文档库 最新最全的文档下载
当前位置:文档库 › 我对地球物理勘察技术的认识

我对地球物理勘察技术的认识

我对地球物理勘察技术的认识
我对地球物理勘察技术的认识

我对地球物理勘察技术的认识

1 地球物理勘探的实质

地球物理勘探是通过观察和研究各种地球物理场的变化来解决地质问题的一种勘查方法。它是以各种岩石和矿石的密度、磁性、电性、弹性、放射性等物理性质的差异为研究基础用不同的物探方法和物探仪器,探测天然的或人工的地球物理场的变化;通过分析、研究所获得地球物理资料,推断、解释地质构造和矿产分布情况。

2 地球物理勘探工作内容

利用相适应的仪器测量、接收工作区域的各种物理信息,应用有效的处理从中提取出需要的信息,并根据岩(矿)体或构造和围岩的物性差异,结合地质条件进行分析,做出地质解释,推断探测对象在地下赋存的位置、大小范围和产状,以及反映相应物性特征的物理量等,作出相应的解释推断的图件。地球物理勘探是地质调查和地学研究不可缺少的一种手段和方法。

3 地球物理勘探的方法

随着现代科学技术的蓬勃发展,根据其所研究地球物理场的不同,物探方法通常可分为以下几大类:(1)以介质弹性差异为基础,研究波场变化规律的地震勘探和声波探测;(2)以介质电性差异为基础,研究天然或人工电场(或电磁场)的变化规律的电法勘探;(3)以介质密度差异为基础,研究重力场变化规律的重力勘探;(4)以介质磁性差异为基础,研究地磁场变化规律的磁法勘探;(5)以介质中放射性元素种类及含量差异为基础,研究幅射场变化特征的核地球物理勘探;(6)以地下热能分布和介质导热性为基础,研究地温场变化的地热勘探等。

地震勘探是近代发展最快的物探方法之一。它的原理是利用人工激发的地震波在弹性不同的地层内的传播规律来勘探地下的地质情况。在地面某处激发的地震波在向地下传播时,遇到不同弹性地层就会产生反射波或折射波返回地面,用专门得仪器可以记录这些波,分析所得记录的特点,如波的传播时间、振动形状等,通过专门的计算或一起处理,能较准确的确定这些界面的深度和形态,判断地层的岩性,是勘探含油气构造,甚至是直接找油的主要物探方法,也可以用于勘探煤田,盐岩矿床,个别的层状金属矿床以及解决水文地质、工程地质等问题。

电法勘探是根据岩石和矿石电学性质(如电性、电化学活动性、电磁感应特性和电性差异)来找矿和研究地质构造的一种地球物理勘探方法。它是通过观测人工的、天然的电场或交变的电磁场,分析、解释这些场的特点规律达到找矿勘探的目的。电法勘探分为两大类,直流电法,包括电阻率法、充电法、自然电场法、直流激发极化法等;交流电法,包括交流激发极化法、电磁法、大地电磁场法、无线电波透视法和微波法。

重力勘探是利用组成地壳的各种岩体、矿体间的密度差异所引起的地表重力加速度值得变化而进行地球物理勘探的一种方法。以牛顿万有引力为基础。只要勘探地质体与周围岩体有一定的密度差异,就可以用精密的重力测量仪器找出重力异常,然后结合当地的地质和其他物探资料,对重力异常进行定性解释和定量解释,便可以推断覆盖层以下密度不同的矿体与岩层的埋藏情况,进而找出隐状矿体存在的位置和地质构造情况。

磁法勘探是常用的地球物理勘探方法之一,自然界的岩石和矿石具有不同的磁性,可以

产生各不相同的磁场,它使地球磁场在局部地区发生变化,出现磁异常。利用仪器发现和研究这些磁异常,进而寻找磁性矿体和研究地质构造的方法称为磁法勘探,她包括地面、航空、海洋磁法勘探及井中磁法勘探等。磁法勘探主要用来寻找和勘探有关矿产;进行地质填图;研究与尤其油漆有关的地质构造及大地都造等。我国建国以来大多数铁矿区、多金属矿区及油气田等都进行了大量的磁法勘探。效果显著。

核物探是内容较丰富的方法,工程及环境地质工作中常用其中的放射性测量方法。在地质勘查中,γ测量、α卡法、α杯法、氡气测量等是地质填图、查找断裂构造的常用方法;用于对γ量子和热中子的吸收或散射,反映了物质的质量和含水量、含氢量,因此是工程质量检测的好方法之一,在混凝土质量无损检测、填土碾压质量检测、沥青路面质量检测等方面得到广泛应用。

4 物探方法与地质方法的不同

物探方法与地质方法在工作原理上是截然不同的。地质方法是以岩石学、构造地质学、工程地质学、水文地质学等理论为基础,对岩土露头或岩芯等直接进行观察;物探方法则是以各种地球物理场的理论为基础,凭借仪器对地质构造或岩土介质引起的地球物理异常进行观测,而不是直接观测地质构造或岩土介质本身,因此它是一种间接的方段。物探方法的主要特点是可以透过覆盖地层寻找隐伏地质构造或了解岩土介质的分布。因此它比钻探等其它直接的地质勘查手段具有快速、经济的优点,已被各系统各部门广泛采用,并成为一种不可缺少的重要手段。

5 物探的局限性

物探是一种成效显著的现代化探测手段,在地质工作中占有重要地位。但是,物探的应用总要受到一定的地质及地球物理条件的限制,这主要是指:(1)探测对象与周围岩石间必须具有明显的,可以探测到的物理性质上的差异,或物质分布的不均匀;(2)探测对象要有一定的规模,且埋藏不太深,足以产生仪器可以发现和圈定的地球物理异常;(3)各种干扰因素产生的干扰场相对于异常应足够微弱,或具有不同的特征,以便能够予以分辨或消除。若不具备上述条件,则很难通过观测发现探测对象的存在。

综上所述,由于各种自然的或人为的因素所限,物探取得的成果实质上都是一定条件下的某种推论,推论和实际总是不可避免地存在着某些差异。为了对复杂的地质现象作出合的解释;物探和地质的紧密合作是十分重要的。事实上,当前传统地质学与地球物理学的概念正在变得“模糊”起来,地球物理方法和大量地球物理资料已经引入地质学研究中,这预示着地学理论必将在一个新的高度上得到进一步的发展和完善。

《地球物理勘探》基本特点

《地球物理勘探》基本特点 (1)地球物理勘探是一种间接的勘探方法 用钻机或其它的机械手段从地下取出岩样来认识地质构造是直接的勘探方法(或称为侵入方法,invasive method)。 地球物理勘探无须从地下取出岩样,而是通过使用专门的仪器在地面(或钻孔中)观察由地下介质引起的某种物理场的分布状态,

收集和记录某些物理信息随空间或时间的变化,并对这些信息的分布特征作出解释和推断,从而揭示地球内部介质物理状态的空间变化和分布规律,以此来了解矿产资源的分布及赋存状态、查明地质构造。

(2)地球物理勘探工作具有效率高、成本低的特点以往的地球物理勘探工作为矿产资源的调查、水文地质及工程地质工作提供了大量的、获得实践检验的重要资料;尤其是在覆盖地区对研究地质构造、指导勘探、成井等方面发挥了重要作用,加快了勘探速度,降低了施工成本,提高了水文地质钻孔的成井率。

(3)地球物理勘探能更全面了解勘探目标的全貌,避 免钻孔勘探‘一孔之见’的弱点 在工程勘察中,尤其是在浅层岩溶勘察中,地球物理勘探工作能提供勘探区域内二维、甚至三维的地下岩溶分布状态,克服钻孔‘一孔之见’的局限性。 跨孔声波、电磁波透视法能了解两孔之间的岩体的完整性,能从整体上评价岩体的完整性与基础的稳定性。

(4)地球物理勘探的应用具有一定的前提条件(一)必要条件: 要有物性差异; (二)充分条件: 1、目前仪器技术条件下,能测出异常: (1)场源体要有一定的规模, (2)场源体要有一定的埋深比, (3)仪器灵敏度要高; 2、干扰要小或能分辨异常; 3、环境条件允许。

(5)反演解释具有多解性 同一物理现象(或者说同一性质的物理场的分布)可以由多种不同的因素引起。 例如,在电法勘探中,视电阻率的变化可以由被测目标体电阻率值的变化引起;也可能由于地形,产状等其他因素的变化引起。这反映了地球物理勘探资料解释具有多解性。 要克服地球物理勘探资料解释的多解性,就必须将其与钻井资料或地质资料相结合进行推断解释,必须掌握一定的地层岩矿石的物性参数。

地球物理勘探考点汇总

地球物理勘探知识点 一、名词解释 1.动校正:校正因炮检距不等而存在的正常时差的影响。 2.时距曲线:若测线是沿一条线进行的,则测线上各观测点坐标与波至时间的关系图称为时距曲线。 3.多次覆盖:指采用一定的观测系统获得对地下每个反射点多次重复观测的采集地震波讯号的方法。 4.电阻率剖面法:当保持供电电极距AB不动时,电极系探测深度一定,移动电极系时就可以反应一定深度范围内的地下电阻率的变化情况,这种方法称之为电阻率剖面法。 5.电法勘探:是以岩石、矿石的导电性、电化学活动性、介电性和导磁性的差异为物质基础,使用专用的仪器设备观测和研究地壳周围物理场的变化和分布规律,进而达到解决地质问题的目的的一组地球物理勘查方法。 6.转换波:与入射波波形不同的反射波和透射波。 7.高密度电法:是集电测深和剖面法于一体的一种多装置,多极距的组合方法。 8.槽波地震勘探:是在井下煤层开采工作面内进行的,地震测线接受点和激发点沿煤巷布设,直接探测煤层内地质构造或其他地质异常体的勘探方法。 9.温纳四极装置:一种三电位电极装置,一次组合,可以获得三种电极排列的测量参数。 10.横波:质点振动方向与传播方向垂直。 11.地电断面:根据地下地质体电阻率的差异而划分界限的断面。 12.视电阻率:在电场有效作用范围内各种地质体电阻率综合反映。 13.正常时差:各观测点有不同的炮检距,因而有不同的旅行时,他们相对于自激自收时的差称为正常时差。 14.静校正:设法消除地表因素影响的校正过程。 15.观测系统:测线上激发点和接收点的相对位置关系。 16.同类波:与入射波波形相同的反射波和透射波。 17.纵波:质点振动方向与传播方向一致。 18.电测深:电测深法是根据岩石和矿石导电性的差异,在地面上不断改变供电电极和测量电极的位置,观测和研究所供直流电场在地下介质中的分布,了解测点电阻率沿深度的变化,达到测深、找矿和解决其他地质问题的目的。 19.瞬变电磁法:是利用不接地回线或电极向地下发送脉冲式一次电磁场,用线圈或接地电极观测由该脉冲电磁场感应的地下涡流产生的二次电磁场的空间和时间分布,从而来解决有关地质问题的时间域电磁法。 20.水平叠加:又称为共反射点叠加或共中心点叠加,就是把不同激发点、不同接收点上接收到的来自于同一反射点的地震记录进行叠加。 二、填空题 1.地震勘探的三个主要步骤是采集、处理、解释 2.地震勘探的横波有SV波、SH波 3.联合剖面法曲线中的正交点和反交点分别反映低阻和高阻特征 4.常用电阻率法测量方法有:电阻率测深法、电阻率剖面法、高密度电阻率法 5.观测系统图示方法有视距平面法、普通平面法、综合平面法 6.从实用性出发,地震波可分为有效波和干扰波

地球物理勘探方法

地球物理探矿法 一、地球物理探矿法的基本原理 物探的基本特点是研究地球物理场或某些物理现象。如地磁场、地电场、放射性场等,而不是直接研究岩石或矿石,它与地质学方法有着本质上的不同。通过场的研究可以了解掩盖区的地质构造和产状。它的理论基础是物理学或地球物理学,系把物理学上的理论(地电学、地磁学等)应用于地质找矿。因此具有下列特点和工作前提: (一)物探的特点 1.必须实行两个转化才能完成找矿任务。先将地质问题转化成地球物理探矿的问题,才能使用物探方法去观测。在观测取得数据之后(所得异常),只能推断具有某种或某些物理性质的地质体,然后通过综合研究,并根据地质体与物理现象间存在的特定关系,把物探的结果转化为地质的语言和图示,从而去推断矿产的埋藏情况与成矿有关的地质问题,最后通过探矿工程验证,肯定其地质效果。 2.物探异常具有多解性。产生物探异常的原因,往往是多种多样的。这是由于不同的地质体可以有相同的物理场,故造成物探异常推断的多解性。如磁铁矿、磁黄铁矿、超基性岩,都可以引起磁异常。所以工作中采用单一的物探方法,往往不易得到较肯定的地质结论。一般情况应合理地综合运用几种物探方法,并与地质研究紧密结合,才能得到较为肯定的结论。 3.每种物探方法都有要求严格的应用条件和使用范围。因为矿床地质、地球物理特征及自然地理条件因地而异,从而影响物探方法的有效性。 (二)物探工作的前提 在确定物探任务时,除地质研究的需要外,还必须具备物探工作前提,才能达

到预期的目的。物探工作的前提主要有下列几方面: 1.物性差异,即被调查研究的地质体与周围地质体之间,要有某种物理性质上的差异。 2.被调查的地质体要具有一定的规模和合适的深度,用现有的技术方法能发现它所 引起的异常。若规模很小、埋藏又深的矿体,则不能发现其异常;有时虽然地质体埋藏较深,但规模很大,也可能发现异常。故找矿效果应根据具体情况而定。 3.能区分异常,即从各种干扰因素的异常中,区分所调查的地质体的异常。如铬铁矿和纯橄榄岩都可引起重力异常,蛇纹石化等岩性变化也可引起异常,能否从干扰异常中找出矿异常,是方法应用的重要条件之一。 二、地球物理探矿法的应用及其地质效果 (一)应用物探找矿的有利条件与不利条件 1.物探找矿有利条件:地形平坦,因物理场是以水平面做基面,越平坦越好;矿体形态规则;具有相当的规模,矿物成分较稳定;干扰因素少;有较详细的地质资料。最好附近有勘探矿区或开采矿山,有已知的地质资料便于对比。 2.物探找矿的不利条件:物性差异不明显或物理性质不稳定的地质体;寻找的地质体或矿体过小过深,地质条件复杂;干扰因素多,不易区分矿与非矿异常等。 (二)物探方法的种类、应用条件及地质效果简要列于表4—5。 物探方法的选择,一般是依据工作区的下列三方面情况,结合各种物探方法的特点进行选择:一是地质特点,即矿体产出部位、矿石类型(是决定物探方法的依据)、矿体的形态和产状(是确定测网大小、测线方向、电极距离大小与排列方式等决定因素);二是地球物理特性,即岩矿物性参数,利用物性统计参数分析地质构

什么是地球物理勘探

什么是地球物理勘探 人类居住的地球,表层是由岩石圈组成的地壳,石油和天然气就埋藏于地壳的岩石中,埋藏可深达数千米,眼看不到,手摸不着,所以,要找到油气首先需要搞清地下岩石情况以及岩石的物理性质。 岩石物理性质是指岩石的导电性、磁性、密度、地震波传播等特性。地下岩石情况不同,岩石的物理性质也随之而变化。我们把以岩石间物理性质差异为基础,以物理方法为手段的油气勘探技术,称为地球物理勘探技术,简称物探技术。 通过观测不同岩石引起的重力差异来了解地下地层的岩性和起伏状态的方法,称为重力勘探。油气生成于沉积盆地,应用重力勘探可以确定沉积盆地范围。 通过观测不同岩石的磁性差异,来了解地下岩石情况的方法,称为磁力勘探。在沉积盆地中,往往会分布着各种磁性地质体,磁力勘探可以圈定其范围,确定其性质。 通过观测不同岩石的导电性差异来了解地下地层岩石情况的方法,称为电法勘探,与油气有关的沉积岩往往导电性良好(电阻率低),应用电法勘探可以寻找和确定这类地层。 通过观测用人工方法(如爆炸)激发的地震波在不同岩石中的速度变化及其他特征来了解地下岩石情况的方法,称为地震勘探。 在以上这四种方法中,重力、磁力、电法三种方法联合起来应用往往可以找出可能有油气的盆地在哪里,盆地中哪里是隆起,哪里是坳陷,哪里是可能最有利的构造等等。这种工作是在找油的开始阶段做的,一般叫做普查。 地震勘探是地球物理勘探最主要的一种勘探方法,具有勘探精度高,能更清晰地确定油气构造形态、埋藏深度、岩石性质等优点,成为油气勘探的主要手段,并被广泛应用。 什么是地球物理测井 井下地层是由各类岩石组成,不同的岩石具有不同的物理化学性质,为了研究各类岩石的物理性质及井下地层是否含有石油天然气和其他有用矿产,建立了一门实用性很强的边缘 学科---地球物理测井学,简称“测井”,它以地质学、物理学、数学为理论基础,采用计算机 信息技术、电子技术及传感器技术,设计出专门的测井仪器,沿着井身进行测量,得出地层 的各种物理、化学性质、地层结构及井身几何特性等各种信息,为石油天然气勘探、油气田

环境地球物理勘查技术与方法探究

环境地球物理勘查技术与方法探究 在工业化进程中,经济的发展伴随着地球环境的恶化,成为各个技术领域面临的问题。环境问题的解决一方面靠积极的预防,更要对已经产生的环境污染及危害进行治理,而作为一种环境监测方法,地球物理勘查技术的应用为环境监测与治理提供了技术支持。本文就环境地球物理勘查技术与方法进行探讨,希望会对我国的环境建设起到一定作用。 标签:环境保护地球物理勘查 0前言 科技的不断发展带来各项技术水平的不断提高,在环境治理方面也具备了一定的技术支撑。环境地球物理方法充分的发挥着环境科学与物理技术的两项优势,无论是进行大区域的环境物理变化,还是区域性的环境污染都具备了实用性及实效性的优势,为我国的环境监测以及保护提供科学的技术参考。 1对地下水污染的勘查技术 工业的发展与人类各种生活垃圾的出现,直接影响到了地下水源的质量,地下水污染问题也受到各个学术界的关注。地下水的主要污染源还是工业企业的污水排放以及工业垃圾没有进行进一步处理,其中还包括城市生活中所产生的大量垃圾,对垃圾的填埋直接影响了地下水质。地下水的质量直接与我们的生活用水息息相关,如果地下水一直受到污染,会使我们的生活水平直线下降,所以,对地下水污染的治理与预防是各个领域都在研究的问题。而在对地下水污染进行防治的过程中,首先要了解地下污染源的所在地点、污染的严重程度、地下水的流向以及污染源的分布等因素,才能在治理当中制定相应的方案。 1.1对垃圾填埋场的渗漏检测 大型的垃圾填埋场会对本地区的土质以及水质产生一定的影响,垃圾渗滤液在渗入地下后会使地层中介质的物理性能发生改变。通过对地球物理仪器设备的应用,可以检测出垃圾渗滤液导致的介质变化,进而分析出渗漏的范围以及地下水的污染程度,这种方法方便快捷,不需要进行大量的采样和打钻。 而针对不同的垃圾填埋状况以及工作目的,应该选用不同的工作方法。常用的方法有雷达法、电磁法、放射性法等,可以用来进行污染治理的前后对比当中。而对小范围内的垃圾填埋产生的影响做检测的话,可以采用激发极化法、探地雷达法等。在进行不同物理检测方法选择时,应该根据实地需要选择可行性的对策,具体为使污染体育背景之间具有明显的物性差别,也就是根据仪器的检测数据能够明显的得到相应的结论,使检测结果更科学。 1.2对地下运输管道的检测

地球物理勘探方法及应用范围

M D 模型空间数据空间地球物理探测空间变换示意图 球物理探测方法简介及应用范围 地球物理学是用物理学的原理和方法,对地球的各种物理场分布及其变化进行观测,探索地球本体及近地空间的介质结构、物质组成、形成和演化,研究与其相关的各种自然现象及其变化规律。在此基础上为探测地球内部结构与构造、寻找能源、资源和环境监测提供理论、方法和技术,为灾害预报提供重要依据。 地球物理学的研究内容总体上可分为应用地球物理和理论地球物理两大类。应用地球物理(又称勘探地球物理)主要包括能源勘探、金属与非金属勘探、环境与项目探测等。勘探地球物理学利用地球物理学发展起来的方法进行找矿、找油、项目和环境监测以及构造研究等,方法手段包括地震勘探、电法勘探、重力勘探、磁法勘探、地球物理测井和放射性勘探等,通过先进的地球物理测量仪器,测量来自地下的地球物理场信息,对测得的信息进行分析、处理、反演、解释,进而推测地下的结构构造和矿产分布。勘探地球物理学是石油、金属与非金属矿床、地下水资源及大型项目基址等的勘察及探测的主要学科。 从数学角度讲,地球物理勘 探的过程可以抽象成从模型空 间通过某种映射关系,映射成可 以感知的数据空间,再通过逆映 射变换到模型空间,其映射关系 见右图。这种映射关系遵循地球 物理学的两大模型原理:滤波器 模型原理和场效应模型原理。因 此地球物理数据处理:一是基于 信号分析理论的信号处理技术, 主要目的是去杂、增益、提取有效信号;二是基于物理场效应理论的反演技术。 地球物理反演,就是在模型空间寻找一组参数向量,这组向量通过某种映射关系,能再现数据空间的观测数据,因此在一定的假设条件下,反演问题可以表示为某种误差泛函的极小化问题 min ‖G cal (M)-D obs ‖2 也就是地球物理反演是利用模型参数和模型正演来获取合成数据,再通过合成数据与观测数据的匹配估算出最佳M 参数。由此可见,地球物理反演实质上是正

地球物理勘探概论复习重点

第二章重力勘探重点 第一节重力勘探方法的理论基础 1、重力场、重力场强度与重力加速度关系 2、重力的单位 SI制和CGS制换算 3、地球的正常重力场正常重力场随纬度和高度变化规律 4、重力异常的实质 5、产生重力异常的条件 第二~五节岩矿石密度、重力仪、野外工作与资料整理 1、岩矿石的密度特征、影响岩矿石密度的因素 2、重力仪的平衡方程、角灵敏度 3、影响重力仪精度的因素与消除措施 4、确定重力测量精度和比例尺、布置测网的原则 5、野外重力观测资料整理 6、布格重力异常 第六~七节正反演 1、重力勘探正演、反演与反问题的多解性 2、球体重力异常的平面特征与剖面特征 3、水平圆柱体重力异常的平面特征与剖面特征,并与球体重力异常作比较 4、台阶重力异常的平面特征和剖面特征 5、计算几何参数与物性参数的特征点法 6、密度界面反演方法 第八节转换处理,应用 1、区域异常和局部异常,说明它们的相对性 2、划分区域与局部重力场的方法与原理 3、重力异常的解析延拓,向上与向下延拓的作用 4、重力高次导数法,重力高次导数作用 第三章磁法勘探重点 1.地磁要素,它们之间的关系并图示之。 2.地磁场的构成。 3.解释名词:正常地磁场,磁异常。 4.世界地磁图分析:(1)垂直强度(2)水平强度(3)等倾线(4)等偏线等的特征。 5.解释名词:偶极子磁场、非偶极子磁场 6.解释名词:地磁场的“西向漂移” 7.太阳静日变化特征,它对磁法勘探作用 8.解释名词:磁暴和地磁脉动 9.总磁场强度异常ΔT,ΔT的物理意义及ΔT与Za、Xa、Ya三个分量的关系。 10.解释名词:感应磁化强度、剩余磁化强度、总磁化强度,它们之间的关系。 11.岩矿石磁性特征及其影响因素。 12.解释名词:热剩磁,它在磁法勘探中有什么意义 13.质子磁力仪的工作原理。

地球物理勘探部分知识点

????????????????? ????????????????????????????????????????????????????????????????????????????????????????????梯度法电位法充电法激电测深法各类剖面法激发极化法多级测深法偶极测深三级测深法对称四级测深法电测深偶极剖面法复合对称四级剖面法对称四级剖面法联合剖面法电剖面电阻率法充电法电位法天然场法直流电法法)无线电波透视法(阴影变频法(交流激电法)甚低频法(长波法)电磁法低频点测法 天然场法交流电法电法勘探???????????声波法横波法纵波法面波法反射波法 折射波法地震勘探 测量均匀大地的电阻率,原则上可以采用任意形式的电极排列来进行,即在地表任意两点(A 、B)供电,然后在任意两点(M 、N)测量其间的电位差,根据 (5.2.10)式便可求出M 、N 两点的电位. AB 在MN 间产生的电位差由上式解出大地电阻率,大地电阻率的 计算公式为 上式即为在均匀大地的地表采用任意电极装置(或电极排列)测量电阻率的基本公式。 其中K 为电极装置系数。 电法勘探的基本概念 电法勘探是以研究地壳中各种岩石、矿石电学性质之间的差异为基础,利用电场或电磁场(天然或人工)空间和时间分布规律来解决地质构造或寻找有用矿产的)11(2BM AM I U M -=πρ)11(2BN AN I U N -=πρ)1111(2BN BM AN AM I U MN +--=?πρI U K MN ?=ρBN BM AN AM K 11112+--=π

一类地球物理勘探方法,通称为电法。 场源 稳定电流场:点电源电场、两异极性点电源电场、偶极子源电场。 变化电流场:电磁场 装置类型:对称四极、三极、偶极 视电阻率均匀介质电阻率计算公式 实际上大地介质常不满足均匀介质条件,地形往往起伏不平,地下介质也不均匀,各种岩石相互重叠,断层裂隙纵横交错,或者有矿体充填其中,这时由上式得到的电阻率值在一般情况下既不是围岩电阻率,也不是矿体电阻率,我们称之为视电阻率。用ρs 表示 视电阻率与真电阻率在概念上有本质的不同,决定视电阻率值大小的因素有: 1) 不均匀体的电阻率及围岩电阻率; 2) 不均匀地质体的分布状态(形状大小、深浅及产状等); 3) 供电电极和测量电极间的相互位置; 4) 工作装置和地质体的相对位置 电测深 电测深法是根据岩石和矿石导电性的差异,在地面上不断改变供电电极和测置电极的位置,观测和研究所供直流电场在地下介质中的分布,了解测点电阻率I U K MN ?= ρ

物探方法简介

物探方法简介 一、瞬变电磁法简介 1、瞬变电磁法技术原理 瞬变电磁法(Transient ElectromagneticsMethod, TEM)是以地壳中岩(矿)石的导电性与导磁性差异为主要物质基础,根据电磁感应原理,利用不接地回线或接地线源向地下发送一次脉冲磁场,在一次脉冲磁场的间隙期间,利用线圈或接地电极观测二次涡流场,并研究该场的空间与时间分布规律, 来寻找地下矿产资源或解决其它地质问题的一支时间域电磁法。下图即为瞬变电磁法原理的图解。 2、瞬变电磁法应用领域 瞬变电磁法施工简便、低阻探测能力强、精度高、探测深度大(地面1000m、井下150m),井下、井上均可施工。具有许多传统直流电法不可比拟的优点,可应用于: ◆地下水探测。瞬变电磁法可用于找水、咸淡水区分、地下电性

分层、圈定地下充水溶洞; ◆寻找金属矿床; ◆煤层顶底板富水性探测、巷道迎头超前探、圈定煤层采空(塌陷)区; ◆陡倾角、断层、岩脉等地质构造探测。 二、高密度电法简介 其原理与普通电阻率法相同,不同的是在观测中设置了高密度的观测点,工作装置组合实现了密点距陈列布设电极,是一种阵列勘探方法,现场测量时只需将全部电极(几十至上百根)置于测点上,然后利用程控电极转换开关和微机工程电测仪便可实现数据的快速和自动采集,增加了空间供电和采样的密度,提高了纵、横向分辨能力和工作效率。 在众多直流电阻率方法中,高密度电阻率法以其工作效率高、反映的地电信息量大、工作成本低、测量简便等突出优势,在物探领域中发挥着越来越重要的作用。主要应用于: ◆寻找地下水、管线探测、岩土工程勘察; ◆煤矿采空区调查,煤矿井下富水性探测; ◆水库大坝的坝体稳定性评价、坝基渗漏勘查、堤坝裂缝检测、建筑地基勘探; ◆涵洞和溶洞位置勘查、岩溶塌陷和地裂缝探测 三、矿井直流电法简介 主要应用于井下,其原理与地面直流电法相似,不同之处为:矿井直流电法属全空间电法勘探、采用本安防爆设备,它以岩石的电性

我对地球物理勘察技术的认识

我对地球物理勘察技术的认识 1 地球物理勘探的实质 地球物理勘探是通过观察和研究各种地球物理场的变化来解决地质问题的一种勘查方法。它是以各种岩石和矿石的密度、磁性、电性、弹性、放射性等物理性质的差异为研究基础用不同的物探方法和物探仪器,探测天然的或人工的地球物理场的变化;通过分析、研究所获得地球物理资料,推断、解释地质构造和矿产分布情况。 2 地球物理勘探工作内容 利用相适应的仪器测量、接收工作区域的各种物理信息,应用有效的处理从中提取出需要的信息,并根据岩(矿)体或构造和围岩的物性差异,结合地质条件进行分析,做出地质解释,推断探测对象在地下赋存的位置、大小范围和产状,以及反映相应物性特征的物理量等,作出相应的解释推断的图件。地球物理勘探是地质调查和地学研究不可缺少的一种手段和方法。 3 地球物理勘探的方法 随着现代科学技术的蓬勃发展,根据其所研究地球物理场的不同,物探方法通常可分为以下几大类:(1)以介质弹性差异为基础,研究波场变化规律的地震勘探和声波探测;(2)以介质电性差异为基础,研究天然或人工电场(或电磁场)的变化规律的电法勘探;(3)以介质密度差异为基础,研究重力场变化规律的重力勘探;(4)以介质磁性差异为基础,研究地磁场变化规律的磁法勘探;(5)以介质中放射性元素种类及含量差异为基础,研究幅射场变化特征的核地球物理勘探;(6)以地下热能分布和介质导热性为基础,研究地温场变化的地热勘探等。 地震勘探是近代发展最快的物探方法之一。它的原理是利用人工激发的地震波在弹性不同的地层内的传播规律来勘探地下的地质情况。在地面某处激发的地震

波在向地下传播时,遇到不同弹性地层就会产生反射波或折射波返回地面,用专门得仪器可以记录这些波,分析所得记录的特点,如波的传播时间、振动形状等,通过专门的计算或一起处理,能较准确的确定这些界面的深度和形态,判断地层的岩性,是勘探含油气构造,甚至是直接找油的主要物探方法,也可以用于勘探煤田,盐岩矿床,个别的层状金属矿床以及解决水文地质、工程地质等问题。 电法勘探是根据岩石和矿石电学性质(如电性、电化学活动性、电磁感应特性和电性差异)来找矿和研究地质构造的一种地球物理勘探方法。它是通过观测人工的、天然的电场或交变的电磁场,分析、解释这些场的特点规律达到找矿勘探的目的。电法勘探分为两大类,直流电法,包括电阻率法、充电法、自然电场法、直流激发极化法等;交流电法,包括交流激发极化法、电磁法、大地电磁场法、无线电波透视法和微波法。 重力勘探是利用组成地壳的各种岩体、矿体间的密度差异所引起的地表重力加速度值得变化而进行地球物理勘探的一种方法。以牛顿万有引力为基础。只要勘探地质体与周围岩体有一定的密度差异,就可以用精密的重力测量仪器找出重力异常,然后结合当地的地质和其他物探资料,对重力异常进行定性解释和定量解释,便可以推断覆盖层以下密度不同的矿体与岩层的埋藏情况,进而找出隐状矿体存在的位置和地质构造情况。 磁法勘探是常用的地球物理勘探方法之一,自然界的岩石和矿石具有不同的磁性,可以 产生各不相同的磁场,它使地球磁场在局部地区发生变化,出现磁异常。利用仪器发现和研究这些磁异常,进而寻找磁性矿体和研究地质构造的方法称为磁法勘探,她包括地面、航空、海洋磁法勘探及井中磁法勘探等。磁法勘探主要用来寻找和勘探有关矿产;进行地质填图;研究与尤其油漆有关的地质构造及大地都造等。我国建国以来大多数铁矿区、多金属矿区及油气田等都进行了大量的磁法勘探。效果显著。

浅谈地球物理勘探的勘探方法

浅谈地球物理勘探的勘探方法 白亚东 宁夏地球物理地球化学勘查院宁夏750004 摘要:“地球物理勘探”,英文名为geophysical prospecting,也称“物探”。地球物理勘探常利用的岩石物理性质分密度、磁导率、电导率、弹性、热导率和放射性,与此相应的勘探方法分重力勘探、磁法勘探、电法勘探、地震勘探、地温法勘探和核法勘探。 关键词:地球物理勘探;物理性质;勘探方法 一、地球物理勘探的定义。 “地球物理勘探”,英文名为geophysical prospecting,也称“物探”。地球物理勘探是利用地球物理的原理,根据各种岩石之间的密度、磁性、电性、弹性及放射性等物理性质的差异,选用不同的物理方法和物探仪器,测量工程区的地球物理场的变化,以了解其水文地质和工程地质条件的勘探和测试方法。由于地球物理勘探具有设备轻便、勘察速度快、投入人力财力小等特点,它在工程建设和环境保护等方面有较广泛的应用。 二、地球物理勘探的勘探方法。 地球物理勘探常利用的岩石物理性质具有密度、磁导率、电导率、弹性、热导率和放射性。勘探方法包括重力勘探、磁法勘探、电法勘探、地震勘探、地温法勘探和核法勘探。 (一)重力勘探。

重力勘探是利用专门仪器并按照特定方式观测岩层间的密度差异,进而研究地下地质问题,是利用组成地壳的各种岩体、矿体间的密度差异所引起的地表的重力加速度值的变化而进行地质勘探的一种方法,用以提供构造和矿产等地质信息。 重力勘探是以牛顿万有引力定律为基础,在接近较大密度的物体时,其引力增大,反之引力减小。在地表上引起的重力变化就是重力异常,勘探地质体与其周围岩体有一定的密度差异,就可以用精密的重力测量仪器找出重力异常。异常的规模、形状和强度取决于具有密度差的物体大小、形状和深度。然后,结合工作地区的地质和其他物探资料,对重力异常进行定性解释和定量解释,便可以推断覆盖层以下密度不同的矿体与岩层埋藏情况,进而找出隐伏矿体存在的位置和地质构造情况。 能源工业、国防工业和测绘工业是重力勘探的主要应用领域。目前国内重力勘探队伍主要集中在地矿部门和石油部门,国外的重力勘探主要应用在盆地、盆地深层和井中重力测井方面。 (二)磁法勘探。 磁法勘探是一种常用的地球物理勘探方法。自然界中的岩石和矿石具有不同的磁性并能够产生不同的磁场,它使地球磁场在局部地区发生变化,出现地磁异常,利用仪器发现和研究这些磁异常,进而寻找磁性矿体和研究地质构造的方法称为磁法勘探。 磁法勘探主要用来寻找和勘探有关矿产(铁矿、铅锌矿、铜锦矿等),测定和分析研究各种磁异常,找出磁异常与地下岩石、

关于地球物理勘查技术重要应用分析

关于地球物理勘查技术重要应用分析 摘要:地球物理勘查技术包含内容诸多,其包括航空放射性技术、航空重力技术、航空电磁法、航空磁法、深地震主动源剖面法、地面电磁法、天然地震流动 台阵观测法、井中物探技术以及金属矿地震技术等,鉴于现实情况的考虑,本文 基于“代表性、针对性和透彻性”的论述原则,以括航空放射性技术为研究对象实 施分析。 关键词:地球物理;勘查技术;重要应用;分析 1导言 地球物理勘查技术的应用涉及的领域十分广泛,其不但能够准确的调查和现 实地球地质构造的分布情况,还能在地质工程中,对出现的病害问题进行详细的 检测分析,帮助工作人员在处理问题的过程中提供准确的信息依据,备受众多领 域工作人员的青睐,为很多重要的社会建设活动提供了便利条件。由此,在社会 的发展进程中,地球物理勘查技术的应用将愈加广泛,为我国社会和经济的持续 发展都做出了重要的贡献。 2地球物理勘查技术的基本特点 (1)直接性寻找矿产资源以及地层,以矿体为勘察对象,比如:利用磁法勘探磁铁矿,利用重力法进行盐岩的勘探工作,以及运用激电法对硫化物矿体进行 探测工作等。(2)间接性寻找矿产资源以及地层,在这一工作中以控矿地质体 为勘探对象,比如:在寻找矽卡岩型铁多金属矿时可以采用磁法进行勘探工作, 在寻找钾盐资源时可以采用重力法进行勘探工作,在对油气资源进行探测时可以 采用地震法进行勘探工作。(3)地球物理勘查资料解释的多解性。对于不同的 地质体来说,常常存在很多相似的异常,比如:磁铁矿与基性火山岩容易引起强 磁异常,铜多金属矿与黄铁矿、石墨容易形成激电异常等。(4)地球物理勘查 成果的等效性。在一定的埋藏条件下,地质较小、物性差异大与地质体规模较大、物性差异小的地质体也可以形成相似异常的结果,从而对异常解释形成一定的影响。 3关于地球物理勘查技术的分析 3.1重力勘测 在地球物理勘探技术中,重力测量技术较为普遍,重力仪的重力测量技术精 度主要用于矿体,并对密度差重力变化的形成进行了分析和探讨,这是一种运用 起来较为便捷的矿产勘查方法,同时也可以对地质进行研究。在应用方面,重力 勘测技术多应用于岩浆岩体、沉盆基地、划分断裂等基础物质上,重力勘测技术 还为与金属相关的花岗岩石提供了重要的依据。 3.2磁法勘探 在对矿石和自然界岩石进行磁力勘查时需要用到磁法勘探技术,可以合理地 分析和检测磁场的变化。同时,磁勘探技术也是研究地质问题和勘探资源的重要 手段。通过对相关研究的分析发现,磁性勘探技术是目前最简单的一种勘探方法,它具有成本低、携带方便、工作效率高、勘探结构准确等优点,尤其是在有色金 属的勘探中。此外,在飞机的运行中,飞机磁力仪对航空磁力测量,能在短时间 内实现大范围大范围的区域磁扫描,为飞机的正常运行提供一定的保障。 3.3电法勘探 电法勘探技术是根据矿石与岩石之间的电性差异对矿产的勘查进行分析与找寻。电法勘查技术主要可以分为以下三个方法。(1)直流电阻率法。这一方法

物探方法原理

第三章测线布置、物探方法及质量评价 第一节测线布置目的及精度 一、测线布置总体规则 (一)、测网布置应根据任务要求、探测方法、被探测对象规模、埋深等因素综合确定。测网和工作比例尺应能观测被探测的目的体,并可在平面图上清楚反映探测对象的规模、走向。 (二)、测线方向宜垂直于地层、构造和主要探测对象的走向,应沿地形起伏较小和表层介质较为均匀的地段布置测线,测线应与地质勘探线和其它物探方法的测线一致,避开干扰源。 (三)、当测区边界附近发现重要异常时,应将测线适当延长至测区外,以追踪异常。 (四)、在地质构造复杂地区,应适当加密测线和测点。 (五)、测线端点、转折点、物探观测点、观测基点应进行测量。 二、各测线方位、长度及物探方法布置 根据任务设计书,本课题测线、测点采用网格状布置,分别对测网内每个点进行高密度电法、主动源面波法和微动法测量。其中高密度电法测线垂直于构造布置以某一方位布置一条约290m-590m长的测线,主动源面波法以测点为中心以某一个方位(根据实际场地条件而定)布置一条40m-50m长的测线,微动法则对该中心点进行单点测量,并用手持GPS记录该中心点的位置,设计的测点坐标是根据湖南怀化盆地岩溶塌陷1:5万环境地质调查工作部署图选定的并计算的,精度达到经纬度小数点后6位数字,精度达到15m以内,达到了设计精度要求。

第二节 物探方法、参数及技术指标 物探方法、参数及质量评价,严格按照相关物探规范、规程设计、执行,对已有规范、规程不适应岩溶塌陷调查的部分,参照相应的规范、规程修改执行。本章主要叙述与该项目有关的物探方法。主要有地面物探:高密度电法、主动源面波法和微动法。 一、高密度电法 (一)、高密度视电阻率联合剖面法: 高密度视电阻率联合剖面法原理:测线垂直构造走向或地下水流向,在测线上顺序布置供电电极A 、测量电极M 、N 和供电电极B ,在测线的中垂线方向上布置“无穷远”极C ,距离一般大于AB/2距的5倍以上,A 或B 分别与C 组合,分别供电测量获得视电阻率 和 。这样的视电阻率曲线是在固定A 、M 、N 、B 间距下获得,沿水平向测量可获得一定深度范围内的电性分布信息,其中 、 的曲线形态(正交点、反交点、同步起伏等),可用于评价地下地质体的导电性;曲线在交点附近的变化形态(对称、倾斜),可推测地下地质体的产状;对比不同极距的联合剖面曲线,可推测地下异常体的空间形态;通过曲线异常段与背景值的相对大小、变化剧烈程度可估算地下地质体的位置和宽度。该方法是追索直立或陡立脉状低阻体最为有效的方法之一。 (1)仪器:WDJD-3 (2)测量参数:电位,供电电流 (3)利用参数:视电阻率 (4)布置方式:剖面 (5)技术指标: 高密度联合剖面法和高密度电测深法采用重庆奔腾数控技术研究所生产的WDJD-3多功能数字直流激电仪为控制主机,配以WDZJ-3多路电极转换器构成高密度电阻率测量系统。在野外通过重复测量、检查试验来判断仪器是否工作正常。 ①仪器技术指标、装备技术指标满足(DZ/T0073-1993表4及)的规定。 ②曲线具有极值类型的异常值Y 估计表达式为: 00()/a Y ρρρ=- 3-1 0ρ为正常背景值。 ③ 曲线具有阶梯状类型的异常值Y 估计表示为: 2121 2()/()a a a a Y ρρρρ=-+ 3-2 2a ρ、1 a ρ分别为阶梯两侧的视电阻率值。

地球物理勘探概论考题

1、视电阻率:若进行测量的地段地下岩石电性分布不均匀时,上式计算出的电阻率称为视电 阻率,它不是岩石的 真电阻率,是地下岩石电性不均匀体的综合反映,通常以rs表示 2、纵向电导:是指电流沿水平方向流过某一电性层时,该层对电流导通能力的大小。 3、各向异性系数:岩石的电阻率具有明显的方向性,即沿层理方向和垂直层理方向岩石的导电性不同,称为岩石电阻率的各向异性。岩石电阻率的各向异性可用各向异性系数λ来表示 4、视极化率:当地形不平或地下不均时,按式η=△U2/△U计算出来的参数称为视极化率。 5、衰减时:把开始的电位差△U2作为1,当△U2变为(30%,50%,60%)时所需的时间称为衰减时S 6、含水因素:测深曲线的衰减时与横轴在一起所包围的面积 7、勘探体积 :长为两个点电源之间距离AB,宽为(1/2)AB,深也为(1/2)AB的勘探长方体 8、扩散电位:两种不同离子或离子相同而活度不同的溶液,其界面上由于离子的扩散速度不同,而形成的电位。 9、卡尼亚电阻率:在非均匀介质条件下,以实测阻抗计算出的量称为卡尼亚视电阻率.它的数学表达式为:ρa=Z2(ωμ)(3)ρa—卡尼尔电阻率(Ω·m) 10、趋肤深度:电场沿Z轴方向前进1/b距离时,振幅衰减为1/e倍。习惯上将距离δ=1/b 称为电磁波的趋肤深度 11、振动图:某点振幅随时间的变化曲线称为振动图 12、波剖面图:某时刻各点振幅的变化称为波剖面 13、视速度:沿射线方向Ds传播的波称为射线速度,是波的真速度V。而位于测线上的观测者看来,似乎波前沿着测线Dx,以速度V*传播,是波的视速度 14均方根速度:在水平层状介质中,取各层层速度对垂直传播时间的均方根值就是均方根速度15、动校正:反射波的传播时间与检波器距离爆炸点的距离远近有关,并与反射界面的倾角、埋深和覆盖层波速有关,由此产生的时差称为正常时差,需要进行正常时差校正,称为动校正。 16、静校正:对由于地表不同检波点的高程和地表低速层的厚度、速度变化等的影响所产生时差的校正称为静校正,它包括井深校正、地形校正、低速带校正。 17、瑞雷面波:在自由表面上产生的沿自由表面传播的面波。地震勘探中的面波指瑞利波。 18、同相轴:同一波相同相位的连线称为同相轴 19、时间剖面 :是地震资料经数字处理后的主要成果。纵轴为t0时间,横轴为CDP点在地面的位置排列,两个CDP 之间的距离为道间距的一半。 20、布格异常:通常,将中间层校正与高度校正合并进行,称为“布格校正”,其重力异常称为“布格异常”。 21、剩余磁化强度 :岩石受地磁场磁化而具有的磁化强度(Mi)。 22、感应磁化强度 :岩、矿石生成时受当时地磁场磁化保留下来的磁化强度(Mr)。 23、品质因素:地震波的吸收可以用品质因素描述。Q定义:在一个周期(或一个波长距离)内,振动损耗能量DE与总能量E之比的倒数。 24、观测系统:表示激发点与接收点之间相互位置,以及排列和排列之间的相互位置关系 25、正常时差:任一接收点反射波传播时间与它的t0时间之差,称为正常时差。 26、地电断面:是按电阻率差异来划分的断面,由不同电性层所构成的断面称为地电断面。 27、信噪比 :有效波振幅与干扰波振幅的比值称为信噪比。 28、纵向分辨率:同一接收点接收的薄层顶、底两个反射波的时差。 29、菲涅尔带:表示地震勘探中的横向分辨率,当地质体的尺寸大于菲涅尔带半径r时地震勘探中可以分辨该地质体,小于r则不能分辨。

地球物理学概论论文

地球物理学概论论文 地球物理学是地球科学中的新兴学科,也是人类深入认识地球的主要工具。地球物理学以物理学研究的发展为依托,运用物理学的理论和方法探索地球内部的结构,动力系统及演化。其范围涉及地壳,地幔和地核,尤其是岩石层和软流层发生的各种物理现象,成因及其过程。通过地球物理场的观测、资料处理和模型计算已达到深入认识地球、造福人类的目的。 地球物理学由固体地球物理学、应用地球物理学、大地测量学、空间物理学、大气物理学、海洋地球物理学等分支学科组成。其中应用地球物理学的主要任务是应用地球物理原理和方法开展能源、资源的勘探与开发,地震灾害预测预防、地球环境的保护和污染检测。 地球物理学的主要学科有:地震、重力、磁法、电法、测井、遥感和海洋地球物理。 地震:地震分为天然地震和人工地震两大类。其中勘探地球物理学主要利用人工地震进行资源等勘探。地震勘探是近代发展变化最快的地球物理方法之一。它的原理是利用人工激发的地震波在弹性不同的地层内传播规律来勘探地下的地质情况。在地面某处激发的地震波向地下传播时,遇到不同弹性的地层分界面就会产生反射波或折射波返回地面,用专门的仪器可记录这些波,分析所得记录的特点,如波的传播时间、振动形状等,通过专门的计算或仪器处理,能较准确地测定这些界面的深度和形态,判断地层的岩性,是勘探含油气构造甚至直接找油的主要物探方法,也可以用于勘探煤田、盐岩矿床、个别

的层状金属矿床以及解决水文地质工程地质等问题。近年来,应用天然震源的各种地震勘探方法也不断得到发展。 重力勘探是地球物理勘探方法之一。是利用组成地壳的各种岩体、矿体间的密度差异所引起的地表的重力加速度值的变化而进行地质勘探的一种方法。它是以牛顿万有引力定律为基础的。只要勘探地质体与其周围岩体有一定的密度差异,就可以用精密的重力测量仪器找出重力异常。然后,结合工作地区的地质和其他物探资料,对重力异常进行定性解释和定量解释,便可以推断覆盖层以下密度不同的矿体与岩层埋藏情况,进而找出隐伏矿体存在的位置和地质构造情况。 磁法勘探也是地球物理勘探方法之一。自然界的岩石和矿石具有不同磁性,可以产生各不相同的磁场,它使地球磁场在局部地区发生变化,出现地磁异常。利用仪器发现和研究这些磁异常,进而寻找磁性矿体和研究地质构造的方法称为磁法勘探。磁法勘探是常用的地球物理勘探方法之一。它包括地面、航空、海洋磁法勘探及井中磁测等。磁法勘探主要用来寻找和勘探有关矿产;进行地质填图;研究与油气有关的地质构造及大地构造等问题。我国建国以来大多数铁矿区、多金属矿区及油气田等都进行了大量的磁法勘探工作,取得了良好的地质效果。磁法勘探也是基本地球物理手段,国家已纳入在全国范围内进行系统测量的计划,并已基本覆盖了全国重要地区。 电法勘探是根据岩石和矿石电学性质如导电性、电化学活动性、电磁感应特性和介电性,即所谓“电性差异”来找矿和研究地质构造的一种地球物理勘探方法。它是通过仪器观测人工的、天然的电场或交

地球物理勘探方法重力勘探

地球物理勘探方法重力勘探(1) 测量与围岩有密度差异的地质体在其周围引起的重力异常﹐以确定这些地质体存在的空间位置﹑大小和形状﹐从而对工作地区的地质构造和矿产分布情况作出判断的一种地球物理勘探方法。 第一个研究和测定重力加速度的是17世纪意大利物理学家伽利略(G.Galileo)。以后﹐比较准确地测定重力加速度的方法是利用摆仪。19世纪末叶﹐匈牙利物理学家厄缶﹐L.von发明了扭秤﹐使重力测量有可能用于地质勘探。在20世纪30年代﹐由于重力仪的研制成功﹐重力勘探获得了广泛应用﹐并且发展了海洋﹑航空和井中重力测量(见海洋地球物理勘探﹑航空地球物理勘探﹑地球物理测井和地下地球物理勘探)。 【重力异常和重力改正】 观测重力值除反映地下密度分布外﹐还与地球形状﹑测点高度和地形不规则有关。因此﹐在作地质解释之前必须对观测重力值作相应的改正﹐才能反映出地下密度分布引起的重力异常。重力改正包括自由空间改正﹐中间层改正﹐地形改正和均衡改正。观测重力值减去正常重力值再经过相应的改正﹐便得到自由空间异常﹑布格异常和均衡异常(见地壳均衡)。在重力勘探中主要应用布格异常。为研究地壳均衡﹐地壳运动和地壳结构也需要应用均衡异常和自由空间异常。在平坦的地形条件下﹐常用自由空间异常代替均衡异常。 【重力数据的处理和解释】 野外获得的重力数据要作进一步处理和解释才能解决所提出的地质任务﹐主要分3个阶段﹕野外观测数据的处理﹐并绘制各种重力异常图﹔重力异常的分解(应用平均法﹑场的变换﹑频率滤波等方法)﹐即从叠加的异常中分出那些用来解决具体地质问题的异常﹔确定异常体的性质﹑形状﹑产状及其他特征参数。 解释分为定性的和定量的两个内容﹐定性解释是根据重力图并与地质资料对比﹐初步查明重力异常性质和获得有关异常源的信息。除某些构造外﹐对一般地质体重力异常的解释可遵循以下的一些原则﹕极大的正异常说明与围岩比较存在剩馀质量﹔反之﹐极小异常是由质量亏损引起的。靠近质量重心﹐在地表投影处将观测到最大异常。最大的水平梯度异常相应于激发体的边界。延伸异常相应于延伸的异常体﹐而等轴异常相应于等轴物体在地表的投影。对称异常曲线说明质量相对于通过极值点的垂直平面是对称分布的﹔反之﹐非对称曲线是由于质量非对称分布引起的。在平面上出现几个极值的复杂异常轮廓﹐表明存在几个非常接近的激发体。定量解释是根据异常场求激发体的产状要素建立重力模型。一种常用的反演方法是选择法﹐即选择重力模型使计算的重力异常与观测重力异常间的偏差小于要求的误差。 由于重力反演存在多解性﹐因此﹐必须依靠研究地区的地质﹑钻井﹑岩石密度和其他物探资料来减少反演的多解性。

地球物理勘探复习重点

地球物理勘探课后作业题 1.正常重力:正常重力场中的重力。地球的正常重力是由赤道向两极逐渐增加的。赤道处为9780300g.u.,两极处为9832087g.u. 。 2.剩余密度:地质体密度(σ)和围岩密度(σ0)的差值,称为剩余密度。 3.剩余质量:地质体的剩余密度和它体积的乘积称为地质体的剩余质量。 4.固体潮:地球并非刚体,引力的变化除形成海潮外,还引起地球固体部分周期性的变形,这种变形称为“固体潮”。 5.参考椭球体:地球的形状实际上并不规则,为便于计算正常重力值,我们选择一个内部物质呈均匀同心层分布,且与大地水准面偏差最小的旋转椭球体作为地球的形状,这个椭球体称为参考椭球体。 6.地形校正:地形起伏往往使得测点周围的物质不能处于同一水准面内,对实测重力异常造成了严重的干扰,因此必须通过地形校正予以消除。其办法是:除去测点所在水准面以上的多余物质,并将水准面以下空缺的部分用物质填补起来。 7.高度校正:地面每升高 1m 重力减小约 3.086g.u.,所以高度校正值Δg高为: 8.中间校正:消除水准面与大地水准面或基准面间还存在着一个水平物质层的影响就是中间层校正。 9.布格校正:高度校正和中间层校正都与测点高程h有关,在重力测量中,他们都是 考虑观测点与大地水准面间物质引力影响所作的校正。因此常把这两项合并起来。 10.均衡校正:均衡校正分两步进行:先进行全地形校正,再计算这部分物质沿垂直方向均匀充填到均衡补偿面,即所谓补偿质量所产生的引力效应(称补偿校正δgc),然后加到观测重力值中去。这两个步骤合称均衡校正。 11.重力异常及其产生原因?答:由于质量剩余,在地面某点P产生一个指向地质体质量中心的附加引力(场强度)ΔE 该附加引力在正常重力方向( 铅垂方向 )上的投影,即为重力异常。原因:1).测量点在地球自然表面,而不是大地水准面上2)地壳内部物质密度分布不均匀 3 )地球内部物质变化及重力日变化。 12.探测重力异常应具备的条件?答:要获得探测对象产生的重力异常,一般应具备如下五个方面的条件:第一,必须有密度不均匀体存在,即探测对象与围岩间要有一定的密度差,当地质体密度σ>围岩密度σ0 时,可观测到重力高;当σ<σ0 时,可观测到重力低;当σ=σ0 时,则观测不到重力异常。第二,仅有密度不均匀体的分布,并不一定能产生重力异常。如一组水平岩层,密度不均匀体必须沿水平方向密度变化,即要有一定的构造形态,才能引起重力异常。第三,不仅探测对象与围岩要有一定的密度差,而且剩余质量不能太小。第四,探测对象不能埋藏过深。第五,能否取得探测对象产生的异常,还取决于该异常能否从干扰场中辨别出来。只有地形不太复杂,围岩密度比较均匀,探测对象与围岩的密度差较大,且其它地质体的干扰场能从实测异常中消除时,重力勘探才能取得较好的地质效果。 13.岩矿石的剩磁:岩矿石在生成时,处在一定的条件下,受当时的地磁场磁化、成岩后经历漫长的地质年代,所保留下来的磁化强度,简称为岩矿石的剩磁。 14.地磁要素:地磁要素是示地表任意点地磁场大小和方向特征的物理量。包括以下方面:地磁场总强度T: 与磁法勘探中的感应磁化强度Mi密切相关。磁北方向H :T的水平分量。磁倾角I:T和水平面之间的夹角,上倾为正,下倾为负。磁偏角D:磁子午面和地理子午面之间的夹角。磁北自地理北向东偏为正,西偏为负。 15.居里温度:居里温度或磁性转变点,是指材料可以在铁磁体和顺磁体之间改变的温度,

相关文档
相关文档 最新文档