文档库 最新最全的文档下载
当前位置:文档库 › 切线长定理精选试题

切线长定理精选试题

切线长定理精选试题
切线长定理精选试题

切线长定理

1、在△ABC 中,∠A =50°,点I 是△ABC 的内心,则∠BIC = ,若点O 为△ABC 的外心,则∠BOC = .

2、在△ABC 中,∠C =90°,AC =3,BC =4,则其内切圆半径为 .

3、如图,AD 、AE 、BC 都是⊙O 的切线,切点分别为D 、E 、F ,若AD =6,则△ABC 的周长为 .

4、如图,⊙O 内切于△ABC ,切点分别为D 、E 、F ,若∠C =80°,则∠EDF = .

5、如图,PA 、PB 切⊙O 于A 、B , ∠APB =60°,PA =3,则⊙O 的半径为 .

6、如图,⊙O 是△ABC 的内切圆,∠C =90°,AB =8,∠BOC =105°,则BC = .

7、如图,PA 、PB 切⊙O 于A 、B ,AC 是⊙O 的直径,∠P =40°,则∠ACB = .

8、如图,PA 、PB 切⊙O 于A 、B ,∠P =50°,点C 是⊙O 上异于A 、B 的点,则∠ACB = .

第7题P

9、△ABC 的内切圆⊙O 的三边分别相切于点D 、E 、F 三点,AB =7,BC =12,CA =11,求:AF 、BD 、CD 的长.

10、在△ABC 中,∠C =90°,⊙I 为△ABC 的内切圆,点O 为△ABC 的外心,BC =6,AC =8. (1)求⊙I 的半径;(2)求IO 的长;

第3题

第4题

第5题P

第6题

A

第8题

P

B A

11、如图,⊙O 与△ADE 的各边所在的直线都相切,DE ⊥AE ,AE =8,AD =10,求⊙O 的半径.

12、如图,在△ABC 中,∠ACB =90°,AC =6,BC =8,O 为BC 上一点,以O 为圆心,OC 为半径作圆与AB 相切于点H .⑴求BH 的长; ⑵求⊙O 的半径.

13、如图,AB ,BC ,CD 分别与⊙O 相切于点E 、F 、G ,且AB ∥CD ,OB 与EF 相交于点M ,OC 与FG 相交于点N ,连接MN .⑴求证:OB ⊥OC ; ⑵若OB =6,OC =8,求MN 的长.

14、如图,AB 是⊙O 的直径,BC 是⊙O 的切线,切点为B ,D 是⊙O 上一点,CD =CB ,连AD ,OC ,OC 交⊙O 于点E ,交BD 于点F .⑴求证:CD 是⊙O 的切线;⑵求证:∠BCD =2∠ABD ;⑶求证:E 是△BCD 的内心;⑷若∠BCD =60°,求EF CE

的值.

A

C

A C

A

中考专题——切线长定理及弦切角定理

中考复习专题——切线长定理与弦切角定理 【知识要点】 1.切线长定理:过圆外一点P做该圆的两条切线,切点为A、B。AB交PO于点C,则有如下结论: (1)PA=PB (2)PO⊥AB,且PO平分AB (3)APO BPO OAC OBC ∠=∠=∠=∠;AOP BOP CAP CBP ∠=∠=∠=∠ 2.弦切角定理:弦切角(切线与圆的夹角)等于它所夹的弧所对的圆周角 推论:若两弦切角所夹的弧相等,则这两个弦切角也相等 【典型例题】 【例1】如图1,AB,AC是⊙O的两条切线,切点分别为B、C、D是优弧 ?BC上的点,已知∠BAC=800,那么∠BDC =______. 图1 图2 图3 举一反三: 1.如图2,AB是⊙O的弦,AD是⊙O的切线,C为 ?AB上任一点,∠ACB=1080,那么∠BAD =______. 2.如图3,PA,PB切⊙O于A,B两点,AC⊥PB,且与⊙O相交于D,若∠DBC=220,则∠APB=________. 【例2】如图,已知圆上的弧?? AC BD =,过C点的圆的切线与BA的延长线交于E点,证明: (1)∠ACE=∠BCD; (2)BC2=BE×CD . C B O A D A D P O

举一反三: 1.如图,AB是圆O的直径,D为圆O上一点,过D作圆O的切线交AB的延长线于点C,若DA=DC,求证:AB=2BC. 【例3】已知:如图 7-149,PA,PB切⊙O于A,B两点,AC为直径,则图中与∠PAB相等的角的个数为 A.1 个;B.2个;C.4个;D.5个. 【例4】如图,AE、AD、BC分别切⊙O于点E、D、F,若AD=20,求△ABC的周长.

切线长定理典型练习题

切线长定理典型练习题 一、填空题 1、如图AB 为⊙O 的直径,CA 切⊙O 于点A ,CD=1cm ,DB=3cm ,则AB=______cm 。 2、已知三角形的三边分别为 3、 4、5,则这个三角形的内切圆半径是 。 3、三角形的周长是12,面积是18,那么这个三角形的内切圆半径是 。 二、选择题 1、△ABC 内接于圆O ,AD ⊥BC 于D 交⊙O 于E ,若BD=8cm , CD=4cm ,DE=2cm ,则△ABC 的面积等于( ) A.248cm B.296cm C.2108cm D.232cm 2、正方形的外接圆与内切圆的周长比为( ) A. 1:2 B. 2:1 C. 4:1 D. 3:1 3、在三角形内,与三角形三条边距离相等的点,是这个三角形的 ( ) A.三条中线的交点, B.三条角平分线的交点, C.三条高的交点, D.三边的垂直平分线的交点。 4、△ABC 中,内切圆I 和边BC 、CA 、AB 分别相切于点D 、E 、F ,则∠FDE 与∠A 的关系 是 ( ) A. ∠FDE=21∠A B . ∠FDE+21∠A=180° C . ∠FDE+2 1∠A=90° D . 无法确定 三、解答题: 1、如图,AB 、CD 分别与半圆O 切于点A 、D ,BC 切⊙O 于点E ,若AB =4,CD =9,求⊙O 的半径。 2、等腰三角形的腰长为13cm ,底边长为10 cm ,求它的内切圆的半径。 3、如图,在△ABC 中,∠C=90°,以BC 上一点O 为圆心,以OB 为半径的圆交AB 于点M ,交BC 于点N 。 (1)求证:B A ·BM=BC ·BN ; (2)如果CM 是⊙O 的切线,N 为OC 的中点。当AC=3时,求AB 的值。

切线长定理—知识讲解

切线长定理—知识讲解 【学习目标】 1.了解切线长定义,掌握切线长定理; 2.了解圆外切四边形定义及性质; 3. 利用切线长定理解决相关的计算和证明. 【要点梳理】 要点一、切线长定理 1.切线长: 经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长. 要点诠释: 切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称.切线是直线,而非线段. 2.切线长定理: 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角. 要点诠释: 切线长定理包含两个结论:线段相等和角相等. 要点二、圆外切四边形的性质 1.圆外切四边形 四边形的四条边都与同一个圆相切,那这个四边形叫做圆的外切四边形. 2.圆外切四边形性质 圆外切四边形的两组对边之和相等. 【典型例题】 类型一、切线长定理 1.(2015秋?湛江校级月考)已知PA、PB分别切⊙O于A、B,E为劣弧AB上一点,过E点的切线交PA于C、交PB于D. (1)若PA=6,求△PCD的周长. (2)若∠P=50°求∠DOC. 【答案与解析】 解:(1)连接OE, ∵P A、PB与圆O相切, ∴PA=PB=6, 同理可得:AC=CE,BD=DE, △PCD的周长=PC+PD+CD=PC+PD+CE+DE=PA+PB=12;

(2)∵PA PB与圆O相切, ∴∠OAP=∠OBP=90°∠P=50°, ∴∠AOB=360°﹣90°﹣90°﹣50°=130°, 在Rt△AOC和Rt△EOC中, , ∴Rt△AOC≌Rt△EOC(HL), ∴∠AOC=∠COE, 同理:∠DOE=∠BOD, ∴∠COD=∠AOB=65°. 【总结升华】本题考查的是切线长定理和全等三角形的判定和性质,掌握切线长定理是解题的关键. 2.如图,△ABC中,∠ACB=90°,以AC为直径的⊙O交AB于D,E为BC中点. 求证:DE是⊙O切线. 【答案与解析】 连结OD、CD,AC是直径,∴OA=OC=OD,∴∠OCD=∠ODC, ∠ADC=90°,∴△CDB是直角三角形. ∵E是BC的中点,∴DE=EB=EC,∴∠ECD=∠EDC,∠ECD+∠OCD=90°, ∴∠EDC+∠ODC=90°,即OD⊥ED, ∴DE是⊙O切线. 【总结升华】自然连接OD,可证OD⊥DE. 举一反三: 【变式】已知:如图,⊙O为ABC ?的外接圆,BC为⊙O的直径,作射线BF,使得BA平分CBF ∠,过点A作AD BF ⊥于点D.求证:DA为⊙O的切线. F C F C 【答案】连接AO. ∵ AO BO =,∴ 23 ∠=∠.

《切线性质与判定》练习题

《切线性质与判定》练习题 一.选择题(共12小题) 1.如图,AB是⊙O的弦,PA是⊙O的切线,若∠PAB=40°,则∠AOB=() A.80° B.60° C.40° D.20° 2.如图,AB、AC是⊙O的两条弦,∠A=35°,过C点的切线与OB的延长线交于点D,则∠D的度数为() A.20° B.30° C.35° D.40° 第1题图第2题图第3题图 3.如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D等于()A.20° B.30° C.40° D.50° 4.如图,PA、PB切⊙O于A、B两点,∠APB=80°,C是⊙O上不同于A、B的任一点,则∠ACB等于() A.80° B.50°或130° C.100° D.40° 第4题图第5题图第6题图 5.如图,在平面直角坐标系中,点在第一象限,⊙P与x轴相切于点Q,与y轴交于M(2,0),N(0,8)两点,则点P的坐标是() A.(5,3) B.(3,5)C.(5,4)D.(4,5) 6.如图,PC是⊙O的切线,切点为C,割线PAB过圆心O,交⊙O于点A、B,PC=2,PA=1,则PB的长为() A.5 B.4 C.3 D.2 7.如图,在同心圆中,大圆的弦AB切小圆于点C,AB=8,则圆环的面积是() A.8 B.16 C.16π D.8π 8.如图,PA、PB、CD是⊙O的切线,切点分别是A、B、E,CD分别交PA、PB于C、D两点,若∠APB=60°,则∠COD的度数() A.50° B.60° C.70° D.75° 9.如图,AB是⊙O的直径,下列条件中不能判定直线AT是⊙O的切线的是() A.AB=4,AT=3,BT=5 B.∠B=45°,AB=A T C.∠B=55°,∠TAC=55° D.∠A TC=∠B 第7题图第8题图第9题图 11.如图,AB是⊙O的直径,⊙O交BC的中点于D,DE⊥AC于点E,连接AD,则下列结论正确的个数是() ①AD⊥BC;②∠EDA=∠B;③OA=AC;④DE是⊙O的切线.

切线长和切线长定理的应用

A 第20题 N C B D E F M O O 切线长和切线长定理的应用 例(2011·济宁)如图,AB 是⊙O 的直径,AM 和BN 是它的两条切线,DE 切⊙O 于点E ,交AM 与于点D ,交BN 于点C ,F 是CD 的中点,连接OF 。 (1) 求证:OD ∥BE; (2) 猜想:OF 与CD 有何数量关系?并说明理由。 解:(1)证明:连接OE ∵AM 、DE 是⊙O 的切线,OA 、OE 是⊙O 的半径 ∴∠ADO=∠EDO,∠DAO=∠DEO=90°…………1分 ∴∠AOD=∠EOD=2 1 ∠AOE …………2分 ∵∠ABE=2 1 ∠AOE ∴∠AOD=∠ABE ∴OD ∥BE …………3分 (2) OF = 2 1 CD …………4分 理由:连接OC ∵BE 、CE 是⊙O 的切线 ∴∠OCB=∠OCE …………5分 ∵AM ∥BN ∴∠ADO+∠EDO+∠OCB+∠OCE=180° 由(1)得 ∠ADO=∠EDO ∴2∠EDO+2∠OCE=180° 即∠EDO+∠OCE=90° …………6分 在Rt △DOC 中, ∵ F 是DC 的中点 ∴OF =2 1 CD ……7分 巩固提高 1、如图,AB 是半圆(圆心为O )的直径,OD 是半径,BM 切半圆于B ,OC 与弦AD 平行且交BM 于C 。 (1) 求证:CD 是圆O 的切线; (2)若2OA =且6AD OC +=,求CD 的长? C O D B A

2、在Rt ABC ?中,90A ∠=?,点O 在BC 上,以O 为圆心的圆O 分别与AB 、AC 相切于E 、F ,若A B a =, AC b =,则圆O 的半径为( ) A 、ab B 、a b ab + C 、ab a b + D 、2 a b + C E O F B A C E O D B A P E O F D B A 例1图 例2图 例3图 3、如图,AB BC ⊥,DC BC ⊥,BC 与以AD 为直径的圆O 相切于点E ,9AB =,4CD =,则四边形ABCD 的面积为 。 4、如图,过O 外一点P 作圆O 的两条切线PA 、PB ,切点分别为A 、B ,连结AB ,在AB 、PB 、PA 上分别取一点D 、E 、F ,使AD BE =,BD AF =,连结DE 、DF 、EF ,则EDF ∠=( ) A 、90P ?∠- B 、1902P ?-∠ C 、180P ?-∠ D 、1 452 P ?∠- 5、如图,已知ABC ?中,AC BC =, CAB α∠=(定值),圆O 的圆心O 在AB 上,并分别与AC 、BC 相切于点P 、Q 。 (1)求POQ ∠; (2)设D 是CA 延长线上的一个动点,DE 与O 相切于点M ,点E 在CB 的延长线上,试判断DOE ∠的大小是否保持不变,并说明理由。 N Q P O D C B A 6、如图,圆O 为Rt ABC ?的内切圆,点D 、E 、F 为切点,若6AD =,4BD =,则ABC ?的面积为 。 C E O F D B A

圆切线及切线长定理

. 切线长定理第24章圆切线的性质及判定 小题)一.选择题(共21D,AB=BC,以AB为直径的圆交AC于点D,过点?1.(2015衢州)如图,已知△ABC ,CE=4,则⊙O的半径是()的切线交的⊙OBC于点E.若CD=5 4 3 .C.A.DB . 与为切点,POO的切线,A枣庄校级模拟)如图,P是⊙O外一点,PA2.(2015?是⊙,则∠C 的度数为(上一点,连接CA,CB),⊙O相交于B点,已知∠P=28°C为⊙O 28°62°31°56°A.B.C.D. 3.(2015?河西区一模)如图,PA、PB分别切⊙O于点A、B,若∠P=70°,则∠C的大小为() 40°50°55°60°A.B.C .D. 4.(2015?杭州模拟)如图,在△ABC中,∠BCA=60°,∠A=45°,AC=2,经过点C且与边AB相切的动圆与CB,CA分别相交于点M,N,则线段MN长度的最小值是()

3.DCA.B..22 经过圆心.若为切点,BC的切线,的弦,OAC是⊙OA是⊙天津)如图,2014.5(?AB 的大小等于(,则∠B=25∠°C)1 / 4 . °50°40°20°25 ..D .B.CAAC⊥,DEO交BC的中点于D6.(2015?临淄区校级模拟)如图,AB是⊙O的直径,⊙,则下列结论:,连接AD于E)DE是⊙O的切线, 正确的个数是(EDA=∠B;③OA=AC;④②①AD⊥BC;∠ 4个D.个C.3 个A.1 个B.2交的延长线上,弦CD的直径,点P在BA(2015?杭州模拟)已知:如图,AB是⊙O7.、交圆与GGF⊥BC,∠P=∠D,过E作弦AB于E,连接 OD、PC、BC,∠AOD=2∠ABC .则下列结论:BG两点,连接CF、F.则其中正BG弦CF的弦心距等于③OD∥GF;④①CD⊥AB;②PC是⊙O的切线;)确的是( ②③④①③④①②③①②④.D.C ..AB)圆周角的度数(2永川区期末)有下列结论:?(1)平分弦的直径垂直于弦;8.(2013秋)(5)等弧所对的圆周角相等;(4)经过三点一定可以作一个圆;等于圆心角的一半;(3)垂直于半径的直线是(6三角形的外心到三边的距 离相等; 圆的切线.)其中正确的个数为( 4个3个D.2.1个B.个C.A 上任意一点,为CD交于O,Q中,对角线.(2012?武汉模拟)正方形ABCDAC、BD9 .下列

切线长定理及其应用

切线长定理及其应用 一、基础知识总结 1.内切圆和内心 定义: 与三角形各边都相切的圆叫做三角形的内切圆.内切圆的圆心是三角形三条角平分 线的交点,叫做三角形的内心. 总结:判断一个多边形是否有内切圆,就是判断能否找到一个点到各边距离都 相等。 2.直角三角形的内切圆半径与三边关系 (1)一个基本图形; (2)两个结论: 1)四边形OECF 是正方形 2)r=(a+b-c)∕2或r=ab ∕(a+b+c) (3)两个方法 代数法(方程思想);面积法 3.切线长定义:过圆外一点作圆的切线,该点和切点之间的线段长叫做切线长。 4.切线长定理: 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的交角。 二、典型例题解析 【例1】如图△ABC 的内切圆⊙O 与BC 、CA 、AB 分别相交于点D 、E 、F ,且AB=9 cm,BC=14 cm ,CA=13 cm ,求AF 、BD 、CE 的长 D E F O C B A 112 12902 a b c A B C A B C S s r p a b c p C r a b c ?∠∠∠==++∠=?=+-设、、分别为中、、的对边,面积为,则内切圆半径(),其中(); (),则()

【例2】如图,已知⊙O是△ABC的内切圆,切点为D、 E、F,如果AE=1, CD=2,BF=3,且△ABC的面积为6.求内切圆的半径r. 【例3】如图,以等腰ABC ?中的腰A B为直径作⊙O,交底边BC于点D.过点D作⊥,垂足为E. D E A C (I)求证:D E为⊙O的切线; (II)若⊙O的半径为5,60 ∠= ,求D E的长. B A C 【例4】如上图等边三角形的面积为S,⊙O是它的外接圆,点P是⌒BC的中点.(1)试判断过C所作的⊙O的切线与直线AB是否相交,并证明你的结论;(2)设直线 CP与AB相交于点D,过点B作BE⊥CD垂足为E,证明BE是⊙O的切线,并求△ BDE的面积.

切线长定理、弦切角定理、切割线定理、相交弦定理

切线长定理、弦切角定理、切割线定理、相交弦定理 以及与圆有关的比例线段 [学习目标] 1.切线长概念 切线长是在经过圆外一点的圆的切线上,这点和切点之间的线段的长度,“切线长”是切线上一条线段的长,具有数量的特征,而“切线”是一条直线,它不可以度量长度。(PA 长) 2.切线长定理 对于切线长定理,应明确(1)若已知圆的两条切线相交,则切线长相等;(2)若已知两条切线平行,则圆上两个切点的连线为直径;(3)经过圆外一点引圆的两条切线,连结两个切点可得到一个等腰三角形;(4)经过圆外一点引圆的两条切线,切线的夹角与过切点的两个半径的夹角互补;(5)圆外一点与圆心的连线,平分过这点向圆引的两条切线所夹的角。 3.弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角。 直线AB 切⊙O 于P ,PC 、PD 为弦,图中几个弦切角呢?(四个) 4.弦切角定理:弦切角等于其所夹的弧所对的圆周角。 5.弄清和圆有关的角:圆周角,圆心角,弦切角,圆内角,圆外角。 6.遇到圆的切线,可联想“角”弦切角,“线”切线的性质定理及切线长定理。 7.与圆有关的比例线段 定理 图形 已知 结论 证法 相交弦定理 ⊙O 中,AB 、CD 为弦,交于P. PA·PB=PC·PD . 连结AC 、BD ,证:△APC∽△DPB . 相交弦定理的推论 ⊙O 中,AB 为直径,CD⊥AB 于P. PC 2 =PA·PB . (特殊情况) 用相交弦定理.

切割线定理 ⊙O 中,PT 切⊙O 于T ,割线PB 交⊙O 于A PT 2 =PA·PB 连结TA 、TB ,证:△PTB∽△PAT 切割线定理推论 PB 、PD 为⊙O 的两条割线,交⊙O 于A 、C PA·PB=PC·PD 过P 作PT 切⊙O 于T ,用两次切割线定理 (记忆的方法方法) 圆幂定理 ⊙O 中,割线PB 交⊙O 于A ,CD 为弦 P'C·P'D =r 2 -OP'2 PA·PB=OP 2-r 2 r 为⊙O 的半径 延长P'O 交⊙O 于M ,延 长OP'交⊙O 于N ,用相交 弦定理证;过P 作切线用切割线定理勾股定理证 8.圆幂定理:过一定点P 向⊙O 作任一直线,交⊙O 于两点,则自定点P 到两交点的两条线段之积为常数||(R 为圆半径),因为叫做点对于⊙O 的幂,所以将上述定理统称为圆幂定理。 【典型例题】 例1.如图1,正方形ABCD 的边长为1,以BC 为直径。在正方形内作半圆O ,过A 作半圆切线,切点为F ,交CD 于E ,求DE :AE 的值。 图1 解:由切线长定理知:AF =AB =1,EF =CE 设CE 为x ,在Rt△ADE 中,由勾股定理 ∴, ,

圆的知识点总结及典型例题.

圆的知识点总结 (一)圆的有关性质 [知识归纳] 1. 圆的有关概念: 圆、圆心、半径、圆的内部、圆的外部、同心圆、等圆; 弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧、弓形、弓形的高; 圆的内接三角形、三角形的外接圆、三角形的外心、圆内接多边形、多边形的外接圆;圆心角、圆周角、圆内接四边形的外角。 2. 圆的对称性 圆是轴对称图形,经过圆心的每一条直线都是它的对称轴,圆有无数条对称轴; 圆是以圆心为对称中心的中心对称图形; 圆具有旋转不变性。 3. 圆的确定 不在同一条直线上的三点确定一个圆。 4. 垂直于弦的直径 垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧; 推论1 (1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。 垂径定理及推论1 可理解为一个圆和一条直线具备下面五个条件中的任意两个,就 可推出另外三个:①过圆心;②垂直于弦;③平分弦(不是直径); ④平分弦所对的优弧;⑤平分弦所对的劣弧。 1

推论2圆的两条平行弦所夹的弧相等。 5. 圆心角、弧、弦、弦心距之间的关系 定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等;所对的弦的弦心距相等。 推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。 此定理和推论可以理解成:在同圆或等圆中,满足下面四个条件中的任何一个就能推出另外三个:①两个圆心角相等;②两个圆心角所对的弧相等;③两个圆 心角或两条弧所对的弦相等;④两条弦的弦心距相等。 圆心角的度数等于它所对的弧的度数。 6. 圆周角 定理一条弧所对的圆周角等于它所对的圆心角的一半; 推论1同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等; 推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径; 推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。 圆周角的度数等于它所对的弧的度数的一半。 7. 圆内接四边形的性质 圆内接四边形的对角互补,并且任何一个外角都等于它的内对角。 ※8. 轨迹 轨迹符合某一条件的所有的点组成的图形,叫做符合这个条件的点的轨迹。 (1)平面内,到一定点的距离等于定长的点的轨迹,是以这个定点为圆心,定长为半径的圆; (2)平面内,和已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线; (3)平面内,到已知角两边的距离相等的点的轨迹,是这个角的平分线。 [例题分析] 例1. 已知:如图1,在⊙O中,半径OM⊥弦AB于点N。 图1 ①若AB =,ON=1,求MN的长; ②若半径OM=R,∠AOB=120°,求MN的长。 解:①∵AB =,半径OM⊥AB,∴AN=BN = ∵ON=1,由勾股定理得OA=2 ∴MN=OM-ON=OA-ON=1 ②∵半径OM⊥AB,且∠AOB=120°∴∠AOM=60° 2

(完整)初三数学有关圆的经典例题

初三数学 有关圆的经典例题 1. 在半径为的⊙中,弦、的长分别为和,求∠的度数。132O AB AC BAC 分析:根据题意,需要自己画出图形进行解答,在画图时要注意AB 与AC 有不同的位置关系。 解:由题意画图,分AB 、AC 在圆心O 的同侧、异侧两种情况讨论, 当AB 、AC 在圆心O 的异侧时,如下图所示, 过O 作OD ⊥AB 于D ,过O 作OE ⊥AC 于E , ∵,,∴,AB AC AD AE = == = 32322 2 ∵,∴∠,OA OAD AD OA == =132 cos cos ∠OAE AE OA = = 22 ∴∠OAD=30°,∠OAE=45°,故∠BAC=75°, 当AB 、AC 在圆心O 同侧时,如下图所示, 同理可知∠OAD=30°,∠OAE=45°, ∴∠BAC=15° 点拨:本题易出现只画出一种情况,而出现漏解的错误。 例2. 如图:△ABC 的顶点A 、B 在⊙O 上,⊙O 的半径为R ,⊙O 与AC 交于D , 如果点既是的中点,又是边的中点,D AB AC ? (1)求证:△ABC 是直角三角形; ()22 求的值AD BC 分 析 : ()1由为的中点,联想到垂径定理的推论,连结交于,D AB OD AB F ? 则AF=FB ,OD ⊥AB ,可证DF 是△ABC 的中位线;

(2)延长DO 交⊙O 于E ,连接AE ,由于∠DAE=90°,DE ⊥AB ,∴△ADF ∽△,可得·,而,,故可求DAE AD DF DE DF BC DE R AD BC 2 2 122=== 解:(1)证明,作直径DE 交AB 于F ,交圆于E ∵为的中点,∴⊥,D AB AB DE AF FB ? = 又∵AD=DC ∴∥,DF BC DF BC = 12 ∴AB ⊥BC ,∴△ABC 是直角三角形。 (2)解:连结AE ∵DE 是⊙O 的直径 ∴∠DAE=90° 而AB ⊥DE ,∴△ADF ∽△EDA ∴ ,即·AD DE DF AD AD DE DF ==2 ∵,DE R DF BC ==21 2 ∴·,故AD BC R AD BC R 2 2 == 例3. 如图,在⊙O 中,AB=2CD ,那么( ) A A B CD B AB CD ..?>? ?

切线长定理及其应用

切线长定理及其应用 知识点一 切线长定义及切线长定理 1. 切线长定义:过圆外一点作圆的切线,这点和 之间的线段长叫作这点到圆的切线长. 注意切线长和切线的区别和联系: 切线是直线,不可以度量;切线长是指切线上的一条线段的长,可以度量。 2. 切线长定理:过圆外一点引圆的两条切线,它们的切线长相等,即PA=PB. 推论: (1)△PAB 是等腰三角形; (2)OP 平分△APB ,即△APO=△BPO ; (3)弧AM=弧BM ; (4)在Rt OAP ?和Rt OBP ?中,由AB OP ⊥,可通过相似得相关结论; 如:222222,,OA OB OE OP AP BP PE PO AE BE OE EP ==?==?==? (5)图中全等的三角形有 对,分别是: 题型一 切线长定理的直接应用 【例1】如图所示,△O 的半径为3cm ,点P 和圆心O 的距离为6cm ,经过点P 的两条切线与△O 切于点E 、 F ,求这两条切线的夹角及切线长. 【例2】如图,P A 、PB 、DE 分别切△O 于A 、B 、C ,△O 的半径长为6 cm ,PO =10 cm ,求△PDE 的周长.

【例3】如图所示,△ABC中,∠C=90°,AC=3,AB=5,D为BC边的中点,以AD上一点O为圆心的⊙O和AB、BC均相切,则⊙O的半径为__________. 【过关练习】 1.如图所示,PA、PB是△O的切线,A、B为切点,△OAB=30°.(1)求△APB的度数.(2)当OA=3时,求AP的长. e于A、B、C三点,△O的半径为5cm,△PED的周长为24cm,2.如图所示,已知PA、PB、DE分别切O △APB=50°.求:(1)PO的长;(2)△EOD的度数.

切线长定理—知识讲解(提高)

切线长定理—知识讲解(提高) 责编:康红梅 【学习目标】 1.了解切线长定义;理解三角形的内切圆及内心的定义; 2.掌握切线长定理;利用切线长定理解决相关的计算和证明. 【要点梳理】 要点一、切线长定理 1.切线长: 经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长. 要点诠释: 切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称.切线是直线,而非线段. 2.切线长定理: 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角. 要点诠释: 切线长定理包含两个结论:线段相等和角相等. 3.圆外切四边形的性质: 圆外切四边形的两组对边之和相等. 要点二、三角形的内切圆 1.三角形的内切圆: 与三角形各边都相切的圆叫做三角形的内切圆. 这个三角形叫作圆的外切三角形. 2.三角形的内心: 三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心.三角形的内心是这个三角形的三条角平分线的交点. 要点诠释: (1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形; (2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).

【典型例题】 类型一、切线长定理 1.(2015?常德)已知如图,以Rt△ABC 的AC 边为直径作⊙O 交斜边AB 于点E ,连接EO 并延长交BC 的延长线于点D ,点F 为BC 的中点,连接EF . (1 )求证:EF 是⊙O 的切线; (2)若⊙O 的半径为3,∠EAC=60°,求AD 的长. 【答案与解析】 证明:(1)如图1,连接FO , ∵F 为BC 的中点,AO=CO , ∴OF∥AB, ∵AC 是⊙O 的直径, ∴CE⊥AE, ∵OF∥AB, ∴OF⊥CE, ∴OF 所在直线垂直平分CE , ∴FC=FE,OE=OC , ∴∠FEC=∠FCE,∠0EC=∠0CE, ∵∠ACB=90°, 即:∠0CE+∠FCE=90°, ∴∠0EC+∠FEC=90°, 即:∠FEO=90°, ∴FE 为⊙O 的切线; (2)如图2,∵⊙O 的半径为3, ∴AO=CO=EO=3, ∵∠EAC=60°,OA=OE , ∴∠EOA=60°, ∴∠COD=∠EOA=60°, ∵在Rt△OCD 中,∠COD=60°,OC=3, ∴CD=, ∵在Rt△ACD 中,∠ACD=90°,

切线长定理及弦切角

切线长定理及弦切角练习题 (一)填空 1.已知:如图7-143,直线BC切⊙O于B点,AB=AC,AD=BD,那么∠A=____. 2.已知:如图7-144,直线DC与⊙O相切于点C,AB为⊙O直径,AD⊥DC于D,∠DAC=28°侧∠CAB=____ . 3.已知:直线AB与圆O切于B点,割线ACD与⊙O交于C和D 4.已知:如图7-145,PA切⊙O于点A,割线PBC交⊙O于B和C两点,∠P=15°,∠ABC=47°,则∠C= ____.

5.已知:如图7-146,三角形ABC的∠C=90°,内切圆O与△ABC的三边分别切于D,E,F三点,∠DFE=56°,那么∠B=____. 6.已知:如图7-147,△ABC内接于⊙O,DC切⊙O于C点,∠1=∠2,则△ABC为____ 三角形. 7.已知:如图7-148,圆O为△ABC外接圆,AB为直径,DC切⊙O 于C点,∠A=36°,那么∠ACD=____.

(二)选择 8.已知:△ABC内接于⊙O,∠ABC=25°,∠ACB= 75°,过A点作⊙O的切线交BC的延长线于P,则∠APB等于 [ ] A.62.5°;B.55°;C.50°;D.40°. 9.已知:如图7-149,PA,PB切⊙O于A,B两点,AC为直径,则图中与∠PAB相等的角的个数为 [ ] A.1 个;B.2个;C.4个;D.5个. 10.已知如图7-150,四边形ABCD为圆内接四边形,AB是直径,MN 切⊙O于C点,∠BCM=38°,那么∠ABC的度数是 [ ]

A.38°;B.52°;C.68°;D.42°. 11.已知如图7-151,PA切⊙O于点A,PCB交⊙O于C,B两点,且PCB 过点O,AE⊥BP交⊙O于E,则图中与∠CAP相等的角的个数是 [ ] A.1个;B.2个;C.3个;D.4个. (三)计算 12.已知:如图7-152,PT与⊙O切于C,AB为直径,∠BAC=60°,AD为⊙O一弦.求∠ADC与∠PCA的度数.

新人教版九年级上册数学[切线长定理—知识点整理及重点题型梳理](提高)

新人教版九年级上册初中数学 重难点有效突破 知识点梳理及重点题型巩固练习 切线长定理—知识讲解(提高) 【学习目标】 1.了解切线长定义;理解切线的判定和性质;理解三角形的内切圆及内心的定义; 2.掌握切线长定理;利用切线长定理解决相关的计算和证明. 【要点梳理】 要点一、切线的判定定理和性质定理 1.切线的判定定理: 经过半径的外端并且垂直于这条半径的直线是圆的切线. 要点诠释: 切线的判定方法: (1)定义:直线和圆有唯一公共点时,这条直线就是圆的切线; (2)定理:和圆心的距离等于半径的直线是圆的切线; (3)判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线.(切线的判定定理中强调两点:一是直线与圆有一个交点,二是直线与过交点的半径垂直,缺一不可). 2.切线的性质定理: 圆的切线垂直于过切点的半径. 要点诠释: 切线的性质: (1)切线和圆只有一个公共点; (2)切线和圆心的距离等于圆的半径; (3)切线垂直于过切点的半径; (4)经过圆心垂直于切线的直线必过切点; (5)经过切点垂直于切线的直线必过圆心. 要点二、切线长定理 1.切线长: 经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长. 要点诠释: 切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称.切线是直线,而非线段. 2.切线长定理: 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角. 要点诠释: 切线长定理包含两个结论:线段相等和角相等. 3.圆外切四边形的性质:

圆外切四边形的两组对边之和相等. 要点三、三角形的内切圆 1.三角形的内切圆: 与三角形各边都相切的圆叫做三角形的内切圆. 2.三角形的内心: 三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心. 要点诠释: (1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形; (2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径). 【典型例题】 类型一、切线长定理 1.如图,等腰三角形ABC中,6 AC BC ==,8 AB=.以BC为直径作⊙O交AB于点D,交AC 于点G,DF AC ⊥,垂足为F,交CB的延长线于点E.求证:直线EF是⊙O的切线. 【答案与解析】 如图,连结OD、CD,则90 BDC ∠=?. ∴CD AB ⊥. ∵ AC BC =,∴AD BD =. ∴D是AB的中点. ∵O是BC的中点,

切线长定理(教案)

优质课教案 切线长定理 西平县权寨中学 2018年3月1日

切线长定理 一、教学设计 教材分析 “切线长定理”是人教版九年级数学上册第二十四章“圆”的第二节的内容,本节内容安排六个课时,本课时是本节内容的第五课时,本课设计主要是在切线的基础上,明确切线长的定义,通过学生动手操作,逻辑证明来明确切线长定理,引出三角形的内切圆,通过与三角形的内切圆有关的练习巩固切线长定理。 学情分析 我班学生来自全县各个乡镇,学生的基础参差不齐。再加上这个班是进入九年级我才接手的成绩较差的班级,基础薄弱,因而要加强动手操作探究知识来源的教学,让学生学知识学到“知其然并知其所以然”,不仅“知其所以然”,还要学以致用。 教学目标 一、知识与技能: 1.了解切线长的概念. 2.理解切线长定理,了解三角形的内切圆和三角形的内心的概念,熟练掌握它的应用. 3.复习圆与直线的位置关系和切线的判定定理、性质定理知识迁移到切长线的概念和切线长定理,然后根据所学三角形

角平分线的性质给出三角形的内切圆和三角形的内心概念,最后应用它们解决一些实际问题. 二、数学思考: 1.通过操作、观察两条切线长,发展学生的合情推理能力和演绎推理能力。 2.学生经历知识的形成与运用过程,培养学生的数学语言概括、表达能力。 三、解决问题 1.学生探索切线长定理过程中,学会用数形结合思想解决问题。 2.学生运用切线长定理解题,提高运用知识和技能解决问题的能力。 四.情感、态度与价值观 培养学生主动参与探索知识来源,获得数学知识的良好学习习惯,从而提高学生学习数学的积极性。 二、教学过程 复习巩固:(放投影,提问) 1.如图,PA与⊙O相切于点A,则PA_________OA。 2.如图,四边形ABCD的各边均与⊙O相切,则这个四边形叫圆的_________四边形。

切线长及切线长定理

切线长及切线长定理

一、切线长定理: 1.切线长概念: 在经过圆外一点的切线上,这点和切点之间的线段的R,叫做这点到圆的切线长. 2.切线长和切线的区别 切线是直线,不可度量;而切线长是切线上一条线段的长,而圆外一已知点到切点之间的距离,可以度量.3.切线长定理: 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角. 二、弦切角定理: 1.弦切角概念: 理解体弦切角要注意两点:①角的顶点在圆上;②角的一边是过切点的弦,角的边一边是以切点为端点的一条射线. 2.弦切角定理: 弦切角等于它所夹的弦对的圆周角,该定理也可以这样说:弦切角的度数等于它所夹弧的度数的一半.

如图所示PA、PB分别切圆O于A、B,并与圆O的切线分别相交于C、D,?已知PA=7cm, (1)求△PCD的周长. (2) 如果∠P=46°,求∠COD的度数 如图,△ABC中,∠C =90o ,它的内切圆O分别与边AB、BC、CA相切于点D、E、F,且BD=12,AD=8, 求⊙O的半径r. 如图,AB是⊙O的直径,AD、DC、BC是切线,点A、E、B为切点,若BC=9,AD=4,求OE的长. 一、选择题 1.如图,P是⊙O外一点,PA.PB分别与⊙O相切于A.B两点,C是弧AB上任意一点,过C作⊙O的切线,

分别交PA.PB于D.E,若△PDE的周长为20cm,则PA长为。 2.如图,AB.AC与⊙O相切于B.C∠A=50°,点P是圆上异于B.C的一动点,则∠BPC的度数是。 3.如图,若⊙O的直径AB与弦AC的夹角为30°,切线CD与AB的延长线交于点D,且⊙O的半径为2,则CD的长为。 3. 一个直角三角形的斜边长为8,内切圆半径为1,则这个三角形的周长等于( ) A.21 B.20 C.19 D.18 4. 如图,PA、PB分别切⊙O于点A、B,AC是⊙O的 直径,连结AB、BC、OP, 则与∠PAB相等的角(不包括∠PAB本身)有 ( ) A.1个B.2个C.3

切线长定理与弦切角定理(邦德讲义)

【知识要点】 一、切线长定理: 1.切线长概念: 在经过圆外一点的切线上,这点和切点之间的线段的R ,叫做这点到圆的切线长. 2.切线长和切线的区别 切线是直线,不可度量;而切线长是切线上一条线段的长,而圆外一已知点到切点之间的距离,可以度量. 3.切线长定理: 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角. 要注意:此定理包含两个结论,如图,PA 、PB 切⊙O 于A 、B 两点,①PA=PB ②PO 平分APB ∠. 4.两个结论: 圆的外切四边形对边和相等; 圆的外切等腰梯形的中位线等于腰长. 二、弦切角定理: 1.弦切角概念: 理解体弦切角要注意两点:①角的顶点在圆上;②角的一边是过切点的弦,角的边一边是以切点为端点的一条射线. 2.弦切角定理: 弦切角等于它所夹的弦对的圆周角,该定理也可以这样说:弦切角的度数等于它所夹弧的度数的一半. 3.弦切角定理的推论: 推论:如果两个弦切角所夹的弧相等,那么这两个弦切角相等. 【典型例题】 例1 已知PA 、PB 、DE 分别切⊙O 于A 、B 、C 三点,若 PO=13㎝,PED ?的周长为24㎝,40APB ∠=?, 求:①⊙O 的半径;②EOD ∠的度数.

例2 如图,⊙O 分别切ABC ?的三边AB 、BC 、CA 于点D 、E 、F ,若,,BC a AC b AB c ===. (1)求AD 、BE 、CF 的长;(2)当90C ∠=?,求内切圆半径r . 例3 如图,⊙O 是ABC ?的外接圆, ACB ∠的平分线CE 交AB 于D ,交⊙O 于E ,⊙O 的切线EF 交CB 的延长线于F .求证:2AE AD EF =? 例4 如图,AB 为⊙O 的弦,CD 切⊙O 于P ,AC CD ⊥于C ,BD CD ⊥于D ,PQ AB ⊥于Q . 求证:2PQ AC BD =? B C

初三数学圆的经典例题

初三数学 有关圆的经典例题 1. 在半径为的⊙中,弦、的长分别为和,求∠的度数。132O AB AC BAC 分析:根据题意,需要自己画出图形进行解答,在画图时要注意AB 与AC 有不同的位置关系。 解:由题意画图,分AB 、AC 在圆心O 的同侧、异侧两种情况讨论, 当AB 、AC 在圆心O 的异侧时,如下图所示, 过O 作OD ⊥AB 于D ,过O 作OE ⊥AC 于E , ∴∠OAD=30°,∠OAE=45°,故∠BAC=75°, 当AB 、AC 在圆心O 同侧时,如下图所示, 同理可知∠OAD=30°,∠OAE=45°, ∴∠BAC=15° 点拨:本题易出现只画出一种情况,而出现漏解的错误。 例2. 如图:△ABC 的顶点A 、B 在⊙O 上,⊙O 的半径为R ,⊙O 与AC 交于D , (1)求证:△ABC 是直角三角形; 分析:()1由为的中点,联想到垂径定理的推论,连结交于,D AB OD AB F ? 则AF=FB ,OD ⊥AB ,可证DF 是△ABC 的中位线; (2)延长DO 交⊙O 于E ,连接AE ,由于∠DAE=90°,DE ⊥AB ,∴△ADF 解:(1)证明,作直径DE 交AB 于F ,交圆于E 又∵AD=DC ∴AB ⊥BC ,∴△ABC 是直角三角形。 (2)解:连结AE ∵DE 是⊙O 的直径 ∴∠DAE=90° 而AB ⊥DE ,∴△ADF ∽△EDA 例3. 如图,在⊙O 中,AB=2CD ,那么( ) 分析: 要比较与的大小,可以用下面两种思路进行:AB CD ??2 解:解法(一),如图,过圆心O 作半径OF ⊥AB ,垂足为E , ∵AF FB AF FB ?=?=,∴ 在△AFB 中,有AF+FB>AB ∴选A 。 解法(二),如图,作弦DE=CD ,连结CE

初三数学圆经典例题

一.圆的定义及相关概念 【考点速览】 考点1: 圆的对称性:圆既是轴对称图形又是中心对称图形。经过圆心的每一条直线都是它的对称轴。圆心是它的对称中心。 考点2: 确定圆的条件;圆心和半径 ①圆心确定圆的位置,半径确定圆的大小; ②不在同一条直线上的三点确定一个圆; 考点3: 弦:连结圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。直径是圆中最大的弦。 弦心距:圆心到弦的距离叫做弦心距。 弧:圆上任意两点间的部分叫做弧。弧分为半圆,优弧、劣弧三种。 (请务必注意区分等弧,等弦,等圆的概念) 弓形:弦与它所对应的弧所构成的封闭图形。 弓高:弓形中弦的中点与弧的中点的连线段。 (请务必注意在圆中一条弦将圆分割为两个弓形,对应两个弓高) 固定的已经不能再固定的方法: 求弦心距,弦长,弓高,半径时通常要做弦心距,并连接圆心和弦的一个端点,得到直角三角形。如下图: 考点4: 三角形的外接圆:

锐角三角形的外心在 ,直角三角形的外心在 ,钝角三角形的外心在 。 考点5 点和圆的位置关系 设圆的半径为r ,点到圆心的距离为d , 则点与圆的位置关系有三种。 ①点在圆外?d >r ;②点在圆上?d=r ;③点在圆内? d <r ; 【典型例题】 例1 在⊿ABC 中,∠ACB =90°,AC =2,BC =4,CM 是AB 边上的中线,以点C 为圆心,以5为半径作圆,试确定A,B,M 三点分别与⊙C 有怎样的位置关系,并说明你的理由。 例2.已知,如图,CD 是直径,?=∠84EOD ,AE 交⊙O 于B ,且AB=OC ,求∠A 的度数。 例3 ⊙O 平面内一点P 和⊙O 上一点的距离最小为3cm ,最大为8cm ,则这圆的半径是_________cm 。 例4 在半径为5cm 的圆中,弦AB ∥CD ,AB=6cm ,CD=8cm ,则AB 和CD 的距离是多少? 例5 如图,⊙O 的直径AB 和弦CD 相交于点E ,已知AE=6cm ,EB=2cm, 30=∠CEA , 求CD 的长. A B D C O · E

相关文档