文档库 最新最全的文档下载
当前位置:文档库 › 阻尼振动和受迫振动实验报告

阻尼振动和受迫振动实验报告

阻尼振动和受迫振动实验报告
阻尼振动和受迫振动实验报告

清华大学实验报告

工程物理系工物40 钱心怡 2014011775

实验日期:2015年3月3日

一.实验名称

阻尼振动和受迫振动

二.实验目的

1.观测阻尼振动,学习测量振动系统参数的基本方法

2.研究受迫振动的频幅特性和相频特性,观察共振现象

3.观察不同阻尼对振动的影响

三.实验原理

1.阻尼振动

在转动系统中,设其无阻尼时的固有角频率为ω0,并定义阻尼系数β其转动的角度与时间的关系满足如下方程

d2θdt +2βdθ

dt

+ω02θ=0

解上述方程可得当系统处于弱阻尼状态下时,即β<ω0时,θ和t 满足如下关系

θt=θi exp?(?βt)cos?( ω02?β2t+?i)

解得阻尼振动角频率为ωd= ω02?β2,阻尼振动周期为T d=

ω02?β2

同时可知lnθ和t成线性关系,只要能通过实验数据得到二者之间线性关系的系数,就可以进一步解得阻尼系数和阻尼比。

2.周期性外力作用下的受迫振动

当存在周期性外力作用时,振动系统满足方程

J

d 2θdt +γ

d θdt

+k θ=M ωt

θ和t 满足如下关系:

θ t =θi exp ?βt cos ω02?β2t +?i +θm cos ?

(ωt ??) 该式中的第一项随着时间t 的增大逐渐趋于0,因此经过足够长时间后,系统在外力作用下达到平衡,第一项等于0,在该稳定状态下,系统的θ和t 满足关系:θ t =θm cos ?(ωt ??) 其中θm =

M

J

(ω02

?ω2)+4β2ω

2 ;?=arctan

2βω

ω02?ω

(θ∈(0,π))

3.电机运动时的受迫振动

当波尔共振仪的长杆和连杆的长度远大于偏心轮半径时,当偏心轮电机匀速转动时,设其角速度为ω,此时弹簧的支座是弹簧受迫振动的外激励源,摆轮转角满足以下方程:

J d 2θdt 2+γd θ

dt

+k θ?αm cos ωt =0 即为 J

d 2θdt +γ

d θdt

+k θ=k αm cos ωt

与受周期性外力矩时的运动方程相同,即有

θ t =θi exp ?βt cos ω02?β2t +?i +θm cos ?

(ωt ??) θm =

αω2 (ω02

?ω2)+4β2ω

2=

α (1?(

ωω0)2)2+4ζ2(ωω0)

2

?=arctan 2βω02=arctan 2ζ(

ωω0

)1?(ωω0

2

可知,当ω=ω0时φ最大为π

2,此时系统处于共振状态。

四.主要实验仪器和实验步骤

1.实验仪器

波尔共振仪主要由振动系统和提供外激励的两个部分组成。振动系统包括弹簧和摆轮。弹簧一端固定在摇杆上。摆轮周围有一圈槽型缺口,其中有一个长缺口在平衡时对准光电门。右侧的部分通过连杆向振动装置提供外激励,其周期可进行调节。上面的有机玻璃盘随电机一起转动。当摆轮转到平衡位置时,闪光灯闪烁,照亮玻璃盘上的白色刻度线,其示数即为在外激励下摆轮转动时落后于电动机的相位。

2.实验步骤

(1)调整仪器

打开电源并断开电机和闪光灯的开关。阻尼调至0档。手动调整电机的偏心轮使其0标志线与0度刻线对齐。同时,调整连杆和摇杆使摆轮处于平衡位置。拨动摆轮使其偏离平衡位置150度至180度,松开后观察摆轮自由摆动的情况,如衰减很慢则性能优良。

(2)测量最小阻尼比ζ和固有角频率ω0

开关置于摆轮,阻尼开关置于0档,拨动摆轮至偏转约180度后松开,使之摆动。由大到小依次读取显示窗中的振幅;

将周期置于“10”位置按复位钮启动周期测量,停止时读取数据,并立即按复位钮启动周期测量,记录每次的值;

(3)测量阻尼振动的振幅

将周期选择位于位于“1”位置,阻尼开关置于4档,拨动摆轮

至偏转至一定角度后松开,使之摆动。由大到小依次读取显示窗中的

振幅;再次拨动摆轮使之摆动,依次读取显示窗中的周期值。测量不少于10组数据;

将阻尼开关置于5档,重复上述步骤;

(4)测量受迫振动的周期和振幅

开启电机开关,开关置于强迫力,周期选择置于1,将阻尼档置于4档,调节强迫力周期旋钮以调节电机转动的角频率,在振幅和周期都达到稳定后,记录下该频率的强迫力下摆轮受迫振动的周期和振幅。并开启闪光灯,两次读取闪光灯亮时有机玻璃转盘上的读数。调节电机频率,重复上述步骤。至少测量18组数据,包括共振时的数据即有机玻璃盘读数为π

2

时的数据,在共振点附近应多测几组;五.数据处理

1.阻尼比,时间常数和品质因素

(1)无阻尼时

由Excel函数拟合得b=-0.007252,S b=3.3270×10?5

?b=t p v S b=2.01×3.3270×10?5=6.9867×10?5

ζ=β

ω0=

b2+4π2

=

0.0072522+4π2

=1.1542×10?3

?ζ=4π2?b

b2+4π23

2

=1.112×10?5

所以得最终结果为ζ=(1.154±0.011)×10?3

T d=10T d1+10T d2+?+10T d5

50

=1.4746s ω0=

d

2

=4.26s?1

τ=?T d

b

=203s

Q=1

=433

(2)阻尼档为4时

b=-0.160715,S b=0.00362934

?b=t p v S b=2.01×0.00362934=0.0072950

ζ=

β

ω0

=

?b

b2+4π2

=

0.160715

0.1607152+4π2

=0.025570?ζ=

4π2?b

b2+4π2

3

2

=1.160×10?3

所以得最终结果为ζ=0.0255±0.0012

T d=T d1+T d2+?+T d10

10

=1.4782s

ω0=

T d1?ζ2

=4.25s-1

τ=?

T d

b

=9.20s

Q=1

=19.6

(3)阻尼为5档时

b=-0.162253,S b=0.00974544

?b=t p v S b=2.01×0.00974544=0.019588

ζ=β

=

?b

b2+4π2

=

0.162253

0.1622532+4π2

=0.025815?ζ=

4π2?b

b2+4π2

3

2

=3.114×10?3

所以得最终结果为ζ=0.0258±0.0031

T d=T d1+T d2+?+T d10

10

=1.4790s

ω0=

d 2

=4.25s?1

τ=?T d

b

=9.12s

Q=1

=19.4

(3)受迫振动的相频特性曲线和幅频特性曲线由曲线求得的ω0为4.25s-1

相对误差Δ?

?

见表中

五.讨论

测量点的选取:由函数关系可知,越靠近共振点即ω=ω0处,θm和φ,所以应在共振点附近多选取一些点进行测量。

六.思考题

1.周期测量位于摆轮时,当显示窗中周期和振幅的示数都稳定时,受迫振动处于稳定状态

3.测得相位差,即闪光灯亮时有机玻璃盘上的读数为90度时,达到共振。共振频率与ω0近似相等,约为

4.25s-1

弦振动实验报告

实验13 弦振动的研究 任何一个物体在某个特定值附近作往复变化,都称为振动。振动是产生波动的根源,波动是振动的传播。均匀弦振动的传播,实际上是两个振幅相同的相干波在同一直线上沿相反方向传播的叠加,在一定条件下可形成驻波。本实验验证了弦线上横波的传播规律:横波的波长与弦线中的张力的平方根成正比,而与其线密度(单位长度的质量)的平方根成反比。 一. 实验目的 1. 观察弦振动所形成的驻波。 2. 研究弦振动的驻波波长与张力的关系。 3. 掌握用驻波法测定音叉频率的方法。 二. 实验仪器 电动音叉、滑轮、弦线、砝码、钢卷尺等。 三. 实验原理 1. 两列波的振幅、振动方向和频率都相同,且有恒 定的位相差,当它们在媒质内沿一条直线相向传播时,

将产生一种特殊的干涉现象——形成驻波。如图3-13-1所示。在音叉一臂的末端系一根水平弦线,弦线的另一端通过滑轮系一砝码拉紧弦线。当接通电源,调节螺钉使音叉起振时,音叉带动弦线A端振动,由A端振动引起的波沿弦线向右传播,称为入射波。同时波在C点被反射并沿弦线向左传播,称为反射波。这样,一列持续的入射波与其反射波在同一弦线上沿相反方向传播,将会相互干涉。当C点移动到适当位置时,弦线上就形成驻波。此时,弦线上有些点始终不动,称为驻波的波节;而有些点振动最强,称为驻波的波腹。 2. 图3-13-2所示为驻波形成的波形示意图。在图中画出了两列波在T=0,T/4,T/2时刻的波形,细实线表示向右传播的波,虚线表示向左传播的波,粗实线表示合成波。如取入射波和反射波的振动相位始终相同的点作为坐标原点,且在X=0处,振动点向上到达最大位移时开始计时,则它们的波动方程分别为: (3-13-1) (3-13-2)式中为波的振幅,为频率,λ为波长,为弦线上质点的坐标位置。 两波叠加后的合成波为驻波,其方程为: (3-13-3)由上式可知,入射波与反射波合成后,弦线上各点都在以同一频率作 简谐振动,它们的振幅为,即驻波的振幅与时间无关,而与质

弹簧振子实验报告

弹簧振子实验报告 一、引言 ?实验目的 1.测定弹簧的刚度系数(stiffness coefficient). 2.研究弹簧振子的振动特性,验证周期公式. 3.学习处理实验数据. ?实验原理 一根上端固定的圆柱螺旋弹簧下端悬一重物后,就构成了弹簧振子.当振子处于静止状况时,重物所受的重力与弹簧作用于它的弹性恢复力相平衡,这是振子的静止位置就叫平衡位置.如用外力使振子离开平衡位置然后释放,则振子将以平衡位置为中心作上下振动.实验研究表明,如以振子的平衡位置为原点(x=0),则当振子沿铅垂方向离开平衡位置时,它受到的弹簧恢复力F在一定的限度与振子的位移x成正比,即 F =_ kx⑴ 式中的比例常数k称为刚度系数(stiffness coefficient),它是使弹簧产生单位形变所须的载荷?这就是胡克定律?式(1)中的负号表示弹性恢复力始终指向平衡位置.当位移x 为负值,即振子向下平移时,力F向上.这里的力F表示弹性力与重力mg的综合作用结果.

根据牛顿第二定律,如振子的质量为m,在弹性力作用下振子的运动方程为: + Arx = O x = Asin +(/>) (3) 式表明?弹簧振子在外力扰动后,将做振幅为A,角频率为宀0的简谐振 动,式中的(叫/ +。)称为相位,0称为初相位?角频率为叫的振子其振动周期 (4) (4) 式表示振子的周期与其质量、弹簧刚度系数之间的关系,这是弹簧振子的 最基本的特性?弹簧振子是振动系统中最简单的一种,它的运动特性(振幅,相 位,频率,周期)是所有振动系统共有的基本特性,研究弹簧振子的振动是认识 更复杂震动的基础. 弹簧的质量对振动周期也有影响?可以证明,对于质量为“0的圆柱形弹簧, 振子周期为 (5) m o/ m o/ 式中 ?称为弹簧的等效质量,即弹簧相当于以 ?的质量参加了振子的 振动?非圆柱弹簧(如锥形弹簧)的等效质量系数不等于1/3. d 2x 上式可化为一个典型的二阶常系数微分方程乔 =0 其解为 (3) 可得 x =

阻尼振动与受迫振动 实验报告

《阻尼振动与受迫振动》实验报告 一、实验目的 1. 观测阻尼振动,学习测量振动系统基本参数的方法; 2. 研究受迫振动的幅频特性和相频特性,观察共振现象; 3. 观测不同阻尼对受迫振动的影响。 二、实验原理 1. 有粘滞阻尼的阻尼振动 弹簧和摆轮组成一振动系统,设摆轮转动惯量为J ,粘滞阻尼的阻尼力矩大小定义为角速度d θ/dt 与阻尼力矩系数γ的乘积,弹簧劲度系数为k ,弹簧的反抗力矩为-k θ。忽略弹簧的等效转动惯量,可得转角θ的运动方程为 220d d J k dt dt θθγθ++= 记ω0为无阻尼时自由振动的固有角频率,其值为ω0=k/J ,定义阻尼系数β =γ/(2J ),则上式可以化为: 2220d d k dt dt θθ βθ++= 小阻尼即22 00βω-<时,阻尼振动运动方程的解为 ( )) exp()cos i i t t θθβφ=-+ (*) 由上式可知, 阻尼振动角频率为d ω=阻尼振动周期为2d d T π ω= 2. 周期外力矩作用下受迫振动的解 在周期外力矩Mcos ωt 激励下的运动方程和方程的通解分别为 22cos d d J k M t dt dt θθγθω++= ()( )) ()exp cos cos i i m t t t θθβφθωφ=-++- 这可以看作是状态(*)式的阻尼振动和频率同激励源频率的简谐振动的叠加。 一般t >>τ后,就有稳态解 ()()cos m t t θθωφ=- 稳态解的振幅和相位差分别为 m θ=

22 02arctan βω φωω =- 其中,φ的取值范围为(0,π),反映摆轮振动总是滞后于激励源支座的振动。 3. 电机运动时的受迫振动运动方程和解 弹簧支座的偏转角的一阶近似式可以写成 ()cos m t t ααω= 式中α m 是摇杆摆幅。由于弹簧的支座在运动,运动支座是激励源。弹簧总转 角为()cos m t t θαθαω-=-。于是在固定坐标系中摆轮转角θ的运动方程为 ()22cos 0m d d J k t dt dt θθγθαω++-= 也可以写成 22cos m d d J k k t dt dt θθγθαω++= 于是得到 2 m θ= 由θ m 的极大值条件0m θω? ?=可知,当外激励角频率ω=系统发生共振, θ m 有极大值 α 引入参数(0ζβωγ==,称为阻尼比。 于是,我们得到 m θ= ()() 02 02arctan 1ζωωφωω=- 三、实验任务和步骤 1. 调整仪器使波耳共振仪处于工作状态。 2. 测量最小阻尼时的阻尼比δ和固有角频率ω0。 3. 测量阻尼为3和5时的振幅,并求δ。 4. 测定受迫振动的幅频特性和相频特性曲线。 四、实验步骤。

弦振动实验报告

弦 振动的研究 一、实验目的 1、观察固定均匀弦振动共振干涉形成驻波时的波形,加深驻波的认识。 2、了解固定弦振动固有频率与弦线的线密ρ、弦长L 和弦的张力Τ的关系,并进行测量。 三、波。示。轴负方向传播的波为反射波,取它们振动位相始终相同的点作坐标原点 “O ”,且在X =0处,振动质点向上达最大位移时开始计时,则它们的波动方程分别为: Y 1=Acos2(ft -x/ ) Y 2=Acos[2 (ft +x/λ)+ ]式中A 为简谐波的振幅,f 为频率,为波长,X 为弦线上质点的坐标位置。两波叠加后的合成波为驻波,其方程为: Y 1 +Y 2=2Acos[2(x/ )+/2]Acos2ft ① 由此可见,入射波与反射波合成后,弦上各点都在以同一频率作简谐振动,它们的振幅为|2A cos[2(x/ )+/2] |,与时间无关t ,只与质点的位置x 有关。 由于波节处振幅为零,即:|cos[2(x/ )+/2] |=0

2(x/ )+/2=(2k+1) / 2 ( k=0. 2. 3. … ) 可得波节的位置为: x=k /2 ②而相邻两波节之间的距离为: x k+1-x k =(k+1)/2-k / 2= / 2 ③ 又因为波腹处的质点振幅为最大,即|cos[2(x/ )+/2] | =1 2(x/ )+/2 =k ( k=0. 1. 2. 3. ) 可得波腹的位置为: x=(2k-1)/4 ④ 这样相邻的波腹间的距离也是半个波长。因此,在驻波实验中,只要测得相邻两波节或相邻两波腹间的距离,就能确定该波的波长。 在本实验中,由于固定弦的两端是由劈尖支撑的,故两端点称为波节,所以,只有当弦线的两个固定端之间的距离(弦长)等于半波长的整数倍时,才能形成驻波,这就是均匀弦振动产生驻波的条件,其数学表达式为: L=n / 2 ( n=1. 2. 3. … ) 由此可得沿弦线传播的横波波长为: =2L / n ⑤ 式中n为弦线上驻波的段数,即半波数。 根据波速、频率及波长的普遍关系式:V=f,将⑤式代入可得弦线上横波的传播速度: V=2Lf/n ⑥ 另一方面,根据波动理论,弦线上横波的传播速度为: V=(T/ρ)1/2 ⑦ 式中T为弦线中的张力,ρ为弦线单位长度的质量,即线密度。 再由⑥⑦式可得 f =(T/ρ)1/2(n/2L) 得 T=ρ / (n/2Lf )2 即ρ=T (n/2Lf )2 ( n=1. 2. 3. … ) ⑧ 由⑧式可知,当给定T、ρ、L,频率f只有满足以上公式关系,且积储相应能量时才能在弦线上有驻波形成。 四、实验内容 1、测定弦线的线密度:用米尺测量弦线长度,用电子天平测量弦线质量,记录数据 2、测定11个砝码的质量,记录数据

振动实验报告剖析

振动与控制系列实验 姓名:李方立 学号:201520000111 电子科技大学机械电子工程学院

实验1 简支梁强迫振动幅频特性和阻尼的测量 一、实验目的 1、学会测量单自由度系统强迫振动的幅频特性曲线。 2、学会根据幅频特性曲线确定系统的固有频率f 0和阻尼比。 二、实验装置框图 图3.1表示实验装置的框图 图3-1 实验装置框图 K C X 图3-2 单自由度系统力学模型 三、实验原理 单自由度系统的力学模型如图3-2所示。在正弦激振力的作用下系统作简谐强迫振动, 设激振力F 的幅值B 、圆频率ωo(频率f=ω/2π),系统的运动微分方程式为: 扫频信号源 动态分析仪 计算机系统及分析软件 打印机或 绘图仪 简支梁 振动传感器 激振器 力传感器 质量块 M

或 M F x dt dx dt x d M F x dt dx n dt x d F Kx dt dx C dt x d M /2/222 22 2 222=++=++=++ωξωω (3-1) 式中:ω—系统固有圆频率 ω =K/M n ---衰减系数 2n=C/M ξ---相对阻尼系数 ξ=n/ω F ——激振力 )2sin(sin 0ft B t B F πω== 方程①的特解,即强迫振动为: ) 2sin()sin(0?π?ω-=-=f A A x (3-2) 式中:A ——强迫振动振幅 ? --初相位 2 0222024)(/ωωωn M B A +-= (3-3) 式(3-3)叫做系统的幅频特性。将式(3-3)所表示的振动幅值与激振频率的关系用图形表示,称为幅频特性曲线(如图3-3所示): 3-2 单自由度系统力学模型 3-3 单自由度系统振动的幅频特性曲线 图3-3中,Amax 为系统共振时的振幅;f 0为系统固有频率,1f 、2f 为半功率点频率。 振幅为Amax 时的频率叫共振频率f 0。在有阻尼的情况下,共振频率为: 2 21ξ-=f f a (3-4) 当阻尼较小时,0f f a =故以固有频率0f 作为共振频率a f 。在小阻尼情况下可得 01 22f f f -= ξ (3-5) 1f 、2f 的确定如图3-3所示: M X C K

波尔共振实验报告

波尔共振 振动是一种常见的物理现象,而共振是特殊的振动,为了趋利避害在工程技术和科学研究领域中对其给予了足够的重视。 目前,电力传输采用的是高压输电法。而据报载,2007年6月美国麻省理工学院的物理学家索尔加斯克领导的一个小组,成功地利用无线输电技术,点亮了距离电源2米远的灯泡!无线输电法原理的核心就是共振。人们期待着能在更远的距离实现无线输电,那时生产和生活将会发生一场重大变革。 【目的与要求】 1. 观察测量自由振动中振幅与周期的关系。 2. 研究阻尼振动并测量阻尼系数。 3. 观察共振现象及其特征;研究不同阻尼力矩对受迫振动的影响及其辐频特性和相频特 性。 4. 学习用频闪法测定动态物理量----相位差。 【实验原理】 物体在周期性外力(即强迫力)的作用下发生的振动称为受迫振动。若外力是按简谐振动规律变化,则稳定状态时的振动也是简谐振动,此时,振幅保持恒定,振幅的大小与强迫力的频率和原振动系统的固有频率以及阻尼系数有关。在受迫振动状态下,系统除了受到强迫力的作用外,同时还受到回复力和阻尼力的作用。所以在稳定状态时物体的位移、速度变化与强迫力变化不是同相位的,存在一个相位差。在无阻尼情况下,当强迫力频率与系统的固有频率相同时产生共振,此时振幅最大,相位差为90°。 当摆轮受到周期性强迫外力矩t M M ωcos 0=的作用,并在有空气阻尼和电磁阻尼的媒质中运动时(阻尼力矩为dt d b θ-),其运动方程为 t M dt d b k dt d J ωθ θθcos 02 2+--= (33-1) 式中,J 为摆轮的转动惯量,-k θ为弹性力矩,M 0为强迫力矩的幅值,ω为强迫力的圆频率。 令 ,2 0J k =ω ,2J b =β J M m 0= 则式(33-1)变为 t m dt d dt d ωθωθβθcos 22022=++ (33-2) 当0cos =t m ω时,式(2)即为阻尼振动方程。 当0=β,即在无阻尼情况时式(33-2)变为简谐振动方程,系统的固有圆频率为ω0。方程(33-2)的通解为 )cos()cos(021?ωθαωθθβ+++=-t t e f t (33-3) 由式(33-3)可见,受迫振动可分成两部分: 第一部分,)cos(1αωθβ+-t e f t 和初始条件有关,经过一定时间后衰减消失。

阻尼振动与受迫振动实验报告

阻尼振动与受迫振动 一、 实验目的 1. 观测阻尼振动,学习测量振动系统基本参数的方法; 2. 研究受迫振动的幅频特性和相频特性,观察共振现象; 3. 观测不同阻尼对受迫振动的影响。 二、 实验原理 1. 有粘滞阻尼的阻尼振动 在弹簧和摆轮组成的振动系统中,摆轮转动惯量为J ,γ为阻尼力矩系数,ω0=√ k /J 为无阻尼时自由振动的固有角频率,定义阻尼系数β=γ/(2J ),则振动方程为 2220d d k dt dt θθ β θ++= 在小阻尼时,方程的解为 ()) exp()cos i i t t θθβφ=-+ 在取对数时,振幅的对数和β有有线性关系,通过实验测出多组振 幅和周期,即可通过拟合直线得出阻尼系数进而得出其他振动参数。 2. 周期外力矩作用下受迫振动 在周期外力矩Mcos ωt 激励下的运动方程和方程的通解分别为 22cos d d J k M t dt dt θθγθω++=

()( )) ()exp cos cos i i m t t t θθβφθωφ=-++- 其中包含稳定项和衰减项,当t >>τ后,就有稳态解 ()()cos m t t θθωφ=- 稳态解的振幅和相位差分别为 m θ= 22 02arctan βω φωω=- 上式中反映当ω与固有频率相等时相位差达到90度。 3. 电机运动时的受迫振动运动方程和解 弹簧支座的偏转角的一阶近似式可以写成 ()cos m t t ααω= 式中αm 是摇杆摆幅。由于弹簧的支座在运动,运动支座是激励源。弹簧总转角为()cos m t t θαθαω-=-。于是在固定坐标系中摆轮转角θ的运动方程为 22cos m d d J k k t dt dt θθγθαω++= 于是得到 2 m θ= 由θm 的极大值条件0m θω? ?=可知,当外激励角频率ω=时,系统发生共振, θm 有极大值α 引入参数(0ζβωγ ==,称为阻尼比,于是有

气垫弹簧振子的简谐振动实验报告

××大学实验报告 学院:×× 系:物理系专业:×× 年级:××级 姓名:×× 学号:×× 实验时间:×× 指导教师签名:_______________ 实验四:气垫弹簧振子的简谐振动 一.实验目的与要求: 1. 考察弹簧振子的振动周期与振动系统参量的关系。 2. 学习用图解法求出等效弹簧的倔强系数和有效质量。 3. 学会气垫调整与试验方法。 二.实验原理: 1.弹簧的倔强系数 弹簧的伸长量x 与它所受的拉力成正比 F=kx k=X F 2.弹簧振子的简谐运动方程 根据牛顿第二定律,滑块m 1 的运动方程为 -k 1(x+x 01)-k 2(x-x 02)=m 2 2dt x d ,即-(k 1+k 2)x=m 2 2dt x d 式中,m=m 1+m 0(系统有效质量),m 0是弹簧有效质量,m 1是滑块质量。令 k=k 1+k 2,则 -kx= m 2 2dt x d 解为x=A sin (ω0t+ψ0 ),ω0= m k = m k k 2 1+ 而系统振动周期 T 0=0 2ωπ=2π k m

当 m 0《 m 1时,m 0=3 s m ,m s 是弹簧的实际质量(m 0与m s 的关系可简单写成 m 0=3 m s )。 本实验通过改变m 1测出相应的T ,以资考察T 和m 的关系,从而求出m 0和 k 。 三.主要仪器设备: 气垫导轨、滑块(包括挡光刀片)、光电门、测时器、弹簧。 四.实验内容及实验数据记录: 1.气垫导轨水平的调节 使用开孔挡光片,智能测时器选在2pr 功能档。让光电门A 、B 相距约60cm (取导轨中央位置),给滑块以一定的初速度(Δ t 1和Δt 2控制在20-30ms 内),让 它在导轨上依次通过两个光电门.若在同一方向上运动的Δ t 1和Δt 2的相对 误差小于3%,则认为导轨已调到水平.否则重新调整水平调节旋钮。 2.研究弹簧振子的振动周期与振幅的关系 先将测时器设置于6pd (测周期)功能档。按动选择钮,屏幕显示6pd 时,按动执行键,显示为0。每按一次选择键,显示加1;当达到预定值(如预置数为n =6,则表示测3个周期的时间)后,将滑块拉离平衡点6.00厘米(即选定某一振幅),再按执行键,放手让其运动,进入测周期操作。当屏幕上显示预置数减为0后,显示屏上出现总时间t ;由此可得周期T = n t 2。 再重新测量几次并取平均值。并测量滑块和弹簧的质量,利用T 0= 2ωπ =2π k m 计算弹簧的倔强系数。取不同的振幅测量,探讨周期与振幅是否有关。 3.观测简谐振动周期T 与m 的关系,并求出k 与弹簧的有效质量m 0。

大学物理《弦振动》实验报告

大学物理《弦振动》实验报告(报告内容:目的、仪器装置、简单原理、数据记录及结果分析等) 一.实验目的 1.观察弦上形成的驻波 2.学习用双踪示波器观察弦振动的波形 3.验证弦振动的共振频率与弦长、张力、线密度及波腹数的关系 二.实验仪器 XY弦音计、双踪示波器、水平尺 三实验原理 当弦上某一小段受到外力拨动时便向横向移动,这时弦上的张力将使这小段恢复到平衡位置,但是弦上每一小段由于都具有惯性,所以到达平衡位置时并不立即停止运动,而是继续向相反方向运动,然后由于弦的张力和惯性使这一小段又向原来的方向移动,这样循环下去,此小段便作横向振动,这振动又以一定的速度沿整条弦传播而形成横波。理论和实验证明,波在弦上传播的速度可由下式表示:= ρ 1 ------------------------------------------------------- ①

另外一方面,波的传播速度v和波长λ及频率γ之间的关系是: v=λγ-------------------------------------------------------- ② 将②代入①中得γ =λ1 -------------------------------------------------------③ρ1 又有L=n*λ/2 或λ=2*L/n代入③得γ n=2L ------------------------------------------------------ ④ρ1 四实验内容和步骤 1.研究γ和n的关系 ①选择5根弦中的一根并将其有黄铜定位柱的一端置于张力杠杆的槽内,另一端固定在张力杠杆水平调节旋钮的螺钉上。 ②设置两个弦码间的距离为60.00cm,置驱动线圈距离一个弦码大约5.00cm的位置上,将接受线圈放在两弦码中间。将弦音计信号发生器和驱动线圈及示波器相连接,将接受线圈和示波器相连接。

大学物理实验简谐振动与阻尼振动的实验报告

湖北文理学院物理实验教学示范中心 实 验 报 告 学院 专业 班 学号: 姓名: 实验名称 简谐振动与阻尼振动的研究 实验日期: 年 月 日 实验室: N1-103 [实验目的]: 1. 验证在弹性恢复力作用下,物体作简谐振动的有关规律;测定弹簧的弹性系数K 和有效质量m. 2. 测定阻尼振动系统的半衰期和品质因数,作出品质因数Q 与质量M 的关系曲线。 [仪器用具]:仪器、用具名称及主要规格(包括量程、分度值、精度等) 气垫导轨、滑块、附加质量(2)、弹簧(4)、光电门(2)、数字毫秒计. [实验原理]:根据自己的理解用简练的语言来概括(包括简单原理图、相关公式等) 1.简谐振动 在水平气垫导轨上的滑块m 的两端连接两根弹性系数1k 、2k 近乎相等的弹簧,两弹簧的另一端分别固定在气轨的两端点。滑块的运动是简谐振动。其周期为: 2 122k k M T +== π ω π 由于弹簧不仅是产生运动的原因,而且参 加运动。因此式中M 不仅包含滑块(振子)的质量m ,还有弹簧的有效质量0m 。M 称为弹簧振子系统的有效质量。经验 证:0m m M += 其中 s m m 31 0=,s m 为弹簧质量。假设:k k k ==21则有周期: 22T πω= = 若改变滑块的质量m ?,则周期2T 与m ?成正比。222 4422M m T k k ππ?=+。以2T 为纵坐标,以m ?为横坐标,作2T -m ?曲线。则为一条斜率为242k π的直线。由斜率可以求出弹簧的弹性系数k 。求出弹性系数后再根据式22 42M T k π=求出弹簧的 有效质量。 2.阻尼振动 简谐振动是一种振幅相等的振动,它是忽略阻尼振动的理想情况。事实上,阻尼力不可避免,而抵抗阻力做功的结果,使振动系统的能量逐渐减小。因此,实验中发生的一切自由振动,振幅总是逐渐减小以至等于零的。这种振动称为阻尼振动。用品质因数(即Q 值),来反映阻尼振动衰减的特性。其定义为:振动系统的总能量E 与在一个周期中所损耗能 量E ?之比的π2倍,即 2E Q E π =?;通过简单推导也有: 12 ln 2 T Q T π= 2 1T 是 阻尼振动的振幅从 0A 衰减为 2 0A 所用时 间,叫做半衰期。测出半衰期就可以计算出品质因数Q 。在实验中,改变滑块的质量。作质量与品质因数的关系曲线。 [实验内容]: 简述实验步骤和操作方法 1. 打开气泵观察气泵工作是否正常,气轨出气孔出气大小是否均匀。 2. 放上滑块,调节气轨底座,使气轨处于水平状态。 3. 把滑块拉离平衡位置,记录下滑块通过光电门10次所用的时间。 4. 改变滑块质量5次,重复第3步操作。 5. 画出m T -2 关系曲线,.据m T -2关系曲线,求出斜率K ,并求出弹性系数k 。 6. 用天平测量滑块(附挡光片)、每个附加物的质量后;求出弹簧的有效质量。 7. 用秒表测量滑块儿的振幅从A 0衰减到A 0/2所用的时间2 1T ;求出系统的品质因数Q 8. 滑块上增至4个附加物,重复步骤7作出Q-m ?的关系曲线;

随机振动试验报告

随机振动试验报告 高等桥梁结构试验报告 讲课老师: 张启伟(教授) 姓名: 史先飞 学号: 1232627 试验报告 1 试验目的 1.过试验进一步加深对结构模态分析理论知识的理解; 2.熟悉随机振动试验常用仪器的性能与操作方法; 3.复习和巩固随机振动数据测量和分析中有关基本概念; 4.掌握通过多点激振、单点拾振的方法,利用DASP2005软件进行模态分析的基本操作步骤。

2 试验仪器和设备 1. ZJY-601振动与控制教学实验仪系统(ZJY-601A型振动教学实验仪、激励锤、YJ9-A型压电型加速度传感器等)。 2. DASP 16通道接口箱。 3. 装有“DASP2005智能数据采集和信号分析系统”软件的PC机。 4. 有关设备之间的联接电缆。 3 试验原理 3.1模态叠加原理 N自由度线性振动系统的运动微分方程是一组耦合的方程组: 引入模态矩阵Φ和模态坐标(广义坐标或主坐标)q,使X= Φq。 如果阻尼矩阵能对角化,方程组即可解耦: 解耦后的第i个方程为: 可见,采用固有振型描述振动的模态坐标后,N自由度线性振动系统的振动响应可以表示为N阶模态响应的叠加。 3.2实模态理论 实模态理论建立在无阻尼的假设基础上。在实模态理论中,模态频率就是系统的无阻 ,尼模态固有频率错误~未找到引用源。;而固有振型矩阵中的各元素都是实数,它们之间i 的相位差是0?或180?。 系统在P点激励,l点测量的频响函数为:

K,,式中,称为频率比,,为模态固有频率。当,则: ,,,,,/,,,iiiiiMi 取频响函数矩阵的一列或一行,如第P列,就可确定振动系统的全部动力特性(模态参数)。 3.3伪实模态理论 某些有阻尼振动系统有时会出现与实模态一样的实数振型,而非复数振型,但其模态 2,,,,,1固有频率为,具有这种性质的振动系统的模态称为伪实模态。伪实模态理diii 论仅适应于阻尼矩阵可解耦,即可采用固有振型矩阵正交化模态称为伪实模态。在伪实模态下,各测点的相位差都是0?或180?。 伪实模态理论仅适应于阻尼矩阵可解耦,即可采用固有振型矩阵正交化的情况。一般情况下,阻尼矩阵对角化的充要条件为: 上式也是有阻尼振动系统方程解耦的充要条件。 总之,H(ω)建立了模态参数与频响函数的关系。因此,利用实验测出的H(ω) 值,即可计算出系统的模态参数。根据频响函数的互易定理及模态理论,只需 H(ω)矩阵的一列(或一行)即可求出全部模态参数。

弦音震动实验报告

大学物理实验报告课程名称:普通物理实验(2) 实验名称:弦音震动 学院:专业班级: 学生:学号: 实验地点:座位号: 实验时间:

一、实验目的: 1、了解固定均匀弦振动的传播规律,加深对振动与波和干涉的概念。 2、了解固定均匀弦振动的传播形成驻波的波形,加深对干涉的特殊形式(驻波)的认识。 3、了解决定固定弦共有频率的因素,测量均匀弦线上恒博的传播速度及均匀弦线的线密度。 4、了解声音和频率的关系。 二、实验装置: 实验装置如图1所示。吉它上有四支钢质弦线,中间两支是用来测定弦线力,旁边两支用来测定弦线线密度。实验时,弦线3与音频信号源接通。这样,通有正弦交变电流的弦线在磁场中就受到周期性的安培力的激励。根据需要,可以调节频率选择开关和频率微调旋钮,从显示器上读出频率。移动劈尖的位置,可以改变弦线长度,并可适当移动磁钢的位置,使弦振动调整到最佳状态。 根据实验要求:挂有砝码的弦线可用来间接测定弦线线密度或横波在弦线上的传播速度;利用安装在力调节旋钮上的弦线,可间接测定弦线的力。

如图1所示,实验时,将弦线3(钢丝)绕过弦线导轮5与砝码盘10连接,并通过接线柱4接通正弦信号源。在磁场中,通有电流的金属弦线会受到磁场力(称为安培力)的作用,若弦线上接通正弦交变电流时,则它在磁场中所受的与磁场方向和电流方向均为垂直的安培力,也随之发生正弦变化,移动劈尖改变弦长,当弦长是半波长的整倍数时,弦线上便会形成驻波。移动磁钢的位置,将弦线振动调整到最佳状态,使弦线形成明显的驻波。此时我们认为磁钢所在处对应的弦为振源,振动向两边传播,在劈尖与吉它骑码两处反射后又沿各自相反的方向传播,最终形成稳定的驻波。 考察与力调节旋钮相连时的弦线3时,可调节力调节旋钮改变力,使驻波的长度产生变化。 为了研究问题的方便,当弦线上最终形成稳定的驻波时,我们可以认为波动是从骑码端发出的,沿弦线朝劈尖端方向传播,称为入射波,再由劈尖端反射沿弦线朝骑码端传播,称为反射波。入射波与反射波在同一条弦线上沿相反方向传播时将相互干涉,移动劈尖到适合位置.弦线上就会形成驻波。这时,弦线上的波被分成几段形成波节和波腹。如图2所示。

弦振动实验_报告

弦振动的研究报告 班级:工程力学二班 学号:120107020045 姓名:康昕程

实 验 报 告 【实验目的】 1. 了解波在弦上的传播及驻波形成的条件 2. 测量不同弦长和不同张力情况下的共振频率 3. 测量弦线的线密度 4. 测量弦振动时波的传播速度 【实验仪器】 弦振动研究试验仪及弦振动实验信号源各一台、双综示波器一台 【实验原理】 驻波是由振幅、频率和传播速度都相同的两列相干波,在同一直线上沿相反方向传播时叠加而成的特殊干涉现象。 当入射波沿着拉紧的弦传播,波动方程为 ()λπx ft A y -=2cos 当波到达端点时会反射回来,波动方程为 ()λπx ft A y +=2cos 式中,A 为波的振幅;f 为频率;λ为波长;x 为弦线上质点的坐标位置,两拨叠加后的波方程为 ft x A y y y πλ π 2cos 2cos 221=+= 这就是驻波的波函数,称为驻波方程。式中,λ π x A 2cos 2是各点的振幅 ,它只与x 有关, 即各点的振幅随着其与原点的距离x 的不同而异。上式表明,当形成驻波时,弦线上的各点作振幅为λ π x A 2cos 2、频率皆为f 的简谐振动。 令02cos 2=λ π x A ,可得波节的位置坐标为 ()4 12λ +±=k x 2,1,0=k 令12cos 2=λ π x A ,可得波腹的位置坐标为 2 λ k x ±= 2,1,0=k 相邻两波腹的距离为半个波长,由此可见,只要从实验中测得波节或波腹间的距离,就可以确定波长。 在本试验中,由于弦的两端是固定的,故两端点为波节,所以,只有当均匀弦线的两个固定端之间的距离(弦长)L 等于半波长的整数倍时,才能形成驻波。

阻尼振动与受迫振动实验报告

阻尼振动与受迫振动实验报告 一、实验目的 (一)观察扭摆的阻尼振动,测定阻尼因数。 (二)研究在简谐外力矩作用下扭摆的受迫振动,描绘扭摆在不同阻尼的情况下的共振曲线(即幅频特性曲线)。 (三)描绘外加强迫力矩与受迫振动之间的位相随频率变化的特性曲线(即相频特性曲线)。 (四)观测不同阻尼对受迫振动的影响。 二、实验仪器 扭摆(波尔摆)一套,秒表,数据采集器,转动传感器。 三、实验任务 1、调整仪器使波耳共振仪处于工作状态。 2、测量最小阻尼时的阻尼比ζ和固有角频率ω0。 3、测量其他2种或3种阻尼状态的振幅,并求ζ、τ、Q和它们的不确定度。 4、测定受迫振动的幅频特性和相频特性曲线。 四、实验步骤 1、打开电源开关,关断电机和闪光灯开关,阻尼开关置于“0”档,光电门H、I可以手动微调,避免和摆轮或者相位差盘接触。手动调整电机偏心轮使有机玻璃转盘F上的0位标志线指示0度,亦即通过连杆E和摇杆M使摆轮处于平衡位置。然后拨动摆轮使偏离平衡位置150至200度,松开手后,检查摆轮的自由摆动情况。正常情况下,震动衰减应该很慢。 2、开关置于“摆轮”,拨动摆轮使偏离平衡位置150至200度后摆动,由大到小依次读取显示窗中的振幅值θj;周期选择置于“10”位置,按复位钮启动周期测量,停止时读取数据10 T。 d 并立即再次启动周期测量,记录每次过程中的10 T的值。 d (1)逐差法计算阻尼比ζ; (2)用阻尼比和振动周期T d计算固有角频率ω0。 3、依照上法测量阻尼(2、3、4)三种阻尼状态的振幅。求出ζ、τ、Q和它们的不确定度。 4、开启电机开关,置于“强迫力”,周期选择置于“1”,调节强迫激励周期旋钮以改变电机运动角频率ω,选择2个或3个不同阻尼比(和步骤3中一致),测定幅频和相频特性曲线,注意阻尼比较小(“0”和“1”档)时,共振点附近不要测量,以免振幅过大损伤弹簧;每次调节电机状态后,摆轮要经过多次摆动后振幅和周期才能稳定,这时再记录数据。要求每

机械振动实验报告

《机械振动基础》实验报告 (2015年春季学期) 姓名 学号 班级 专业机械设计制造及其自动化报告提交日期2015.05.07 哈尔滨工业大学

报告要求 1.实验报告统一用该模板撰写,必须包含以下内容: (1)实验名称 (2)实验器材 (3)实验原理 (4)实验过程 (5)实验结果及分析 (6)认识体会、意见与建议等 2.正文格式:四号字体,行距为1.25倍行距; 3.用A4纸单面打印;左侧装订; 4.报告需同时提交打印稿和电子文档进行存档,电子文档由班长收 齐,统一发送至:liuyingxiang868@https://www.wendangku.net/doc/5a7208439.html,。 5.此页不得删除。 评语: 教师签名: 年月日

实验一报告正文 一、实验名称:机械振动的压电传感器测量及分析 二、实验器材 1、机械振动综台实验装置(压电悬臂梁) 一套 2、激振器一套 3、加速度传感器一只 4、电荷放大器一台 5、信号发生器一台 6、示波器一台 7、电脑一台 8、NI9215数据采集测试软件一套 9、NI9215数据采集卡一套 三、实验原理 信号发生器发出简谐振动信号,经过功率放大器放大,将简谐激励信号施加到电磁激振器上,电磁激振器振动杆以简谐振动激励安装在激振器上的压电悬臂梁。压电悬臂梁弯曲产生电流显示在示波器上,可以观测悬臂梁的振动情况;另一方面,加速度传感器安装在电磁激振器振动杆上,将加速度传感器与电荷放大器连接,将电荷放大器与数据采集系统连接,并将数据采集系统连接到计算机(PC机)上,操作NI9215数据采集测试软件,得到机械系统的振动响应变化曲线,可以观测电磁激振器的振动信号,并与信号发生器的激励信号作对比。实验中的YD64-310型压电式加速度计测得的加速度信号由DHF-2型电荷放大器后转变为一个电压信号。电荷放大器的内部等效电路如图1所示。 q

振动实验报告

振动力学实验报告 学院:___________________ 班级:___________________ 学号:___________________ 姓名:___________________ 山东科技大学

单自由度系统振动实验报告 实验者姓名:________ 院系:_______系_______专业_______班_______组实验日期:________年________月________日 自由振动法测量单自由度系统的参数 一、实验目的 二、实验对象和装置 三、实验步骤 四、实验数据记录和整理 1、无阻尼单自由度自由振动系统实验测量:

计算单自由度振动的振动频率、周期、固有频率、衰减系数、相对阻尼系数周期、频率和阻尼系数: 2、有阻尼单自由度自由振动系统实验测量: 计算单自由度振动的振动频率、周期、固有频率、阻尼系数、相对阻尼系数: 五、简答 1、上述无阻尼自由振动实验中,为什么振动曲线呈现衰减状态? 2、简述阻尼对于自由振动周期、频率的影响。

用冲击激励法测量系统的频率响应函数 实验者姓名:________ 院系:_______系_______专业_______班_______组实验日期:________年________月________日 一、实验目的 二、实验对象和装置 三.实验步骤

四、实验数据记录和整理 1、无阻尼单自由度自由振动系统实验测量: 2、有阻尼单自由度自由振动系统实验测量: 五、简答 1、力锤施加力的大小是否影响单自由度系统的振动频率和阻尼,为什么? 2、实验过程中,力锤敲击质量块时应注意什么?

简谐振动的研究·实验报告

简谐振动的研究·实验报告 【实验目的】 研究简谐振动的基本特征 【实验仪器】 气垫导轨、通用数字计时器、滑块、砝码、弹簧(5对)、约利氏秤 朱力氏秤 朱力氏秤的示意图如右图所示。一个可以升降的套杆1上刻有毫米分度,并附有读数游标2。将弹簧3挂在1顶部,下端挂一有水平刻线G 的小镜子4,小镜子外套一个带有水平刻线D 的玻璃管5,镜下再钩挂砝码盘6。添加砝码时,小镜子随弹簧伸长而下移。欲知弹簧伸长量需旋动标尺调节旋钮7将弹簧提升,直至镜上水平刻线G 与玻璃管上水平刻线D 及D 在镜中的像相互重合,实现所谓“三线重合”。测量时注意先用底座上螺丝调节弹簧铅直,此时小镜子应不会接触到玻璃管。 【实验原理】 简谐振动是振动中最简单、最基本的运动,对简谐振动的研究有着重要的意义。简谐振动的方程为 x x 2ω-= 其位移方程为 )sin(αω+=t A x 速度方程为 )sin(αωω+=t A v 其运动的周期为 ω π 2= T T 或ω由振动系统本身的特性决定,与初始运动无关。而A ,α是由初始条件决定的。 实验系统如图4-15-1所示。

两个弹性系数k 相同的弹簧分别挂在质量为m 的滑行器两侧,且处于拉伸的状态。在弹性恢复力的作用下,滑行器沿水平导轨作往复运动。当滑行器离开平衡位置0x 至坐标x 时,水平方向上受弹性恢复力)()(00x x k x x k --+-与的作用,有 x m x x k x x k =--+-)00()( 即 x m kx =-2 令k k 20=,有 x m k x x m x k 0 0-==- 或 上式形式与简谐振动方程相同,由此可知滑行器的运动为简谐振动。与简谐振动方程比较可得 m k 0 2= ω 即该简谐振动的角频率 m k 0 = ω 1、)sin(αω+=t A x 的验证 将光电门F 置于0x 处,光电门G 置于1x 处,滑行器1拉至A x 处(010x x x x A ->-)释放,由计时器测出滑行器从0x 运动至1x 的时间1t 。依次改变光电门G 的位置i x ,每次都从A x 释放滑行器,测出对应i x 的时间i t ,最后移开光电门G 。从滑行器通过0x 时开始计时,当它从最大位移返回到0x 时,终止计时,测出时间值为2 T t =,可求出达到最大位置的时间2 t t B = 。 从上面的操作中可以看出2 π α= =,A x A 。将测量的i x ,i t 值代入(4)式,看其是 否成立。ω可由(4)式求出,其中B t T 4=。 2、)cos(αωω+=t A v 的验证 使滑行器处于平衡位置,并使挡光板正对坐标原点,然后依次改变光电门的位置(x 取值与1中相同),每次仍均在A x 处释放滑行器,这样可由计时器给出的时间i t ?及滑行距离 s ?(挡光板两相应边距离)可求出i v ,将i v 及1测出的i t 对应代入(3)式时,看是否成

28波尔振动(二)实验报告讲解

实验2.8 波尔振动实验(二) 实验人姓名:合作人: 学院:物理工程与科学技术学院专业:光信息科学与技术年级:级学号: 日期:年月日室温:24℃相对湿度:67% 实验数据储存 【实验目的】 1.观察和研究自由振动、阻尼振动、受迫振动的特性 2.观察和研究振动过程的拍频、相图、机械能转换和守恒现象 【仪器用具】 仪器名称数量型号技术指标 扭摆(波尔摆) 1 ZKY-BG 固有振动频率约 0.5Hz 秒表 1 DM3-008 石英秒表,精度 0.01s 三路直流稳压稳流电源1 IT6322 三路隔离, 0-30V/1mV,0.3A/1mA 台式数字万用表 1 DM3051 5-3/4位,1μ V-1000V,10nA-10A, 准确度为读数的 0.025% 数据采集器及转动传感器1 SW850及CI6531 最高采样率1000Hz, 分辨率0.25°,准确 度±0.009° 实验测控用计算机 1 IdeaCenterB320i 一体台式计算机 【原理概述】 1.振动的频谱 任何周期性的运动均可分解为简谐振动的线性叠加。采集一组如图1所示的扭摆摆动角度随时间变化的数据之后,对其进行傅立叶变换,就可以得到一组相对振幅随频率的变化数据。以频率为横坐标,相对振幅为纵坐标可作出一条如图2所示的曲线,即为波尔振动的频谱。在自由振动状态下,峰值对应的频率就是波尔振动仪的固有振动频率。

图1 角度随时间变化关系 图2 振动的频谱 2.拍频 3.相图和机械能 扭摆的摆动过程存在势能和动能的转换,其势能和动能为 其中I 为扭摆的转动惯量。势能与摆动角度的平方成正比,动能与角速度的平方成正比。 若以角度为横坐标,角速度为纵坐标画出两者的关系曲线,称为相图。通过相图可直观地 看出扭摆振动过程中势能与动能的变化。图3 所示为阻尼振动的相图,机械能不断损耗, 相图逐渐缩小至中心点。图4 所示为理想的自由振动的相图,势能和动能相互转换,但总 的机械能始终保持不变,相图为一个面积保持不变的椭圆。

0212波尔振动的物理研究实验报告

波尔振动的物理研究 【实验目的】 1. 观察扭摆的阻尼振动,测定阻尼因数。 2. 研究在简谐外力矩作用下扭摆的受迫振动,描绘扭摆在不同阻尼情况下的共振曲线(幅频特性曲线)。 3. 描绘外加强迫力矩与受迫振动之间的位相随频率变化的特性曲线(即相频特性曲线)。 4. 分析波尔共振的相位和角速度的关系。 【实验仪器】 扭摆(波尔摆)一套(PHYWE ),秒表,数据采集器,转动传感器。 【实验原理】 1.扭摆的阻尼振动 在有阻力矩的情况下,使扭摆由某一摆角开始做自由振动。此时扭摆受到两个力矩的作用:一是弹性恢复力矩M 弹,它与摆的扭转角θ成正比,即M c θ弹=(c 为扭转系数);二是阻力矩阻M 阻,可近似认为它与摆动的角速度成正比,即d M r dt θ -阻=(r 为阻矩系数)。若扭摆的转动惯量为I ,则根据转动定律可列出扭摆的运动方程: 22d d I c r dt dt θθθ=-- (1) 即 220d r d r dt I dt I θθθ++= (2) 令 2r I β=(β称为阻尼因数) ,2 0r I ω=(称0ω为固有圆频率),则式(2)的解为 002exp()cos exp()cos A t t A t t T π θββω=-=- (3) 其中0A 为扭摆的初始振幅,T 为扭摆做阻尼振动的周期,且2T ωπ== 由式(3)可见,扭摆的振幅随着时间按指数规律衰减。若测得初始振幅0A 及第n 个 周期时的振幅n A ,并测得摆动n 个周期所用的时间nT ,则有

则 01 ln A nT A β= (4) 2.扭摆的受迫振动 当扭摆在有阻尼的情况下受到简谐外力矩作用时,就会作受迫振动。设外加简谐力矩通过弹簧加到摆轮上,其频率是ω,幅度为0M (00c M θ=,0θ为外力矩角幅),且有 0cos M M t ω外=,则扭摆的运动方程变为 22 022cos d d h t dt dt θθβωθω++= (5) 其中0h M I =,在稳态情况下,式(5)的解是 cos()A t θω?=+ (6) 其中A 为角振幅, A = (7) 而角位移θ 与简谐外力矩之间的位相差?则可表示为 22 2arctan( )βω ?ωω=- (8) 式(6)说明,扭摆在简谐外力矩作用下的运动也是简谐振动,它的振幅是A ,它的频率与外力矩的频率相同,但二者的位相差是?。 由式(7)可见,当ω→0时,振幅A 接近外力矩角幅0θ(∵2 000M c h I I θωθ===) ,随着ω的逐渐增大,振幅A 将随之增加,当ω= A 有最大值,此时称 为共振,此频率称为共振频率,即ω=共ωω>共或ωω<共时,振幅都将 减小;当ω很大时,振幅趋于零。 由式(8)可见,当00ωω≤≤时,有02 π ?≥≥,即受迫振动的位相落后于外加简谐 力矩的位相;在共振情况下,位相落后接近于 2 π ,而在0ωω=时(有阻尼时不是共振状态),位相才正好落后2π;当0ωω≥时,有0tg ?>,此时2 π ?<-,即位相落后得更多;当0 ωω≥时,?趋近π-,即接近于反位相。在已知0ω及β的情况下,则可由式(8)计算出各ω值 00 0exp()exp() A A nT A A nT ββ==-

相关文档
相关文档 最新文档