文档库 最新最全的文档下载
当前位置:文档库 › 微分方程幂级数解法

微分方程幂级数解法

二阶线性常微分方程的幂级数解法

二阶线性常微分方程的幂级数解法 从微分方程学中知道,在满足某些条件下,可以用幂级数来表示一个函数。因此,自然想到,能否用幂级数来表示微分方程的解呢? 例1、求方程 ''0y xy -=的通解 解:设2012n n y a a x a x a x =+++++…… 为方程的解,这里(0,1,2,,,)i a i n =……是待定常系数,将它对x 微分两次,有 ''212312132(1)(1)n n n n y a a x n n a x n na x --+=?+?++-+++ 将y ,'y 的表达式代入方程,并比较的同次幂的系数,得到 x -∞<<∞2210a ?=,30320,a a ?-= 41430,a a ?-= 52540,a a ?-= 或一般的可推得 32356(31)3k a a k k = ?????-? , 1 3134673(31) k a a k k += ??????+ , 320k a += 其中1a ,2a 是任意的,因而代入设的解中可得: 36347 01[1][] 2323562356(31)33434673(31) n x x x x x y a a x n n n n =+++++++++?????????-????????+ 这个幂级数的收敛半径是无限大的,因而级数的和(其中包括两个任意常数0a 及1a )便是所要求的通解。

例6 求方程'''240y xy y --=的满足初值条件(0)0y =及'(0)1y =的解。 解 设级 2012n n y a a x a x a x =+++++……为方程的解。首先,利用初值 条件,可以得到 00a =, 11a =, 因而 2323'2123''223123232(1)n n n n n n y x a x a x a x y a x a x na x y a a x n n a x --=+++++=+++++=+?++-+ 将y ,'y ,''y 的表达式带入原方程,合并x 的各同次幂的项,并令各项系数等于零,得到 21422 0,1,0,,,1 n n a a a a a n -==== - 因而 567891111 ,0,,0,,2!63!4! a a a a a = ===== 最后得 21111 (1)!! k a k k k += ?=- , 20k a =, 对一切正整数k 成立。 将i a (0,1,2,)i = 的值代回2012n n y a a x a x a x =+++++……就得到 521 3 2!! k x x y x x k +=+++++ 2 422 (1),2!! k x x x x x xe k =++++ += 这就是方程的满足所给初值条件的解。 是否所有方程都能按以上方式求出其幂级数解?或者说究竟方程应该满足什么条件才能保证它的解可用幂级数来表示呢?级数的

一阶常微分方程解法总结

页脚内容1 第 一 章 一阶微分方程的解法的小结 ⑴、可分离变量的方程: ①、形如 )()(y g x f dx dy = 当0)(≠y g 时,得到 dx x f y g dy )()(=,两边积分即可得到结果; 当0)(0=ηg 时,则0)(η=x y 也是方程的解。 例1.1、xy dx dy = 解:当0≠y 时,有xdx y dy =,两边积分得到)(2ln 2为常数C C x y += 所以)(11212 C x e C C e C y ±==为非零常数且 0=y 显然是原方程的解; 综上所述,原方程的解为)(1212 为常数C e C y x = ②、形如0)()()()(=+dy y Q x P dx y N x M 当0)()(≠y N x P 时,可有dy y N y Q dx x P x M ) ()()()(=,两边积分可得结果; 当0)(0=y N 时,0y y =为原方程的解,当0(0=) x P 时,0x x =为原方程的解。 例1.2、0)1()1(22=-+-dy x y dx y x

页脚内容2 解:当0)1)(1(22≠--y x 时,有dx x x dy y y 1 122-=-两边积分得到 )0(ln 1ln 1ln 22≠=-+-C C y x ,所以有)0()1)(1(22≠=--C C y x ; 当0)1)(1(22=--y x 时,也是原方程的解; 综上所述,原方程的解为)()1)(1(22为常数C C y x =--。 ⑵可化为变量可分离方程的方程: ①、形如)(x y g dx dy = 解法:令x y u = ,则udx xdu dy +=,代入得到)(u g u dx du x =+为变量可分离方程,得到)(0),,(为常数C C x u f =再把u 代入得到)(0),,(为常数C C x x y f =。 ②、形如)0(),(≠+=ab by ax G dx dy 解法:令by ax u +=,则b du adx dy +=,代入得到)(1u G b a dx du b =+为变量可分离方程,得到)(0),,(为常数C C x u f =再把u 代入得到)(0),,(为常数C C x by ax f =+。 ③、形如 )(222111c y b x a c y b x a f dx dy ++++= 解法:01、02211 =b a b a ,转化为)(by ax G dx dy +=,下同①; 02、0221 1 ≠b a b a ,???=++=++00222111c y b x a c y b x a 的解为),(00y x ,令???-=-=00y y v x x u

高阶线性微分方程常用解法介绍

高阶线性微分方程常用解法简介 关键词:高阶线性微分方程 求解方法 在微分方程的理论中,线性微分方程是非常值得重视的一部分内容,这不仅 因为线性微分方程的一般理论已被研究的十分清楚,而且线性微分方程是研究非线性微分方程的基础,它在物理、力学和工程技术、自然科学中也有着广泛应用。下面对高阶线性微分方程解法做一些简单介绍. 讨论如下n 阶线性微分方程:1111()()()()n n n n n n d x d x dx a t a t a t x f t dt dt dt ---++++= (1),其中()i a t (i=1,2,3,,n )及f(t)都是区间a t b ≤≤上的连续函数,如果 ()0f t ≡,则方程(1)变为 1111()()()0n n n n n n d x d x dx a t a t a t x dt dt dt ---++++= (2),称为n 阶齐次线性微分方程,而称一般方程(1)为n 阶非齐次线性微分方程,简称非齐次线性微分方程,并且把方程(2)叫做对应于方程(1)的齐次线性微分方程. 1.欧拉待定指数函数法 此方法又叫特征根法,用于求常系数齐次线性微分方程的基本解组。形如 111121[]0,(3),n n n n n n n d x d x dx L x a a a x dt dt dt ---≡++++=其中a a a 为常数,称为n 阶常系数齐次线性微分方程。 111111111111[]()()()n t n t t t t n n n n n n n t t n n n n n n n d e d e de L e a a a e dt dt dt a a a e F e F a a a n λλλλλλλλλλλλλλλλ---------≡++++=++++≡≡++++其中=0(4)是的次多项式. ()F λ为特征方程,它的根为特征根. 1.1特征根是单根的情形 设12,,,n λλλ是特征方程111()0n n n n F a a a λλλλ--≡++++=的n 个彼此不相等的根,则应相应地方程(3)有如下n 个解:12,,,.n t t t e e e λλλ(5)我们指出这n 个解在区间a t b ≤≤上线性无关,从而组成方程的基本解组. 如果(1,2,,)i i n λ=均为实数,则(5)是方程(3)的n 个线性无关的实值 解,而方程(3)的通解可表示为1212,n t t t n x c e c e c e λλλ=+++其中12,,,n c c c 为任意常数. 如果特征方程有复根,则因方程的系数是实常数,复根将称对共轭的出现.设1i λαβ=+是一特征根,则2i λαβ=-也是特征根,因而于这对共轭复根

常微分方程考研讲义 一阶微分方程解的存在定理

第三章一阶微分方程解的存在定理 [教学目标] 1.理解解的存在唯一性定理的条件、结论及证明思路,掌握逐次逼近法,熟练 近似解的误差估计式。 2.了解解的延拓定理及延拓条件。 3.理解解对初值的连续性、可微性定理的条件和结论。 [教学重难点] 解的存在唯一性定理的证明,解对初值的连续性、可微性定理的 证明。 [教学方法] 讲授,实践。 [教学时间] 12学时 [教学内容] 解的存在唯一性定理的条件、结论及证明思路,解的延拓概念及延 拓条件,解对初值的连续性、可微性定理及其证明。 [考核目标] 1.理解解的存在唯一性定理的条件、结论,能用逐次逼近法解简单的问题。 2.熟练近似解的误差估计式,解对初值的连续性及可微性公式。 3.利用解的存在唯一性定理、解的延拓定理及延拓条件能证明有关方程的某些性质。 §1 解的存在性唯一性定理和逐步逼近法 微分方程来源于生产实践际,研究微分方程的目的就在于掌握它所反映的客 观规律,能动解释所出现的各种现象并预测未来的可能情况。在第二章介绍了一 阶微分方程初等解法的几种类型,但是,大量的一阶方程一般是不能用初等解法 求出其通解。而实际问题中所需要的往往是要求满足某种初始条件的解。因此初 值问题的研究就显得十分重要,从前面我们也了解到初值问题的解不一定是唯一的。他必须满足一定的条件才能保证初值问题解的存在性与唯一性,而讨论初值 问题解的存在性与唯一性在常微分方程占有很重要的地位,是近代常微分方程定 性理论,稳定性理论以及其他理论的基础。 例如方程 过点(0,0)的解就是不唯一,易知0 y=是方程过(0,0)的解,此外,容易验证,2 =或更一般地,函数 y x 都是方程过点(0,0)而且定义在区间01 <<的任一数。 c ≤≤上的解,其中c是满足01 x

高阶方程的降阶法幂级数解法

1 / 3 4.4 高阶微分方程降阶法、二阶线性微分方程幂级数解法 (Power series solution to second order linear ODE ) [教学内容] 1. 介绍高阶方程降阶法. 2. 介绍单摆方程及其椭圆积分函数.3. 介绍刘维尔公式求解二阶线性方程. [教学重难点] 重点是知道振幅反应(Amplitude Response ); 难点是知道常见函数的拉普拉斯变换和逆变换. [教学方法] 预习1、2;讲授1、2 [考核目标] 1. 知道共振现象. 2. 知道拉普拉斯变换的概念和性质. 3. 知道常见函数的拉普拉斯变换和逆变换. 1. 高阶方程降阶法 例68. 数学摆方程及其求解 解:(1)模型描述:一根长度为l 的线一端是质量为m 的质点,另一端系于固定点O ,质点在垂直于地面的平面上作圆周运动。取逆时针运动方向作为摆与铅垂线所成角?的正方向, 质点运动加速度为22dt d m l ?,所受的力为?sin mg -. 于是单摆方程为??sin 22l g dt d -=. 下面考察如下柯西问题:??sin 22l g dt d -=,0)0(',)0(0==???. (2)令dt d v ?=,下面导出? d dv ,由??d dt dt dv d dv ?=知,dt d d dv dt dv dt d ???? ==22. 于是原方程化为 ??sin l g v d dv -=,这是一个一阶可分离变量型方程。 解得 C l g v +=?cos 212,再由初始条件0)0(',)0(0==???得到 )cos (cos 20??-± =l g v ,其中±号由摆运动位置确定. (3)将v 返回原变量得到 )cos (cos 20???-±=l g dt d ,这也是一个一阶可分离变量型方程。先考察摆从最大正角0?到0?-之间运动情形: )cos (cos 20???--=l g dt d l g t dt l g d t 22cos cos 000 -=-=-??? ? ???,特别地令?---=000 0cos cos 2????? d g l T ,

一阶常微分方程解法总结

第 一 章 一阶微分方程的解法的小结 ⑴、可分离变量的方程: ①、形如 )()(y g x f dx dy = 当0)(≠y g 时,得到 dx x f y g dy )() (=,两边积分即可得到结果; 当0)(0=ηg 时,则0)(η=x y 也是方程的解。 例1.1、 xy dx dy = 解:当0≠y 时,有xdx y dy =,两边积分得到)(2ln 2为常数C C x y += 所以)(112 12 C x e C C e C y ±==为非零常数且 0=y 显然是原方程的解; 综上所述,原方程的解为)(12 12 为常数C e C y x = ②、形如0)()()()(=+dy y Q x P dx y N x M 当0)()(≠y N x P 时,可有 dy y N y Q dx x P x M ) () ()()(=,两边积分可得结果; 当0)(0=y N 时,0y y =为原方程的解,当0(0=) x P 时,0x x =为原方程的解。 例1.2、0)1()1(22=-+-dy x y dx y x 解:当0)1)(1(22≠--y x 时,有 dx x x dy y y 1 122-=-两边积分得到 )0(ln 1ln 1ln 22≠=-+-C C y x ,所以有)0()1)(1(22≠=--C C y x ; 当0)1)(1(22=--y x 时,也是原方程的解; 综上所述,原方程的解为)()1)(1(22为常数C C y x =--。 ⑵可化为变量可分离方程的方程:

①、形如 )(x y g dx dy = 解法:令x y u =,则udx xdu dy +=,代入得到)(u g u dx du x =+为变量可分离方程,得 到)(0),,(为常数C C x u f =再把u 代入得到)(0),,(为常数C C x x y f =。 ②、形如)0(),(≠+=ab by ax G dx dy 解法:令by ax u +=,则b du adx dy +=,代入得到)(1u G b a dx du b =+为变量可分离方程, 得到)(0),,(为常数C C x u f =再把u 代入得到)(0),,(为常数C C x by ax f =+。 ③、形如 )(2 221 11c y b x a c y b x a f dx dy ++++= 解法:0 1、 02 2 11=b a b a ,转化为 )(by ax G dx dy +=,下同①; 02、 022 1 1≠b a b a ,???=++=++00 222111 c y b x a c y b x a 的解为),(00y x ,令???-=-=0 0y y v x x u 得到,)()( )(221 12211u v g u v b a u v b a f v b u a v b u a f du dv =++=++=,下同②; 还有几类:xy u dy xy xg dx xy yf ==+,0)()( 以上都可以化为变量可分离方程。 例2.1、 2 5--+-=y x y x dx dy 解:令2--=y x u ,则du dx dy -=,代入得到u u dx du 7 1+= - ,有dx udu 7-= 所以)(72 2 为常数C C x u +-=,把u 代入得到)(72 22 为常数) (C C x y x =+--。 例2.2、 1 212+-+-=y x y x dx dy 解:由???=+-=+-012012y x y x 得到?????=-=3131y x ,令?? ???-=+=3131y v x u ,有???==du dx dv dy ,代入得到

一阶常微分方程的解法

一阶常微分方程的解法 摘要:常微分方程是微积分学的重要组成部分,广泛用于具体问题的研究中,在整个数学中占有重要的地位。本文对一阶常微分方程的解法作了简要的总结,并举例加以分析了变量可分离方程,线性微分方程,积分因子,恰当微分方程,主要归纳了一阶微分方程的初等解法,并以典型例题加以说明。 关键词:变量分离;积分因子;非齐次微分方程;常数变易法 Solution of first-order differential equation Abstract: Differential equations, important parts of calculus, are widely used in the research of practical problems, which also play important role in mathematics. The solution of a differential equation is summarized briefly, and illustrates the analysis of variable separable equation, linear differential equation, integral factor, exact differential equation, mainly summarizes the elementary solution of first order differential equations, and the typical examples to illustrate. Keywords: variable separation; integral factor; non-homogeneous differential equation; constant variation method 1. 引言 一阶常微分方程初等解法,就是把常微分方程的求解问题转化为积分问题, 能用这种方法求解的微分方程称为可积方程. 本文通过对一阶微分方程的初等解法的归纳与总结,以及对变量分离,积分因子,微分方程等各类初等解法的简要分析,同时结合例题把常微分方程的求解问题化为积分问题,进行求解. 2. 一般变量分离 2.1 变量可分离方程 形如 ()()dy f x g y dx = (1.1) 或 1122()()()()M x N y dx M x N y dy = (1.2) 的方程,称为变量可分离方程。分别称(1.1)、(1.2)为显式变量可分离方程和 微分形式变量可分离方程[1] . (1) 显式变量可分离方程的解法 在方程(1.1)中, 若()0g y ≠,(1.1)变形为 ()() dy f x dx g y =

[整理]一阶微分方程解的存在定理.

第三章 一阶微分方程解的存在定理 [教学目标] 1. 理解解的存在唯一性定理的条件、结论及证明思路,掌握逐次逼近法,熟练近似解的误差估计式。 2. 了解解的延拓定理及延拓条件。 3. 理解解对初值的连续性、可微性定理的条件和结论。 [教学重难点] 解的存在唯一性定理的证明,解对初值的连续性、可微性定理的证明。 [教学方法] 讲授,实践。 [教学时间] 12学时 [教学内容] 解的存在唯一性定理的条件、结论及证明思路,解的延拓概念及延拓条件,解对初值的连续性、可微性定理及其证明。 [考核目标] 1.理解解的存在唯一性定理的条件、结论,能用逐次逼近法解简单的问题。 2.熟练近似解的误差估计式,解对初值的连续性及可微性公式。 3.利用解的存在唯一性定理、解的延拓定理及延拓条件能证明有关方程的某些性质。 §1 解的存在性唯一性定理和逐步逼近法 微分方程来源于生产实践际,研究微分方程的目的就在于掌握它所反映的客观规律,能动解释所出现的各种现象并预测未来的可能情况。在第二章介绍了一阶微分方程初等解法的几种类型,但是,大量的一阶方程一般是不能用初等解法求出其通解。而实际问题中所需要的往往是要求满足某种初始条件的解。因此初值问题的研究就显得十分重要,从前面我们也了解到初值问题的解不一定是唯一的。他必须满足一定的条件才能保证初值问题解的存在性与唯一性,而讨论初值问题解的存在性与唯一性在常微分方程占有很重要的地位,是近代常微分方程定性理论,稳定性理论以及其他理论的基础。 例如方程 dy dx =过点(0,0)的解就是不唯一,易知0y =是方程过(0,0)的解,此外,容易验证,2 y x =或更一般地,函数 2 0 0() c<1x c y x c x ≤≤?=?-≤? 都是方程过点(0,0)而且定义在区间01x ≤≤上的解,其中c 是满足01c <<的任一数。 解的存在唯一性定理能够很好地解释上述问题,它明确地肯定了方程的解在一定条件下的存在性 和唯一性。另外,由于能得到精确解的微分方程为数不多,微分方程的近似解法具有重要的意义,而解的存在唯一性是进行近似计算的前提,如果解本身不存在,而近似求解就失去意义;如果存在不唯一,不能确定所求的是哪个解。而解的存在唯一性定理保证了所求解的存在性和唯一性。 1.存在性与唯一性定理: (1)显式一阶微分方程 ),(y x f dx dy = (3.1) 这里),(y x f 是在矩形域:00:||,||R x x a y y b -≤-≤ (3.2)

二阶线性常微分方程的幂级数解法

二阶线性常微分方程的幂级数解法 从微分方程学中知道,在满足某些条件下,可以用幂级数来表示一个函数。因此,自然想到,能否用幂级数来表示微分方程的解呢? 例1、求方程 ''0y xy -=的通解 解:设2012n n y a a x a x a x =+++++…… 为方程的解,这里(0,1,2,,,)i a i n =……是待定常系数,将它对x 微分两次,有 ''212312132(1)(1)n n n n y a a x n n a x n na x --+=?+?+ +-+++ 将y ,'y 的表达式代入方程,并比较的同次幂的系数,得到 x -∞<<∞2210 a ?=,30320,a a ?-= 41430,a a ?-= 52540,a a ?-= 或一般的可推得 32356(31)3k a a k k = ?????-?, 1 3134673(31) k a a k k += ??????+, 320k a += 其中1a ,2a 是任意的,因而代入设的解中可得: 36 347 01[1][] 232356 2356(31)33434673(31) n x x x x x y a a x n n n n =+++ ++++++ ?????????-????????+ 这个幂级数的收敛半径是无限大的,因而级数的和(其中包括两个

任意常数0a 及1a )便是所要求的通解。 例6 求方程'''240y xy y --=的满足初值条件(0)0y =及'(0)1y =的解。 解 设级数2012n n y a a x a x a x =+++++……为方程的解。首先,利用初值条件,可以得到 00a =, 11a =, 因而 2323'2123''223123232(1)n n n n n n y x a x a x a x y a x a x na x y a a x n n a x --=+++++=+++++=+?+ +-+ 将y ,'y ,''y 的表达式带入原方程,合并x 的各同次幂的项,并令各项系数等于零,得到 21422 0,1,0, ,,1 n n a a a a a n -==== - 因而 5678911 11,0,,0,,2!63!4! a a a a a = ===== 最后得 21111 (1)!! k a k k k += ?=- , 20k a =, 对一切正整数k 成立。 将i a (0,1,2,)i =的值代回2012n n y a a x a x a x =+++++……就得到 5 213 2! !k x x y x x k +=+++ ++ 2 4 22 (1),2! ! k x x x x x xe k =+++ ++= 这就是方程的满足所给初值条件的解。 是否所有方程都能按以上方式求出其幂级数解?或者说究竟方

微分方程的幂级数解法

微分方程的幂级数解法 函数是客观事物的内部联系在数量方面的反映,利用函数关系又可以对客观事物的规律性进行研究,因此如何寻求函数关系,在实践中具有重要意义。在许多问题中,不能直接找到所需的函数关系,但是根据问题所提供的情况,有时可以列出含有要找的函数及其导数的关系式,这样的关系式称为:微分方程。对其进行研究,找寻未知函数,称为解微分方程。本章主要介绍微分方程的一些基本概念和几种常用解法 微分方程的幂级数解法 当微分方程的解不能用初等函数或其积分式表达时,我们就要寻求其它解法。常用的有幂级数解法和数值解法。本节我们简单地介绍一下微分方程的幂级数解法。

求一阶微分方程(1)满 足初始条件的特解,其中函数 f (x , y)是、的多项式: . 这时我们可以设所特解可展开为 的幂级数 (2) 其中是待定的系数,把(2)代入(1)中,便得一恒等式,比较这恒等式 两端的同次幂的系数,就可定出常数 , 以这些常数为系数的级数(2)在其收敛区间内就是方程(1)满足初始条件 的特解。 例1求方程满足的特

解。 解这时,故设 , 把及的幂级数展开式代入原方程,得 由此,比较恒等式两端x 的同次幂的系数,得 于是所求解的幂级数展开式的开始几项为 。 关于二阶齐次线性方程用幂级数求解的问题,我们先叙述一个定理: 定理如果方程(3)中的系数P(x)与Q(x)可在-R<x<R 内展开为x的幂级数那么

在-R<x<R内方程(3)必有形如 的解。 例 2 求微分方程的满足初始条件 , 的特解。 解这里在整个数轴上满足定理的条件。因此所求的解可在整个数轴上殿开成x的幂级 数(4) 由条件得。对级数(4)逐项求导,有 , 由条件得.于是我们所求方程的级数解及的形式已成为 (5) (6) 对级数(6)逐项求导,得

线性常微分方程的级数解法

第四章 线性常微分方程的级数解法 4.1 常点邻域之级数解法 ① 常点邻域的级数解概念 ---- (二阶线性常微分方程的一般形式) 0)()(=+'+''w z q w z p w (4.1) ----(常点概念) 对于式(4.1)中,若)(z p 与 )(z q 在某点及其邻域内解析,则称此点为常点; 反之,若)(z p 与)(z q 至少一个在该点不解析,则称此点为奇点。 ----(常点邻域内解的存在定理) 若)(z p 与 ) (z q 在 R z z <-0内单值解析,则方程(4.1)在 R z z <-0内存在单值唯一的解析解。 ----(常点0z 邻域内之级数解的一般形式) 若 )(z p 与)(z q 在R z z <-0内单值解析,则对于式 (4.1),可设级数解∑∞ =-=0 0)(n n n z z a w ,再将 ) (z p 与 )(z q 在R z z <-0内展为泰勒级数,代入式(4.1)以 确定级数解之待定系数。 ② 勒让德方程之级数解 ----(勒让德方程形式)

0)1(2)1(2=++'-''-y l l y x y x (4.2) ----(在常点0=x 邻域内的级数解) 分析: 由1 2)(2-= x x x p 及2 1) 1()(x l l x q -+=,可知0=x 为常点;故可设:∑∞ ==0 n n n x a y , 相应:∑∞ =-='1 1 n n n x na y ,∑∞ =--=''2 2)1(n n n x a n n y , 代入方程(4.2),得: )1(2)1()1)(2(0 2=++--- ++∑∑∑∑∞ =∞ =∞ =∞ =+n n n n n n n n n n n n x a l l x na x a n n x a n n ,即: n n a l l n n a n n )()1)(2(222--+=+++,或 n n a n n l n l n a ) 1)(2() 1)((2++++-=+;显然有: 02!2)1)((a l l a +-= ,13!3) 2)(1(a l l a +-=, 04! 4)12)(2)(1)((a l l l l a ++-+-=, 15! 5)4)(3)(2)(1(a l l l l a +-+-=,即 02)! 2() 12)(22()1)((a k l k l k l l a k +---+-= , 012)! 12() 2)(12()2)(1(a k l k l k l l a k ++--+-= + ;相应级 数解为两个线性无关解的迭加: ∑∑∑∑∞ =++∞ =∞ =++∞ =+=+ = 1 21210 220 1 2120 22k k k k k k k k k k k k x A a x A a x a x a y (4.3)

二阶线性常微分方程的幂级数解法

二阶线性常微分方程的 幂级数解法 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

二阶线性常微分方程的幂级数解法 从微分方程学中知道,在满足某些条件下,可以用幂级数来表示一个函数。因此,自然想到,能否用幂级数来表示微分方程的解呢 例1、求方程 ''0y xy -=的通解 解:设2012n n y a a x a x a x =+++++…… 为方程的解,这里(0,1,2,,,)i a i n =……是待定常系数,将它对x 微分两次,有 将y ,'y 的表达式代入方程,并比较的同次幂的系数,得到 x -∞<<∞2210 a ?=,30320,a a ?-= 41430,a a ?-= 52540,a a ?-= 或一般的可推得 32356(31)3k a a k k = ?????-?, 1 3134673(31) k a a k k += ??????+, 其中1a ,2a 是任意的,因而代入设的解中可得: 这个幂级数的收敛半径是无限大的,因而级数的和(其中包括两个任意常数0a 及1a )便是所要求的通解。 例6 求方程'''240y xy y --=的满足初值条件(0)0y =及'(0)1y =的解。 解 设级数2012n n y a a x a x a x =+++++……为方程的解。首先,利用初值条件,可以得到 00a =, 11a =, 因而 将y ,'y ,''y 的表达式带入原方程,合并x 的各同次幂的项,并令各项系数等于零,得到

因而 最后得 21111(1)!! k a k k k += ?=- , 20k a =, 对一切正整数k 成立。 将i a (0,1,2,)i =的值代回2012n n y a a x a x a x =+++++……就得到 这就是方程的满足所给初值条件的解。 是否所有方程都能按以上方式求出其幂级数解或者说究竟方程应该满足什么条件才能保证它的解可用幂级数来表示呢级数的形式怎样其收敛区间又如何这些问题,在微分方程解析理论中有完满的解答,但因讨论时需要涉及解析函数等较专门的知识,在此我们仅叙述有关结果而不加证明,若要了解定理的证明过程,可参考有关书籍。 考虑二阶齐次线性微分方程 及初值条件00()y x y =及' '00()y x y =的情况。 不失一般性,可设 00x =,否则,我们引进新变量0t x x =-,经此变换,方程的形状不变,在这时对应于0x x =的就是00t =了,因此,今后我们总认为00x =。 定理10 若方程22()()0d y dy p x q x y dx dx ++=中系数()p x 和()q x 都能展成x 的幂 级数,且收敛区间为||x R <,则方程22()()0d y dy p x q x y dx dx ++=有形如 的特解,也以||x R <为级数的收敛区间。

4-25 -高阶方程的降阶法、幂级数解法

4.4 高阶微分方程降阶法、二阶线性微分方程幂级数解法 (Power series solution to second order linear ODE ) [教学内容] 1. 介绍高阶方程降阶法. 2. 介绍单摆方程及其椭圆积分函数.3. 介绍刘维尔公式求解二阶线性方程. [教学重难点] 重点是知道振幅反应(Amplitude Response ); 难点是知道常见函数的拉普拉斯变换和逆变换. [教学方法] 预习1、2;讲授1、2 [考核目标] 1. 知道共振现象. 2. 知道拉普拉斯变换的概念和性质. 3. 知道常见函数的拉普拉斯变换和逆变换. 1. 高阶方程降阶法 例68. 数学摆方程及其求解 解:(1)模型描述:一根长度为l 的线一端是质量为m 的质点,另一端系于固定点O ,质点在垂直于地面的平面上作圆周运动。取逆时针运动方向作为摆与铅垂线所成角?的正方向, 质点运动加速度为22dt d ml ?,所受的力为?sin mg -. 于是单摆方程为??sin 2 2l g dt d -=. 下面考察如下柯西问题:??sin 22l g dt d -=,0)0(',)0(0==???. (2)令dt d v ?=,下面导出? d dv ,由??d dt dt dv d dv ? =知,dt d d dv dt dv dt d ????==22. 于是原方程化为 ??sin l g v d dv -=,这是一个一阶可分离变量型方程。 解得 C l g v +=?cos 212,再由初始条件0)0(',)0(0==???得到 )cos (cos 20??-± =l g v ,其中±号由摆运动位置确定. (3)将v 返回原变量得到 )cos (cos 20???-±=l g dt d ,这也是一个一阶可分离变量型方程。先考察摆从最大正角0?到0?-之间运动情形: )cos (cos 20???--=l g dt d l g t dt l g d t 22cos cos 000 -=-=-??? ? ???,特别地令?---=000 0cos cos 2????? d g l T ,

一阶微分方程的解的存在定理

第三章 一阶微分方程的解的存在定理 研究对象 初值问题(Cauchy Problem) ?????==(3.2) 3.1) 00)((),(y x y y x f dx dy 1 基本概念 1)利普希兹(Lipschitz)条件 函数),(y x f 称为在闭矩形区域 b y y a x x D ≤-≤-00,:上关于y 满足利普希兹条件,如果存在常数0>L 使得不等式 2121),(),(y y L y x f y x f -≤- 对所有D y x y x ∈),(),,(21都成立。其中L 称为利普希兹常数。 2 )局部利普希兹条件 称函数),(y x f 在区域2R G ?内关于y 满足局部利普希兹条件,如果对区域G 内的每一点,存在以其为中心的完全含于G 内的矩形域D ,在D 上),(y x f 关于y 满足利普希兹条件。 注意:对G 内不同的点,矩形域D 大小和常数L 可能不同。 3)一致利普希兹条件 称函数),,(λy x f 在区域{}βλαG y x λy x G λ<<∈=,),(),,(R R ??2内一致地关于y 满足局部利普希兹条件,如果对λG 内的每一点),,(λy x 都存在以),,(λy x 为中心的球λG S ?,使得对任何),,(1λy x ,S λy x ∈),,(2成立不等式 2121),,(),,(y y L y x f y x f -≤-λλ 其中L 是与λ无关的正数。 4)解的延拓 设方程(3.1)右端函数),(y x f 在某一有界区域G 中有意义, ],[),(b a x x y ∈=?是初值问题(3.1)、(3.2)的解,若],[),(11b a x x y ∈=ψ也是初值问题的解,且],[],[11b a b a ?,

二阶非齐次线性微分方程的解法

目 录 待定系数法 常数变异法 幂级数法 特征根法 升阶法 降阶法 关键词:微分方程,特解,通解, 二阶齐次线性微分方程 常系数微分方程 待定系数法 解决常系数齐次线性微分方程[]21220, (1) d x dx L x a a x dt dt ≡++= 12,. a a 这里是常数 特征方程212()0F a a λλλ=++= (1.1) (1)特征根是单根的情形 设 12,,,n λλλ是特征方程的 (1.1)的2个彼此不相等的根,则相应的方程 (1)有如 下2个解: 12,t t e e λλ (1.2) 如果(1,2)i i λ=均为实数,则 (1.2)是方程 (1)的2个线性无关的实值解,而方程 (1)的通解可表示为 1212t t x c e c e λλ=+ 如果方程有复根,则因方程的系数是实系数,复根将成对共轭出现。设 i λαβ=+是一特征根,则i λαβ=-也是特征根,因而与这对共轭复根对应,方程 (1)有两个复值解 (i)t (cos t sin ),t e e i t αβαββ+=+

(i)t (cos t sin ).t e e i t αβαββ-=- 它们的实部和虚部也是方程的解。这样一来,对应于特征方程的一对共轭复根 i λαβ=±,我们可求得方程 (1)的两个实值解 cos ,sin .t t e t e t ααββ (2)特征根有重跟的情形 若10λ=特征方程的 k 重零根,对应于方程 (1)的k 个线性无关的解21 1,t,t ,k t -。 若这个 k 重零根10, λ≠设特征根为12,,,,m λλλ其重数为 1212,,,k (k 2)m m k k k k ++ =。方程 (1)的解为 11112222111,t ,t ;,t , t ; ;,t , t ;m m m m t t k t t t k t t t k t e e e e e e e e e λλλλλλλλλ--- 对于特征方程有复重根的情况,譬如假设i λαβ=+是k 重特征根,则i λαβ=-也是k 重特征根,可以得到方程 (1)的2k 个实值解 2121cos ,cos ,cos ,,cos ,sin ,sin ,sin , ,sin .t t t k t t t t k t e t te t t e t t e t e t te t t e t t e t ααααααααββββββββ-- 例1 求方程 220d x x dt -=的通解。 解 特征方程 210λ-=的根为121,1λλ==-有两个实根,均是单根,故方程的通 解为 12,t t x c e c e -=+ 这里12,c c 是任意常数。 例2 求解方程 220d x x dt +=的通解。 解 特征方程 210λ+=的根为12,i i λλ==-有两个复根, 均是单根,故方程的通解 为 12sin cos ,x c t c t =+

相关文档
相关文档 最新文档