.5MPa。 、附:1):土层主要物理力学指标; 2):桩静载荷试验曲线。 附表一: 土层的主要物理力学指标表1-1 土 层代号名称 厚 度 m 含水 量w (%) 天然 重度 (kN/m3 ) 孔 隙 比 e 侧模 阻力 桩端 阻力液性 指数 I L 直剪试验 (直快) 压缩 模量 E s (MPa) 承载力 特征值 f k(kPa) q sk kPa q pk kPa 内摩 擦角 ?? 粘聚 力c (kPa) 1 杂填土 2.0 20 18.8 2 2 6.0 90 2 淤泥质土9 38.2 18.9 1.02 22 1.0 21 12 4.8 80 3 灰黄色粉 质粘土 5 26.7 19. 6 0.75 60 2000 0.60 20 16 7.0 220 4 粉砂夹粉 质粘土 >10 21.6 20.1 0.54 70 2200 0.4 25 15 8.2 260 附表二:

桩基础的设计计算

1 第四章桩基础的设计计算 1.本章的核心及分析方法 本节将介绍考虑桩与桩侧土共同抵抗外荷载作用时桩身的内力计算,从而解决桩的强度问题。重点是桩受横轴向力时的内力计算问题。 桩在横轴向荷载作用下桩身的内力和位移计算,国内外学者提出了许多方法。目前较为普遍的是桩侧土采用文克尔假定,通过求解挠曲微分方程,再结合力的平衡条件,求出桩各部位的内力和位移,该方法称为弹性地基梁法。 以文克尔假定为基础的弹性地基梁法从土力学观点看是不够严密的,但其基本概念明确,方法简单,所得结果一般较安全,在国内外工程界得到广泛应用。我国公路、铁路在桩基础的设计中常用的“m”法、就属此种方法,本节将主要介绍“m”法。 2.学习要求 本章应掌握桩单桩按桩身材料强度确定桩的承载力的方法,“m”法计算单桩内力的各种计算参数的使用方法,多排桩的主要计算参数及其各自的含义。掌握承台计算方法,群桩设计的要点及注意事项,了解桩基设计的一般程序及步骤。本专科生均应能独立完成单排桩和多排桩的课程设计。 第一节单排桩基桩内力和位移计算 一、基本概念 (一)土的弹性抗力及其分布规律 1.土抗力的概念及定义式 (1)概念 桩基础在荷载(包括轴向荷载、横轴向荷载和力矩)作用下产生位移及转角,

2 使桩挤压桩侧土体,桩侧土必然对桩产生一横向土抗力zx σ,它起抵抗外力和稳定桩基础的作用。土的这种作用力称为土的弹性抗力。 (2)定义式 z zx Cx =σ (4-1) 式中: zx σ——横向土抗力,kN/m 2; C ——地基系数,kN/m 3; z x ——深度Z 处桩的横向位移,m 。 2.影响土抗力的因素 (1)土体性质 (2)桩身刚度 (3)桩的入土深度 (4)桩的截面形状 (5)桩距及荷载等因素 3.地基系数的概念及确定方法 (1)概念 地基系数C 表示单位面积土在弹性限度内产生单位变形时所需施加的力,单位为kN/m 3或MN/m 3。 (2)确定方法 地基系数大小与地基土的类别、物理力学性质有关。 地基系数C 值是通过对试桩在不同类别土质及不同深度进行实测z x 及zx σ后反算得到。大量的试验表明,地基系数C 值不仅与土的类别及其性质有关,而且也随着深度而变化。由于实测的客观条件和分析方法不尽相同等原因,所采用的C 值随深度的分布规律也各有不同。常采用的地基系数分布规律有图下所示的几种形式,因此也就产生了与之相应的基桩内力和位移的计算方法。

设计说明(钢管微型桩)

目录 第一部分设计说明 (1) 一、工程概况 (1) 二、设计依据 (1) 三、设计标准 (1) 四、工程地质、水文地质情况 (1) 五、基坑周边的环境条件 (3) 六、基坑支护设计参数 (3) 七、基坑支护设计方案 (3) 八、基坑地下水控制方案 (5) 第二部分基坑支护施工技术要求 (6) 一、施工顺序 (6) 二、基坑开挖 (6) 三、钢管微型桩 (6) 四、花钢管土钉、钢筋锚杆 (7) 五、钢筋混凝土冠梁、腰梁 (7) 六、预应力锚索 (7) 七、土钉护面 (7) 八、其他注意事项 (8) 第三部分监测方案 (9) 一、概述 (9)

二、监测项目和频率 (9) 三、变形监测 (10) 四、地下水监测 (10) 五、应力应变监测 (10) 六、其它要求 (11) 第四部分土方开挖要求 (12) 第五部分应急措施 (13) 一、相邻建构筑物沉降较大或不均匀沉降 (13) 二、坑底涌砂、坑壁涌水、涌砂应急措施 (13) 三、基坑止水帷幕渗水的应急措施 (13) 四、支护结构漏水的应急措施 (14) 五、截、排水的应急措施 (14) 六.道路管线、管网应急措施 (14)

第一部分设计说明 一、工程概况 文山市炬隆万商汇项目建筑场地位于文山市开化镇中部。为拆旧建新场地,拟建三栋31F超高层建筑物,裙楼为2F-4F建筑物,框架(剪)结构,设置两层地下室。该场地南面为沙坝北路,路南侧为四、五层建筑物。东面为沙坝中路,北面为滨河路(已封堵),滨河路北侧为盘龙河,西面紧临四、五层建筑物(拟拆迁)。 该基坑深约11 m左右,基坑周边建筑物多,距基坑距离较近,情况复杂。 二、设计依据 1、设计规范、规程及标准 (1)《建筑基坑工程监测技术规范》(50497-2009); (2)《建筑地基基础设计规范》(GB50007-2002); (3)《建筑地基处理技术规范》(JGJ79-91); (4)《建筑基坑支护技术规程》(JGJ 120-99); (5)《岩土锚杆(索)技术规程》(CECS22:2005); (6)《锚杆喷射混凝土支护技术规范》(GB50086-2001) ; (7)《建筑工程施工质量验收统一标准》(GBJ50300-2001) ; (8)《建筑地基基础工程施工质量验收规范》(GB50202-2002) ; (9)《岩土工程验收和质量评定标准》(YB9010-98); (10)《工程测量规范》(GBJ50026-93); (11)《建筑变形测量规程》(JGJ/T8-97); (12)《建筑桩基技术规范J》GJ94-2008。 2、基坑专项勘察报告——《文山市炬隆万商汇基坑支护岩土工程勘察报告》 3、业主提供的基坑周边的建筑环境及市政管网布置图。 4、业主对基坑投资控制的相关要求。 三、设计标准 1.基坑安全等级 依据《建筑基坑支护技术规程》(JGJ 120-99),基坑深约9.7~11m,结合周边建筑环境有建筑、地下管线、道路等不利影响,本基坑安全等级定为一级。 2.基坑侧壁重要性系数 依据《建筑基坑支护技术规程》(JGJ120-99),本基坑侧壁重要性系数为1.1。 3.基坑支护适用年限 本基坑支护设计合理使用年限为12个月。 四、工程地质、水文地质情况 1.地理位置及交通概况 拟建工程场地位于文山市开化镇中部,双桥花园斜对面,双赢大酒店旁侧,原南桥客运站~沙坝桥之间,地理坐标:东经104°14′43.3″,北纬23°21′59.8″。场地北面接沿河路,南面接沙坝北路,西面接沙坝中路,东面接南桥路,场地内有沙北一巷等纵横向水泥道路。场地交通较为方便,车辆可直接进入场地,水电可就近解决,施工较为方便。 2.地形地貌 受盘龙河及其支流冲击切割,形成两侧高、中间低的走廊式地形。拟建工程场地位于文山断陷堆积盆地内,属盘龙河Ⅰ级阶地。场地四面接道路,北面沿河路边缘为盘龙河,河堤部分已治理,河岸稳定,其余三面外围无较大陡坎及陡坡,大部分为已建建筑物,地形平缓。场地内原为二~七层老建筑物,全部拆除重建,整个场地内地

桩基计算确定

桩基(设计、设计极限、极限、承载、终压、复压值)计算确定 一、概述 1、概念 单桩承载力特征值×1、25=单桩承载力设计值; 单桩承载力特征值×2=单桩承载力极限值=桩侧摩阻力+桩端阻力=单桩承载力(设计) 单桩承载力设计值×1、6=单桩承载力极限值。 2、静压桩终压值确定 压桩应控制好终止条件,一般可按以下进行控制: 1)对于摩擦桩,按照设计桩长进行控制,但在施工前应先按设计桩长试压几根桩,待停置24h后,用与桩的设计极限承载力相等的终压力进行复压,如果桩在复压时几乎不动,即可以此进行控制。 2)对于端承摩擦桩或摩擦端承桩,按终压力值进行控制: ①对于桩长大于21m的端承摩擦桩,终压力值一般取桩的设计极限承载力。当桩周土为粘性土且灵敏度较高时,终压力可按设计极限承载力的0、8~0、9倍取值; ②当桩长小于21m,而大于14m时,终压力按设计极限承载力的1、1~1、4倍取值;或桩的设计极限承载力取终压力值的0、7~0、9倍; ③当桩长小于14m时,终压力按设计极限承载力的1、4~1、6倍取值;或设计极限承载力取终压力值0、6~0、7倍,其中对于小于 8m的超短桩,按0、6倍取值。 3)超载压桩时,一般不宜采用满载连续复压法,但在必要时可以进行复压,复压的次数不宜超过2次,且每次稳压时间不宜超过10s。 3、静压桩复压值确定 取终压力值

举例:桩长18~20m, 800kn(单桩竖向承载力特征值) =2×800 kn =1600 kn 单桩承载力(设计)极限值 =1600 kn/1、6=1000 kn(单桩承载力设计值) =1600 kn ×1、25=2000 kn(终压力值、复压力值) ,当桩长小于21m,而大于14m 时,终压力按设计极限承载力的1、1~1、 4倍取值(取1、25)。 二、钢管桩承载力 ,可按下式计算: (5、3、7-1) 当h d /d<5时, (5、3、7-2) 当h d /d ≥5时, (5、3、7-3) 式中:q sik 、q pk 分别按表5、3、5-1、5、3、5-2取与混凝土预制桩相同值; :桩端土塞效应系数;对于闭口钢管桩λp = 1,对于敞口钢管桩按式(5、3、7-2)、(5、3、7-3)取值; h b :桩端进入持力层深度; d:钢管桩外径。 对于带隔板的半敞口钢管桩,应以等效直径d e 代替d 确定λp ; d e = d /n 0、5 ;其中n 为桩端隔板分割数(图5、3、7)。 图 5、3、7 隔板分割 表 5、3、5-1 桩的极限侧阻力标准值sik q (kPa) p pk p i sik pk sk uk A q l q u Q Q Q λ+=+=∑d h b p /16.0=λ8.0=p λp λ

桩基计算书汇总

独立桩承台设计(J2a-5) 项目名称构件编号日期 设计校对审核 执行规范: 《混凝土结构设计规范》(GB 50010-2010), 本文简称《混凝土规范》《建筑地基基础设计规范》(GB 50007-2011), 本文简称《地基规范》《建筑结构荷载规范》(GB 50009-2012), 本文简称《荷载规范》 《建筑桩基技术规范》(JGJ 94-2008), 本文简称《桩基规范》 ----------------------------------------------------------------------- 1 设计资料 1.1 已知条件 承台参数(2 桩承台第 1 种) 承台底标高: -1.200(m) 承台的混凝土强度等级: C30 承台钢筋级别: HRB400 配筋计算a s: 150(mm) 承台尺寸参数 e11(mm)875e12(mm)875 A'(mm)500H(mm)1200 桩参数 桩基重要性系数: 1.0 桩类型: 混凝土预制桩 承载力性状: 端承摩擦桩 桩长: 10.000(m) 是否方桩: 否 桩直径: 500(mm) 桩的混凝土强度等级: C80 单桩极限承载力标准值: 3500.000(kN) 桩端阻力比: 0.400 均匀分布侧阻力比: 0.400 是否按复合桩基计算: 否 桩基沉降计算经验系数: 1.000 压缩层深度应力比: 20.00% 柱参数 柱宽: 500(mm) 柱高: 500(mm) 柱子转角: 0.000(度) 柱的混凝土强度等级: C30 柱上荷载设计值 弯矩M x: 50.000(kN.m) 弯矩M y: 50.000(kN.m) 轴力N : 3500.000(kN) 剪力V x: 15.000(kN) 剪力V y: 15.000(kN) 是否为地震荷载组合: 否 基础与覆土的平均容重: 0.000(kN/m3) 荷载综合分项系数: 1.20 1.2 计算内容 (1) 桩基竖向承载力计算 (2) 承台计算(受弯、冲切、剪计算及局部受压计算) 2. 计算过程及计算结果 2.1 桩基竖向承载力验算 (1) 桩基竖向承载力特征值R计算 根据《桩基规范》5.2.2及5.2.3 = R a Q uk K 式中: R a——单桩竖向承载力特征值; Q uk——单桩竖向极限承载力标准值; K ——安全系数,取K=2。 单桩竖向极限承载力标准值 Q uk = 3500.000(kN) 单桩竖向承载力特征值 R a = 1750.000(kN) (2) 桩基竖向承载力验算 根据《桩基规范》5.1.1 式5.1.1-1计算轴心荷载作用下桩顶全反力,式5.1.1-2计算偏心荷载作用下桩顶全反力在轴心荷载作用下,桩顶全反力 N k = 1458.333(kN) 按《桩基规范》5.2.1(不考虑地震作用) 式5.2.1-1 (γ0N k≤1.00R) 验算 (γ0N k=1458.333kN) ≤ (1.00R=1750.000kN) 满足. 在偏心荷载作用下,按《桩基规范》5.2.1(不考虑地震作用) 式5.2.1-2 (γ0N kmax≤1.20R) 计算桩号 1 : (γ0N1k=1425.952kN) ≤ (1.20R=2100.000kN) 满足。 桩号 2 : (γ0N2k=1490.714kN) ≤ (1.20R=2100.000kN) 满足。 (γ0N kmax=1490.714kN) ≤ (1.20R=2100.000kN) 满足. 2.2 承台受力计算 (1) 各桩净反力(kN) 根据《桩基规范》5.1.1 式5.1.1-2计算桩顶净反力(G=0.0kN) 桩号01 净反力: 1711.143(kN) 桩号02 净反力: 1788.857(kN) 最大桩净反力 : 1788.857(kN) (2) 受弯计算 根据《桩基规范》5.9.2第1款,计算承台柱边截面弯矩 柱边左侧承台弯矩 : 1069.464(kN.m) 柱边右侧承台弯矩 : 1118.036(kN.m) 柱边上侧承台弯矩 : 0.000(kN.m) 柱边下侧承台弯矩 : 0.000(kN.m) 承台控制弯矩 M x : 0.000(kN.m) M y : 1118.036(kN.m) 根据《混凝土规范》附录G G.0.2,按深受弯构件计算承台计算配筋 ≤ M f y A s z 取按板单筋和深受弯计算配筋的最大值 承台X方向计算配筋A sx : 3768(mm2) 承台Y方向计算配筋A sy : 按构造筋 (3) 柱对承台的冲切 不需要验算 (4) 桩对承台的冲切 桩号 1 不需要验算 桩号 2 不需要验算

桩基础的设计计算 m值法

桩基础的设计计算 1.本章的核心及分析方法 本节将介绍考虑桩与桩侧土共同抵抗外荷载作用时桩身的内力计算,从而解决桩的强度问题。重点是桩受横轴向力时的内力计算问题。 桩在横轴向荷载作用下桩身的内力和位移计算,国内外学者提出了许多方法。目前较为普遍的是桩侧土采用文克尔假定,通过求解挠曲微分方程,再结合力的平衡条件,求出桩各部位的内力和位移,该方法称为弹性地基梁法。 以文克尔假定为基础的弹性地基梁法从土力学观点看是不够严密的,但其基本概念明确,方法简单,所得结果一般较安全,在国内外工程界得到广泛应用。我国公路、铁路在桩基础的设计中常用的"m"法、就属此种方法,本节将主要介绍"m"法。 2.学习要求 本章应掌握桩单桩按桩身材料强度确定桩的承载力的方法," "法计算单桩内力的各种计算参数的使用方法,多排桩的主要计算参数及其各自的含义。掌握承台计算方法,群桩设计的要点及注意事项,了解桩基设计的一般程序及步骤。本专科生均应能独立完成单排桩和多排桩的课程设计。 第一节单排桩基桩内力和位移计算 一、基本概念 (一)土的弹性抗力及其分布规律

1.土抗力的概念及定义式 (1)概念 桩基础在荷载(包括轴向荷载、横轴向荷载和力矩)作用下产生位移及转角,使桩挤压桩侧土体,桩侧土必然对桩产生一横向土抗力,它起抵抗外力和稳定桩基础的作用。土的这种作用力称为土的弹性抗力。 (2)定义式 (4-1) 式中:--横向土抗力,kN/m2; --地基系数,kN/m3; --深度Z处桩的横向位移,m。 2.影响土抗力的因素 (1)土体性质 (2)桩身刚度 (3)桩的入土深度 (4)桩的截面形状 (5)桩距及荷载等因素 3.地基系数的概念及确定方法 (1)概念

桩基础工程说明

桩基础工程说明 2.0.1 桩基础工程指陆地上打桩,包括打预制混凝土桩、打拔钢板桩、灌注桩、人工挖孔桩、 钻 (冲)孔桩、预应力钢筋混凝土锚杆、地下连续墙等,不同土壤类别、机械类别和性 能均包括在定额内。 2.0.2 本定额打、压桩未包括接桩,打、压桩接桩按相应子目计算。 2.0.3 经建设单位审定的施工方案,单位工程内出现送桩和打桩的应分别计算,送桩按相应 打、压桩定额子目工日及机械台班乘系数1.2计算: 2.0.4 打试验桩按相应子目的人工、机械乘以系数2计算。 2.0.5 单位工程打、压 (灌)桩工程量在下表规定数量以内时,其人工、机械按打、压(灌) 2.0.6 定额不包括清除地下障碍物,若发生时按实计算。 2.0.7 现场预制方桩: 1扣除方桩相应子目的消耗量,按含量套预制方桩制作子目,其他不变。 2方桩运输按"混凝土及钢筋混凝土工程"中预制混凝土构件运输子目计算。 3方桩运输仅适用于承包方在预制加工场制作运至施工现场。 4方桩接桩钢材用量不同时,可按实调整,其他不变。 2.0.8 人工挖孔桩护壁混凝土已包括规范规定凸出土面的20cm高度。 2.0.9 打钢管混凝土灌注桩,钻(冲)孔灌注桩和地下连续墙的混凝土含量按1.2扩散系数考 虑,实际出槽量(以实际配合比,容重按2400kg/ m3 计算)不同时,可调整。 2.0.10 管桩桩芯填混凝土,按相应子目计算。 2.0.11 灌注桩 1 在原位打扩大桩时,人工费按85%,机械费按50%计算。 2 打灌注混凝土桩至地面部分(包括地下室)采用砂石代替混凝土量其材料按实计算。 3 如在支架打桩,人工及机械费乘以系数1.25。

桩基础工程计算实例详解

桩基础工程 1.某工程用打桩机,打如图4-1所示钢筋混凝土预制方桩,共50根,求其工程量,确定定额项目。 钢筋混凝土预制方桩 【解】工程量=0.5×0.5×(24+0.6)×50=307.50m3 钢筋混凝土预制方桩套2-6 定额基价=114.59元/m3 2.打桩机打孔钢筋混凝土灌注桩,桩长14m,钢管外径0.5m,桩根数为50根,求现场灌注桩工程量,确定定额项目。 【解】工程量=3.14÷4×0.52×(14+0.5)×50=142.28m3 打孔钢筋混凝土灌注桩(15m以内)套2-41 定额基价=508.3元/m3 3.如图所示,已知共有20根预制桩,二级土质。求用打桩机打桩工程量。 【解】工程量=0.45×0.45×(15+0.8)×20m3=63.99m3 4.如图所示,求履带式柴油打桩机打桩工程量。已知土质为二级土,混凝土预制桩28根。 【解】工程量=[×(0.32-0.22)×21.2+×0.32×O.8]×28m3=99.57m3 5.如图所示,求送桩工程量,并求综合基价。 【解】工程量=0.4×0.4×(0.8+0.5)×4=0.832m3 查定额,套(2-5)子目, 综合基价=0.832×(96.18+21×0.63×0.25+1033.82×0.060×0.25)=115.625元

6.打预制钢筋混凝土离心管桩,桩全长为12.50m,外径30cm,其截面面积如图所示, 求单桩体积。 【解】离心管桩V1=×3.1416×12m3 =0.0125×3.1416×12m3 =0.471m3 预制桩尖V2=0.32××3.1416×0.5m3=0.0255×3.1416×0.5m3=0.035m3 总体积∑V=(0.471+0.035)m3=0.506m3 7.求图示钢筋混凝土预制桩的打桩工程量,共有120根桩。 【解】V=[(L一h)×(A×B)+×(A×B)×h]×n =[(7-0.23)×(0.25×0.25)+ ×(0.25×0.25×0.23)]×120m3=51.35m3 8.图为预制钢筋混凝土桩,现浇承台基础示意图,计算桩基的制作、运输、打桩、打送桩以及承台的工程量。(30个) 【解】(1)预制桩图示工程量: V图=(8.0+0.3)×0.3×0.3m3×4根×30个=89.64m3 (2)制桩工程量:V制= V图×1.02=89.64m3×1.02=91.43m3 (3)运输工程量:V运= V图×1.019=89.64m3×1.019=91.34m3 (4)打桩工程量:V打= V图=89.64m3 (5)送桩工程量:V送=(1.8-0.3-0.15+0.5)×0.3×0.3×4×30m3=19.98m3

(完整版)桩基础设计计算书

目录 1设计任务 (2) 1.1设计资料 (2) 1.2设计要求 (3) 2 桩基持力层,桩型,桩长的确定 (3) 3 单桩承载力确定 (3) 3.1单桩竖向承载力的确定 (3) 4 桩数布置及承台设计 (4) 5 复合桩基荷载验算 (6) 6 桩身和承台设计 (9) 7 沉降计算 (14) 8 构造要求及施工要求 (20) 8.1预制桩的施工 (20) 8.2混凝土预制桩的接桩 (21) 8.3凝土预制桩的沉桩 (22) 8.4预制桩沉桩对环境的影响分析及防治措施 (23) 8.5结论与建议 (25) 9 参考文献 (25)

一、设计任务书 (一)、设计资料 1、某地方建筑场地土层按其成因土的特征和力学性质的不同自上而下划分为5层,物理力学指标见下表。勘查期间测得地下水混合水位深为2.1m,本场地下水无腐蚀性。建筑安全等级为2级,已知上部框架结构由柱子传来的荷载。承台底面埋深:D =2.1m。

(二)、设计要求: 1、桩基持力层、桩型、承台埋深选择 2、确定单桩承载力 3、桩数布置及承台设计 4、群桩承载力验算 5、桩身结构设计和计算 6、承台设计计算 7、群桩沉降计算 8、绘制桩承台施工图 二、桩基持力层,桩型,桩长的确定 根据设计任务书所提供的资料,分析表明,在柱下荷载作用下,天然地基基础难以满足设计要求,故考虑选用桩基础。由地基勘查资料,确定选用第四土层黄褐色粉质粘土为桩端持力层。 根据工程请况承台埋深 2.1m,预选钢筋混凝土预制桩断面尺寸为450㎜×450㎜。桩长21.1m。 三、单桩承载力确定 (一)、单桩竖向承载力的确定: 1、根据地质条件选择持力层,确定桩的断面尺寸和长度。 根据地质条件以第四层黄褐色粉土夹粉质粘土为持力层, 采用截面为450×450mm的预置钢筋混凝土方桩,桩尖进入持力层 1.0m;镶入承台0.1m,桩长21.1 m。承台底部埋深 2.1 m。 2、确定单桩竖向承载力标准值Quk可根据经验公式估算: Quk= Qsk+ Qpk=μ∑qsikli+qpkAp Q——单桩极限摩阻力标准值(kN) sk Q——单桩极限端阻力标准值(kN) pk u——桩的横断面周长(m) A——桩的横断面底面积(2m) p L——桩周各层土的厚度(m) i q——桩周第i层土的单位极限摩阻力标准值(a kP)sik q——桩底土的单位极限端阻力标准值(a kP) pk 桩周长:μ=450×4=1800mm=1.8m

桩基础工程工程量的计算

桩基础工程工程量的计 算 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

桩基础工程工程量的计算 一、定额项目设置及说明 1、本章定额共包括七部分112个子目,修改子目13个项目,补充定额30个项目,定额项目组成见表 因素,除另有规定者外,均不得换算。 3、定额中综合考虑了预制桩的喂桩及送桩的因素,使用中亦不再作调整。 4、砼灌注桩将桩的成孔和灌注砼分为两个定额项目,使用时要注意分别套用相关定额子目。 5、灰土井桩(2-64,2-65)为综合定额,使用时要注意定额表上边的工作内容。 6、修改子目:走管式打桩机打孔(2-20~2-22)螺旋钻机成孔和重锤夯扩(2-23~2-25),CFG桩成孔(2-61~2-63),泥浆制作、运输(2-97~2-100)见补充定额P8 7、重锤夯扩定额中填充材料,应按补充定额下面的脚注进行换算。补充定额P9 8、CFG桩修改为单项定额,成孔和砼灌注应分开执行。 9、桩基础工程子目中没有计算大型机械场外运输费用,按第十六章附录二有关子目另行计算。 10、基坑支护脚手架执行十三章15m以内外脚手架子目(13-1)。

二、主要项目工程量计算 1、预制钢筋混凝土桩 预制钢筋砼桩应分别列项计算制桩(分砼、钢筋、模板)、运桩、打桩或压桩、接桩、截桩与凿桩头、石渣外运等内容,应分别套用相应各分部定额。其中制桩套用第四章,运桩套用第六章,打桩或压桩、接桩、凿桩头则执行本章定额。 ①预制钢筋砼桩制作工程量(定额第四章) 砼、模板工程量:V=图纸计算的桩体积×1.02 钢筋工程量:G=按图纸计算的钢筋重量×1.02 ②预制钢筋砼桩运输工程量(定额第六章) V=图纸计算的桩体积×1.019 ③打(压)入预制钢筋砼桩工程量(本章定额) V=图纸计算的桩体积×1.015 ※打(压)入预制钢筋混凝土桩按设计桩长加桩尖长度乘以桩截面积以“m3”计算,定额的消耗量已考虑了桩尖虚空部分的因素。 图纸计算的桩体积=桩断面积×桩长(包括桩尖)×根数=桩断面积×总桩长(包括桩尖) 桩断面积、桩长、根数可直接从清单中知道 ④接桩(一般15m以上) 型钢焊接接桩按接头个数计算 ⑤凿桩头:余桩长度在500mm以内的为凿桩,500mm以外的为截桩,同时还应计算凿桩。凿桩头按体积计算 ⑥石渣外运:定额P54十一条 2、灌注桩 分别按成孔、泥渣外运、钢筋笼(制作、运输与安放、焊接费用补贴)、灌注砼(现场搅拌和商品砼)、凿桩头和桩头处理、石渣外运等内容套用定额或计算。 1)成孔(2-20~2-60)、泥渣外运(2-112): V=桩的断面积×深度(长度) ①走管式打桩机、螺旋钻机、回旋钻机、冲击钻机、锅锥钻机、旋挖钻机成孔以设计入土深度计算 L=桩底标高-自然地坪标高(或坑底标高)或L=L0+L1(设计桩长、超灌长度) ②回旋钻机、冲击钻机成孔深度是指护筒顶至桩底的深度,同一井深内分不同土质套用不同子目,不论其所在的深度如何,均执行总孔深子目。 2)灌注砼(2-101~2-108): ①人工挖孔桩灌注砼以设计图示桩长乘以断面,以m3计算 V=桩的断面积×设计桩长 ※桩的断面积、设计桩长可直接在清单项目特征和内容中得到 ②走管式打桩机成孔后,先埋入预制砼桩尖,再灌注砼者,桩尖按有关章节另行计算。 a预制桩尖按实体积计算套第四章、第六章子目 b灌注砼 V=断面积×桩长(从桩尖顶面算起)

相关文档