文档库 最新最全的文档下载
当前位置:文档库 › 植物过氧化氢酶的研究进展_南芝润

植物过氧化氢酶的研究进展_南芝润

植物过氧化氢酶的研究进展_南芝润
植物过氧化氢酶的研究进展_南芝润

植物过氧化氢酶的研究进展

南芝润 范月仙3

(山西农业大学文理学院,山西太谷 030801)

摘 要:过氧化氢酶是生物体内主要的抗氧化酶之一。其功能是催化细胞内过氧化氢的分解,从而使细胞免于遭受过氧化氢的毒害。几乎所有的生物体都存在过氧化氢酶。在植物中过氧化氢酶主要清除光呼吸、线粒体电子传递以及脂肪酸β-氧化等过程中产生的H

2

O2。本文主要介绍了过氧化氢酶的生理功能,过氧化氢酶基因的克隆以及在基因工程上的应用,论述了过氧化氢酶基因在转基因植物中的应用前景。

关键词:过氧化氢酶;生理功能;基因工程

中图分类号 Q554.6 文献标识码 A 文章编号 1007-7731(2008)05-27-03

Advance of Researches on Ca t a l a se i n Pl an ts

Nan zh i run fan yuex i a n3 (Depart m ent of art and science,shanxi agriculture of university,taigu030801)

Abstract:Catalase is one of the main anti oxidant enzy mes in O rganis m s1Catalases can catalyse the decompositi on of the cel2 lular hydr ogen-per oxide and thus p r otect cells fr om hydr ogen per oxide by the pois on1Catalases al m ost exist in all living or2 ganis m s1H2O2p r oduced in the light breathing,electr on trans port in m it ochondrial and fatty acidβ-oxidati on p r ocess was mainly re moved by catalase in the p lant1This paper briefly intr oduced the physi ol ogical functi ons of the catalases,gene cl o2 ning and app lying of p lant catalase;and t olerances t o bi otic and abi otic stresses of transgenic catalase gene p lants als o are advised as s ome good traits in p lant breeding1

Key words:catalase,Physi ol ogical functi on,Genetic Engineering

过氧化氢酶又称触酶(CAT),是一类广泛存在于动物、植物和微生物体内的酶。过氧化氢酶是生物演化过程中建立起来的生物防御系统的关键酶之一。其生物学功能是催化细胞内过氧化氢的分解防止过氧化。CAT与S OD、P OD、ASP一起被称为酶保护系统[1]。

过氧化氢酶是一种四聚体血红素酶,也是首次得到纯化和晶体化的酶。按照催化中心结构差异可分为两类: (1)含铁卟啉结构CAT,又称铁卟啉酶(FeCAT);(2)含锰卟啉结构CAT,即锰离子代替铁离子,又称锰过氧化氢酶(MnCAT)[2]。该酶与生物体的抗逆性以及很多疾病(例癌症,糖尿病等)密切有关,近年来受到广泛关注。在植物中CAT主要与抗逆性和氧化衰老等生理过程有关。环境因子如光,温和植物激素类物质等多种外界因素均能影响CAT基因的表达及其活性。本文简要介绍了过氧化氢酶生理生化功能、过氧化氢酶基因的克隆和在植物抗逆性上的研究进展。

1 过氧化氢酶的生理功能

过氧化氢酶的研究可追溯到19世纪初,随后的研究发现CAT广泛存在于动物、植物和微生物中,并被进行广泛的研究,近年来随着转基因技术的不断完善和发展,过氧化氢酶又成为各个领域的研究重点。

111 植物的抗逆信号因子 在植物体中H2O2有双重作用:一方面,适量的H

2

O2作为一种信号,是复杂信号网络传道中的一个普遍存在的因子,通过诱导一系列防御机制来保护植物细胞免受氧化胁迫;另一方面,过量的H

2

O2则导致过氧化损伤,对植物体造成伤害。CATs作为过氧化

物的重要清除剂,在植物的抗逆性上起着重要的作用。它的抗逆性包括抗干旱、低温、盐碱、病害以及除草剂等等。112 调节细胞凋亡的作用因子 生物体衰老和疾病发生的分子机制被认为是由细胞凋亡引起的。B re mnan提出H2O2可能是启动衰老或者细胞凋亡的重要因子,甚至是决定因子[3]。M ittler等在病毒诱导烟草细胞凋亡的实验中,发现细胞质抗坏血酸过氧化物酶活性下降,据此认为细胞清除过氧化氢能力下降,导致过氧化氢的积累,最终诱发细胞凋亡过程[4]。还有研究报道,水杨酸通过抑制植物体内过氧化物酶活性,而增加过氧化氢含量,引起细胞死亡,因此过氧化氢含量的增加很可能是细胞凋亡所必需的[5]。De mura和Fukuda(1994)在百日菊的叶肉细胞被诱导分化成导管时,发现在NADPH氧化还原酶作用下产生

了大量的H

2

O2,从而诱导了细胞凋亡的发生;夏慧莉等采

用FeS O

4

/H2O2系统也诱发了烟草细胞的凋亡[6]。尽管H2O2被认为是细胞凋亡的关键因子,但是它如何诱导细胞产生凋亡,是怎样把相关信号传递给相邻的活细胞仍不

十分清楚。几个方面的研究证明H

2

O2可能作用于线粒

体,如用H

2

O2处理拟南芥的细胞,可以引起线粒体中H2O2的升高,导致其功能的改变和细胞凋亡[7]。因此, CAT作为植物体内过氧化氢的重要清除剂,它的活性的增

强能够更好的调控生物体内H

2

O2的水平,从而延缓或者

作者简介:南芝润(1979-),女,山西运城人,硕士研究生。3通讯作者 收稿日期:2008-01-07

阻止细胞凋亡的发生。

113 维持植物细胞内的氧化-还原动态平衡 氧化还原平衡是细胞功能的关键决定因子,任何重要的不平衡都会

导致严重损伤或细胞死亡。细胞的氧还平衡与ROS(Re2 activeoxygen s pecies)的积累水平有关,现在已经清楚的认识到ROS如H

2

O2在植物体中有重要作用,H2O2使酶的巯基氧化而失活,破坏光合作用等代谢过程,引起细胞过

氧化,最终导致细胞死亡[8]。CATs是植物体内控制H

2

O2的水平和植物细胞的氧还平衡的重要酶类。CATs活性降

低就会导致H

2

O2增加,GSH(Glutathi one)库氧化,抗坏血酸减少,使植物不能产生足够的还原力,不能持续进行抗坏血酸—谷胱甘肽再循环,破坏细胞内的氧还平衡;CATs 活性低的植物对盐和除草剂等环境胁迫特别敏感,离子渗漏、膜脂过氧化加重,光合色素破坏,导致光合活性和PSII 效率降低[9]。所以高水平的CATs活性是植物抗氧化胁

迫所必需的。可以说CAT是细胞内产生H

2

O2的一种接收器,它在植物细胞内、细胞器内等不同区域之间所起的抗氧化防御作用是非常重要的。

2 过氧化氢酶基因的克隆和抗逆性研究与应用

211 CAT基因的克隆和表达特性 当前许多实验室从不同的植物中克隆相关的CAT基因,同时研究了这些基因的表达情况和功能。在烟草、玉米、大麦与拟南芥中,CAT 基因表达受强光抑制;同时基因表达具有时钟调控性。CAT的酶功能与活性易受环境因子如光、温和外界环境的影响[10]。吕俊等人的实验(2005)表明,过氧化氢酶可受6 -BA诱导,通过6-BA的诱导提高CAT酶活性,减少有害物质的积累,从而提高水稻的抗寒性[11]。龚慧明的实验(2007)证明磁场对细胞膜具有一定的修复作用。磁场处理能提高酶的活性。这是因为P OD、CAT酶中含有金属离子,金属离子在磁场的作用下发生定向排列,引起了酶构像的变化,进而激活了酶[12]。Conrath和Chen等的实验结果显示,S A预处理的植物在生物或非生物胁迫前的CAT活性显著受抑[13]-[14]。又有研究表明S A处理对于植物的CAT活性没影响[15]。这可能是因为S A处理的方法和浓度不同造成的。刘汉梅的研究(2006)结果显示玉米的CAT3基因经14冷锻炼处理后在芽鞘中的表达增强,表明该基因受低温的诱导表达[16]。孙建伟通过实验

(2007)发现S O

2

对玉米叶片CAT活性有极显著的抑制作

用,去除S O

2

逆境因子一定时间后,CAT活性可逐渐恢复至正常水平。玉米叶片中CAT活性的下降和恢复可能与CAT基因的转录表达有关[17]。

212 过氧化氢酶基因的抗氧化和抗逆功能的表现和应用

 在动物中过氧化氢酶的应用研究主要在抗氧化性和延迟衰老方面,这方面的研究有较多的报道。例如把人的cat基因定位在小鼠线粒体中,线粒体中CAT活性显著增强,延长了小鼠的寿命,说明线粒体是活性氧产生的主要源泉和被清除的重点位置,其原理就是通过CAT使活性氧保持在一个较低的水平,抑制了寿命的衰老途径的发生从而延长了寿命[18]。孙跃玲等人用含过氧化氢酶基因的重组腺病毒转染人血管平滑肌细胞,结果显示转染后的血管平滑肌细胞过氧化氢酶表达明显增多,经T UNEL分析进一步地显示了含CAT基因的重组腺病毒组凋亡细胞显著多于对照组(P<01001);再次说明了CAT的抗氧化活性能够改善上皮的抗损伤能力[19]。另外把外源过氧化氢酶基因在人眼睛晶体上皮细胞中稳定表达,可以提高晶体上皮细胞的抗氧化能力,减少因晶体上皮细胞凋亡而引起的白内障[21]。

在工业上,利用DNA重组技术构建来源于嗜热微生物的过氧化氢酶基因工程菌,对大规模生产过氧化氢酶蛋白具有重大的经济价值[20]。此外过氧化氢酶在环保、食品与乳制品业、纸浆和造纸业等领域也具有广阔的应用前景。

在农业生产领域,为了提高水稻的耐低温伤害能力,将小麦的过氧化氢酶导入水稻中。经检测发现该转基因水稻对于低温伤害的耐性有一定的提高。这个研究表明高的过氧化氢酶活性与高水平的耐冷性密切相关。这为培育抗逆性状优良的水稻提供了依据。

3 转过氧化氢酶基因植物的抗逆性

现已证实增强植物抗逆性的途径之一是提高植物体内抗氧化酶类活性及增强抗氧化代谢的水平。利用基因工程手段将外源的基因导入到需改良的植物中,获得的转基因植株中S OD、APX、GR和过氧化氢酶的过量表达提高了植株对氧化胁迫的抗性,为抗逆育种-改良作物的抗逆性提供可行途径。

将小麦的过氧化氢酶导入水稻中,获得过氧化氢酶高效表达的转基因水稻。这些转基因水稻的过氧化氢酶活性增强,从而提高了对低温伤害的耐性。这为过量表达过氧化氢酶可提高植物的抗低温性提供了很好的例证[22]。

杨芳将豌豆的过氧化氢酶基因转入玉米中,转基因植株的过氧化氢酶活性比对照有很大幅度的提高。在强光等逆境条件下,在一定程度上保护了植株的光还原系统,维持了植株的光和能力。另外转过氧化氢酶转基因的玉米自交系7-2,对干旱等环境的抗性也明显增强,这不仅说明外源过氧化氢酶基因的转入能够提高玉米对干旱等环境胁迫的抗性,而且也保护了植物免受强光的灼烧,维持正常的光合作用[23]。这些转基因玉米的研究结果表明了在强光等逆境条件下,过氧化氢酶可以减少光呼吸产生的H

2

O2、提高光合效率、促进光合作用,同时也提高了耐旱能力。支持这些观点的报道较多,如Shikanai(1998)和M iyaga wa(2000)分别验证了转大肠杆菌(Escherichia co2 li)过氧化氢酶基因的烟草植株,其植株叶绿体内的过氧化氢酶表达增强了对光、干旱和除草剂等诱导的氧化胁迫的抗性[26,27];另外,Polidor os将玉米CAT2基因转入烟草,经检测发现转基因植株对除草剂引起的伤害抗性增强,说明过氧化氢酶也能提高植物对除草剂的抗性[28]。

余迪求发现在转基因马铃薯植株体过量的表达过氧

化氢酶基因,能够提高马铃薯抗病性[24]。Talarczyk等人在烟草中过量表达酵母Cat1,经检测发现转基因植株抗病毒侵染能力提高,产生的坏死斑比未转基因植物小[25]。

从上面的例子可以看出:过氧化氢酶在植物防御、胁迫应答以及控制细胞的氧化还原平衡等方面起着重要的作用。它的抗低温、干旱、病毒以及除草剂的功能已经在转基因植物中得到验证。这说明通过过量表达过氧化氢酶可以提高植物的抗逆性具有一定的可行性,为我国的育种产业提供了经验和打下了一定的基础。

4 过氧化氢酶基因在农业上的应用前景

在干旱、盐渍和低温等逆境条件下,植物体内产生大量的活性氧,形成氧化逆境。由于活性氧具有非常活泼的化学性质,它对细胞产生严重的伤害,因此活性氧的及时清除对植物抗逆境性能的提高具有重要的意义[29]。为了减少这种伤害,植物在进化过程中形成了酶类和非酶类的抗氧化系统。在活性氧的清除过程中,过氧化氢酶CAT 起重要的作用,但在逆境条件下,植物本身的抗氧化系统受诱导表达的能力比较弱,不能及时清除体内的活性氧,影响了植物抗逆性的提高。随着分子生物学与现代生物技术的发展,使人们从分子水平上深入认识植物与各种逆境之间的关系成为现实,并且为改良作物的抗逆境性能开拓了新的途径。

参考文献

[1]张坤生,田荟琳。过氧化氢酶的功能及研究。食品科学。2007,

1;8-10

[2]刘冰,梁婵娟。生物过氧化氢酶研究进展。中国农业通报2005,

21(5):223-232

[3]B renan T1I nvolvement of hydr ogen per oxide in the regulati on of se2

nescence in pear[J]1p lant physi ol,1997,(75)1

[4]M ittler R,La m E,ShulaevV et al1Signal contr olling the exp ressing of

cyt os olic ascorbate per oxidase during pathogen induced p r ogrammed cell death in tabacco[J]1Plant Mol B i ol,1999,39(5):1025-10351

[5]Chen Y,Sliva H,Klessing D F1Active oxygen s pecies in the inducti on

of p lant syste m acquired resistance by salicylic acid[J]1Science, 1993,263:1883-1886

[6]杜秀敏等1植物中活性氧的产生及清除机制[J]1生物工程学

报,2001,17(2):121-125

[7]Ti w ari B S,Belenghi B,Levine A1Oxidative stress increased res p i2

rati on and generati on of reactive oxygen s pecies,resulting in ATP de2 p leti on,opening of m it ochondrial per meability transiti on,and p r o2 gra mmed cell death1Plant Physi ol,2002,128:

[8]VRANOVáE,I N ZéD,BREUSEGE MF V1Signal transducti on during

oxidative stress[J]1J Exp Bot,2002,53(372):1227-12361 [9]W illekens H,Cha mnongpol S,Davey M,Schraudner M,Langebar2

tels C,Van Montagu M,I nze D,Van Ca mp W1catalase is a sink for H2O2and is I ndis pensable for Stress defence in C3Plants1E MBO J1,1997,16(16):4806-48161

[10]McClung C R1Regulati on of catalase in A rabidop sis1Free Radical

B i olMed11997,23:489-496

[11]吕俊,朱利泉,沈福成,张毅。6-BA诱导的过氧化氢酶及其在

提高水稻抗寒力中的作用研究。农业生物技术科学。2005,21

(12):64-67

[12]龚慧明1磁场处理对蚕豆种子活力及幼苗过氧化氢酶?过氧

化物酶活性的影响1安徽农业科学。2007。35(11):6723-6724

[13]Chen Z,Silva H,Klessig DF.Active oxygen s pecies in the inducti on

of p lants system ic acquired resistance by salicylic acid.Science.

1993.262:1883-1886

[14]Conrath U,Chen Z,R icigliano JR et al.T wo inducers of p lant de2

fense res ponses2,6-dichl or ois onicotinic acid and salicylic acid,in2 hibit catalase activity in t obacco.Pr oc Natl Acad Sci US A,1995,92: 7143-7147

[15]何亚丽,刘友良,陈权等.水杨酸和热锻炼诱导的高羊茅幼苗的

耐热性与抗氧化的关系.植物生理与分子生物学学报.2002,28: 89-95

[16]刘汉梅,张怀渝,谭振波,黄玉碧1玉米CAT3基因的克隆及低

温表达1四川农业大学学报12006,24(3):272-275

[17]孙建伟.二氧化硫对玉米细胞过氧化氢酶活性的影响。作物学

报。2007,33(12):1968-1971

[18]SCHR I N ER S E,L I N F ORD N J,MARTI N G M,et al,Extensi on of

murine life s pan by overexp ressi on Of catalase targeted t o m it ochon2 drial[J]1science,2005,308(5730):1909-1911

[19]孙跃玲,涂远超,王家宁,黄永章。过氧化氢酶过度表达对血

管平滑肌细胞凋亡的影响。中国动脉硬化杂志2005,13(4)425 -428

[20]段绪果等。耐热过氧化氢酶基因工程的构建及其发酵条件。

食品与生物技术学报。2006,25(2);74-78

[21]李立梅,刘戈飞,张一新,张劲松。外源过氧化氢酶基因在晶体

上皮细胞中的表达及其抗氧化能力。中国临床康复。2004,8

(17);3319-3321

[22]李思义.导入小麦过氧化氢酶培育耐低温水稻1生物技术通报

2001,3,48-49

[23]杨芳.豌豆过氧化氢酶基因在玉米种的转化。山东师范大学硕

士论文

[24]余迪求等1烟草II型过氧化氢酶基因的表达对转基因马铃薯

抗病性的增强作用。植物学报,1999,41(2):115-124

[25]Talarczyk A,Krzy mowska M,Borucki W,et al1Effect of yeast

CAT1gene exp ressi on on res ponse of t obacco p lants t o t obacco mosaic virus infecti on[J]1Plant Physi ol,2002,129:1032-1044 [26]Shikanai T,Takeda T,Ya mauchi H,Sano S,Tom iza wa K,Yokota

A,Shigeoka S(1998)1I nhibiti on of ascorbate per oxidase under oxi2 dative stress in t obacco having bacterial catalase in chl or op lasts1 FE BS Lett428:47-51

[27]M iyaga wa Y,Ta moiM,Shigeoka S(2000)1Evaluati on of the de2

fence syste m in chl or op lasts t o phot ooxidative stress caused by pa2 raquat using transgenic t obacco p lants exp ressing catalase fr om Es2 cherichiacoli1Plant Cell Physi ol41:311-320

[28]Polidor os AN,Myl ona P V,Scandali os JG(2001)1Transgenic t o2

bacco p lants exp ressing the maize Cat2gene have altered catalase lev2 els that affect p lant-pathogen interacti ons and resistance t o oxidative stress1Transgenic Res10(6):555-569

[29]杜秀敏,殷文璇,赵彦等.植物中活性氧的产生及清除机制.生

物工程学报,2001,17(2):121-124(责任编辑:张琪琪)

植物糖生物学研究进展

植物学报 Chinese Bulletin of Botany 2010, 45 (5): 521–529, https://www.wendangku.net/doc/5f7416649.html, doi: 10.3969/j.issn.1674-3466.2010.05.001 —————————————————— 收稿日期: 2010-01-18; 接受日期: 2010-03-23 基金项目: 863计划(No.2006AA10A213, No.2007AA091601)和中国科学院知识创新工程重要方向项目(No. KSCX2-YW-G-041) * 通讯作者。E-mail: zxm@https://www.wendangku.net/doc/5f7416649.html,; dyguang@https://www.wendangku.net/doc/5f7416649.html, 植物糖生物学研究进展 尹恒, 王文霞, 赵小明*, 杜昱光* 中国科学院大连化学物理研究所辽宁省碳水化合物重点实验室, 大连 116023 摘要 自1988年糖生物学概念提出以来, 国内外科学家在动物、微生物领域取得了大量的研究成果, 但植物糖生物学的研究进展较慢, 目前少见系统的专著或综述。该文围绕植物正常生长时糖信号、逆境时糖信号、糖蛋白及其糖链、重要糖基转移酶及植物凝集素等植物糖生物学的主要问题, 全面阐述植物糖生物学的各个研究分支, 并介绍各领域的最新研究进展。提出了植物糖生物学的概念, 并将其定义为研究植物与糖类互作机制及植物体内糖(糖链与糖分子)结构及生物学功能的科学。 关键词 糖蛋白, 糖基转移酶, 凝集素, 植物糖生物学, 糖信号 尹恒, 王文霞, 赵小明, 杜昱光 (2010). 植物糖生物学研究进展. 植物学报 45, 521–529. 糖类是生物体的重要组成成分, 在自然界中分布广泛, 含量丰富。但直到20世纪上半叶, 糖类仍被视为是缺乏生物特异性的一类惰性化合物, 只是作为代谢能量来源或充当结构保护材料(如植物细胞壁和昆虫的外壳), 在生物体内功能较少。由于糖类物质结构复杂、糖链分析技术缺乏, 科学家们对其研究关注不多, 使得糖类的研究远远落后于另2种生物大分子 ——核酸和蛋白质。 20世纪70年代以来, 随着糖链解析技术水平的提高以及分子生物学的发展, 尤其是人、拟南芥(Arabidopsis thaliana )等模式生物基因组测序的完成, 围绕糖类物质的研究工作日渐增多。越来越多的证据表明, 糖类物质全面参与了生物的生殖发育、生长、应激等过程, 是很多生理和病理过程中分子识别的决定因素。最初, 这些围绕糖的研究工作被认为是糖化学的一个分支, 但很快其中大量的生物学工作远远超出了糖化学的范畴, 因此科学家们提出了糖生物化学的概念, 而随着研究内容的进一步深入, 糖生物化学也不能完全涵盖糖在生物领域的最新研究进展。1988年, 生化领域的著名杂志《生物化学年评》发表了英国牛津大学Rademacher 等人题为“糖生物学(Glycobiology)”的一篇综述文章(Rademacher et al., 1988), 标志着糖生物学这一学科的正式诞生。此后, 围绕着糖链结构及糖的生物学功能, 科学家们在糖链与疾病的关系、天然产物中糖的分离提纯以及功能糖的制备与应用等方面进行了大量的工作, 取得了一定进展。2001年, Science 杂志汇编了Hurtley 等人的7篇综述和6篇简介, 以《灰姑娘的马车来了》为题编辑了一期“糖和糖生物学”专辑, 对糖生物学最新的研究成果及前景进行了综述和展望, 从而将糖生物学的研究推向了一个新的高度(Hurtley et al., 2001)。2006年, Nature 杂志也推出了糖化学与糖生物学的专辑, 全面介绍了糖生物学领域的研究进展。我国糖生物学的开展与国际接轨较快, 1995年金城等人将糖生物学概念引入中国(金城和张树政, 1995), 此后, 我国科学家在糖生物合成和糖链功能解析等领域取得了一定进展。 广义糖生物学的含义是: 研究自然界中广泛分布的糖(糖链或聚糖)的结构、生物合成和生物学意义。但有关糖类结构和生物合成的研究也是已有学科糖化学和糖生物化学的主要研究内容之一, 所以糖生物学研究和讨论的对象更多地聚焦在一些重要的功能糖、生物体内糖缀合物的生物学功能上。实际上, 糖生物学的研究焦点是糖类和其它分子的关系, 有一种观点认为, 蛋白质和糖类的相互作用是糖生物学的基础(王克夷, 2009)。目前糖生物学的工作多围绕动物、 ·特邀综述·

植物对干旱胁迫的响应及其研究进展

植物对干旱胁迫的响应及其研究进展 学院:班级: 姓名:学号: 摘要:植物在经受干旱胁迫时,通过细胞对干旱信号的感知和传导,调节基因表达,产生新蛋白质,从而引起大量形态、生理和生化上的变化.干旱胁迫对植物在细胞、器官、个体、群体等水平的形态指标有显著影响,也会影响其光合作用、渗透调节、抗氧化系统等生理生化指标.植物对干旱胁迫分子响应较复杂,包括合成一些新的基因如NCED、Dehydrin基因和CBF、DREB等转录因子.另外,干旱胁迫还能造成蛋白质组学的变化. 关键词干旱胁迫;生态响应;生理机制;研究进展干旱作为影响作物生长发育、基因表达、分布以及产量品质的重要因素之一,严重限制了作物的大面积扩展。植物对干旱的适应能力不仅与干旱强度、速度有关,而且更受其自身基因的调控。在一定干旱阀值(drought threshold)胁迫范围内,很多植物能够进行相关抗旱基因的表达,随之产生一系列生理、生化及形态结构等方面的变化,从而显现出抗旱性的综合性状。因此,从植物本身出发,深入研究植物的抗旱机理,揭示其抗旱特性,提高植物品种的抗旱耐旱能力,以降低作物栽培的用水量,同时最大程度提高作物的产量和品质,科学选育适宜广大干旱、半干旱地区种植的优良作物品种,已成为国内外专家学者们所特别关注和研究的热点问题,对于水资源的合理利用和生态环境的改善均有着重要的意义。 目前,生存资源、环境与农业可持续发展之间的矛盾日益突出,这就要求人们更应高度重视农业综合开发过程中作物逆境生物学的基础研究。 一、植物抗旱基因工程研究新进展 (一)与干旱胁迫相关的转录因子研究 通过转化调节基因来提高植物脱水胁迫的耐性是一条十分诱人的途径.由于在逆境条件下,这些逆境相关的转录因子,能与顺式作用重复元件结合,从而调节这些功能基因的表达和信号转导,它们在转基因植物中的过量表达会激活许多抗逆功能基因的同时表达.胁迫诱导基因能增强胁迫反应的耐力,不同的转录因子参与胁迫诱导基因的调控.遗传研究已经鉴

植物凝集素提取工艺

植物血凝素也称为植物凝集素(PHA),可自制也可购自商品。自制的方法常用生理盐水提取法。 (A)干品制备法(1)选广东鸡子豆10g,用蒸馏水冲洗,置培养皿内用75%酒精一次性浸洗,倒掉酒精留间隙置37℃。恒温箱内24-48小时;(2)在无菌条件下研碎鸡子豆,加生理盐水30ml,摇匀后放入4℃冰箱24小时,第二天再加生理盐水70ml,再置4℃冰箱内24小时。每8-12小时摇荡一次。(也可一次 (3)无菌条件下移入10-50ml离心管内,3000-4000rpm30性加100ml生理盐水); 分钟。在无菌箱内把上清液分装于10ml小瓶,置冰箱冷冻层备用;(4)效价:外周血染色体制备每100ml培养基加PHA约2ml。注:若整个过程未在无菌条件下进行,分装时用G5玻砂漏斗除菌即可。 (B)鲜品制备法:(1)选择完整无破皮鲜菜豆20g,用75%酒精浸泡10分钟;(2)在净化工作中用无菌盐水或蒸馏水漂洗二次,然后置无菌乳钵中捣成糊状,用100ml无菌盐水浸泡封口;(3)移入4℃冰箱中置24小时,中间摇动数次,次日3000rpm30分钟,在无菌情况下分装上清液于10ml小瓶内,置冰箱冷冻层备用。(4)效价:正式使用前先用一定量作效价测定,按效价使用。 青豌豆的.提取:取青豌豆100克,加含0.15M氯化钠的0.01M pH7.0磷酸缓冲液200ml浸泡过夜,经膨胀后用组织捣碎机捣碎,倒入布袋中压榨出水提液,在沉渣中再力0入磷酸缓冲液100ml搅拌,浸泡1时,压榨出水提液,合并水提液,量出总体积。加0.01%叠氮钠防腐。 2.蛋白质沉淀:边搅边加入固体硫酸铵达80%饱和(每升溶液加硫酸铵561克)冷藏过夜。吸取上清液,沉淀再用二层滤纸抽气过滤至干,即得粗制青豌豆素蛋白沉淀物硫酸铵糊。置冰箱保存。 3.亲和层析分离 (1)装柱:取直径为1.0 cm,长度为25 cm的层析柱,按(实验十五)操作,自顶部缓缓加入稀薄的Sephadex G25悬液,待凝胶上升至距顶柱约3-5 cm即可,用1M NaCl溶液平衡10分钟。 (2)加样并收集:称硫酸铵糊0.3克溶于 3 ml IM氯化钠中,离心3000rPm10分钟,取上层悬液上柱,用1M NaCl洗脱收集每管 3.5 ml,在280 nrn紫外光上比色检测,直至吸光值下降到接近零为止。此洗脱峰为不与葡萄糖亲和的杂蛋白峰。 改用含0.2M葡萄糖的1M NaCl进行洗脱。收集每管 3.5 ml,也在280nrn处检测、直至吸光值下降至接近零为止。此洗脱峰为青豌豆素峰,再用1M NaCl 洗脱,再生柱,约需10分钟。 4.青豌豆素生物活性测定。 取新鲜兔血l ml于抗凝管中,离心去除血浆,血球用生理盐水洗涤离心1000rpm /5min三次,直至洗液无血色为止,加生理盐水稀释20倍制成兔红细胞悬液,

论植物凝集素与植物保护

论植物凝集素与植物保护 所在专业:生物科学 作者:林晓丽 学号:2007231226 摘要:植物凝集素是一种含有非催化结构域并能可逆结合到特异单糖或寡糖上的植物(糖)蛋白,广泛分布于植物界。本文主要综述了植物凝集素近年来的研究概况,简要介绍植物凝集素的分类、结构特性、功能及其应用等方面,从中去剖析植物凝集素在植物保护中所起的作用,为以后更好地利用植物凝集素去保护植物,具有重要的意义。 关键词:植物凝集素;植物凝集素作用;生物学功能与应用前景;植物保护 植物凝集素是一类具有高度特异性糖结合活性的蛋白,在动物、植物体内广泛存在,迄今为止,已发现1000多种植物凝集素,其中豆科植物凝集素有600多种[1]。植物凝集素最早发现于1888年,Stillmark在蓖麻籽萃取物中发现了一种细胞凝集因子,它具有凝集红细胞的作用[2]。而1936年,Summer和Howess从刀豆种子纯化的伴刀豆凝集素(ConA)是第一个得到纯化的凝集素,而且是第一个被结晶的植物凝集素,也是第一个用X射线晶体衍射技术确定结构的植物凝集素[3]。1960年Nowell报道了植物细胞凝集素有促进有丝分裂的作用。1975年Becker等研究了刀豆凝集素分子的三级结构,揭开了研究植物凝集素分子空间结构和功能的序幕[4]。从此人们对凝集素的性质、生理功能、基因结构与表达等方面进行了深入研究,并认识到凝集素在生物体内具有重要的生理功能,在医学、农业上具有巨大的应用前景。 1 植物凝集素的分类 植物凝集素它是一类具有特异糖结合活性的蛋白,具有一个或多个可以与单糖或寡糖特异可逆结合的非催化结构域。可以从不同的角度进行分类: 1.1根据植物凝集素亚基的结构特征,可以分为4种类型:部分凝集素(merolectin)、全凝集素(hololectin)、嵌合凝集素(chemerolectin)和超凝集素(superlectin)。 1.2根据凝集素专一识别的糖类的不同,可以分为七个组别:岩藻糖组、半乳糖/N-乙酰半乳糖胺组、N-乙酰葡萄糖胺组、甘露糖组、唾液酸组、复合糖组。 1.3根据氨基酸序列的同源性及其在进化上的相互关系,可以分为七个家族:豆科凝集素、几丁质结合凝集素、单子叶甘露糖结合凝集素、2型核糖体失活蛋白、木菠萝素家族、葫芦

植物水分胁迫诱导蛋白研究进展

植物水分胁迫诱导蛋白研究进展 施俊凤1,孙常青2  (1.山西省农业科学院农产品贮藏保鲜研究所,山西太原030031;2.山西省农业科学院作物遗传研究所,山西太原030031) 摘要 干旱是影响植物正常生长发育的一种最主要的逆境因子,研究发现了大量的植物应答水分胁迫的蛋白。笔者综述了这些蛋白的特性和功能,以提高人们对于植物抗旱机理的认识。关键词 水分胁迫;功能蛋白;调节蛋白;植物中图分类号 S311 文献标识码 A 文章编号 0517-6611(2009)12-05355-03P rogress in P roteins R esponding to W ater Stress in P lants SHI Jun 2feng et al (Institute of Farm Products S torage ,Shanxi Academ y of Agricultural Sciences ,T aiyuan ,Shanxi 030031)Abstract Drought is an im portant stress factor ,which im pacts the grow th and developm ent of plants.At present ,a series of proteins responding to water -stress in plants have been reported.T he study summ arizes the characters and functions of these proteins for enhancing integrated understanding to the m echanism of proteins inv olved in the tolerance to water stress in plants.K ey w ords W ater stress ;Functional protein ;Regulatory protein ;Plant 作者简介 施俊凤(1977-),女,山西代县人,助理研究员,从事抗旱 分子研究。 收稿日期 2009202206 干旱在我国是影响区域最广、发生最频繁的气象灾害。植物在遭受干旱胁迫时,会做出各种反应来避免或减轻缺水对其细胞的伤害。随着分子生物学技术和理论的发展,抗旱相关基因不断被克隆,现已证明一些基因表达产物可增强植物的抗逆性。根据其功能,可分为调节蛋白和功能蛋白两大类。 1 调节蛋白 调节蛋白在逆境胁迫信号转导和功能基因表达过程中起调节作用。目前,已发现的主要有转录因子、蛋白激酶、磷脂酶C 、磷脂酶D 、G 蛋白、钙调素和一些信号因子等。 1.1 转录因子 转录因子对水分胁迫的响应非常迅速,一 般数分种即可达最高水平,转录因子C BF1、C BF2、C BF3、C BF4和DRE B1a 、DRE B1b 、DRE B1c 、DRE B2通过与顺式作用元件 CRT/DRE 结合,引起一组含顺式作用元件CRT/DRE 的抗旱 功能基因表达。在拟南芥等多种植物中,DRE 顺式作用元件普遍存在于干旱胁迫应答基因的启动子中,对干旱胁迫诱导基因的表达起调控作用。 转录因子A BF 和bZIP 可与顺式作用元件A BRE 特异结合,通过依赖A BA 的信号转导途径调控植物对冷害、干旱和高盐碱等环境胁迫的反应 [1] ;MY B 和MY C 可与MY BR 和 MY CR 特异结合,引起相应抗旱功能基因的表达;WRKY 调控 的目标基因启动子是具有W 框的顺式元件,在拟南芥中约有100个WRKY 成员,存在于根、叶、花序、脱落层、种子和维管组织中,参与植物胁迫反应的很多生理过程 [2] 。 1.2 蛋白激酶 目前已知的植物干旱应答有关的蛋白激酶 主要有受体蛋白激酶(RPK )、促分裂原活化蛋白激酶 (M APK )、转录调控蛋白激酶(TRPK )等。RPK 与感受发育和 环境胁迫信号相关;M APK 与植物对干旱、高盐、低温等反应的信号传递有关;TRPK 主要参与细胞周期、染色体正常结构维持等的基因表达[3]。 M AP 激酶级联信号转导途径由M AP 激酶(M APK )与M AP 激酶激酶(M APKK )和M AP 激酶激酶激酶(M APKKK )组 成。植物细胞感受环境胁迫(如损伤、干旱、低温等)后,通过受体蛋白激酶、M APK 4、蛋白激酶C 和G 蛋白等上游激活子顺次激活M APKKK 、M APKK 和M APK 。M APK 被激活后进入细胞核,通过激活特定转录因子引起功能基因的表达或停留在胞质中激活其他酶类如蛋白激酶磷酸酶、脂酶等,最终引起植物细胞对内外刺激的生理生化反应。目前已经在植物中鉴定出多个由干旱胁迫所诱导的与M APK 信号通路有关的蛋白激酶,如A T MPK3、A T MEKK1和RSK 等。利用酵母双杂交系统,M iz oguchi 等证明A T MEKK1参与拟南芥对干旱、高盐、低温和触伤胁迫信号传递的M APK 级联途径[4]。 最近,T aishi 等报道,在拟南芥中有一种蛋白激酶SRK 2C 可响应干旱胁迫诱导,将该基因敲除后的突变体srk2c 对干旱极敏感[5]。另外,用花椰菜病毒的35S 强启动子构建超表达SRK 2C 的转基因植株,其抗旱性也明显增强。 1.3 与第二信使生成有关的蛋白酶 P LC 是主要的磷酸二 酯酶,水解磷酸二酯键,根据水解的磷脂不同,可产生IP3、 DAG 、PA 等。IP3可提高细胞质溶质中的C a 2+浓度,诱导抗 性相关基因的表达[6]。DAG 和PA 可通过诱导活性氧(ROS )的产生,引起相关抗性基因的表达,从而增强植物抗旱性。 C a 2+是最受关注的第二信使,在保卫细胞中,干旱信号 导致C a 2+浓度增加,引起气孔关闭。C a 2+与其受体蛋白钙调素结合发生构象变化,通过C a 2+/C aM 依赖性蛋白激酶 (C DPK )起作用,使蛋白质的S er 或Thr 磷酸化,引起下游信号 传递,使抗旱相关基因表达。 2 功能蛋白 功能蛋白往往是整个水分胁迫调控通路的终 端产物,直接在植物的各种抗旱机制中起作用。当植物遭受水分胁迫时,其本身作为一个有机整体能从各方面进行防御。K azuk o 等将植物水分胁迫功能蛋白分为渗透调节相关蛋白、膜蛋白、毒性降解酶、大分子保护因子和蛋白酶5大类[7]。 2.1 渗透调节相关蛋白 当植物遭受渗透胁迫时,会积累 大量渗透调节物质,如脯氨酸、甘露醇、甜菜碱、可溶性糖和一些无机离子等。这些物质可使植物在胁迫条件下保持吸收水分或降低水分散失,维持一定的细胞膨压,保持细胞生长、气孔开放和光合作用等正常生理过程。现已发现很多渗 安徽农业科学,Journal of Anhui Agri.Sci.2009,37(12):5355-5357,5385 责任编辑 胡剑胜 责任校对 况玲玲

重金属超富集植物筛选研究进展

农业环境科学学报2005,24(增刊):330-335 J ournal of A gro-Env iron m ent Science 重金属超富集植物筛选研究进展 常青山,马祥庆 (福建农林大学林学院,福建 福州 350002) 摘要:综述超富集植物富集重金属的机制、重金属超富集植物筛选研究现状以及螯合诱导技术和基因技术在重金属超富集植物筛选中的应用,针对重金属污染植物修复技术和重金属超富集植物筛选研究中存在的问题,提出了今后应加强的研究工作。 关键词:重金属污染;植物修复技术;超富集植物;螯合诱导技术;基因技术 中图分类号:X53 文献标识码:A 文章编号:1672-2043(2005)增刊-0330-06 Advances i n t he R esearch of Selecting Hyperaccum ulator C HANG Q i ng-shan,MA X i ang-q i ng (Co llege of Forestry,F uji an A g ricu lt ure and F orestry U niversity,Fuzhou350002,Ch i na) Abstrac t:H eavy m eta l po lluti on has become a ser i ous prob le m wh ich is urgent to be so l ved in the w orld.Phytore m ediati on m ay offer a feasi b l e so l uti on to t h is prob l e m as it is safe and cheap co m pa red to traditi onal rem ed i ation techno logy.H ow ever, there are diffi culties i n extensi on of t h is techn i que for its disadvantage such as a lo w bio m ass producti on and so on.So it i s ur-gent t o look for t he suitable hyperaccumu l ato rs w it h h i gh b i omass i n t he field.I mprove m ent o f plants by genetic eng i neer i ng and app licati on o f che l a t o rs to so il a re also feas i ble and effecti ve approach to i ncrease e fficiency o f phy t o rem ed i ation.T he concept o f phy t o rem ed i ation and hype raccu mu l a t o r,the research advances in mechan i s m s of hyperaccu m l a tor,se l ec ti on o f hyperaccu m ula-tors,g ene techn i que and che l a te-enhanced phytore m diati on f o r hype raccumu l a t o rs selecti on are rev i ew ed.T he prob l ems and the fut ure study directi ons in the phyto remed i ation research field are put f o r w ard.In order to enhance bio m ass and accu m ulati on capacity o f hype raccu mu l a tor,it becom esm ore i m portant to i m prove the e ffect o f phy tore m ed iati on si nce so m e hyperaccu m ula-tors grow i ng slo w l y.G ene techno l ogy m ay br i ng the breakthrough for phyto re m ediation technique,som e adv ises on g ene tech-nology i n the future a re suggested i n th i s pape r. K eywords:heavy m etals po ll u ti on;phytore m ediati on;hyperaccu m ulator;che l ate-induced phyto remed i ation;g ene techno l ogy 0重金属污染由于其难降解性、易于积累且滞留时间长等特点而成为环境污染治理中的一个棘手难题,而且重金属污染可通过食物链危害人类健康,日本的水俣病(H g中毒)和骨痛病(Cd中毒)即是典型例证。目前基于机械物理或物理化学原理的传统重金属污染治理方法如土壤冲洗、热处理及电动修复等因成本高、效率低,而且会破坏土壤结构、导致 二次污染 等原因,难以大面积应用。 收稿日期:2005-02-04 基金项目:福建省科技厅重大科学基金资助项目(2003I004) 作者简介:常青山(1979 ),男,河南林州人,硕士,主要从事重金属污染修复方面的研究。 联系人:马庆祥,E-m a il:m xq@pub li c.fz. f.j cn 在这种背景下,对环境扰动少、成本低且能大面积推广应用的重金属污染植物修复技术应运而生。目前国内外众多学者对重金属污染植物修复技术进行了大量研究,特别是对重金属的超富集植物筛选及其富集机理进行了较深入研究。本文分别从植物修复技术的概念、重金属超富集植物的特征及其富集机制、螯合诱导技术和基因技术在重金属超富集植物筛选中的应用等方面综述了国内外的研究进展,并在此基础上归纳了当前研究中存在的问题,展望了今后发展趋势。 1重金属污染植物修复技术的概念 广义的植物修复技术包括利用植物修复土壤、空

植物化学杀雄研究进展

植物化学杀雄研究进展 陈知子 (湖南省新化县第三中学,湖南新化417600) 摘要:介绍了化学杀雄剂诱导植物雄性不育的变化,回顾了化学杀雄杂种优势利用研究的进展,阐述了化学杀雄杂种优势利用的特点,以及化学杀雄剂的设计思路和常用的化学杀雄剂。 关键词:化学杀雄剂;植物雄性不育;杂种优势 中图分类号:Q943 文献标志码:A 文章编号:1005-8141(2010)02-0143-03 Development of Chemistry I nduction of Male Sterility CHE N Zhi -zi (N o.3M iddle School of X inhua C ounty ,X inhua 417600,China ) Abstract :This article studied the brief introduction about the effect on the male sterility of plant induced by chemical hybridization agents (CH A ).Reviewed the research on the development of the CH A ,elaborated the advantage of the CH A com pared to genetic cross breeding and the method of design CH A. K ey w ords :chemical hybridization agents ;male sterility ;hybrid vig our 收稿日期:2009-07-15;修订日期:2010-09-15 作者简介:陈知子(1974-),女,湖南省新化县人,中学一级教师,湖南省新化县第三中学从事教学工作。 1 前言 随着人口的不断增长、耕地面积逐年减少,粮食问题越来越引起人们的重视。提高粮食作物单位面积的产量和质量是解决粮食问题的根本对策,其中很重要的一条途径就是作物杂种优势的利用。杂交优势利用基本上可分为遗传性的雄性不育杂种优势利用和生理性的化学杂种优势利用两大途径。 遗传性的雄性不育细胞核质互作雄性不育(Cyto 2plasm Male Sterility ,简称C MS )和核雄性不育(Nucleus Male Sterility ,简称NMS ),但因为稳定不育株的筛选以及受温度的影响有其一定的缺陷性,而利用化学杂交剂(Chemical Hybridization Agent ,简称CH A )诱导雄性不育配置杂交作物是目前杂种优势利用的一条比较有效的途径。 2 化学杂交剂的研究进展 化学杂交剂诱导作物雄性不育是目前杂种优势利 用的主要途径之一。化学杂交剂是一种用于处理自交作物、诱导雄性不育的化学物质。当在作物生殖生长的适宜时期喷施CH A ,能对雄配子有选择性地杀伤或阻滞其发育,造成花粉生理性不育;而对雌配子无不良影响或影响甚微,从而抑制自花授粉,导致异花授粉获得杂交种子。 国内有学者将化学杂交剂称为化学杀雄剂。CH A 的研究始于20世纪50年代初期。1950年,M oore 和 Naylor 分别报道了植物生长调节剂(Plant G rowth Regu 2lator ,简称PG R )马来酰肼(MH )诱导玉米可产生雄性不育株,从而开创了使用植物化学杂交剂使用的历史[1,2]。1951年,Laibach 和K ribben 报道了NAA 诱导番茄雄性不育;1952年,Rehm 报道了2,4-D 和三碘苯甲酸(TT BA )可诱导西瓜产生雄性不育[3]。早期的CH A 研究多为探索已知的PG R 诱导雄性不育的功能, 如马来酰肼、乙烯利、赤霉素等,但PG R 或因去雄率不高,对雌蕊育性存在影响,或对植株具有其他不良负作用,多不具备实用价值[4]。 20世纪70年代初CH A 的研究摆脱了PG R 的局 限,国外一些公司如R ohm&Hass 、Santo 、Shell 、Du P ont 、Lafarge C oppee 等都开始致力于研究新化合物类型CH A 的开发,如W L84811、LY -195295、Hybrex 、Sc2053、Sc1271、DABC O 等新型CH A 的出现,使CH A 的应用进 入了大面积试用或接近于商业制种阶段,对CH A 的研究进入了一个新阶段[5]。这些CH A 诱导作物雄性不育的效果有了很大提高,雄性不育率高于90%或95%以上,对雌蕊育性的影响趋小,毒性大大降低,施药的活性窗口越来越宽,成本也在逐渐降低[6]。 1990年以后,作物CH A 发展日渐成熟,特别是应 用于小麦杂交种生产的CH A 发展更快。国外科学工作者在小麦等作物上筛选出了许多种化学杂交剂,如 乙烯利、DPX3773(即K MS -1)、LY 195259、W L84811、RH0007、Sc2053和GE NESIS 用于诱导雄性不育研究, 其中以Sc2053和GE NESIS 应用最为广泛[7,8]。我国在 ? 341?资源开发与市场Res ource Development &M arket 201026(2) ?资源与环境?

雪花莲凝集素转基因抗虫植物的研究进展

雪花莲凝集素转基因抗虫植物的研究进展 摘要:近年来雪花莲凝集素(GNA)基因已成为国内外在植物抗虫基因工程中应用较为广泛的基因。目前已在小麦、大豆、水稻等农作物上的研究获得成功,并有相当规模的种植。另外在烟草、马铃薯、地瓜、莴苣、棉花、甘蔗、油菜等经济作物也已经试验成功.GNA转基因抗虫植物的培育为减少杀虫剂的使用和提高产量以及环境保护方面起到了巨大的作用。本文就GNA的分布、来源、杀虫机理、GNA转基因抗虫植物的发展况以及种植GNA抗虫植物的安全性进行了概述。 关键词:GNA基因;转基因植物;抗虫;安全 Research advances in GNA transgenic anti-insect plants Abstract:in recent years the snowdrops lectin gene(GNA)become insect-resistant genes in plants at home and abroad in engineering application a wide range of genes. Currently on wheat,soy and rice crops in research,and has won initial success of comparable size planting.Other tobacco potatoes sweet potato lettuce in economic crops such as cotton and sugar cane rape trial has success.GNA genetically modified insect resistance plant cultivation to reduce the use of pesticides and increase production and environmental protection has played a great role.This paper the distribution insecticidal mechanism GNA GNA genetically modified insect resistance plant development status and planting GNA insect resistance plant impact on environment were summarized. Keywords:GNA genes;transgenic plants;anti-insect;safety 雪花莲凝集素(Galanthus nivalis agglutinin简称GNA)是植物外源激素的一种,成熟的GNA是四聚体蛋白,且蛋白质分子未被糖基化,同时含有12个甘露糖专一性结合位点,属整体凝集素类。可特异性地结合糖蛋白末端甘露糖残基[1]。因其能结合到昆虫消化道上皮细胞糖蛋白受体上,对昆虫产生局部或系统的毒害作用,从而抑制其生长,甚至将其杀死;它还能在昆虫消化道内诱发病灶,促进消化道中细菌的繁殖,对害虫本身造成伤害,抑制害虫生长发育繁殖,抑制逆转录病毒和老鼠小肠中的大肠杆菌的繁殖等研究表明GNA分子对蚜虫飞虱叶蝉粉虱等刺吸式害虫及线虫有强烈的毒性,对鳞翅目等咀嚼式口器的害虫具有中等毒性,但对高等动物安全。 目前,转雪花莲凝集素基因的小麦水稻和大豆已经在国内外较为广泛地进行了种植,效果很好。其他新的转基因抗虫植物也在研究中,一些也在逐渐推广种

干旱胁迫及植物抗旱性的研究进展

新疆农业大学 专业文献综述 题目: 干旱胁迫及植物抗旱性的研究进展 姓名: 库热·巴吐尔 学院: 林学与园艺学院 专业: 园艺(特色经济林) 班级: 041班 学号: 043231142 指导教师: 海利力·库尔班职称: 教授 2008年12月19日

干旱胁迫及植物抗旱性的研究进展 摘要:干旱(水分亏缺)是我国北方沙漠化地区植物生长季的主要环境胁迫因子。本文从植物干旱的种类,植物对水分胁迫的生理反应,抗旱机理,植物水分胁迫的研究方法等几个方面,探讨植物抗旱研究的进展,存在问题及发展趋势,和干旱和高温在生理水平对植物光合作用影响机制的最新研究进展进行了综述,并对以后的相关研究进行了一些分析。 关键词:干旱胁迫;植物抗旱性,干旱机制 干早(Drought)是限制植物生长发育,基因表达和产量的重要因子[1-4],是气象与环境质量的指标,是指在无灌溉条件下,长期无雨或少雨,气温高,湿度小,土壤水分不能满足农作物的需要,使作物的正常生长受到抑制,甚至枯死,造成减产或无收的一种自然现象,一般分为大气干旱和土壤干早[5-6]。全球干旱半干旱地区约占陆地面积的35%遍及世界60多个国家和地区。我国是一个干旱和半干旱面积很大的国家,干旱半干旱的面积约占国土面积的52.5%,其中干旱地区占30.8%,半干旱地区占21.7%[7]。植物的抗旱性是指植物在大气或土壤干旱条件下生存和形成产量的能力,抗旱性鉴定就是按植物抗旱能力大小进行鉴定,评价的过程[8-10]。前人对于植物抗旱性的研究作了大量的工作,并在许多方面取得了突破性进展,为干旱半干旱地区的农林业生产提供了理论基础。但这些研究都具有一定的局限性,主要表现为现有研究结果多数是针对植物某个或几个方面进行研究,如某些生理或生化指标,而这些研究指标只在某一时间范围内起有限的作用,用这些具有时间限制的少数几个指标来阐明植物抗旱的途径,方式和机理,或进行耐旱性评价都难以反映植物的真实情况,甚至会使某些最关键的问题被忽略。因此,本文对植物干旱胁迫及抗旱性方面的一些研究成果及存在的问题进行了探讨。 1 干旱胁迫 干旱是一个长期存在的世界性难题,中国水的问题始终是个大问题,水的安全供给问题引起了世界各国的关注。中国的干旱缺水问题目前已引起党中央,国务院和全社会的关注,中国的水危机不是危言耸听,而是既成事实。干旱缺水将成为我国农业和经济社会可持续发展的首要制约因素。 1.1 干旱胁迫的类型及特点 干旱形成有两种主要原因,并形成两类干旱。一是土壤干旱。由于连年干旱,雨量过少,每年降雨量约在200~300mm,地下水位又较低,土壤中水分根本不能满足植物生长,如无灌溉,作物将受干旱之害。二是大气干旱。植物的水分亏缺是由于蒸腾失水超过吸水而产生的,即使在土壤水分充足的情况下,晴天的中午也常常产生干旱。气温高,强烈的太阳辐射显著促进蒸腾;由于土壤干燥,地温低,根的机能低下,使吸水受到抑制。都能使植物产生水分亏缺,特别是二者同时产

植物对富集离子超富集现象

题目:植物的叶片是否能够吸水姓名:罗平 学号:2012312196 专业:农学

摘要:本作业讨论植物细胞对某种离子的吸收表现出无休无止的现象,其实这种现象叫做超富集植物吸收富集重金属现象。通过本作业将简单了解超富集植物吸收富集重金属真的生理和分子生物学机制,可扩宽我们的知识面和提高对生物生理机制研究的兴趣。 关键词:超富集植物富集重金属知识面植物生理 一:什么是超富集植物吸收富集重金属现象 与普通植物相比 ,超富集植物在地上部富集大量重金属离子的情况下可以正常生长 ,这种现象叫做超富集植物吸收富集重金属现象。其富集重金属的机理已经成为当前植物逆境生理研究的热点领域 .尤其是近两年 ,随着分子生物学等现代技术手段的引入 ,关于重金属离子富集机理的研究取得了一定进展 .通过与酵母突变株功能互补克隆到了多条编码微量元素转运蛋白的全长cDNA ;也从分子水平上研究了谷胱甘肽、植物螯合素、金属硫蛋白、有机酸或氨基酸等含巯基物质与重金属富集之间的可能关系。 二:富集植物吸收富集重金属对照 植物名超累积、富集对象 Alyssum bertolonii(庭荠属) Ni 海州香薷,Elsholtzia harchowensisSun Cu 大叶井口边草As 蜈蚣草As 球果蔊菜Cd-As 菰和菖蒲Cd 滨蒿和艾蒿Cu 鸭跖草Cu 商陆Mn 东南景天Zn 香附子、狗牙根和菜蕨Mn 土荆芥Pb 羽叶鬼针草和酸模Pb 绿叶苋菜、裂叶荆芥、香根草、羽叶鬼针草、紫穗槐和苍耳Pb

三,超富集植物吸收富集重金属现象研究展望 ——《超富集植物吸收富集重金属的生理和分子生物学机制》3李文学陈同斌(中国科学院地理科学与资源研究所环境修复室,北京100101) 关于超富集植物富集重金属离子的研究虽然取得了一定进展,但至今对其分子和生理机制仍不是很清楚,研究人员的看法也存在明显的分歧.在把超富集植物用于实践的过程中,首先要研究清楚对超富集植物富集的生理基础,譬如重金属离子如何进入根细胞,在木质部如何被运输,在叶片中如何分布;其次要注意不同生理过程的联系,就吸收而言,它其实是根系吸收与体内再分配的有机结合,所以在利用基因工程方法增加重金属离子吸收量时,不仅要考虑到增加根系的吸收位点,提高转运蛋白底物的专一性,同时要注意细胞器,尤其是液泡膜上与重金属离子区室化相关膜蛋白的表达,只有这样,才会达到比较好的效果;最后要强调的是学科交叉与渗透,Dhankher等[6]将细菌中的砷酸盐还原酶ArsC基因和γ2谷氨酰半胱氨酸合成酶(γ2ECS)在拟南芥的叶子中表达,这样运输到地上部的砷酸盐在砷酸盐还原酶的作用下转化成亚砷酸盐,γ2ECS表达可增加一些连接重金属(如亚砷酸盐)并解除其毒性的化合物,将这些复合物限制在叶子中,从而使植物能够积累并忍耐不断增加的As含量。 四:参考文献 [1] 张玉秀,张媛雅,孙涛,柴团耀. 植物重金属转运蛋白P1B-ATPase结构和功能研究进展[J]. 生物工程学报. 2010(06) [2] 李文学,陈同斌. 超富集植物吸收富集重金属的生理和分子生物学机制[J]. 应用生态学报. 2003(04) [3] 魏树和,周启星,任丽萍. 球果蔊菜对重金属的超富集特征[J]. 自然科学进展. 2008(04) [4] 周琼. 我国超富集·富集植物筛选研究进展[J]. 安徽农业科学. 2005 (05) [5] 刘秀梅,聂俊华,王庆仁. 植物修复重金属污染土壤的研究进展[J]. 甘肃农业大学学报. 2001(01) [6] 胡绵好,袁菊红,杨肖娥. 锰超富集植物及其富集机制的研究进展[J].土壤通报. 2010(01) [7] 武泰存,房蓓,王景安. 锌转运蛋白基因研究进展[J]. 西北植物学报. 2005(10) [8] 韦朝阳,陈同斌. 重金属超富集植物及植物修复技术研究进展[J]. 生态学报. 2001(07) [9] 黄泽春,陈同斌,雷梅,胡天斗,黄启飞. 砷超富集植物中砷化学形态及其转化的EXAFS研究[J]. 中国科学C辑. 2003(06)

糖生物学作业-植物凝集素概述

植物凝集素概述 摘要:植物凝集素是来源于植物的一类能凝集细胞和沉淀单糖或多糖复合物的非免疫来源的非酶蛋白质。植物凝集素具有细胞凝集、抗病毒、抗真菌及诱导细胞凋亡或自噬等多种能力,因此在生命科学、医学及农业方面均有较好的研究价值和应用前景。本文综述了植物凝集素近年来的研究概况,介绍了凝集素的定义,植物凝集素的结构特性、分类、分离纯化、功能及其应用。 1凝集素的发现及定义 目前已经发现了近 1 000 种植物凝集素,并在生理生化及分子生物学方面对它们进行了许多研究,其中豆科植物凝集素有600多种。植物中,不仅种子中存在凝集素,根、茎、叶、皮、果汁中也发现有凝集素。1888年Herman和Sti11mark首次在蓖麻萃取物中发现了凝集素,它具有凝集红细胞的作用。Renkonnen 发现它们对血细胞凝集时具有选择性。随着对红细胞凝集反应中血型特异性认识程度的逐渐深入, Watkin 和Morgan 建立了人类ABO 血型系统凝集反应中严格的糖特异性结合理论。Go1dstein 给出了凝集素的第一个较确切的定义:凝集素是自然界广泛存在的一类能凝集细胞、多糖或糖复合物的非源于免疫反应的糖蛋白。现在研究表明,它还能够特异性识别并可逆结合复杂糖复合物中的糖链,而不改变所结合糖基的共价键结构。 另外,1980 年,Nature 杂志发表了5 位凝集素研究方面著名科学家的联名信,提出了当时较有权威性的凝集素定义:凝集素是指非免疫来源的糖结合蛋白或糖蛋白,并应有使细胞凝集或糖复合物沉淀的能力。此定义包含三个要点:(1)凝集素是蛋白质或糖蛋白;(2)凝集素必须有专一的与糖基结合的特性,但是排除了免疫来源的针对糖基的抗体;(3)因为规定了能使细胞凝集或是糖复合物沉淀的特性,所以凝集素分子必须具有两个或更多糖结合位点,这样把一些虽有糖结合能力但是糖结合位点仅有一个的酶、转运蛋白、激素、毒素等排除在外。 2植物凝集素的结构特性 目前已经获得纯化的凝集素中,阐明氨基酸序列的并不多,多数是对甘露糖(或葡萄糖)专一的凝集素。从已分离的凝集素看,分子量变化范围约为10 kDa~100 kDa ,亚基数目为2~4 个。关于亚基产生的分子机制,有三种解释:(1)不同亚基是不同基因编码的产物;(2)不同亚基由统一基因编码,但经翻译过程形成分子量相同或不同的肽链;(3)翻译后不同程度的修饰导致。 现己知道,凝集素与糖的结合是通过其分子中肽链的活性部位,即专一结合糖的区域实现的,与凝集素分子中共价结合的糖无关。凝集素至少应该具有2 个与糖结合的位点,而且结合是可逆的。它有以共价键相连接的蛋白质和糖2 个部分。其中前者占较大的比例,一般是几个单糖构成寡糖链,再以2种方式与蛋白质肽链相连,分别构成N-连接糖蛋白和O-连接糖蛋白。现已知的糖肽连接键主要有三种:(1)血清型糖蛋白,亦称天冬酰胺2连接或N-连接的糖蛋白;(2)粘蛋白型糖蛋白,糖链与肽链由Ga1NAcα1-Ser/ Thr 连接;(3)真菌中的Man-Thr 连接。凝集素不仅可以识别不同的单糖而且也可以特异结合不同的寡糖。此外,凝集素2糖互作也较好地解释了细胞识别系统的机制。基于细胞表面含有大量的凝集素和糖复合物,使细胞以凝集素为桥梁进行相互作用成为可能。凝集素除了有与糖结合的位点外,还可以与其它生物大分子几丁质、糖脂和多糖等结合。 凝集素一般为二聚体或四聚体结构,其分子由一个或多个亚基组成,每一个亚基有一个与糖分子特异结合的专一点。豆科植物凝集素至少有一个非催化结构域,并可逆地结合到特异单糖或寡糖上。结构域的数量由凝集素的复合体数目来决定。二体或多体凝集素可以形成多种结构的蛋白糖复合体。单体凝集素不能形成这种复合结构(Ron 等,1992)。通过豆科植物凝集素晶

相关文档