文档库 最新最全的文档下载
当前位置:文档库 › 专题三:抛物线选讲 (二)

专题三:抛物线选讲 (二)

专题三:抛物线选讲 (二)
专题三:抛物线选讲 (二)

专题三:抛物线选讲

一、定义法解题

1.(1)已知抛物线2:2(0)C y px p =>的准线为l ,过(1,0)M

l 相交于

点A ,与C 的一个交点为B ,若AM MB =

,则p = 。2

(2)如图,过抛物线2

2(0)y px p =>的焦点F 的直线l 依次交抛 物线及其准线于点,,A B C ,若||2||BC BF =,且||3AF =,

则抛物线的方程是_______________________。2

3y x =

(3)如图,已知半圆的直径||20AB =,l 为半圆外与AB 垂直的直线,且与BA 的延长线

交于点T ,|

|4AT =,半圆上相异两点,M N 与直线l 的

距离||MP ,||NQ 满足条件||||1||||

MP NQ MA NA ==,则

||||AM AN +=( ) B

A.22

B.20

C.18

D.16

(4)过抛物线2

4y x =的焦点F 作直线l 交抛物线于,A B 两点,若111

,||||2

AF BF -= 则 直线l 的倾斜角(0)2

π

θθ<≤等于( ) B

A .2

π B .

3

π C .

4

π D .

6

π

(5)已知直线()()20y k x k =+>与抛物线2

:8C y x =相交于A B 、两点,F 为C 的焦

点,若||2||FA FB =,则k =( ) D

A. 13

B.3

C.

23 D. 3

(6)设抛物线)0(22>=p px y 的焦点为F ,其准线与x 轴交于点C ,过点F 作它的弦AB ,若90,CBF ∠= 则||||AF BF -=___________。2p

二、其它曲线与抛物线的混合问题

2.(1)已知双曲线22

22:1(0,0)x y E a b a b

-=>>的离心率为e ,左、右两焦点分别为F 1、F 2,焦

距为2c ,抛物线C 以F 2为顶点,F 1为焦点,点P 为抛物线与双曲线右支上的一个交点,若a|PF 2|

+c|PF 1|=8a 2

,则e 的值为( ) A A. 3 B. 3 C. 2 D. 6

(2)已知抛物线)0(22

>=p px y 与双曲线22

221(0,0)x y a b a b

-=>>有相同的焦点F ,点

A 是两曲线的一个交点,且AF x ⊥轴,若l 为双曲线的一条斜率大于0的渐近线,则l 的

斜率可以在下列给出的某个区间内,该区间可以是( )D

A .

B .

C .

D .)+∞

(3)椭圆C 1:122

22=+b

y a x 的左准线为l ,左、右焦点分别为F 1、F 2,抛物线C 2的准线为l ,

焦点为F 2,C 1与C 2的一个交点为P ,线段PF 2的中点为G ,O 是坐标原点,则2

11PF OG

PF OF -

的 值为( )D

A .1-

B .1

C .-

2

1 D .

2

1

(4)过双曲线22

221(0)x y b a a b

-=>>的左焦点(,0)(0)F c c ->作圆222x y a +=的切线,切点

为E ,延长FE 交抛物线2

4y cx =于点P 。若1()2

OE OF OP =+ ,则双曲线的离心率为

( )B

A .

32+ B .12 C .2 D .12

+

三、直线与抛物线位置关系与综合应用

3.(1)已知抛物线)0(22

>=p px y ,过定点)0,(p 作两条互相垂直的直线1l 、2l ,若1l 与抛物线交于点P 、Q ,2l 与抛物线交于M 、N 两点,1l 的斜率为k 。某同学已求得弦PQ 的中点坐标为),(2

k p p k

p +,请写出弦MN 的中点坐标 。2

(,)pk p pk +-

(2)在抛物线2

4y x =上有两点,,A B F 点是抛物线的焦点,O 为坐标原点,若

23=0FO FA FB ++

, 则直线AB 与x 轴的交点的横坐标为( )D

A .35

B .1

C .6

D .65

(3)设抛物线2

y =2x 的焦点为F ,过点M

0)的直线与抛物线相交于A ,B 两点,与抛物线的准线相交于C ,BF =2,则?BCF 与?ACF 的面积之比

BCF

ACF

S S ??=( )A A .45 B .23 C .47 D .12

(4)已知点P 是抛物线2

4y x =上一点,设P 到此抛物线准线的距离为1d ,到直线

290x y ++=的距离为2d ,则12d d +的最小值为( )A

A

. B

C .5

D .4

(5)抛物线x y 42

=的顶点为O,点A 的坐标为(5,0),倾斜角为

4

π

的直线l 与线段OA 相交(l 不过点O 和点A)且交抛物线于M 、N 两点,则AMN ?的最大面积为 。28

(6)抛物线顶点为O ,焦点为F ,M 是抛物线上的动点,则MO MF

的最大值为__________

3

(7)抛物线22(0)y px p =>过焦点的弦AB ,过该弦端点,A B 的两条切线的交点为Q ,则ABQ ?的面积的最小值为( )D

A .2

2p B .2

4p C .2

2

p D .2p

四、抛物线的综合选讲

1.设椭圆22

122:1(0)x y C a b a b

+=>>,抛物线222:C x by b +=。

(1)若2C 经过1C 的两个焦点,求1C

(2)设A (0,b ),54Q ?

? ??

?,,又M 、N 为1C 与2C 不在y 轴上的两个交点,若△AMN 的垂心为

34B b ??

???

0,,且△QMN 的重心在2C 上,求椭圆1C 和抛物线2C 的方程。 (椭圆方程为22

163

14

x y +=,抛物线方程为224x y +=)

2.已知⊙C 过定点),0(p A )0(>p ,圆心C 在抛物线py x 22

=上运动,若MN 为⊙C 在x 轴

上截得的弦,设1||l AM =,2||l AN =,θ=∠MAN 。

(1)当C 点运动时,||MN 是否变化?证明你的结论;(||MN 为定值p 2) (2)求式子

1

2

21l l l l +的最大值,并求取得最大值时的θ值和此时⊙C 的方程。 (最大值22,45θ=?,圆2222)()2(p p y p x =-+-或2222)()2(p p y p x =-++)

3.过动点P 作圆M :22(2)3x y ++=的切线,切点为N ,若动点P 到直线1y =的距离等于PN 。 (1)求动点P 的轨迹L 的方程;2

6x y =-

(2)直线:3

l y x b =+与曲线L 交于两个不同的点A 和B ,与x 轴交于点E ,圆M 上存在两点C 、D ,满足,CA CB DA DB ==,

(ⅰ)求b 的取值范围;1

22b -<≤

(ⅱ)直线CD 与x 轴交于点F ,求EF AB

4.已知抛物线x y 22

=,直线4:-=x y l ,是否存在矩形ABCD ,它的一条对角线AC 在直线l

上,顶点B ,D 在已知抛物线上,且AC 与BD 的夹角正切等于3?若存在,求出这个矩形的面积;

若不存在,说明理由。(满足条件的矩形ABCD 存在,且面积为16

。)

5.如图,设),(),,(2211y x Q y x P 是抛物线px y C 2:2

=)0(>p

相异两点,且0OP OQ ?=

,直线QP 与x 轴相交于E 。

(Ⅰ)若P Q 、到x 轴的距离的积为4,求该抛物线方程及?的面积的最小值;2

2y x =;4

(Ⅱ)在x 轴上是否存在一点F ,使直线PF 为R (与点Q 不重合),而直线RQ 与x 轴相交于T ,且有 3TR TQ =

,若存在,求出F 点的坐标(用p 表示)

,若不存在,说明理由。(存在一点()0,6p F )

6.已知1F 、2F 分别为椭圆1C :22

221(0)y x a b a b +=>>的上、下焦

点,其中1F 也是抛物线2

2:4C x y =的焦点,点

M 是1C 与2C 在第二 象限的交点,且15||3

MF =。 (Ⅰ)求椭圆1C 的方程;22

143

y x += (Ⅱ)已知点(1,3)P 和圆O :222

x y b +=,过点P 的动直线l 与圆O

相交于不同的两点,A B ,在线段AB 上取一点Q ,满足:AP PB λ=-

,

AQ QB λ=

,(0λ≠且1λ≠±),求证:点Q 总在某定直线上。

(点Q 总在定直线33x y +=上)

7.直角坐标系中,O 为坐标原点,点P M T F ,,,满足:11

(0,),(,),44

OF OT t ==-

,,//FM MT PM FT PT OF =⊥ 。

(1)当t 变化时,求点P 的轨迹C 的方程;2(0)y x x =≠

(2)A 、B 是轨迹C 上的两动点,分别以A 、B 为切点作轨迹C 的切线1l 、2l ,

①当1l 、2l 的夹角是

45时,求1l 、2l 的交点S 的轨迹方程;2216241610x y y ---=

②当1l 、2l 的夹角是

90时,设1l 、2l 的交点为S 。问:A 、F 、B 三点是否共线?若是,

请加以证明,若不是,请说明理由;

2

FB

FA ?是否为为定值?若是,求出该定值,若不是,

请说明理由。(21FA FB

FS

?=- 为定值)

高中数学解析几何专题之抛物线(汇总解析版)

圆锥曲线第3讲抛物线 【知识要点】 一、抛物线的定义 平面内到某一定点F的距离与它到定直线l(l F?)的距离相等的点的轨迹叫抛物线,这个定点F叫做抛物线的焦点,定直线l叫做抛物线的准线。 注1:在抛物线的定义中,必须强调:定点F不在定直线l上,否则点的轨迹就不是一个抛物线,而是过点F且垂直于直线l的一条直线。 注2:抛物线的定义也可以说成是:平面内到某一定点F的距离与它到定直线l(l F?)的距离之比等于1的点的轨迹叫抛物线。 注3:抛物线的定义指明了抛物线上的点到其焦点的距离与到其准线的距离相等这样一个事实。以后在解决一些相关问题时,这两者可以相互转化,这是利用抛物线的定义解题的关键。 二、抛物线的标准方程 1.抛物线的标准方程 抛物线的标准方程有以下四种: (1) px y2 2= ( > p),其焦点为 )0, 2 ( p F ,准线为2 p x- = ; (2) px y2 2- =(0 > p),其焦点为 )0, 2 ( p F- ,准线为2 p x= ; (3) py x2 2= ( > p),其焦点为 ) 2 ,0( p F ,准线为2 p y- = ; (4) py x2 2- = ( > p),其焦点为 ) 2 ,0( p F- ,准线为2 p y= . 2.抛物线的标准方程的特点

抛物线的标准方程px y 22±=(0>p )或py x 22±=(0>p )的特点在于:等号的一端 是某个变元的完全平方,等号的另一端是另一个变元的一次项,抛物线方程的这个形式与其位置特征相对应:当抛物线的对称轴为x 轴时,抛物线方程中的一次项就是x 的一次项,且一次项x 的符号指明了抛物线的开口方向;当抛物线的对称轴为y 轴时,抛物线方程中的一次项就是y 的一次项,且一次项y 的符号指明了抛物线的开口方向. 三、抛物线的性质 以标准方程 px y 22 =(0>p )为例,其他形式的方程可用同样的方法得到相关结论。 (1)范围:0≥x ,R y ∈; (2)顶点:坐标原点)0,0(O ; (3)对称性:关于x 轴轴对称,对称轴方程为0=y ; (4)开口方向:向右; (5)焦参数:p ; (6)焦点: )0,2(p F ; (7)准线: 2p x - =; (8)焦准距:p ; (9)离心率:1=e ; (10)焦半径:若 ) ,(00y x P 为抛物线 px y 22=(0>p )上一点,则由抛物线的定义,有20p x PF + =; (11)通径长:p 2. 注1:抛物线的焦准距指的是抛物线的焦点到其相应准线的距离。以抛物线 px y 22=

抛物线与直线交点问题

课题:抛物线与直线的交点问题 教学目标: 1、 经历探索抛物线与直线的交点问题的过程,体会图象与函数解析式之间的联系。 2、 理解图象交点与方程(或方程组)解之间的关系,并能灵活运用解决相关问题,进 一步培养学生数形结合思想。 3、 通过学生共同观察和讨论,进一步提高合作交流意识。 教学重点:1、体会方程与函数之间的联系。 2、理解抛物线与直线有两个交点、一个交点、没有交点的条件。 教学难点:理解图象交点个数与方程(或方程组)解的个数之间的关系。 讲授方法: 讲授与讨论相结合 教学过程: 一、抛物线与x 轴的交点问题 例1:已知:抛物线322 --=x x y ,求抛物线与x 轴的交点坐标。 练习: 1、已知:抛物线)1(3)2(2 ++-+-=m x m x y (1)求证:抛物线与x 轴有交点。 (2)如果抛物线与x 轴有两个交点,求m 的取值范围。 2、(2013房山一模23前两问) 已知,抛物线2 y x bx c =-++,当1<x <5时,y 值为正;当x <1或x >5时,y 值为负. (1)求抛物线的解析式. (2)若直线y kx b =+(k ≠0)与抛物线交于点A (3 2 ,m )和B (4,n ),求直线的解析式. 方法总结: 1、 抛物线与x 轴相交: 抛物线c bx ax y ++=2 的图象与x 轴相交)(002 ≠=++a c bx ax 2.抛物线与x 轴的交点的个数 (1△抛物线与x 轴相交 (2△抛物线与x 轴相切 (3△抛物线与x 轴相离 二、抛物线与平行于x 轴的直线的交点

例2:求抛物线322 --=x x y 与y=1的交点坐标 练习: 已知:抛物线c x x y ++=22 (1) 如果抛物线与y=3有两个交点,求c 的取值范围。 (2) 如果对于任意x ,总有y>3,求c 的取值范围 方法总结: 1、抛物线与平行于x 轴的直线相交 抛物线c bx ax y ++=2 的图象与平行于x 轴的直线相交 ?? ?=++=m y c bx ax y 2新的一元二次方程m c bx ax =++2 2.抛物线与平行于x 轴的直线的交点的个数 (1△抛物线与直线相交 (2△抛物线与直线相切 (3△抛物线与直线相离 三:抛物线与直线的交点问题 例3:若抛物线2 2 1x y =与直线y=x+m 只有一个交点,求m 的值 练习: 已知:抛物线),(和点0,1-3-2 A x x y =过点A 作直线l 与抛物线有且只有一个交点, 并求直线l 的解析式 方法总结:

高考数学压轴专题人教版备战高考《平面解析几何》知识点总复习含解析

【最新】《平面解析几何》专题 一、选择题 1.若点O 和点F 分别为椭圆22 143 x y +=的中心和左焦点,点P 为椭圆上的任意一点,则 OP FP →→ g 的最大值为( ) A .4 B .5 C .6 D .7 【答案】C 【解析】 【分析】 设(),P x y ,由数量积的运算及点P 在椭圆上,可把OP FP ?u u u r u u u r 表示成为x 的二次函数,根 据二次函数性质可求出其最大值. 【详解】 设(),P x y ,()()1,0,0,0F O -,则 ()(),,+1,OP x y FP x y ==u u u r u u u r ,则 22OP FP x x y ?=++u u u r u u u r , 因为点P 为椭圆上,所以有:22143 x y +=即2 2334y x =-, 所以()2222 23132244 x x y x x x FP x OP =++=?++-=++u u u r u u u r 又因为22x -≤≤, 所以当2x =时,OP FP ?u u u r u u u r 的最大值为6 故选:C 【点睛】 本题考查了数量积的坐标运算,求二次函数的最大值,属于一般题. 2.已知直线21y kx k =++与直线1 22 y x =-+的交点位于第一象限,则实数k 的取值范围是( ) A .1 2 k > B .16k <- 或1 2 k > C .62k -<< D .1162 k - << 【答案】D 【解析】 【分析】 联立21 1 22y kx k y x =++???=-+?? ,可解得交点坐标(,)x y ,由于直线21y kx k =++与直线

专题九 解析几何第二十七讲 抛物线

2 1 专题九 解析几何 第二十七讲 抛物线 2019 年 x 2 1.(2019 全国 II 文 9)若抛物线 y 2=2px (p >0)的焦点是椭圆 + y = 1的一个焦点,则 3 p p p = A .2 B .3 C .4 D .8 2.(2019 浙江 21)如图,已知点 F (1,0) 为抛物线 y 2 = 2 px ( p > 0) 的焦点,过点 F 的直线交抛物线于 A 、B 两点,点 C 在抛物线上,使得△ABC 的重心 G 在 x 轴上,直线 AC 交 x 轴于点 Q ,且 Q 在点 F 右侧.记△AFG ,△CQG 的面积为 S 1 , S 2 . (1)求 p 的值及抛物线的准线方程; S (2)求 1 的最小值及此时点 G 的坐标. S 2 3.(2019 全国 III 文 21)已知曲线 C :y = x 2 ,D 为直线 y = - 上的动点,过 D 作 C 的两条切 2 线,切点分别为 A ,B . (1)证明:直线 AB 过定点: 5 (2)若以 E (0, 2 )为圆心的圆与直线 AB 相切,且切点为线段 AB 的中点,求该圆的方程. 1.解析(1)设 D ? t , - 1 ? , A (x , y ),则 x 2 = 2 y . 2 ? 1 1 1 1 ? ? 2

2 5 y 2 1 由于 y' = x ,所以切线DA 的斜率为 x 1 ,故 1 + 1 2 = x ,整理得2 tx 1 - 2 y 1 +1=0. 设 B (x 2 , y 2 ) ,同理可得2tx 2 - 2 y 2 +1=0 . 故直线AB 的方程为2tx - 2 y +1 = 0 . 1 所以直线AB 过定点(0, ) . 2 x 1 - t (2)由(1)得直线AB 的方程为 y = tx + 1 . 2 ? y = tx + 1 ?? 由? 2 ? y = x ?? 2 2 ,可得 x 2 - 2tx -1 = 0 . 于是 x + x = 2t , y + y = t (x + x )+1 = 2t 2 +1 . 1 2 1 2 1 2 设M 为线段AB 的中点,则 M ? t , t 2 + 1 ? . 2 ? ? ? 由于 EM ⊥ AB ,而 EM = ( t , t 2 - 2) , AB 与向量(1, t ) 平行,所以t + ( t 2 - 2) t = 0 .解得 t =0或t = ±1. 当t =0时, | EM | =2,所求圆的方程为 x 2 + ? y - ? 5 ?2 ? ? ? = 4 ; 5 ?2 当t = ±1时, | EM |= ,所求圆的方程为 x 2 + y - ? ? ? = 2 . 2010-2018 年 一、选择题 1.(2017 新课标Ⅱ)过抛物线C :y 2 = 4x 的焦点 F ,且斜率为 的直线交C 于点 M ( M 在 x 轴上方), l 为C 的准线,点 N 在l 上且 MN ⊥ l ,则 M 到直线 NF 的距离为 A . B . 2 C . 2 D . 3 3 2 3 3 2

理科数学2010-2019高考真题分类训练专题九 解析几何第二十八讲 抛物线

专题九 解析几何 第二十八讲 抛物线 2019年 1.(2019全国II 理8)若抛物线y 2 =2px (p >0)的焦点是椭圆 2231x y p p + =的一个焦点,则p = A .2 B .3 C .4 D .8 2.(2019北京理18(1))已知抛物线2:2C x py =-经过点(2,-1).求抛物线C 的方程及其准线方程; 3.(2019全国I 理19)已知抛物线C :y 2=3x 的焦点为F ,斜率为3 2 的直线l 与C 的交点为A ,B ,与x 轴的交点为P . (1)若 4AF BF +=,求l 的方程; (2)若3AP PB =uu u r uu r ,求AB . 4. (2019全国III 理21)已知曲线C :y =2 2 x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分 别为A ,B . (1)证明:直线AB 过定点: (2)若以E (0, 5 2 )为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积. 2010-2018年 一、选择题 1.(2018全国卷Ⅰ)设抛物线C :2 4=y x 的焦点为F ,过点(2,0)-且斜率为2 3 的直线与C 交于M ,N 两点,则?FM FN = A .5 B .6 C .7 D .8 2.(2017新课标Ⅰ)已知F 为抛物线C :2 4y x =的焦点,过F 作两条互相垂直的直线1l ,2l ,直线1l 与 C 交于A 、B 两点,直线2l 与C 交于 D 、 E 两点,则||||AB DE +的最小值为 A .16 B .14 C .12 D .10 3.(2016年四川)设O 为坐标原点,P 是以F 为焦点的抛物线2 2(0)y px p =>上任意一点,M 是线段PF 上的点,且PM =2MF ,则直线OM 的斜率的最大值为

平面解析几何测试题带答案

1.(本小题满分12分)已知:圆C:x2+y2-8y+12=0,直线l:ax+y+2a=0. (1)当a为何值时,直线l与圆C相切; (2)当直线l与圆C相交于A、B两点,且AB=22时,求直线l的方程. 2.设椭圆ax2+by2=1与直线x+y-1=0相交于A、B两点,点C是AB的中点,若|AB|=22,OC的斜 率为 2 2 ,求椭圆的方程. 3.(本小题满分12分)(2010·南通模拟)已知动圆过定点F(0,2),且与定直线l:y=-2相切. (1)求动圆圆心的轨迹C的方程; (2)若AB是轨迹C的动弦,且AB过F(0,2),分别以A、B为切点作轨迹C的切线,设两切线交点为Q, 证明:AQ⊥BQ . 4.已知圆(x-2)2+(y-1)2=20 3 ,椭圆b2x2+a2y2=a2b2(a>b>0)的离心率为 2 2 ,若圆与椭圆相交于A、B, 且线段AB是圆的直径,求椭圆的方程.

5.已知m 是非零实数,抛物线)0(2:2 >=p px y C 的焦点F 在直线2 :02 m l x my --=上. (I )若m=2,求抛物线C 的方程 (II )设直线l 与抛物线C 交于A 、B 两点,F AA 1?,F BB 1?的重心分别为G,H. 求证:对任意非零实数m,抛物线C 的准线与x 轴的焦点在以线段GH 为直径的圆外。 6. (本小题满分14分)(2010·东北四市模拟)已知O 为坐标原点,点A 、B 分别在x 轴,y 轴上运动,且|AB | =8,动点P 满足AP u u u r =35 PB u u u r ,设点P 的轨迹为曲线C ,定点为M (4,0),直线PM 交曲线C 于另外一 点Q . (1)求曲线C 的方程; (2)求△OPQ 面积的最大值. 7.(文)有一个装有进出水管的容器,每单位时间进出的水量各自都是一定的,设从某时刻开始10分钟内只进水、不出水,在随后的30分钟内既进水又出水,得到时间x(分)与水量y(升)之间的关系如图所示,若40分钟后只放水不进水,求y 与x 的函数关系.

二次函数综合问题之抛物线与直线交点个数问题

二次函数综合问题之抛物线与直线交点个数 1.(2014?北京)在平面直角坐标系xOy中,抛物线y=2x2+mx+n经过点A(0,﹣2),B(3,4). (1)求抛物线的表达式及对称轴; (2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,记抛物线在A,B之间的部分为图象G(包含A,B两点).若直线CD 与图象G有公共点,结合函数图象,求点D纵坐标t的取值范围. 考点:待定系数法求二次函数解析式;待定系数法求一次函数解析式;二次函数的最值. 专题:计算题. 分析:(1)将A与B坐标代入抛物线解析式求出m与n的值,确定出抛物线解析式,求出对称轴即可; (2)由题意确定出C坐标,以及二次函数的最小值,确定出D纵坐标的最小值,求出直线BC解析式,令x=1求出y的值,即可确定出t的范围. 解答: 解:(1)∵抛物线y=2x2+mx+n经过点A(0,﹣2),B(3,4), 代入得:, 解得:, ∴抛物线解析式为y=2x2﹣4x﹣2,对称轴为直线x=1; (2)由题意得:C(﹣3,﹣4),二次函数y=2x2﹣4x﹣2的最小值为﹣4, 由函数图象得出D纵坐标最小值为﹣4, 设直线BC解析式为y=kx+b, 将B与C坐标代入得:, 解得:k=,b=0, ∴直线BC解析式为y=x,

当x=1时,y=, 则t的范围为﹣4≤t≤. 点评:此题考查了待定系数法求二次函数解析式,待定系数法求一次函数解析式,以及函数的最值,熟练掌握待定系数法是解本题的关键. 2.(2011?石景山区二模)已知:抛物线与x轴交于A(﹣2,0)、B(4,0),与y轴交于C(0,4). (1)求抛物线顶点D的坐标; (2)设直线CD交x轴于点E,过点B作x轴的垂线,交直线CD于点F,将抛物线沿其对称轴上下平移,使抛物线与线段EF总有公共点.试探究:抛物线向上最多可以平移多少个单位长度,向下最多可以平移多少个单位长度?考点:二次函数图象与几何变换;二次函数的性质;待定系数法求二次函数解析式. 专题:探究型. 分析:(1)先设出过A(﹣2,0)、B(4,0)两点的抛物线的解析式为y=a(x+2)(x﹣4),再根据抛物线与y轴的交点坐标即可求出a的值,进而得出此抛物线的解析式; (2)先用待定系数法求出直线CD解析式,再根据抛物线平移的法则得到(1)中抛物线向下平移m各单位所得抛物线的解析式,再将此解析式与直线CD的解析式联立,根据两函数图象有交点即可求出m的取值范围,进而可得到抛物线向下最多可平移多少个单位;同理可求出抛物线向上最多可平移多少个单位.解答:解:(1)设抛物线解析式为y=a(x+2)(x﹣4), ∵C点坐标为(0,4), ∴a=﹣,(1分) ∴解析式为y=﹣x2+x+4, 顶点D坐标为(1,);(2分) (2)直线CD解析式为y=kx+b. 则,,

最新专题五平面解析几何

专题五平面解析几何

专题五平面解析几何 第14讲直线与圆 [云览高考] 二轮复习建议 命题角度:该部分主要围绕两个点展开命题.第一个点是围绕直线与圆的方程展开,设计考查求直线方程、圆的方程、直线与圆的位置关系等问题,目的是考查平面解析几何初步的基础知识和方法,考查运算求解能力,试题一般是选择题或者填空题;第二个点是围绕把直线与圆综合展开,设计考查直线与圆的相互关系的试题,目的是考查直线与圆的方程在解析几何中的综合运用,这个点的试题一般是解答题. 预计2013年该部分的命题方向不会有大的变化,以选择题或者填空题的形式重点考查直线与圆的方程,而在解答题中考查直线方程、圆的方程的综合运用.复习建议:该部分是解析几何的基础,涉及大量的基础知识,在复习时要把知识进一步系统化,在此基础上,在本讲中把重点放在解决直线与圆的方程问题上. 主干知识整合

1.直线的概念与方程 (1)概念:直线的倾斜角θ的范围为[0°,180°),倾斜角为90°的直线的斜率不存在,过 两点的直线的斜率公式k =tan α=y 2-y 1x 2-x 1(x 1≠x 2 ); (2)直线方程:点斜式y -y 0=k (x -x 0),两点式y -y 1y 2-y 1=x -x 1x 2-x 1(x 1 ≠x 2,y 1≠y 2),一般式Ax +By +C =0(A 2+B 2≠0); (3)位置关系:当不重合的两条直线l 1和l 2的斜率存在时,两直线平行l 1∥l 2?k 1=k 2,两直线垂直l 1⊥l 2?k 1·k 2=-1,两直线的交点就是以两直线方程组成的方程组的解为坐标的点; (4)距离公式:两点间的距离公式,点到直线的距离公式,两平行线间的距离公式. 2.圆的概念与方程 (1)标准方程:圆心坐标(a ,b ),半径r ,方程(x -a )2+(y -b )2=r 2,一般方程:x 2+y 2+Dx +Ey +F =0(其中D 2+E 2-4F >0); (2)直线与圆的位置关系:相交、相切、相离 ,代数判断法与几何判断法; (3)圆与圆的位置关系:相交、相切、相离、内含,代数判断法与几何判断法. 要点热点探究 ? 探究点一 直线的概念、方程与位置关系 例1 (1)过点(5,2),且在y 轴上的截距是在x 轴上的截距的2倍的直线方程是( B ) A .2x +y -12=0 B .2x +y -12=0或2x -5y =0 C .x -2y -1=0 D .x -2y -1=0或2x -5y =0 (2)[2012·浙江卷] 设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a + 1)y +4=0平行”的( A ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 点评] 直线方程的四种特殊形式(点斜式、斜截式、两点式、截距式)都有其适用范围,在解题时不要忽视这些特殊情况,如本例第一题易忽视直线过坐标原点的情况;一般地,直线A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0平行的充要条件是A 1B 2=A 2B 1且A 1C 2≠A 2C 1,垂直的充要条件是A 1A 2+B 1B 2=0. 变式题 (1)将直线y =3x 绕原点逆时针旋转90°,再向右平移1个单位,所得的直线方程为( A ) A .y =-13x +13 B .y =-13x +1 C .y =3x -3 D .y =13 x +1 (2)“a =-2”是“直线ax +2y =0垂直于直线x +y =1”的( C ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 ? 探究点二 圆的方程及圆的性质问题 例2 (1)已知圆(x -a )2+(y -b )2=r 2的圆心为抛物线y 2=4x 的焦点,且与直线3x +4y +2=0相切,则该圆的方程为( C ) A .(x -1)2+y 2=6425 B .x 2+(y -1)2=6425 C .(x -1)2+y 2=1 D .x 2+(y -1)2=1 (2)[2012·陕西卷] 已知圆C :x 2+y 2-4x =0,l 是过点P (3,0)的直线,则( A ) A .l 与C 相交 B .l 与 C 相切 C .l 与C 相离 D .以上三个选项均有可能 [点评] 确定圆的几何要素:圆心位置和圆的半径,求解圆的方程就是求出圆心坐标和

第九篇解析几何第7讲抛物线

第7讲抛物线 【2013年高考会这样考】 1.考查抛物线定义、标准方程. 2.考查抛物线的焦点弦问题. 3.与向量知识交汇考查抛物线的定义、方程、性质等. 【复习指导】 熟练掌握抛物线的定义及四种不同的标准形式,会根据抛物线的标准方程研究得出几何性质及会由几何性质确定抛物线的标准方程;掌握代数知识,平面几何知识在解析几何中的作用. 基础梳理 1.抛物线的定义:平面内与一个定点F和一条定直线l(l不过F)的距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线. 其数学表达式:|MF|=d(其中d为点M到准线的距离). 2.抛物线的标准方程与几何性质 标准方程y2=2px (p>0) y2=-2px (p>0) x2=2py (p>0) x2=-2py (p>0) p的几何意义:焦点F到准线l的距离 图形 顶点O(0,0) 对称y=0x=0 轴 焦点F ? ? ? ? ? p 2 ,0F ? ? ? ? ? - p 2 ,0F ? ? ? ? ? 0, p 2F? ? ? ? ? 0,- p 2离心 率 e=1 准线 方程 x=- p 2x= p 2y=- p 2y= p 2范围x≥0,y∈R x≤0,y∈R y≥0,x∈R y≤0,x∈R 开口 方向 向右向左向上向下焦半 径 |PF|= x + p 2 |PF|= -x0+ p 2 |PF|= y + p 2 |PF|= -y0+ p 2 一个结论 焦半径:抛物线y2=2px(p>0)上一点P(x0,y0)到焦点F ? ? ? ? ? p 2 ,0的距离|PF|=x0+ p 2 . 两种方法 (1)定义法:根据条件确定动点满足的几何特征,从而确定p的值,得到抛物线的标准方程. (2)待定系数法:根据条件设出标准方程,再确定参数p的值,这里要注意抛物线标准方程有四种形式.从简单化角度出发,焦点在x轴的,设为y2=ax(a≠0),焦点在y轴的,设为x2=by(b≠0). 双基自测

二次函数综合问题之抛物线与直线交点个数问题

二次函数综合问题之抛物线与直线交点个数 2 1. (2014?北京)在平面直角坐标系xOy中,抛物线y=2x+mx+ n经过点A (0, - 2), B (3, 4). (1)求抛物线的表达式及对称轴; (2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,记抛物线在A, B之间的部分为图象G(包含A, B两点).若直线CD与图象G有公共点,结合函数图象,求点D纵坐标t的取值范围. 5 4 ? (1) 将A与B坐标代入抛物线解析 式求出m与n的值,确定出抛物线 解析式,求出对称轴即可; (2) 由题意确定出C 坐标,以及二次函数的最小值,确定出D纵坐标的最小值,求出直线BC解析式,令x=1求出y的值,即可确定出t的范围. 2 解答:解:(1 )???抛物线y=2x +mx+ n经过点 A (0,- 2), B (3, 4), f n=-2 L 18+3nr^n=4 ???抛物线解析式为y=2x2- 4x - 2,对称轴为直线x=1; 2 (2)由题意得:C (- 3,- 4),二次函数y=2x - 4x- 2的最小值为-4, 由函数图象得出D纵坐标最小值为-4, 设直线BC解析式为y=kx+b , 考点:待定系数法求二次函数解析式;待定系数法求一次函数解析式;二次函数的最值. 专题:计算题. 分析: 解得:* :-4 n= - 2 代入得: 将B与C坐标代入得: 3k+b=4 -3k+b二- 解得: k= , b=0, 3 ?直线BC解析式为y=-x, 当x=1 时,y=J

点评:此题考查了待定系数法求二次函数解析式,待定系数法求一次函数解析式,以及函数的最值,熟练掌握待 定系数法是解 本题的关键. 2. (2011?石景山区二模)已知:抛物线与 x 轴交于A (- 2, 0)、B (4, 0),与y 轴交于C ( 0, 4). (1) 求抛物线顶点 D 的坐标; (2) 设直线CD 交x 轴于点E ,过点B 作x 轴的垂线,交直线 CD 于点F ,将抛物线沿其对称轴上下平移,使抛物线 与线段EF 总有公共点?试探究:抛物线向上最多可以平移多少个单位长度,向下最多可以平移多少个单位长度? (1) 先设出过A (- 2, 0)、B (4, 0)两点的抛物线的解析式为 y=a (x+2) (x - 4),再根据抛物线与 y 轴 的交点坐标即可求出 a 的值,进而得出此抛物线的解析式; (2) 先用待定系数法求出直线 CD 解析式,再根据抛物线平移的法则得到 ( 1)中抛物线向下平移 m 各单位 所得抛物线的解析式,再将此解析式与直线 CD 的解析式联立,根据两函数图象有交点即可求出 m 的取值范 围,进而可得到抛物线向下最多可平移多少个单位;同理可求出抛物线向上最多可平移多少个单位. 考点:二次函数图象与几何变换;二次函数的性质;待定系数法求二次函数解析式. 专题:探究型. 分析:

专题11 平面解析几何大题强化训练(省赛试题汇编)(原卷版)

专题11平面解析几何大题强化训练(省赛试题汇编) 1.【2018年广西预赛】已知中心在原点O,焦点在x轴上,离心率为的椭圆过点设不过原点O的直线l与该椭圆交于P,Q两点,且直线OP,PQ,OQ的斜率依次成等比数列,求面积的取值范围. 2.【2018年安徽预赛】设O是坐标原点,双曲线C:上动点M处的切线,交C的两条渐近线于 A、B两点. ⑴求证:△AOB的面积S是定值; ⑵求△AOB的外心P的轨迹方程. 3.【2018年湖南预赛】已知抛物线的顶点,焦点,另一抛物线的方程为 在一个交点处它们的切线互相垂直.试证必过定点,并求该点的坐标. 4.【2018年湖南预赛】如图,在凸四边形ABCD中,M为边AB的中点,且MC=MD.分别过点C、D作边BC、AD的垂线,设两条垂线的交点为P.过点P作与Q.求证:. 5.【2018年湖北预赛】已知为坐标原点,,点为直线上的动点,的平分线与直线 交于点,记点的轨迹为曲线. (1)求曲线的方程; (2)过点作斜率为的直线,若直线与曲线恰好有一个公共点,求的取值范围. 6.【2018年甘肃预赛】已知椭圆过点,且右焦点为. (1)求椭圆的方程;

(2)过点的直线与椭圆交于两点,交轴于点.若,求证:为定值;(3)在(2)的条件下,若点不在椭圆的内部,点是点关于原点的对称点,试求三角形面积的最小值. 7.【2018年吉林预赛】如图,已知抛物线过点P(-1,1),过点Q(,0)作斜率大于0的直线l 交抛物线与M、N两点(点M在Q、N之间),过点M作x轴的平行线,交OP于A,交ON于B.△PMA 与△OAB的面积分别记为,比较与3的大小,说明理由. 8.【2018年山东预赛】已知圆与曲线为曲 线上的两点,使得圆上任意一点到点的距离与到点的距离之比为定值,求的值.9.【2018年天津预赛】如图,是双曲线的两个焦点,一条直线与双曲线的右支相切,且分别交两条渐近线于A、B.又设O为坐标原点,求证:(1);⑵、A、B四点在同一个圆上. 10.【2018年河南预赛】已知方程平面上表示一椭圆.试求它的对称中心及对称轴.

抛物线与直线交点问题经典讲义教案

抛物线与直线交点问题 教学目标: 1、 经历探索抛物线与直线的交点问题的过程,体会图象与函数解析式之间的联系。 2、 理解图象交点与方程(或方程组)解之间的关系,并能灵活运用解决相关问题,进 一步培养学生数形结合思想。 3、 通过学生共同观察和讨论,进一步提高合作交流意识。 教学重点:1、体会方程与函数之间的联系。 2、理解抛物线与直线有两个交点、一个交点、没有交点的条件。 教学难点:理解图象交点个数与方程(或方程组)解的个数之间的关系。 讲授方法: 讲授与讨论相结合 教学过程: 一、抛物线与x 轴的交点问题 例1:已知:抛物线322 --=x x y ,求抛物线与x 轴的交点坐标。 练习: 1、已知:抛物线)1(3)2(2 ++-+-=m x m x y (1)求证:抛物线与x 轴有交点。 (2)如果抛物线与x 轴有两个交点,求m 的取值范围。 2、(2013房山一模23前两问) 已知,抛物线2 y x bx c =-++,当1<x <5时,y 值为正;当x <1或x >5时,y 值为负. (1)求抛物线的解析式. (2)若直线y kx b =+(k ≠0)与抛物线交于点A (3 2 ,m )和B (4,n ),求直线的解析式. 方法总结: 1、 抛物线与x 轴相交: 抛物线c bx ax y ++=2 的图象与x 轴相交 )(002 ≠=++a c bx ax 2.抛物线与x 轴的交点的个数 (1 △>0 抛物线与x 轴相交 (2 △=0 抛物线与x 轴相切 (3 △<0 抛物线与x 轴相离

二、抛物线与平行于x 轴的直线的交点 例2:求抛物线322 --=x x y 与y=1的交点坐标 练习: 已知:抛物线c x x y ++=22 (1) 如果抛物线与y=3有两个交点,求c 的取值范围。 (2) 如果对于任意x ,总有y>3,求c 的取值范围 方法总结: 1、抛物线与平行于x 轴的直线相交 抛物线c bx ax ++=2 的图象与平行于x 轴的直线相交 ?? ?=++=m y bx ax y 2 新的一元二次方程m c bx ax =++2 2.抛物线与平行于x 轴的直线的交点的个数 (1 △>0 抛物线与直线相交 (2 △=0 抛物线与直线相切 (3 △<0 抛物线与直线相离 三:抛物线与直线的交点问题 例3:若抛物线2 2 1x y =与直线y=x+m 只有一个交点,求m 的值 练习: 已知:抛物线),(和点0,1-3-2 A x x y =过点A 作直线l 与抛物线有且只有一个交点, 并求直线l 的解析式

平面解析几何高考专题复习

第八章 平面解析几何 第一节 直线的倾斜角与斜率、直线的方程 1.直线的倾斜角 (1)定义:x 轴正向与直线向上方向之间所成的角叫做这条直线的倾斜角.当直线与x 轴平行或重合时,规定它的倾斜角为0°. (2)倾斜角的范围为[0,π). 2.直线的斜率 (1)定义:一条直线的倾斜角α的正切值叫做这条直线的斜率,斜率常用小写字母k 表示,即k =tan_α,倾斜角是90°的直线没有斜率. (2)过两点的直线的斜率公式: 经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式为k =y 2-y 1x 2-x 1=y 1-y 2 x 1-x 2. 3.直线方程

1.利用两点式计算斜率时易忽视x 1=x 2时斜率k 不存在的情况. 2.用直线的点斜式求方程时,在斜率k 不明确的情况下,注意分k 存在与不存在讨论,否则会造成失误. 3.直线的截距式中易忽视截距均不为0这一条件,当截距为0时可用点斜式. 4.由一般式Ax +By +C =0确定斜率k 时易忽视判断B 是否为0,当B =0时,k 不存在;当B ≠0时,k =-A B . [试一试] 1.若直线(2m 2+m -3)x +(m 2-m )y =4m -1在x 轴上的截距为1,则实数m 是( ) A .1 B .2 C .-12 D .2或-1 2 解析:选D 当2m 2+m -3≠0时,即m ≠1或m ≠-3 2时,在x 轴上截距为4m -12m 2+m -3= 1,即2m 2-3m -2=0, 故m =2或m =-1 2 . 2.过点M (-2,m ),N (m,4)的直线的斜率等于1,则m 的值为________. 解析:∵k MN =m -4 -2-m =1,∴m =1. 答案:1 3.过点M (3,-4),且在两坐标轴上的截距相等的直线的方程为________. 解析:①若直线过原点,则k =-4 3, 所以y =-4 3x ,即4x +3y =0. ②若直线不过原点. 设x a +y a =1,即x +y =a . 则a =3+(-4)=-1, 所以直线的方程为x +y +1=0. 答案:4x +3y =0或x +y +1=0 1.求斜率可用k =tan α(α≠90°),其中α为倾斜角,由此可见倾斜角与斜率相互联系不可分割,牢记:“斜率变化分两段,90°是分界线,遇到斜率要谨记,存在与否需讨论”. 2.求直线方程的一般方法 (1)直接法:根据已知条件,选择适当的直线方程形式,直接写出直线方程,选择时,应

专题九 解析几何第二十八讲 抛物线答案

4 13 2 y ? 1 专题九 解析几何 第二十八讲 抛物线 答案部分 2019 年 ? p ?2 1.D 解析 由题意可得: 3 p - p = ? ? ? ,解得 p = 8 .故选 D . 2.解析(I )由抛物线C : x 2 = -2 py 经过点 (2, -1) ,得 p = 2 . 所以抛物线 C 的方程为 x 2 = -4 y ,其准线方程为 y = 1. 3 3.解析 设直线l : y = x + t , A (x 1, y 1 ), B (x 2, y 2 ) . 2 (1)由题设得 F ? 3 ,0 ? ,故| AF | + | BF |= x + x + 3 ,由题设可得 x + x = 5 . 4 ? 1 2 2 1 2 2 ? ? ? y = 3 x + t 12(t -1) 由? 2 ,可得9x 2 +12(t -1)x + 4t 2 = 0 ,则 x + x = - . ? ?? y 2 = 3x 1 2 9 从而- 12(t -1) = 5 ,得t =- 7 .所以l 的方程为 y = 3 x - 7 . 9 2 8 2 8 (2)由 AP = 3PB 可得 y 1 = -3y 2 . ? y = 3 x + t 由? 2 ,可得 y 2 - 2 y + 2t = 0 . ?? y 2 = 3x 所以 y 1 + y 2 = 2 .从而-3y 2 + y 2 = 2 ,故 y 2 = -1, y 1 = 3 . 代入C 的方程得 x = 3, x = 1 .故| AB |= . 1 2 3 3 4.解析(1)设 D ? t , - 1 ? , A (x , y ),则 x 2 = 2 y . 2 ? 1 1 1 1 ? ? 由于 y' = x ,所以切线DA 的斜率为 x ,故 1 + 1 2 = x ,整理得2 tx - 2 y +1=0. 1 1 1 x 1 - t

专题55 平面解析几何专题训练(新高考地区专用)(解析版)

专题55 平面解析几何专题训练 一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.若2222c b a =+(0≠c ),则直线0=++c by ax 被圆122=+y x 所截得的弦长为( )。 A 、 2 1 B 、22 C 、1 D 、2 【答案】D 【解析】∵圆心)00(,到直线0=++c by ax 的距离2 2 2 2= += b a C d , 因此根据直角三角形的关系,弦长的一半就等于2 2)22( 12=-,∴弦长为2,故选D 。 2.若P 、Q 分别为直线01243=-+y x 与0586=++y x 上任意一点,则||PQ 的最小值为( )。 A 、 59 B 、1029 C 、518 D 、5 29 【答案】B 【解析】∵ 5 12 8463-≠ =,∴两直线平行,将直线01243=-+y x 化为02486=-+y x , 由题意可知||PQ 的最小值为这两条平行直线间的距离,即 10 29 865242 2= +--,故选B 。 3.若圆4)()(22=-+-a y a x 上有且仅有两个点到原点的距离为2,则实数a 的取值范围为( )。 A 、)022(, - B 、)220()022(,, - C 、)221()122(,, -- D 、)220(, 【答案】B 【解析】由题意已知圆与圆422=+y x 相交,∴222222+<+<-a a , 解得2222<<-a 且0≠a ,故选B 。 4.双曲线122=-my x 的实轴长是虚轴长的2倍,则=m ( )。 A 、 41 B 、2 1 C 、2 D 、4 【答案】D 【解析】12 2 =-my x 可化为1122 =-m y x ,则12=a ,m b 12=,∵实轴长是虚轴长的2倍, ∴b a 222?=,即b a 2=,即224b a =,∴4=m ,故选D 。

高考数学考点专题:解析几何:抛物线

抛物线 【考点梳理】 1.抛物线的概念 平面内与一个定点F和一条定直线l(l不经过点F)距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线. 2.抛物线的标准方程与几何性质 【教材改编】

1.(选修2-1 P 67练习T 2(4)改编)抛物线280x y +=的焦点坐标为( ) A .()0,2- B .()0,2 C .10,32? ?- ?? ? D .10,32?? ??? [答案] C [解析] 由280x y +=,得21 8 x y =-. 128p =,116 p =, ∴焦点为10,32? ?- ?? ?,故选C. 2.(选修2-1 P 73A 组T 2(1)改编)以1x =为准线的抛物线的标准方程为( ) A .22y x = B .22y x =- C .24y x = D .24y x =- [答案] D [解析] 由准线1x =知,抛物线方程为:22y px =-(0p >)且12 p =,2p =, ∴方程为24y x =-,故选D. 3.(选修2-1P 73A 组T 3改编)M 是抛物线22y px =(0p >)位于第一象限的点, F 是抛物线的焦点,若5 F 2 p M = ,则直线F M 的斜率为( ) A .43 B .53 C .54 D .52 [答案] A [解析] 设()00,x y M ,由5 F 2 p M = ,得 05 22 p x p + =,∴02x p =.

∴220024y px p ==,取正根得02y p =. 即M 的坐标为()2,2p p ,又F 的坐标为,02p ?? ??? , ∴F 204 322 p k p p M -= =- ,故选A. 4.(选修2-1 P 74A 组T 8改编)如图所示是抛物线形拱桥,当水面在l 时,拱顶离水面2 m ,水面宽4 m .水位下降1 m 后,水面宽为( ) A .2 3 m B .2 6 m C .4 2 m D .4 3 m [答案] B [解析] 建立如图所示的平面直角坐标系,设抛物线方程为x 2=-2py (p >0),则A (2,-2),将其坐标代入x 2=-2py ,得p = 1. ∴x 2=-2y . 当水面下降1 m ,得D (x 0,-3)(x 0>0),将其坐标代入x 2=-2y ,得x 20=6,∴x 0= 6.∴水面宽|CD |=2 6 m .故选B. 5.(选修2-1 P 69例4改编)过抛物线y 2=4x 的焦点F 的直线交该抛物线于A ,B 两点,O 为坐标原点.若|AF |=3,则△AOB 的面积为( ) A.22 B. 2

高考数学专题10 解析几何中两类曲线相结合问题(第五篇)(解析版)

备战2020年高考数学大题精做之解答题题型全覆盖高端精品 第五篇解析几何 专题10 解析几何中两类曲线相结合问题 【典例1】【湖南省湖南师范大学附属中学2020届月考】已知椭圆C :()22 2210x y a b a b +=>>的右焦点为F , 离心率为 2 ,P 是椭圆C 上位于第一象限内的任意一点,O 为坐标原点,P 关于O 的对称点为P ',4P F PF '+=,圆O :222x y b +=. (1)求椭圆C 和圆O 的标准方程; (2)过点P 作PT 与圆O 相切于点T ,使得点F ,点T 在OP 的两侧.求四边形OFPT 面积的最大值. 【思路引导】 (1)设椭圆左焦点为F ',连接PF ',P F '',易知四边形P FPF ''为平行四边形,则 2PF PF PF P F a ''+=+=,可求得,,a b c ,即可求得椭圆C 和圆O 的标准方程; (2)设()()0000,0,0P x y x y >>,代入椭圆方程可得到00,x y 的关系式,然后分别求得,OFP OTP S S V V 的面积的表达式,即可得到四边形OFPT 面积的表达式,结合00,x y 的关系式,求OFPT 面积的最大值即可. 【详解】

(1)设椭圆左焦点为F ',连接PF ',P F '', 因为P O PO '=,OF OF '=,所以四边形P FPF ''为平行四边形, 所以24PF PF PF P F a ''+=+==,所以2a =, 又离心率为 2 ,所以c =,1b =. 故所求椭圆C 的标准方程为2 214 x y +=,圆O 的标准方程221x y +=. (2)设()()0000,0,0P x y x y >>,则220014 x y +=,故22 0014x y =-. 所以22 2000222 314TP OP OT x y x =+-= =-,所以0TP x =, 所以0124 OTP S OT TP x = ?=V . 又()0,0O ,) F ,所以0012OFP S OF y y =?=V . 故0022OFP OTP OFPT x y S S S ??==++ ???四边形V V ==. 由220014x y +=,得1≤,即001x y ?≤, 所以22 OFPT S = ≤ 四边形, 当且仅当2 2 00142x y ==,即0x =02 y = 时等号成立. 【典例2】【重庆市2019届高三高考全真模拟】已知点(1,0)F ,直线:1l x =-,P 为直角坐标平面上的动

相关文档
相关文档 最新文档