文档库 最新最全的文档下载
当前位置:文档库 › 电力系统容量定义

电力系统容量定义

电力系统容量定义
电力系统容量定义

电力系统容量

电力系统容量(Installed capacity of electric power system),电力系统中各

类发电厂机组额定容量的总和,也称系统装机容量、系统发电设备容量。电力系统规划设计中还要考虑工作出力、负荷备用容量、事故备用容量、检验备用容量、系统总备用容量、受阻容量、空闲容量、重复容量、系统可调容量及预想出力等。

(1)工作出力。即是系统中运行机组所担负的有功负荷,随着负荷变化而变化。

(2)负荷备用容量。接于母线立即可带负荷的旋转备用容量,用以调节系统短时

间的负荷波动和负荷猜测误差,使系统能经常保持在额定频率下运行,其数值根据系统容量及冲击负荷的大小而定,一般取系统最大发电负荷的2%~5%,大系统取较小值,小系统或有冲击负荷的取较大值。负荷备用容量应在各发电厂之间进行公道分配,并根据不同季节考虑水火电之间的协调及输电线路输送能力的限制。

(3)事故备用容量。在规定时间内可供调用的容量,是发电机组事故停运或电厂

出力忽然下降时能保证用户供电可靠性所需要的容量。它与系统容量、机组台数、单机容量、机组强迫停运率及对供电可靠性要求等有关,其数值应根据可靠性计算确定。在采用计算电力不足概率(LOLP)的方法来确定备用容量时,电力不足概率的取值各国不同,目前美国、加拿大等国的一些电力系统取值为0.1d/a(即10年中有1天电力不足),有的国家取值为0.1~0.4d/a。当系统电力不足概率没有规定,机组强迫停运率缺少资料时,事故备用容量一般可取系统最大发电负荷的10%,但不小于系统中一台最大机组的容量。

(4)检验备用容量。为系统中发电设备能进行定期检验而设定的。应按有关规程

规定,结合系统负荷特性、水电容量比重、水电调节性能等因素确定。系统年负荷曲线静态下降系数小、水电比重大、水电调节性能差、空闲容量多的情况,检验备用容量则可少一些;反之,则要多一些。检验备用容量应在电力平衡时通过安排年检验计划来确定。一般可取最大负荷的8%~15%。

(5)系统总备用容量。负荷备用容量、事故备用容量及检验备用容量之和为系统

总备用容量,一般取最大发电负荷的25%左右。

(6)受阻容量。由于发电设备存在缺陷不配套,无调节库容的水电厂在枯水期,

或虽有库容但水头消落过大,使机组出力达不到额定的容量;抽汽供热的凝汽机组在供热期出力下降。在电力平衡中应将受阻容量扣除。

(7)空闲容量。水电厂受日保证电量及其利用方式所限而使全厂出力达不到预想

出力的容量。它可用作本厂的事故备用和检验备用,但不能作为系统的事故备用。

(8)重复容量。电力系统为补偿受阻容量以满足电力平衡需要而增设的容量。

(9)系统可调容量。(或称可用容量)系统中可供同一调度分配的有功容量。它即是系统容量与计划检验容量、临时检验容量、受阻容量和空闲容量(扣除作为本发电厂事故备用和检验备用之后)之差。

(10)预想出力。水轮发电机组在某一保证率(一般指设计保证率)时不同水头下的最大出力。当运行水头即是或大于额定水头时,预想出力即是额定出力;当水头小于额定水头时,预想出力均小于额定出力。水力发电厂的预想出力是全厂各水轮发电机组预想出力之总和。

电力系统基本概念

一、电力工业发展概况及前景 几个需要记住的知识点 1、电力工业是将一次能源转换成二次能源的工业,其发展水平是反映国家经济发展程度的重要标志。 2、1882年在上海建立第一个火电厂。 3、1912年在昆明滇池石龙坝建立第一座水电站。 4、2001年,针对我国能源结构的实际情况,我国的电源发展实施了“优先开发水电、大力发展火电、适当发展核电、积极发展新能源发电”的方针,使电源发展呈现多种 能源互补的格局。 5、在水电方面我取得了骄人成绩,有许多世界之最 ①1994年12月开工建设世界上最大的水电站→三峡 ②界上最大的抽水蓄能电站→广州抽水蓄能电站 ③世界上海拔最高的电站→西藏羊卓雍湖水电站等。 6、我国电力已经开始进入“大机组‘’、“大电网”、“超高压”、“高自动化” 的发展新阶段。 二、电力系统基本概念 (一)、电力系统 1、电力系统概念 由发电厂、升压变电站、输电线路、降压变电站及电力用户所组成的统一整体称为电 力系。 2、动力系统概念 电力系统加上带动发电机转动的动力装置构成的整体称为动力系统。 3、电力网概念 由各类升压变电站、输电线路、降压变电站、组成的电能传输和分配的网络称为电力网。 (二)、发电厂 1、定义 发电厂是电力系统的中心环节,它是把其他形式的一次能源转换成二次能源的一种特 殊工程。 2、分类 ⑴a、按其所用能源分为 火力发电厂、水力发电厂、核能发电厂、风力发电厂、潮汐发电厂、地热发电、太阳 能发电、垃圾发电、沼气发电等等。 b、按发电厂的规模和供电范围划分为:区域性发电厂、地方发电厂、自备专用发电厂等。 ⑵、火力发电厂

①定义 利用煤、石油、天然气、油页岩等燃料的化学能生产电能的工厂。热能→机械能机→ 电能。 ②凝汽式火力发电厂 火力发电厂中的原动机可以是凝汽式汽轮机、燃气式汽轮机或内燃机。我国大部分火 力发电厂采用凝汽式汽轮发电机组,所以称为凝汽式火力发电厂。汽式火力发电厂热 效率较低只有30~40%。适宜建在燃料产地。 ③热电厂 既发电又供热的火力发电厂称为热电厂。热效率可以上升到60~70%。一般建在大城 市及工业附近。 ⑶水力发电厂 定义 通常称水电厂。利用江河水流的水能生产电能的工厂。水能→机械能→电能。 ⑷核电厂 定义 核能→热能→机械能→电能。 特点 能取得较大的经济效益,所需原料极少。 (三)、变电站 1、定义 变电站是汇集电源、升降电压和分配电力的场所,是联系发电厂和用户的中间环节。 2、分类 ⑴按升降电压划分为 ①、升压变电站→通常是发电厂升压部分,紧靠发电厂。 ②、降压变电站→通常运离发电厂而靠近负荷中心。 ⑵按变电站在电力系统中所处的地位和作用划分为 ①、枢纽变电站:枢纽变电站位于电力系统的枢纽点,电压等级一般为330kV以上, 连接多个电源,出现回路多,变电容量大;全站停电后将造成大面积停电或系统瓦解。 ②、中间变电站:中间变电站位于系统主干环行线或系统主干线的接口处,电压等级 一般为330——220kV,汇集2~3个电源和若干线路。 ③、地区变电站:地区变电站是某个地区和某个城市的主要变电站,电压等级一般为220kV。 ④、企业变电站:企业变电站是大、中型企业的专用变电站,电压等级35——220kV,1~2回进线。 ⑤、终端变电站:终端变电站位于配电线路的终端,接近负荷处,高压侧10——35kV 引入线,经降压后向用户供电。

大学物理C基本概念和规律总结

热学基本概念和规律 物理常数考试会给,玻尔兹曼常数k =1.38×10-23 J/K 气体摩尔常数R =8.31 J/(mol?K ) 摄氏温标和热力学温标的换算273+=t T ,热学所有公式都必须使用热力学温标。 一、理想气体状态方程:(平衡态下) 二、压强、温度的统计意义: 三、能量均分定理: 四 五、等体摩尔热容 六、热力学第一定律 因为理想气体内能只随温度变化,所以任何过程理想气体的内能改变都可以使用 等体过程 等压过程 等温过程 + 系统吸热 系统放热 内能增加 内能减少 系统对外界做功 外界对系统做功 Q W E ?22 211 T V P T V P RT pV ==是摩尔数νν平均平动动能是分子数密度理想气体的压强---=k k n n p εε32是分子速率是单个分子的质量,v m kT v m k 23212==ε5 3 2 1==i i i kT 双原子分子常温下单原子分子为理想气体的自由度,的能量一个自由度均分到单个理想气体分子的每是摩尔数理想气体的内能ννRT i E 2=)(2212T T R i T R i E -=?=?νν理想气体内能的改变R i C V 2=R R i C p +=2 等压摩尔热容R C R C R C R C P V P V 27 25 25 23 ====理想气体双原子分子理想气体单原子分子E Q T C E W V ?=?=?=ν0)(12V V p W -=T C p ?=νW E Q +?=T C E V ?=?ν1 2ln 0 V V RT W Q E ν===?E W Q ?+ =T C E V ?=?ν

物理基本概念和基本规律

物理基本概念和基本规律 吕叔湘中学 庞留根 1. 物体的运动决定于它所受的合力和初始运动条件: . 2. 伽利略斜面实验是牛顿第一定律的实验基础,把可靠的事实和深刻的理论思维结合起来 的理想实验是科研究的一种重要方法。 3.牛顿第二定律中的F 应该是物体受到的合外力。 应用牛顿第二定律时要注意同时、同向、同体. 4. 速度、加速度、动量、电场强度、磁感应强度等矢量必须注意方向,只有大小、方向都 相等的两个矢量才相等。所有物理量必须要有单位。 5. 同一直线上矢量的运算: 先规定一个正方向, 跟正方向相同的矢量为正,跟正方向 相反的矢量为负,求出的矢量为正值,则跟规定的方向相同,求出的矢量为负值,则跟规定的 方向相反 6. 力和运动的合成、分解都遵守平行四边形定则。三力平衡时,任意两力的合力跟第三力 等值反向。 三力的大小必满足以下关系:︱F 1-F 2︱≦ F 3 ≦ F 1+F 2 7. 小船渡河时 若V 船 > V 水 船头垂直河岸时,过河时间最小;航向(合速度)垂直河岸时,过河的位 移最小。 若 V 船 < V 水 船头垂直河岸时,过河时间最小;只有当V 船 ⊥ V 合 时, 过河的位移最小。 8. 平抛运动的研究方法——“先分后合”, 9. 功的公式 W=FScos α 只适用于恒力做功,变力做功一般用动能定理计算。 10. 机械能守恒定律适用于只有重力和弹簧的弹力做功的情况,应用于光滑斜面、自由 落体运动、上抛、下抛、平抛运动、光滑曲面、单摆、竖直平面的圆周运动、弹簧振子 等情况。 11. 功能关系--------功是能量转化的量度 ⑴重力所做的功等于重力势能的减少 ⑵电场力所做的功等于电势能的减少 ⑶弹簧的弹力所做的功等于弹性势能的减少 ⑷合外力所做的功等于动能的增加 ⑸只有重力和弹簧的弹力做功,机械能守恒 静匀 匀速圆周运动 匀加速直线运动 2. 静止 匀速运动 匀加速直线运动 匀减速直线运动 匀变速曲线运动 4. F= - kx 简谐运动 3. F 大小不变且始终垂直V 力和运动的关 系 V=0 V ≠0 1. F=0 V=0 V ≠0 F 、V 同向 F 、V 反向 F 、V 夹角α F=恒量 5. F 是变力 F 与v 同向————————变加速运动 F 与v 反向————————变减速运动

第1章-电路基本概念与基本定律

第1章 电路的基本概念与基本定律 一、填空题: 1. 下图所示电路中,元件消耗功率200W P ,U=20V,则电流I 为 10 A 。 + U 2. 如果把一个24伏的电源正极作为零参考电位点,负极的电位是_-24___V 。 3.下图电路中,U = 2 V ,I = 1A 3 A ,P 2V = 2W 3 W , P 1A = 2 W ,P 3Ω = 4 W 3 W ,其中 电流源 (填电流源或电压源)在发出功率, 电压源 (填电流源或电压源)在吸收功率。 U 4. 下图所示中,电流源两端的电压U= -6 V ,电压源是在 发出功率 5.下图所示电路中,电流I = 5 A ,电阻R = 10 Ω。 B C

6.下图所示电路U=___-35 ________V。 7.下图所示电路,I=__2 __A,电流源发出功率为_ 78 ___ W,电压源吸收功率20 W。 8. 20.下图所示电路中,根据KVL、KCL可得U=2 V,I1=1 A,I2=4 A ;电流源的功率为6 W;是吸收还是发出功率发出。2V电压源的功率为 8 W,是吸收还是发出功率吸收。 V 4 9.下图所示的电路中,I2= 3 A,U AB= 13 V。 10.电路某元件上U = -11 V,I = -2 A,且U 、I取非关联参考方向,则其吸收的功率是22 W。 11. 下图所示的电路中,I1= 3 A,I2= 3 A,U AB= 4 V。

12.下图所示的电路中,I= 1 A ;电压源和电流源中,属于负载的是 电压源 。 8V 13. 下图所示的电路中,I= -3A ;电压源和电流源中,属于电源的是电流源 。 8V 14.下图所示的电路,a 图中U AB 与I 之间的关系表达式为 155AB U I =+ ;b 图中U AB 与I 之间的关系表达式为 510 AB U I =- 。 5Ω Ω I I A B B A 10V a 图 b 图 15. 下图所示的电路中,1、2、3分别表示三个元件,则U = 4V ;1、2、3这三个元件中,属于电源的是 2 ,其输出功率为 24W 。

电力系统的现状与发展趋势

我国电力系统的现状与发展趋势 马宁宁 (曲阜师范大学电气信息与自动化学院邮编: 276826) 摘要:我国电力系统情况复杂,为了能够深入了解我国电力系统的发展形势,对我国电力的系统进行了调查。 我国电力系统的整体现状比较好,随着经济的增长,电力需求也越来越大,但是存在地区的差异。电源结构也存在在一些问题,要调整这种电源结构,需从以下三个方面着手:一是每一种电源尤其火电需要进行技术进步调整;二是水电、火电及其他发电形式的比例应合理调整;三是电源布局也应调整。我国煤炭资源储藏量不少,但分布极不合理。负荷高的地方如华东地区基本没有煤,煤大部分集中在西北部或华北北部。而适宜建水电的地方大部分在西部。水能资源不少,但分布不合理。应该通过电网建设调整布局使电力资源得到最大优化我国幅员辽阔各种可再生资源比较丰富,要充分利用可再生资源,能够实现绿色电能的效果。 关键词:电力系统、能源、电源结构 China's electric power system status and development trend Ma Ningning (Qufu Normal university electricity information and automated institute zip code: 276826) Abstract:The more complicated the situation of China's electric power system, in order to understand the depth of China's electric power system development situation of China's electricity system were investigated. China's electric power system's overall status quo is better, with economic growth, electricity demand is also growing, but the existence of regional differences. Power structures also exist on some issues, it is necessary to adjust the power structure, to begin from the following three aspects: First, every kind of fire power, in particular the need for technological progress adjustment; Second, hydropower, thermal power and other forms of power generation should be proportional

系统短路容量简介

系统短路容量简介 当电力系统发生短路故障时,需要迅速切断故障部分,使其余部分能继续运行。这一任务要由继电保护装置和 断路器来完成。所谓“短路”,就是电力系统中 一切不正常的相与相之间或相与地之间发生 通路的情况。为了校验断路器的断流能力,或 者我们计算无功冲击与电压波动关系时,都需 要用到短路容量的概念。 定义 系统的短路容量是指电力系统在规定的运行方式下,关注点三相短路时的视在功率,它是表征电力系统供电能力强弱的特征参数,其大小等于短路电流与短路处的额定电压的乘积。从短路容量定义可以看出,它与电力系统的运行方式有关,在不同的运行方式下,数值 也不相同。因而工程应用上需要进一步弄清楚最大短路容量与最小短路容量的概念。所谓最大短路容量,是指系统在最大运行方式,即系统具有最小的阻抗值时关注点的短路容量;最小短路容量就是指系统在最小运行方式下,即系统具有最大的阻抗值时,发生短路后具有最小短路电流值时的短路容量。从以上定义可以看出:短路容量只是一个定义的计算量,而不是测量量,是

反映电力系统某一供电点电气性能的一个特征量,跟短路电流与该点故障前正常运行时的相间电压有关,短路容量是对电力系统的某一供电点而言的,反映了该点的某些重要性能:①该点带负荷的能力和电压稳定性;②该点与电力系统电源之间联系的强弱;③该点发生短路时,短路电流的水平。随着电力系统容量的扩大,系统短路容量的水平也会增大,该值是根据该地电力系统的所有相关参数计算出来的,既与本地用户的用电设备有关,又与电力系统的设备及运行方式有关。 最大短路容量 选择断路器时,用最大短路容量 设计院在设计一套装置时,电气上主要的把握就是考虑各级母线关合电流的等级,也就是考虑电网短路电流及发电机反馈电流的条件下,发生故障时断路器的分断能力。接触比较多 的钢厂和石化,其供电方式一般是将110kV电压经三绕组变压器后送到各处。历史悠久一点的厂大都采用6kV电压等级,这是因为开始的设备大都采用6kV电压等级。随着规模的扩大,包括设备规模和供电规模的扩大,采用6kV电压等级时,往往能导致最大短路电流超过40kA,也就是需要采用50kA等

我国电力系统现状和发展趋势

. .. . 我国电力系统现状及发展趋势 班级: 姓名: 学号:

我国电力系统现状及发展趋势 摘要: 关键词:电力系统概况,电力行业发展 1.前言 中国电力工业自1882年在诞生以来,经历了艰难曲折、发展缓慢的67年,到1949年发电装机容量和发电量仅为185万千瓦和43亿千瓦时,分别居世界第21位和第25位。1949年以后我国的电力工业得到了快速发展。1978年发电装机容量达到5712万千瓦,发电量达到2566亿千瓦时,分别跃居世界第8位和第7位。改革开放之后,电力工业体制不断改革,在实行多家办电、积极合理利用外资和多渠道资金,运用多种电价和鼓励竞争等有效政策的激励下,电力工业发展迅速,在发展规模、建设速度和技术水平上不断刷新纪录、跨上新的台阶。装机先后超过法国、英国、加拿大、德国、俄罗斯和日本,从1996年底开始一直稳居世界第2位。进入新世纪,我国的电力工业发展遇到了前所未有的机遇,呈现出快速发展的态势。 一、发电装机容量、发电量持续增长:“十一五”期间,我国发电装机和发电量年均增长率分别为10.5%、10.34%。发电装机容量继2000年达到了3亿千瓦后,到2009年已将达到8.6亿千瓦。发电量在2000年达到了1.37万亿千瓦时,到2009年达到34334亿千瓦时,其中火电占到总发电量的82.6%。水电装机占总装机容量的24.5%,核电发电量占全部发电量的2.3%,可再生能源主要是风电和太阳能发电,

总量微乎其微; 二、电源结构不断调整和技术升级受到重视。水电开发力度加大,2008年9月,三峡电站机组增加到三十四台,总装机容量达到为二千二百五十万千瓦。核电建设取得进展,经过20年的努力,建成以山、大亚湾/岭澳、田湾为代表的三个核电基地,截至2008年底,国已投入运营的机组共11台,占世界在役核电机组数的2.4%,装机容量约910万千瓦,为全国电力装机总量的1.14%、世界在役核电装机总量的2.3%。高参数、大容量机组比重有所增加,截止2009年底,全国已投运百万千瓦超超临界机组21台,是世界上拥有百万千瓦超超临界机组最多的国家;30万千瓦及以上火电机组占全部火电机组的比重提高到69.43%,火电机组平均单机容量已经提高到2009年的10.31万千瓦。在6000千瓦及以上电厂火电装机容量中,供热机组容量比重为 22.42%,比上年提高了3个百分点; 三、电网建设不断加强。随着电源容量的日益增长,我国电网规模不断扩大,电网建设得到了不断加强,电网建设得到了迅速发展,输变电容量逐年增加。2009年,电网建设步伐加快,全年全国基建新增220千伏及以上输电线路回路长度41457千米,变电设备容量27756万千伏安。2009年底,全国220千伏及以上输电线路回路长度39.94万千米,比上年增长11.29%;220千伏及以上变电设备容量17.62亿千伏安,比上年增长19.40%。其中500千伏及以上交、直流电压等级的跨区、跨省、省骨干电网规模增长较快,其回路长度和变电容量分别比上年增长了16.64%和25.97%。目前,我国电网规模已超过美国,跃居世界首位; 四、西电东送和全国联网发展迅速。我国能源资源和电力负荷分布的不均衡性,决定了“西电东送”是我国的必然选择。西电东送重点在于输送水电电能。按照经济性原则,适度建设燃煤电站,实施西电东送;

电场基本概念

基本概念、公式及规律: 1.两个规律: (1)库仑定律:真空中两个点电荷之间的相互作用力大小, 跟它们的电荷量的乘积成正比, 跟它们之间距离的二次方成反比, 方向在它们的连线上.(在判 断方向时还要结合“同种电荷相互推斥,异种电荷相互吸引”的规律.) (2)电荷守恒定律:电荷既不会创生,也不会消失,只能由一个物体转移 到另一个物体上,或者从物体的一部分转移到另一部分,且总量保持不变. 2.两个概念: (1)电场强度:①电场强度是从力的角度来描述电场的性质;②电场中某一 确定的点的电场强度是一定的(包括大小、方向). (2)电势:①电势是从能量的角度来描述电场的性质; ②电场中某一 确定点的电势在零势点确定之后是一定的;③某一点的电势跟零势点的选取有关, 而两点间的电势差却跟零势点的选取无关. 3.公式: (1)电场力:①F = k②F =qE (2)电场强度:①E = ②E = k③E = (3)电势差:①U AB = ②U AB =-③U =Ed (4)电场力做功:①W =qU ②W电= - △E P③W =Fscos (5)电势能:E P =q (6)电容:①C = ②C = 注意:以上各公式的选用条件。 重要规律: 1.与电场强度相关的规律:

(1)电场力的方向: 正电荷在电场中所受电场力的方向跟电场的方向相同,而负电荷所受电场力的方向跟电场方向相反. (2)电场线: ①电场线是理想模型,实际并不存在,它可形象地用来描述电场的分布. ②电场中任意两条电场线不会相交. ③电场线的疏密程度可定性的用来表示电场的强弱. ④电场线起始于正电荷(或无穷远处),终止于负电荷(或无穷远处) ⑤沿着电场线的方向电势越来越低;电场方向就是电势降低最快的方向. ⑥电场线不是电荷的运动轨迹; 电场线与电荷运动轨迹重合的条件是:①电场线必须是直线;②带电粒子只受电场力的作用;③带电粒子初速度为零或者初速度的方向与电场线的方向在同一条直线上. 2.与电势相关的规律: (1)电场力做功及电势能: ①电场力做功跟路径无关,只跟初末位置的电势差有关. ②电场力做多少正功,电势能就减少多少;电场力做多少负功,电势能就增加多少.(即: W电= - △E P) ③正电荷在电势高的地方电势能大;负电荷在电势高的地方电势能反而小. ④在只受电场力作用,且初速度为零的情况下: 正电荷总是向电势低的方向运动;而负电荷总是向电势高的方向运动.概言之,无论是正电荷,还是负电荷,都向着电势能减小的方向运动. ⑤在只受电场力作用时,电荷动能与电势能的总量保持不变.(但不能叫机械能守恒定律) ⑥如果电场力对正电荷做正功,则说明电荷是向电势降低的方向运动的;如 果电场力对负电荷做正功,则说明电荷是向电势升高的方向运动的.反之则相反。 (2)等势面:

(完整版)电力系统自动化的发展趋势和前景

目前电力系统市场发展中的自动控制技术趋向于控制策略的日益优化,呈现出适应性强、协调控制完善、智能优势明显、区域分布日益平衡的发展趋势。在设计层面电力自动化系统更注重对多机模型的问题处理,且广泛借助现代控制理论及工具实现综合高效的控制。在实践控制手段的运用中合理引入了大量的计算机、电子器件及远程通信应用技术。而在研究人员的组合构建中电力企业本着精益求精、综合适用的原则强调基于多功能人才的联合作战模式。在整体电力系统中,其工作方式由原有的开环监测合理向闭环控制不断发展,且实现了由高电压等级主体向低电压丰富扩展的安全、合理性过度,例如从能量管理系统向配电管理系统合理转变等。再者电力系统自动化实现了由单个元件到部分甚至全系统区域的广泛发展,例如实现了全过程的监测控制及综合数据采集发展、区域电力系统的稳定控制发展等。相应的其单一功能也实现了向多元化、一体化综合功能的发展,例如综合变电站实现了自动化发展与提升。系统中富含的装置性功能更是向着灵活、快速及数字化的方向发展;系统继电保护技术实现了全面更新及优势发展等。依据以上创新发展趋势电力系统自动化市场的发展目标更加趋于优化、协调与智能的发展,令潮流及励磁控制成为市场新一轮的发展研究目标。因此我们只有在实践发展中不仅提升系统的安全运行性、经济合理性、高效科学性,同时还应注重向自动化服务及管理的合理转变,引入诸如管理信息系统等高效自动化服务控制体系,才能最终令电力系统自动化市场的科学发展之路走的更远。 电力系统自动化市场科学发展前景 经过了数十年的研究发展,我国先进的计算机管理技术、通信及控制技术实现了跨越式提升,而新时期电力系统则毋庸置疑的成为集计算机、通信、控制与电力设备、电力电子为一体的综合自动化控制系统,其应用内涵不断扩充、发展外延继续扩展,令电力系统自动化市场中包含的信息处理量越来越庞大、综合因素越来越复杂,可观、可测的在数据范围越来越广阔,能够合理实施闭环控制、实现良好效果的控制对象则越来越丰富。由此不难看出电力系统自动化市场已摒弃了传统的单一式、滞后式、人工式管理模式,而全面实现了变电站及保护的自动化发展市场、调度自动化市场、配电自动化市场及综合的电力市场。在变电站及保护的自动化市场发展中,我国的500千伏变电站的控制与运行已经全面实现了计算机化综合管理,而220千瓦变电站则科学实现了无人值班看守的自动化控制。当然我国众多变配电站的自动化控制程度普及还相对偏低,同时新一轮变电站自动化控制系统标准的广泛推行及应用尚处在初级阶段,因此在未来的发展中我们还应继续强化自动化控制理念的科学引入,树立中小变电站的自动化控制观念、提升大型变电站的自动化控制水平,从而继续巩固电力自动化系统在整体市场中占据的排头兵位置,令其持之以恒的实现全面自动化发展。 电力调度及配电自动化市场的前景发展 随着我国电力系统自动化市场的不断发展电力调度自动化的市场规模将继续上升,省网及地方调度的自动化普及率将提升至近一半的比例,且市场需求将不断扩充。电力调度系统

电力系统的基本概念

第四章 电力系统潮流的计算机算法 4-1 电力系统潮流计算的方程是由什么方程推导的?有何特点?有几种表达形式? 4-2 电力系统的节点导纳矩阵有何特点?其和节点阻抗矩阵有何关系? 4-3 一个系统如无接地支路也未选定参考节点,其节点阻抗矩阵能否由节点导纳矩阵求逆得到? 4-4 潮流方程常用的求解方法有哪些?这些方法的共同点是什么?它们之间有何联系? 4-5 为什么求解潮流方程时要将系统中的节点分类?通常分成几类?各类节点有何联系? 4-6 何谓平衡节点?为什么潮流计算中必须有一个而且只有一个平衡节点? 4-7 牛顿-拉夫逊法的基本原理是什么?其潮流计算的修正方程式是什么?直角坐标与极坐标表示的修正方程式的个数有什么不同?为什么? 4-8 试问:用牛顿-拉夫逊法求解潮流时,在每次迭代过程中,哪些量是已知的,哪些量是待求的,已知量是如何获取的。方程中的待求量表示什么样的量。 4-9 P-Q 分解法推导时采用了什么假设?它为何既能提高计算速度又能保证同样的精度?如果实际电力系统的情况与采用的假设不符,会出现什么情况?如何克服? 4-10 何谓稀疏技术?其包含哪些方面的内容? 4-11 某六节点系统如图1所示。图中接地支路标注的是导纳标幺值(两侧相同),串联支路标注的是阻抗标幺值。试:(1)写出该网络的节点导纳矩阵;(2)若从节点4新建一条支路至节点6,如何修改导纳矩阵?(3)若支路3-4断开,如何修改导纳矩阵?(4)若变压器变比变为1:1.1,如何修改导纳矩阵?[注:(2)、(3)、(4)问均在(1)问基础上修改]。 图1 题4-11系统图 4-12 某系统节点导纳矩阵如下,试画出该系统网络结构并在图中标明各支路参数(串联和并联支路导纳)。 ????? ???????-+-+--+-+-+--+-+-+--=299.0j 0655.00216.0j 0387.01147.0j 0268.00072.0j 0129.0072.0j 0129.00216.0j 0387.0072.0j 0129.03763.0j 0731.012.0j 025.01147.0j 0268.0012.0j 025.02347 .0j 0483.0Y 4-13 试用牛顿-拉夫逊法解下列方程: ()()0 10 112 2 222 11=--= =--=x x x f x x x f ()102) 0(1==x x ,作两次迭代。注:准确解为618.121==x x (另一解为618.021-==x x ) 。

我国电力系统现状及发展趋势

WoRD文档下载可编辑 我国电力系统现状及发展趋势 班级: 姓名: 学号:

我国电力系统现状及发展趋势 摘要: 关键词:电力系统概况,电力行业发展 ‘、八— 1. 刖言 中国电力工业自1882年在上海诞生以来,经历了艰难曲折、发展缓慢的67年, 到1949年发电装机容量和发电量仅为185万千瓦和43亿千瓦时,分别居世界第21位和第25位。1949年以后我国的电力工业得到了快速发展。1978年发电装机容量达 到5712万千瓦,发电量达到2566亿千瓦时,分别跃居世界第8位和第7位。改革开 放之后,电力工业体制不断改革,在实行多家办电、积极合理利用外资和多渠道资金,运用多种电价和鼓励竞争等有效政策的激励下,电力工业发展迅速,在发展规模、建设速度和技术水平上不断刷新纪录、跨上新的台阶。装机先后超过法国、英国、加拿大、德国、俄罗斯和日本,从1996年底开始一直稳居世界第2位。进入新世纪,我国 的电力工业发展遇到了前所未有的机遇,呈现出快速发展的态势。 一、发电装机容量、发电量持续增长:“十一五”期间,我国发电装机和发电量年 均增长率分别为10.5%、10.34%。发电装机容量继2000年达到了3亿千瓦后,到2009 年已将达到8.6亿千瓦。发电量在2000年达到了1.37万亿千瓦时,到2009年达到34334亿千瓦时,其中火电占到总发电量的82. 6%。水电装机占总装机容量的24.5%, 核电发电量占全部发电量的2. 3%,可再生能源主要是风电和太阳能发电,总量微乎 其微; 二、电源结构不断调整和技术升级受到重视。水电开发力度加大,2008年9月,三峡电站机组增加到三十四台,总装机容量达到为二千二百五十万千瓦。核电建设取得进展,经过20年的努力,建成以秦山、大亚湾/岭澳、田湾为代表的三个核电基地, 截至2008年底,国内已投入运营的机组共11台,占世界在役核电机组数的 2.4%,装机容量约910万千瓦,为全国电力装机总量的 1.14%、世界在役核电装机总量的 2.3%。

第一讲:电力系统的概念

第一讲:电力系统的概念 电力系统的组成 1 发电部分(Generation ): 发电厂,将燃料(煤炭,燃油)的化学能,核燃料的原子能,水库的水能等转化为电能。 (1) 一次能源转换: 水库 锅炉 核反应堆(核锅炉) 水电厂:利用水的势能发电(可再生能源),必须有很大的水库蓄水,受气象与季节影响大。 火电厂:能源为煤、油、天燃气(不可再生),还需要空气和水。 核电站:能源为核燃料(铀),还需要空气和水。 抽水蓄能电站:同步电发电机与电动机合一,峰谷调节,快速备用。在电网负荷高峰时作为发电 机运行,将上游水库的水放到下游水库。在电网负荷低谷时作为同步电动机发电机运行,将下游 水库的水吸到到下游水库。 (2) 原动机: 水轮机 汽轮机 (3) 发电机 2 输配电部分 (Power TransmissionGrid ) : 输电网络,通过高压输电网络将电能由发电厂输送到负荷中心 V A " 石口 …用户 10KV 110KV 110KV 380V 10KV 10KV 1 110KV / i-\ -f * 4 r 、 1 ______ 380V 口口 □ □, 380V 380V 500KV 火电厂汽轮机锅炉 库 220KV 35KV F 220KV i 00 :配网 10KV 10KV 380V □ □ r 电网 电力系统 动力系统 地调 市调 8 网调 省调 水电厂水轮机 水n 380V — 占220KV \ -JL, I V A V A 亠"?二 : 一 500KV 串补 ,丄it ■ 10KV

(1)输电线 (2)变电站 2.1一次设备变压器断路器(开关)隔离开关(刀闸)限流电抗器(电感)载流导体(母线/输电线) CT/PT (Current Transformer/ Potential Transformer)绝缘子 接地装置补偿装置(调相机/电容/静补装置)中性点设备 避雷设备 2.2二次设备控制系统:直流电压,控制短路器开合信号系统:警报音响,位置信号(断路器开合)测量系统: 测量表计同步系统:保证同期操作(同压,同频,同相)用的设备测量设备 保护设备控制设备监视设备(包括故障录波) 3配电部分(Distribution Network system) 电压等级与调度范围的划分 1. 电网与电压等级国家规定的等级: 3、6、10、35、110、220、330、500、750(KV) 1、3.5、11、22. 、33.、50.、75 (万伏) 其中: 500,330,220KV 用于大电力系统主干线,330KV 文革期间建成的西北电网。准备提高一个电压等级750KV ,330KV 首先上升为750KV ,其余为新建。世界最高电压等级1100KV 。 电压等级为500/220/110(KV )的设备升压变压器(发电机—变压器组) 降压变压器 线路

短路容量计算

短路电流速算 一.概述 供电网络中发生短路时,很大的短路电流会使电器设备过热或受电动力作用而遭到损坏,同时使网络内的电压大大降低,因而破坏了网络内用电设备的正常工作.为了消除或减轻短路的后果,就需要计算短路电流,以正确地选择电器设备、设计继电保护和选用限制短路电流的元件. 二.计算条件 1.假设系统有无限大的容量.用户处短路后,系统母线电压能维持不变.即计 算阻抗比系统阻抗要大得多. 具体规定: 对于3~35KV级电网中短路电流的计算,可以认为110KV及以上的系统的容量为无限大.只要计算35KV及以下网络元件的阻抗. 2.在计算高压电器中的短路电流时,只需考虑发电机、变压器、电抗器的电抗,而忽略其电阻;对于架空线和电缆,只有当其电阻大于电抗1/3时才需计入电阻,一般也只计电抗而忽略电阻. 3. 短路电流计算公式或计算图表,都以三相短路为计算条件.因为单相短路或二相短路时的短路电流都小于三相短路电流.能够分断三相短路电流的电器,一定能够分断单相短路电流或二相短路电流. 三.简化计算法 即使设定了一些假设条件,要正确计算短路电流还是十分困难,对于一般用户也没有必要.一些设计手册提供了简化计算的图表.省去了计算的麻烦.用起来比较方便.但要是手边一时没有设计手册怎么办?下面介绍一种“口诀式”的计算方法,只要记牢7句口诀,就可掌握短路电流计算方法. 在介绍简化计算法之前必须先了解一些基本概念. 1.主要参数 Sd三相短路容量 (MVA)简称短路容量校核开关分断容量 Id三相短路电流周期分量有效值(KA)简称短路电流校核开关分断电流 和热稳定 IC三相短路第一周期全电流有效值(KA) 简称冲击电流有效值校核动 稳定

电力系统的发展及其所面临的问题

华南理工大学广州学院 电气工程系 《专业概论与发展》课程论文 题目电力系统的发展及其所面临的问题系部电气工程系 专业电气工程及其自动化 班级09电气(6)班 姓名张泽雄 学号200930084754 指导教师刘耀丹 评分 2010年 06月 01 日

电力系统的发展及其所面临的问题 1831年,法拉第发现了电磁感应现象并且建造了第一个发电机原型,从此电力的出现改变了人们的生活,随着电力的不断发展、电力需求的增长,人们开始提出建立电力生产中心的设想,通过电力生产中心向各个单元提供电能。电力系统的出现,使高效、无污染、使用方便、易于调控的电能得到更广泛应用,推动了社会生产各个领域的变化,开创了电力时代,发生了第二次技术革命,同时电力系统的出现促进了发电、变电、输电、配电和用电等环节的发展,使各个环节独自发展到了一个新高度,同时共同促进电力系统进一步的发展。 一、发电 19世纪70年代,欧洲进入了电力革命时代。不仅大企业,就连小工厂也都纷纷采用新的动力──电能。最初,一台发动机设备只供应一栋房子或一条街上的照明用电,人们称这种发电站为“住户式”电站,发电量很小。随着电力需求的增长,人们开始提出建立电力生产中心的设想——发电厂。 1882年,爱迪生在美国纽约珍珠街建立拥有6台发动机的发电厂,供应圣马厂邮局,桥西的城市大教堂和桥头旅馆等用电,发电厂利用蒸汽机驱动直流发电机,电压为110伏,电力可供1000个爱迪生灯泡用。同年末纽约珍珠街爱迪生公司发电厂也装上了同型机组,这是美国的第一座发电厂,内装6台发动机,可供6000个爱迪生灯泡用电,于是,后来在俄国彼得堡的芬坦克河上出现了水上发电站,发电站建在驳船上,为涅夫斯基大街照明供电。 传统的发电厂可分为火力发电厂、水力发电厂、风力发电厂、原子能发电厂、地热能发电厂、垃圾发电厂等等。目前在我国电力结构中,火力发电占75.6%,水力发电占23.5%,核能发电占0.9%,还有少量是利用风能、太阳能、地热能和海洋能等新能源及可再生能源发电。从我国发电能源结构中可以看出,我国的发电主要是依靠火力发电,在前期粗放型的经济发展中,火力发电为经济的发展提供了巨大的动力,但是随着经济的发展,可持续发展战略的提出,火力发电这一高耗能、高污染的发电方式以不能满足日益严格的环境要求,因而国家需要不断地优化发电能源结构,实现能源的多样化。拒不完全统计,小功率发电机组在生产一度电时将消耗360克煤,而大功率机组在在生产一度电时消耗290克煤,因而压缩小机组以提高发电效率,小机组将由大机组代替,同时把发展水电摆在重要位置,还要把天然气发电、其他新能源发电提到重要议程上来。 十一五规划以来,我国的电源结构持续优化,清洁能源发电比例持续提高。火电机组继续向大容量、高参数、环保型方向发展。截至8月底,全国投运百万千瓦超超临界机组27台,是世界上拥有百万千瓦超超临界机组最多的国家;30万千瓦及以上机组占全部火电机组的比重已从2000年的33.86%提高到2009年底的69.43%。今年水电装机容量突破2亿千瓦,是世界上水电装机规模最大的国家。核电在建施工规模2129万

电力系统的基本概念

电力系统的基本概念: 电力系统是由发电机、变压器、电力线路及用电设备组成的发电、输电、配电和用电的整体。 电力网是由变电所、电力线路等变换、输送和分配电能的设备连接在一起所组成的网络。它将发电厂与用户连接在一起。是电能产生与消费的纽带。 目前我国有5个跨省的电力系统,即华北、华东、华中、东北、西北电力系统,其中华东电力系统总装机容量和年发电量都占据首位 电力系统的特点及运行应满足的基本要求: 电能作为一种商品,它的生产、输送、分配和使用与其他工业产品相比有明显不同的特点,主要表现在以下几个方面: 电能的生产、传输及消费几乎同时进行,因为发电设备任何时刻生产的电能必须与消耗的电能相平衡。 电能与国民经济各部门之间的关系密切。电能的中断或减少直接影响国民经济生产各部门及人们的生活。 电力系统的暂态过程非常短暂。电能以电磁波的形式传输,传输速度为30万KM/S,电力系统的发电机、变压器、电力线路以及用电设备的投入和退出,都在一瞬间完成。故障的产生及发展非常短促,电力系统的暂态过程非常迅速。 对电能质量的要求颇为严格。电能的质量的好坏由电压的大小、频率和波形质量能否满足要求来衡量。任一个参数不满足要求都将造成不良的影响,甚至造成产品不合格,损坏设备或大面积停电等。

为适应上述特点,对电力系统的运行提出如下基本要求: 一、保证供电的可靠性。 间断供电,将会使生产停顿,生活混乱甚至危及人身和设备的安全,给国民经济造成极大损失,这种损失远远超出对电力系统本身的损失。造成对用户中断供电的原因主要有: 电力系统的设备发生故障; 1、电力系统的误操作; 2、电力系统继电保护的误动作; 3、运行管理水平低,维修质量不合格等。 提高电力系统运行的可靠性,应改善设备质量,提高运行管理水平和技术水平及运行检修人员的责任心。另一方面要完善电力系统的结构,提高抗干扰能力,充分发挥计算机进行监视和控制的优势,不断提高电力系统的自动化水平。 二、保证良好的电能质量。电压质量和频率质量一般以偏离额定值的大小来衡量,实际用电设备均按额定电压设计,电压偏高或偏低都将影响用电设备运行的技术指标和经济指标,甚至不能正常工作。一般规定,电压偏移不应超过额定电压的±5%;频率偏差不超过±0.2~0.5HZ等。正弦交流电的波形质量一般以波形的畸变率衡量。所谓波形的畸变率指的是各次谐波有效值的平方和的方根值与基波有效值的百分比。10KV允许为4%。 三、保证系统运行的经济性。 合理发展电网,优化电网结构和运行方式,降低电能传输过程中的损

1电路基本概念和基本定律

1电路基本概念和基本定律 知识要点 ·了解电路和电路模型的概念; ·理解电流、电压和电功率;理解和掌握电路基本元件的特性; ·掌握电位和电功率的计算;会应用基尓霍夫定律分析电路。 随着科学技术的飞速发展,现代电工电子设备种类日益繁多,规模和结构更是日新月异,但无论怎样设计和制造,几乎都是由各种基本电路组成的。所以,学习电路的基础知识,掌握分析电路的规律与方法,是学习电工学的重要内容,也是进一步学习电机、电器和电子技术的基础。本章的重点阐明有关电路的基本概念、基本元件特性和电路基本定律。 1.1电路和电路模型 1.1.1 电路的概念 1. 电路及其组成 简单地讲,电路是电流通过的路径。实际电路通常由各种电路实体部件(如电源、电阻器、电感线圈、电容器、变压器、仪表、二极管、三极管等)组成。每一种电路实体部件具有各自不同的电磁特性和功能,按照人们的需要,把相关电路实体部件按一定方式进行组合,就构成了一个个电路。如果某个电路元器件数很多且电路结构较为复杂时,通常又把这些电路称为电网络。 手电筒电路、单个照明灯电路是实际应用中的较为简单的电路,而电动机电路、雷达导航设备电路、计算机电路,电视机电路是较为复杂的电路,

但不管简单还是复杂,电路的基本组成部分都离不开三个基本环节:电源、负载和中间环节。 电源是向电路提供电能的装置。它可以将其他形式的能量,如化学能、热能、机械能、原子能等转换为电能。在电路中,电源是激励,是激发和产生电流的因素。负载是取用电能的装置,其作用是把电能转换为其他形式的能(如:机械能、热能、光能等)。通常在生产与生活中经常用到的电灯、电动机、电炉、扬声器等用电设备,都是电路中的负载。中间环节在电路中起着传递电能、分配电能和控制整个电路的作用。最简单的中间环节即开关和联接导线;一个实用电路的中间环节通常还有一些保护和检测装置。复杂的中间环节可以是由许多电路元件组成的网络系统。 图1-1所示的手电筒照明电路中,电池作电源,灯作负载,导线和开关作为中间环节将灯和电池连接起来。 图1-1手电筒照明实际电路 2. 电路的种类及功能 工程应用中的实际电路,按照功能的不同可概括为两大类:一是完成能量的传输、分配和转换的电路。如图1-1中,电池通过导线将电能传递给灯,灯将电能转化为光能和热能。这类电路的特点是大功率、大电流;二是实现对电信号的传递,变换、储存和处理的电路,如图1-2是一个扩音机的工作过程。话筒将声音的振动信号转换为电信号即相应的电压和电流,经过放大处理后,通过电路传递给扬声器,再由扬声器还原为声音。这类电路特点是

短路容量

短路容量 当电力系统发生短路故障时,需要迅速切断故障部分,使其余部分能继续运行。这一任务要由继电保护装置和断路器来完成。 来源 所谓“短路”,就是电力系统中一切不正常的相与相之间或相与地之间发生通路的情况。为了校验断路器的断流能力,或者我们计算无功冲击与电压波动关系时,都需要用到短路容量的概念。 2定义 短路容量是指电力系统在规定的运行方式下,关注点三相短路时的视在功率,它是表征电力系统供电能力强弱的特征参数,其大小等于短路电流与短路处的额定电压的乘积。从短路容量定义可以看出,它与电力系统的运行方式有关,在不同的运行方式下,数值也不相同。因而工程应用上需要进 一步弄清楚最大短路容量与最小短路容量的概念。所谓最大短路容量,是指系统在最大运行方式,即系统具有最小的阻抗值时关注点的短路容量;最小短路容量就是指系统在最小运行方式下,即系统具有最大的阻抗值时,发生短路后具有最小短路电流值时的短路容量。从以上定义可以看出:短路容量只是一个定义的计算量,而不是测量量,是反映电力系统某一供电点电气性能的一个特征量,跟短路电流与该点故障前正常运行时的相间电压有关,短路容量是对电力系统的某一供电点而言的,反映了该点的某些重要性能:①该点带负荷的能力和电压稳定性;②该点与电力系统电源之间联系的强弱; ③该点发生短路时,短路电流的水平。随着电力系统容量的扩大,系统短路容量的水平也会增大,该值是根据该地电力系统的所有相关参数计算出来的, 既与本地用户的用电设备有关,又与电力系统的设备及运行方式有关。 3最大短路容量编辑 选择断路器时,用最大短路容量 设计院在设计一套装置时,电气上主要的把握就是考虑各级母线关合电流的等级,也就是考虑电网短路电流及发电机反馈电流的条件下,发生故障时断路器的分断能力。接触比较多的钢厂和石化,其供电方式一般是将110kV电压经三绕组变压器后送到各处。历史悠久一点的厂大都采用6kV电压等级,这是因为开始的设备大都采用6kV电压等级。随着规模的扩大,包括设备规模和供电规模的扩大,采用6kV电压等级时,往往能导致最大短路电流超过40kA,也就是需要采用50kA等级的断路器。而50kA断路器的成本要比40kA的高的多,所以开关器件选型困难。现在新上的系统或改造的系统,都是10kV的电压等级,其主要原因就在于此。

相关文档