文档库 最新最全的文档下载
当前位置:文档库 › 力特汽车级瞬态电压抑制器的汽车电路保护

力特汽车级瞬态电压抑制器的汽车电路保护

力特汽车级瞬态电压抑制器的汽车电路保护
力特汽车级瞬态电压抑制器的汽车电路保护

瞬态电压抑制二极管

瞬态电压抑制二极管Transient Voltage Suppressors(TVS) 概述 电压及电流的瞬态干扰是造成电子电路及设备损坏的主要原因,常给人们带来无法估量的损失。这些干扰通常来自于电力设备的起停操作、交流电网的不稳定、雷击干扰及静电放电等,瞬态干扰几乎无处不在、无时不有,使人感到防不胜防。幸好,一种高效能的电路保护器件TVS的出现使瞬态干扰得到了有效抑制TVS(TRANSIENT VOLTAGE SUPPRESSOR)或称瞬变电压抑制二极管是在稳压管工艺基础上发展起来的一种新产品,其电路符号和普通稳压二极管相同,外形也与普通二极管无异,当TVS管两端经受瞬间的高能量冲击时,它能以极高的速度(最高达1*10-12秒)使其阻抗骤然降低,同时吸收一个大电流,将其两端间的电压箝位在一个预定的数值上,从而确保后面的电路元件免受瞬态高能量的冲击而损坏。 TVS的特性及其参数(参数表见附表) https://www.wendangku.net/doc/5b7433015.html,S的特性 如果用图示仪观察TVS的特性,就可得到图1中左图所示的波形。如果单就这个曲线来看,TVS管和普通稳压管的击穿特性没有什么区别,为典型的PN结雪崩器件。但这条曲线只反映了TVS特性的一个部分,还必须补充右图所示的特性曲线,才能反映TVS 的全部特性。这是在双踪示波器上观察到的TVS管承受大电流冲击时的电流及电压波形。图中曲线1是TVS管中的电流波形,它表示流过TVS管的电流由1mA突然上升到峰值,然后按指数规律下降,造成这种电流冲击的原因可能是雷击、过压等。曲线2是TVS管两端电压的波形,它表示TVS中的电流突然上升时,TVS两端电压也随之上升,但最大只上升到VC值,这个值比击穿电压VBR略大,从而对后面的电路元件起到保护作用。

过电压保护电路汇总

新疆大学 课程设计报告 所属院系:科学技术学院 专业:电气工程及其自动化 课程名称:电子技术基础上 设计题目:过电压保护电路设计 班级:电气14-1 学生姓名:庞浩 学生学号:20142450007 指导老师: 常翠宁 完成日期:2016. 6. 30

1.双向二极管限幅电路

图2 经典过电压保护电路 经典过电压保护电路虽然有许多优点,但是由于Multisim 12.0中无法找到元件 MAX6495,无法进行仿真,所以不选用该方案。 3.智能家电过电压保护电路 电路原理:该装置工作原理见图,电容器C1将220V 交流市电降压限流后,由二极管1D V 、 2D V 整流,电容器2C 担任滤波,得到12V 左右的直流电压。当电网电压正常时, 稳压二极管VDW 不能被击穿导通,此时三极管VT 处于截止状态,双向可控硅VS 受到电压触发面导通,插在插座XS 中的家电通电工作。(图3) 图3 智能家电过压保护电路 如果电网电压突然升高,超过250V ,此时在RP 中点的电压就导致VDW 击穿导通,VDW 导通后,又使得三极管VT 导通,VT 导通后,其集电极—发射极的压降很小,不足以触发VS ,又导致VS 截止,因此插座XS 中的家电断电停止工作,因而起到了保护的目的。一旦电网电压下降,VT 又截止,VT 的集电极电位升高,又触发VS 导通,家电得电继续工作。 R 电阻5.1K1,RP 电位器15K 选用多圈精密电位器1,C1金属化纸介电容0.47uF 耐压≥400V1,C2电解电容100uF/25V1,1D V 、 2D V 整流二极管IN40072,VDW 稳压二极管 12V 的2CW121,VT 晶体三极管3DA87C 、3DG12等1,VS 双向可控硅6—10A 耐压≥600V1,CZ 电源插座10A 250V1 该装置的调试十分简单,当电网电压为220V 时,调整RP ,使VDW 不击穿,当电压升高至250V ,VT 饱和导通即可,调试时用一调压变压器来模拟市电的变化更方便。 优点:能够保护家用电器避免高电压的冲击带来的伤害,、 缺点:需要购买二极管,NPN 型BJT 以及双向可控硅VS ,不太经济。

过欠电压保护提示电路

@@@大学课程设计报告

目录 1.概述 (3) 1.1 过欠压电路课程设计背景 (3) 1.2 过欠压电路课程设计目的 (3) 1.3 设计任务与要求 (3) 2.设计内容 (4) 2.1 分模块电路设计思路 (4) 2.2 电源模块的设计 (4) 2.3 比较模块的设计 (5) 2.4 报警模块的设计 (6) 3.总电路图 (7) 3.1 图像 (7) 3.2 元件清单 (7) 3.3 部分重要原件介绍 (8) 4.仿真与调试 (12) 4.1 仿真过程中数据记录 (12) 4.2 结论 (19) 5.心得体会 (20)

1.概述 1.1 过欠压电路课程设计背景 日常生活中,我们不可避免的要用到要用到各种各样的电气设备。由于电网电压的波动,在较高的电压下很有可能使电气设备受到损坏,而在低压时电气设备不能正常工作。在这种情况下就需要有一个电压报警指示设备,使其可以及时准确地对电网电压进行分段指示并对过、欠压进行指示报警,从而实现保护电器设备的目的。 1.2 过欠压电路课程设计目的 通过设计,使同学们对模拟电子技术理论知识在生产实际中的应用有一个初步的认识。加深同学们对所学的理论知识与实际的应用的结合。通过设计,全面提高同学们、分析、判断、解决问题的能力。 1.3 设计任务与要求 (1) 设计一个过欠电压保护电路,当电网交流电压大于250V 或小于180V时,经3~4s本装置将切断用电设备的交流供电,并用LED发光警示。 (2) 在电网交流电压恢复正常后,经本装置延时3~5分钟后恢复用电设备的交流供电。

2.设计内容 2.1 分模块电路设计思路 a.电源模块的设计; b.比较模块的设计; c. 报警模块的设计. 2.2 电源模块的设计 电源设计图: 电源模块说明: 电源模块采用10 TO 1 的变压器降压,1A/50V桥式整流电路进行整流,RCπ型滤波器进行滤波。当通以220V的交流电压时,经过变压器降压后,电压测量值为21.978V;通过由4 个相同型号的二极管组成的桥式整流电路后,得到14.725V直

瞬态抑制二极管工作原理及选型应用

瞬态抑制二极管工作原理及选型应用 Socay (Sylvia) 1、产品简述 瞬态电压抑制器(TransientVoltageSuppressor)简称TVS管,TVS管的电气特性是由P-N结面积、掺杂浓度及晶片阻质决定的。其耐突波电流的能力与其P-N结面积成正比。TVS广泛应用于半导体及敏感器件的保护,通常用于二级电源和信号电路的保护,以及防静电等。其特点为反应速度快(为ps级),体积小,脉冲功率较大,箝位电压低等。其10/1000μs波脉冲功率从400W~30KW,脉冲峰值电流从0.52A~544A;击穿电压有从6.8V~550V的系列值,便于各种不同电压的电路使用。 2、工作原理 器件并联于电路中,当电路正常工作时,它处于截止状态(高阻态),不影响线路正常工作,当电路出现异常过压并达到其击穿电压时,它迅速由高阻态变为低阻态,给瞬间电流提供低阻抗导通路径,同时把异常高压箝制在一个安全水平之内,从而保护被保护IC或线路;当异常过压消失,其恢复至高阻态,电路正常工作。 3、特性曲线

4、主要特性参数 ①反向断态电压(截止电压)VRWM与反向漏电流IR:反向断态电压(截止电压)VRWM 表示TVS管不导通的最高电压,在这个电压下只有很小的反向漏电流IR。 ②击穿电压VBR:TVS管通过规定的测试电流IT时的电压,这是表示TVS管导通的标志电压(P4SMA、P6SMB、1.5SMC、P4KE、P6KE、1.5KE系列型号中的数字就是击穿电压的标称值,其它系列的数字是反向断态电压值)。TVS管的击穿电压有±5%的误差范围(不带“A”的为±10%)。 ③脉冲峰值电流IPP:TVS管允许通过的10/1000μs波的最大峰值电流(8/20μs 波的峰值电流约为其5倍左右),超过这个电流值就可能造成永久性损坏。在同一个系列中,击穿电压越高的管子允许通过的峰值电流越小。 ④最大箝位电压VC:TVS管流过脉冲峰值电流IPP时两端所呈现的电压。 ⑤脉冲峰值功率Pm:脉冲峰值功率Pm是指10/1000μs波的脉冲峰值电流IPP 与最大箝位电压VC的乘积,即Pm=IPP*VC。 5、命名规则

用于汽车电子保护的瞬态电压抑制器(TVS)

V I S H A Y G E N E R A L S E M I C O N D U C T O R A P P L I C A T I O N N O T 瞬态电压抑制器应用笔记 用于汽车电子保护的瞬态电压抑制器(TVS ) Vishay 的二极管业务部以声誉卓著的Vishay General Semiconductor 品牌,提供领先的汽车电子瞬态电压抑制器产品。 重要的TVS 参数包括功率等级、关态电压、击穿电压和最大击穿电压等级。I) TVS 的重要参数 功率等级 TVS 的功率等级是在特定的测试或应用条件下的浪涌吸收能力。Vishay 的TVS 产品使用业内标准的10 μs/1000 μs 脉冲波形(Bellcore 1089标准)做为测试条件,如图1所示。 这个测试条件不同于TVS ESD 测试的8 μs/20 μs 脉冲波形,如图2所示。 图1. TVS 的测试波形图2. TVS ESD 的测试波形 作者: 高级应用经理 Soo Man (Sweetman) Kim,击穿电压、最大击穿电压和关态电压详见数据表,如表1所示。

Transient Voltage Suppressors (TVS) for Automotive Electronic Protection Application Note Vishay General Semiconductor P P L I C A T I O N N O T E V BR AT I T I T (V)(mA) V RM (V)I RM AT V RM (μA)V C AT I PP 10 μs/1000 μs CLAMPING V C AT I PP 8 μs/20 μs T MAX.0-4/°C )A ()V ()A ()V (.x a M .n i M i B i n U SM6T6V8A KE7KE7 6.457.1410 5.80100010.557.013.4298 5.7SM6T7V5A KK7AK77.137.8810 6.4050011.353.014.5276 6.1SM6T10A KT7AT79.5010.5 1.08.5510.014.541.018.62157.3SM6T12A KX7AX711.412.6 1.010.2 5.016.736.021.71847.8SM6T15A LG7 LG7 14.3 15.8 1.01 2.8 1.0 21.2 28.0 27.2 147 8.4表 1 – VISHAY 的SM6T 系列的电特性 (除非另外特别声明,均指在25 °C 的环境温度等级) 型号 击穿电压 器件标识码测试电流关态电压漏电流钳位电压钳位电压BR ) 击穿电压 (V 击穿电压是是器件进入雪崩击穿的电压,根据数据表中指定的电流进行测试。表1中,SM6T6V8A 在10mA 的反向电流下的击穿特性为6.8V ,容差为5%, SM6T10A 在1mA 反向电流下的击穿特性为10V 。 最大击穿电压 (V C :钳位电压) 在指定的峰值脉冲电流等级下,出现在TVS 上的钳位电压等级。TVS 的击穿电压是在非常低的电流下测得的,如1 mA 或10 mA, 与应用条件中实际的雪崩电压是不同的。因此,半导体制造商会指明在大电流条件下的典型或最大击穿电压。表1显示了在10 μs/1000 μs 和8 μs/20 μs 波形下的最大钳位电压。  关态电压 (V WM ): 工作关态反向电压 关态电压是指TVS 未被击穿时的最大电压,是电路中不在通常条件下工作的保护器件的重要参数。 图3. 电压和电流参数 在汽车应用中,一些汽车电子产品的调节是由“阶跃保护”实现的。这种测试条件是在10分钟内,向12V 的电子设备提供24 V DC 的电压,向24V 电压的电子设备提供36 V DC 的电压,而不造成损坏或电路的故障。因此,对汽车电子产品来说,关态电压是TVS 器件的一个关键参数。

过欠电压保护电路设计

电子技术课程设计 课程名称:过欠电压保护提示电路院系:电气与信息工程学院 专业班级:自动化09101 班 学生姓名:曾凡林 学生学号: 200916010111 指导教师:潘湘高 完成时间:2011.6.4 报告成绩:

摘要 当异动的电网电压高于或低于用电设备的正常工作电压范围时,过、欠压报警装置能自动切断用电设备的电源,从而起到保护用电设备的作用。当电网电压恢复到正常范围内后,经过过、欠压报警装置电路的延迟,将自动恢复电网电压对用电设备的供电,保证了用电设备正常安全地运行。当电网交流电压≥250V或≤180V时,经3~4秒后本装置将切断用电设备的交流供电。在电网交流电压恢复正常后,经本装置延迟3~5分钟后恢复用电设备的交流供电。 ABSTRACT When the voltage changes of the electrical equipment above or below the normal operating voltage range, too, under-voltage alarm device to automatically cut the power consumption of equipment in order to play a role in the protection of electrical equipment. When the grid voltage back to the normal range after, and under-voltage alarm circuit of the delay in the resumption of the automatic voltage power supply to electrical equipment to ensure the safety of electrical equipment to run normal. When the power grid or ≥ 250V AC voltage ≤ 180V when, after 3 to 4 seconds after the device to cut off the exchange of electricity supply equipment, while using light-emitting LED warning. AC voltage in the grid back to normal after delays in the device 3 to 5 minutes after the resumption of exchange of electricity supply equipment.

TVS瞬态电压抑制二极管(钳位二极管)原理参数

TVS瞬态电压抑制二极管(钳位二极管)原理参数 瞬态电压抑制二极管(TVS)又叫钳位二极管,是目前国际上普遍使用的一种高效能电路保护器件,它的外型与普通二极管相同,但却能吸收高达数千瓦的浪涌功率,它的主要特点是在反向应用条件下,当承受一个高能量的大脉冲时,其工作阻抗立即降至极低的导通值,从而允许大电流通过,同时把电压钳制在预定水平,其响应时间仅为10-12毫秒,因此可有效地保护电子线路中的精密元器件。 瞬态电压抑制二极管允许的正向浪涌电流在TA=250C,T=10ms条件下,可达50~200A。双向TVS可在正反两个方向吸收瞬时大脉冲功率,并把电压钳制到预定水平,双向TVS适用于交流电路,单向TVS一般用于直流电路。可用于防雷击、防过电压、抗干扰、吸收浪涌功率等,是一种理想的保护器件。耐受能力用瓦特(W)表示。 瞬态电压抑制二极管的主要电参数 (1)击穿电压V(BR) 器件在发生击穿的区域内,在规定的试验电流I(BR)下,测得器件两端的电压称为击穿电压,在此区域内,二极管成为低阻抗的通路。 (2)最大反向脉冲峰值电流IPP 在反向工作时,在规定的脉冲条件下,器件允许通过的最大脉冲峰值电流。IPP与最大钳位电压VC(MAX)的乘积,就是瞬态脉冲功率的最大值。 使用时应正确选取TVS,使额定瞬态脉冲功率PPR大于被保护器件或线路可能出现的最大瞬态浪涌功率。 瞬态电压抑制二极管的分类 瞬态电压抑制二极管可以按极性分为单极性和双极性两种,按用途可分为各种电路都适用的通用型器件和特殊电路适用的专用型器件。如:各种交流电压保护器、4~200mA电流环保器、数据线保护器、同轴电缆保护器、电话机保护器等。若按封装及内部结构可分为:轴向引线二极管、双列直插TVS阵列(适用多线保护)、贴片式、组件式和大功率模块式等。 瞬态电压抑制二极管的应用 目前已广泛应用于计算机系统、通讯设备、交/ 直流电源、汽车、电子镇流器、家用电器、仪器仪表(电度表)、RS232/422/423/485、 I/O、LAN、ISDN 、ADSL、USB、M P3、PDAS、GPS、CDMA、GSM、数字照相机的保护、共模/差模保护、RF耦合/IC驱

2005(许生礼)简单实用的过流过压保护电路

智 能建筑 Z H I N E N G J I A N Z H U 简单实用的过流过压保护电路 2005年第19卷第2期《工程建设与档案》157  收稿日期:2005-03-04 作者简介:许生礼(1947-),男,江苏江阴人,安徽省房地产公司六安市公司工程师. 简单实用的过流过压保护电路 许生礼 (安徽省房地产公司六安市公司,安徽六安 237012) 摘 要:为了保护生活环境,目前住宅小区均要求自建污水处理系统。由于污水处理设备所用的电机都长期在地下室工作,为了延长电机的使用寿命,采用晶闸管及其控制模式实现过流过压保护。关键词:环保;晶闸管;大电流;保护 中图分类号:T M307.2 文献标识码:A 文章编号:1671-4857(2005)02-0157-02 0 引 言 根据环保要求,各住宅小区按要求均建立了自处理污水系统,由于现有设备均采用的是老式的电机保护系统(如热继电器等),导致经常发生烧毁污水泵电机及风机电机,影响了设备的正常使用,增加了运行成本。为了保护电机,现使用简单的电子过流过压保护电路。 晶闸管以其额定电流大、额定电压高、效率高、反应快以及体积小等优点,作为中频静止逆变电源中主要元件而被选用,但其缺点是过载能力低。因此,在晶闸管中频静止逆变电源中,为了使晶闸管免受大电流、高电压的冲击,均设置了过流过压保护电路。当晶闸管中频静止电源用于金属熔炼时,由于负载为时变性元件,变化大,情况比较复杂,若保护不可靠,速度慢,故障一旦出现, 晶闸管立即被损坏的现象常有发生。影响了整个设备的性能和使用,因而保护电路显得尤为重要。 1 过流过压的保护过程 如图1所示,可控硅中频静止电源主回路采用的 是AC 2DC 2AC 变换电路。从三相全控桥式整流器到单相桥式逆变器,均选用了晶闸管。保护电路是把从电流、电压采样回路中所采取的电流和电压信号,经判断后,控制或封锁整流桥触发脉冲,使得三相全控整流桥输出电压为零,切断了逆变桥电源的供给,从 而起到了保护整机的作用[1,2] 。可是,不同的保护电路控制点却往往不同,致使保护电路性能的好坏有较 大的差异。 图1 过流过压保护框图 2 过流过压保护电路 针对上述情况,结合目前国内大多数可控硅中频静止电源和整流脉冲形成的电路,大多数采用了KJ 004和KJ 041组成的触发脉冲电路,设计出了可靠性 高、线路简单的过流过压保护电路[3] ,其保护原理如 图2所示。2.1 过流保护电路 该电路由W 1、I C 1(运算放大器)组成比较电路,I C 3(D 触发器)组成双稳态记忆电路I C 5、I C 6(或门) 组成的逻辑电路及T 1、XD 1组成的显示电路4个单元构成。 当中频静止逆变电源处于正常工作时,输入比较器同相端的电流信号形成的输入电压小于反相端定值电压(即所要求的保护定值电压)I C 1输出低电平,D 触发器处于复位状态,Q 端为“0”,逻辑门输出则为 低电平,T 1反偏而截止,XD 1不亮。同理I C 6输出为“0”,KJ 041的控制端(P 7)为“0”,有整流触发脉冲输出。当电流信号形成的输入电压W 1确定的定值电

保护电路设计方法 - 过电压保护

保护电路设计方法- 过电压保护 2.过电压 保护 ⑴过电 压的产生 及抑制方 法 ①过电压产生的原因 对于IGBT开关速度较高,IGBT关断时及FWD逆向恢复时,产生很高的di/dt,由于模块周围的接线的电感,就产生了L di/dt电压(关断浪涌电压)。 这里,以IGBT关断时的电压波形为例,介绍产生原因和抑制方法,以具体电路(均适用IGBT/FWD)为例加以说明。 为了能观测关断浪涌电压的简单电路的图6中,以斩波电路为例,在图7中示出了IGBT关断时的动作波形。 关断浪涌电压,因IGBT关断时,主电路电流急剧变化,在主电路分布电感上,就会产生较高的电压。关断浪涌电压的峰值可用下式求出: V CESP=E d+(-L dI c/dt) 式中dl c/dt为关断时的集电极电流变化率的最大值;V CESP为超过IGBT的C-E间耐压(V CES)以至损坏时的电压值。 ②过电压抑制方法 作为过电压产生主要因素的关断浪涌电压的抑制方法有如下几种: 1.在IGBT中装有保护电路(=缓冲电路)可吸浪涌电压。缓冲电路的电容,采用薄膜电容,并靠近IGBT 配置,可使高频浪涌电压旁路。

2.调整IGBT的驱动电路的V CE或R C,使di/dt最小。 3.尽量将电件电容靠近IGBT安装,以减小分布电感,采用低阻抗型的电容效果更佳。 4.为降低主电路及缓冲电路的分布电感,接线越短越粗越好,用铜片作接线效果更佳。 ⑵缓冲电路的种类和特 缓冲电路中有全部器件紧凑安装的单独缓冲电路与直流母线间整块安装缓冲电路二类。 ①个别缓冲电路 为个别缓冲电路的代表例子,可有如下的缓冲电路 1.RC缓冲电路 2.充放电形RCD缓冲电路 3.放电阻止形RCD缓冲电路 表3中列出了每个缓冲电路的接线图。特点及主要用途。 表3 单块缓冲电路的接线圈特点及主电用途

过欠电压保护提示电路

@@@大学课程设计报告 课程名称:过/欠电压保护提示电路 系部:电力工程系 专业班级:电气工程及其自动化 学生姓名: 指导教师:张志恒 完成时间: 报告成绩: 目录

1.概述 (3) 1.1 过欠压电路课程设计背景 (3) 1.2 过欠压电路课程设计目的 (3) 1.3 设计任务与要求 (3) 2.设计内容 (4) 2.1 分模块电路设计思路 (4) 2.2 电源模块的设计 (4) 2.3 比较模块的设计 (5) 2.4 报警模块的设计 (6) 3.总电路图 (7) 3.1 图像 (7) 3.2 元件清单 (7) 3.3 部分重要原件介绍 (8) 4.仿真与调试 (12) 4.1 仿真过程中数据记录 (12) 4.2 结论 (19) 5.心得体会 (20) 1.概述

1.1 过欠压电路课程设计背景 日常生活中,我们不可避免的要用到要用到各种各样的电气设备。由于电网电压的波动,在较高的电压下很有可能使电气设备受到损坏,而在低压时电气设备不能正常工作。在这种情况下就需要有一个电压报警指示设备,使其可以及时准确地对电网电压进行分段指示并对过、欠压进行指示报警,从而实现保护电器设备的目的。 1.2 过欠压电路课程设计目的 通过设计,使同学们对模拟电子技术理论知识在生产实际中的应用有一个初步的认识。加深同学们对所学的理论知识与实际的应用的结合。通过设计,全面提高同学们、分析、判断、解决问题的能力。 1.3 设计任务与要求 (1) 设计一个过欠电压保护电路,当电网交流电压大于250V 或小于180V时,经3~4s本装置将切断用电设备的交流供电,并用LED发光警示。 (2) 在电网交流电压恢复正常后,经本装置延时3~5分钟后恢复用电设备的交流供电。 2.设计内容 2.1 分模块电路设计思路

瞬态抑制二极管选型

瞬态抑制二极管选型 优恩半导体(UN) 瞬态电压抑制二极管选型必须注意以下几点: 1.最小击穿电压VBR和击穿电流IR。VBR是瞬态电压抑制二极最小的击穿电压,在25℃时,低于这个电压瞬态电压抑制二极是不会产生雪崩的。当瞬态电压抑制二极流过规定的1mA电流(IR)时,加于瞬态电压抑制二极两极的电压为其最小击穿电压V BR。按瞬态电压抑制二极的VBR与标准值的离散程度,可把VBR分为5%和10%两种。对于5%的VBR来说,V WM=0.85VBR;对于10%的VBR来说,V WM=0.81VBR。为了满足IEC61000-4-2国际标准,瞬态电压抑制二极二极管必须达到可以处理最小8kV(接触)和15kV(空气)的ESD 冲击,部份半导体厂商在自己的产品上使用了更高的抗冲击标准。对于某些有特殊要求的可携设备应用,设计者可以依需要挑选元件。 2.最大反向漏电流ID和额定反向切断电压VWM。VWM是二极管在正常状态时可承受的电压,此电压应大于或等于被保护电路的正常工作电压,否则二极管会不断截止回路电压;但它又需要尽量与被保护回路的正常工作电压接近,这样才不会在瞬态电压抑制二极工作以前使整个回路面对过压威胁。当这个额定反向切断电压VWM加于瞬态电压抑制二极的两极间时它处于反向切断状态,流过它的电流应小于或等于其最大反向漏电流ID。 3.最大钳位电压VC和最大峰值脉冲电流I PP。当持续时间为20ms的脉冲峰值电流IPP流过瞬态电压抑制二极时,在其两端出现

的最大峰值电压为VC。V C、IPP反映了瞬态电压抑制二极的突波抑制能力。VC与VBR之比称为钳位因子,一般在1.2~1.4之间。VC 是二极管在截止状态提供的电压,也就是在ESD冲击状态时通过瞬态电压抑制二极的电压,它不能大于被保护回路的可承受极限电压,否则元件面临被损伤的危险。 4.Pppm额定脉冲功率,这是基于最大截止电压和此时的峰值脉冲电流。对于手持设备,一般来说500W的瞬态电压抑制二极就足够了。最大峰值脉冲功耗PM是瞬态电压抑制二极能承受的最大峰值脉冲功耗值。在特定的最大钳位电压下,功耗PM越大,其突波电流的承受能力越大。在特定的功耗PM下,钳位电压VC越低,其突波电流的承受能力越大。另外,峰值脉冲功耗还与脉冲波形、持续时间和环境温度有关。而且,瞬态电压抑制二极所能承受的瞬态脉冲是不重覆的,元件规定的脉冲重覆频率(持续时间与间歇时间之比)为0.01%。如果电路内出现重覆性脉冲,应考虑脉冲功率的累积,有可能损坏瞬态电压抑制二极。 5.电容器量C。电容器量C是由瞬态电压抑制二极雪崩结截面决定的,是在特定的1MHz频率下测得的。C的大小与瞬态电压抑制二极的电流承受能力成正比,C太大将使讯号衰减。因此,C是数据介面电路选用瞬态电压抑制二极的重要参数。电容器对于数据/讯号频率越高的回路,二极管的电容器对电路的干扰越大,形成噪音或衰减讯号强度,因此需要根据回路的特性来决定所选元件的电容器范围。高频回路一般选择电容器应尽量小(如LC瞬态电压抑制二极、低电容

瞬态电压抑制二极管

瞬态电压抑制二极管应用指南 第一章 TVS器件的特点、电特性和主要电参数 一、 TVS器件的特点 瞬态(瞬变)电压抑制二级管简称TVS器件,在规定的反向应用条件下,当承受一个高能量的瞬时过压脉冲时,其工作阻抗能立即降至很低的导通值,允许大电流通过,并将电压箝制到预定水平,从而有效地保护电子线路中的精密元器件免受损坏。TVS能承受的瞬时脉冲功率可达上千瓦,其箝位响应时间仅为1ps(10-12S)。TVS允许的正向浪涌电流在T A=250C,T=10ms条件下,可达50~200A 。 双向TVS可在正反两个方向吸收瞬时大脉冲功率,并把电压箝制到预定水平,双向TVS适用于交流电路,单向TVS一般用于直流电路。 二、 TVS器件的电特性 1、单向TVS的V-I特性 如图1-1所示,单向TVS的正向特性与普通稳压二极管相同,反向击穿拐点近似“直角”为硬击穿,为典型的PN结雪崩器件。从击穿点到 V C值所对应的曲线段表明,当有瞬时过压脉冲时,器件的电流急骤增加而反向电压则上升到箝位电压值,并保持在这一水平上。 2、双向TVS的V-I特性 如图1-2所示,双向TVS的V-I特性曲线如同两只单向TVS“背靠背”组合,其正反两个方向都具有相同的雪崩击穿特性和箝位特性,正反两面击穿电压的对称关系为:0.9≤V(BR)(正)/V(BR)(反)≤1.1,一旦加在它两端的干扰电压超过箝位电压V C就会立刻被抑制掉,双向TVS在交流回路应用十分方便。 三、TVS器件的主要电参数 1、 击穿电压V(BR) 器件在发生击穿的区域内,在规定的试验电流I(BR)下,测得器件两端的电压称为击穿电压,在此区域内,二极管成为低阻抗的通路。 2、 最大反向脉冲峰值电流I PP 在反向工作时,在规定的脉冲条件下,器件允许通过的最大脉冲峰值电流。I PP与最大箝位电压VC(MAX)的乘积,就是瞬态脉冲功率的最大值。 使用时应正确选取TVS,使额定瞬态脉冲功率P PR大于被保护器件或线路可能出现的最大瞬态浪涌功率。

瞬态抑制器SMF6.0CA型号特性

瞬态抑制器SMF6.0CA型号特性 硕凯电子(Sylvia) 一、SMF系列描述 The SMF series is designed specifically to protect sensitive electronic equipment from voltage transients induced by lightning and other transient voltage events. 二、最大额定值 三、功能图 四、产品特性

1、兼容工业标准的SOD-123封装 2、为表面安装应用优化电路板空间 3、低泄漏 4、单向和双向单元 5、玻璃钝化结 6、低电感 7、优良的钳位能力 8、200W的峰值功率能力在10×1000μ波形重复率(占空比):0.01% 9、快速响应时间:从0伏特到最小击穿电压通常小于1.0ps 10、高温焊接:终端260°C/40秒 11、典型的最大温度系数△Vbr=0.1%x Vbr@25°C x△T 12、塑料包装有保险商实验室可燃性94V-0 13、无铅镀雾锡 14、无卤化,符合RoHS 15、典型失效模式是在指定的电压或电流下出现 16、晶须测试是基于JEDEC JESD201A每个表4a及4c进行的 17、IEC-61000-4-2ESD15kV(空气),8kV(接触) 18、数据线的ESD保护符合IEC61000-4-2(IEC801-2) 19、数据线的EFT保护符合IEC61000-4-4(IEC801-4) 五、产品图

六、曲线图 七、峰值浪涌

八、包装数量 九、编带说明 十、产品应用 TVS器件非常适合保护I/O接口,Vcc总线和其他应用于电信、计算机、工业和消费电子应用的易损电路。

过压保护电路

过压保护电路 MAX6495-MAX6499/MAX6397/MAX6398过压保护(OVP)器件用于保护后续电路免受甩负载或瞬间高压的破坏。器件通过控制外部串联在电源线上的n沟道MOSFET实现。当电压超过用户设置的过压门限时,拉低MOSFET的栅极,MOSFET关断,将负载与输入电源断开。 过压保护器件数据资料中提供的典型电路可以满足大多数应用的需求(图1)。然而,有些应用需要对基本电路进行适当修改。本文讨论了两种类似应用:增大电路的最大输入电压,在过压情况发生时利用输出电容存储能量。 图1 过压保护的基本电路 增加电路的最大输入电压 虽然图1电路能够工作在72V瞬态电压,但有些应用需要更高的保护。因此,如何提高OVP器件的最大输入电压是一件有意义的事情。图2所示电路增加了一个电阻和齐纳二极管,用来对IN的电压进行箝位。如果增加一个三极管缓冲器(图3),就可以降低对并联稳压器电流的需求,但也提高了设计成本。

图2 增大最大输入电压的过压保护电路 图3 功过三极管缓冲器增大输入电压的过压保护电路 齐纳二极管的选择,要求避免在正常工作时消耗过多的功率,并可承受高于输入电压最大值的电压。此外,齐纳二极管的击穿电压必须小于OVP的最大工作电压(72V),击穿时齐纳二极管电流最大。 串联电阻(R3)既要足够大,以限制过压时齐纳二极管的功耗,又要足够小,在最小输入电压时能够维持OVP器件正常工作。 图2中电阻R3的阻值根据以下数据计算:齐纳二极管D1的击穿电压为54V;过压时峰值为150V,齐纳二极管的功率小于3W。根据这些数据要求,齐纳二极管流过的最大电流为:3W/54V = 56mA 根据这个电流,R3的下限为: (150V - 54V)/56mA = 1.7kW

过欠电压提示保护电路课程设计报告书

大学课程设计报告 课程名称: 系部: 专业班级: 学生: 指导教师: 完成时间: 报告成绩:

目录 1.概述 (3) 1.1 过欠压电路课程设计背景 (3) 1.2 过欠压电路课程设计目的 (3) 1.3 设计任务与要求 (3) 2.设计容 (4) 2.1 分模块电路设计思路 (4) 2.2 电源模块的设计 (4) 2.3 比较模块的设计 (5) 2.4 报警模块的设计 (6) 3.总电路图 (8) 3.1 图像 (8) 3.2 元件清单 (8) 3.3 部分重要原件介绍 (8) 4.仿真与调试 (11) 4.1仿真 (11) 4.2调试 (12) 4.3结论 (14) 5.心得体会 (14) 6.参考文献 (15)

1.概述 1.1 过欠压电路课程设计背景 生活中,我们不可避免的要用到要用到各种各样的电气设备。由于电网电压的波动,在较高的电压下很有可能使电气设备受到损坏,而在低压时电气设备不能正常工作。那么,在这样的情况下就需要有一个电压报警指示设备,它可以及时准确地对电网电压进行分段指示并且对过、欠压进行指示报警,从而实现保护电器设备的目的。 1.2 过欠压电路课程设计目的 1.设计一过/欠电压保护提示电路。 2.对给定的电路原理框图进行原理图设计,分单元进行设计。对电路参数进行必要的计算,选择元器件参数。 3.画出完整的电路原理图。 4.对设计的电路进行仿真验证。要求打印出仿真结果。 1.3 设计任务与要求 1.设计一个过欠电压保护电路,当电网交流电压大于250V或小于180V时,经3~4s本装置将切断用电设备的交流供电,并用LED发光警示。 2.在电网交流电压恢复正常后,经本装置延时3~5分钟后恢复用电

过压保护及瞬态电压抑制电路设计

作者周敏捷 利用电池供电的移动设备通常需要通过外置的AC适配器对系统电池进行充电。而不同供电电压的设备间往往共用着相似的电源插座和插头,这些不同电压标准的适配器往往会给用户带来潜在的错插风险,可能导致设备因过高的电压而烧毁。另一方面,来自AC适配器前端的浪涌或者电网的不稳定也有可能导致适配器的输出电压超越设备所能承受的范围。因此,在移动设备设计中就有必要加入充电端口的过压保护电路,以避免上述情况对设备后端电路的破坏。 本文介绍的过压保护电路由过压保护开关(OVP Switch)和瞬态电压抑制器(TVS)组成(如图1),可实现完善可靠的抗持续高电压和瞬间冲击电压的功能。 图1 在整个方案中,核心部分器件为过压保护开关,以美国研诺逻辑科技有限公司(AATI)的过压保护开关AAT4684为例,过压保护开关的内部主要是由控制逻辑电路和PMOS管组成,当OVP端的检测电压高于特定电压阈值之后,逻辑电路就会通过栅极关断PMOS的沟道。由于该PMOS管拥有较高的持续性耐压(28V),因此可以保护后端的元器件不会因前端电源输入异常高压而烧毁(其内部原理如图2所示)。

图2:AAT46842 内部原理图。 通过以下实验可以说明当过压保护开关的输入端出现过高电压时它对后端电路所起到的保护作用。 图3所示为测试所用电路原理图,输入端为12V平稳直流源,电源通过一段长度为1米的导线与AAT4684的输入端相连,CH1为AAT4684输入电压的测试点,CH 2为 AAT4684输出电压的测试点,CH3为其输出电流探测点。将AAT4684的OVP保护电压设为6V(即当电压超过6V后,开关管立刻关闭,以保护输出端的电路)。为体现实际应用中AC适配器的插拔情况,对系统的上电过程通过导线和电源的机械性拔插来实现。

过欠电压保护提示电路

东北石油大学课程设计 2020 年7月17日

东北石油大学课程设计任务书 课程数字电子技术课程设计 题目过/欠电压保护提示电路 专业勘查技术与工程姓名学号 主要内容: 设计一个数字过/欠电压保护提示电路,当电网交流电压大于250V或小于180V时,经3~4s本装置将切断用电设备的交流供电,并用LED发光警示。在电网交流电压恢复正常后,经本装置延时3~5分钟后恢复用电设备的交流供电。 基本要求: 1.当电压超过设定区间时,电路能自动切断并亮灯报警。 2.当供电恢复后,该装置经过一定的延时后能正常送电。 主要参考资料: [1] 陈有卿.实用电子制作精选[M].北京:机械工业出版社,2011 [2] 赵世平.模拟电子技术基础[M].北京:中国电力出版社,2014 [3] 张凤言.电子电路基础[M].北京:高等教育出版社,2013 [4] 康华光.电子技术基础模拟部分[M].北京:高等教育出版社,2013 完成期限2020.7.13-2020.7.17 指导教师 专业负责人 2020年7 月10 日

目录 1任务和要求 (1) 2 总体方案设计与选择 (1) 3单元电路设计 (2) 3.1电源模块的设计 (2) 3.2比较模块的设计 (3) 3.3 报警延时模块的设计 (4) 4 整体电路设计 (5) 5 电路仿真结果与分析 (5) 5.1调试 (5) 5.2仿真 (6) 5.3 结论 (7) 6社会、安全、健康、法律、文化、环境等影响因素 (8) 7 设计的可持续发展性 (8) 8本设计的成本 (8) 9 结论 (9) 参考文献 (10)

1任务和要求 (1)任务:设计一个数字过/欠电压保护提示电路。 (2)设计要求:当电网交流电压大于250V或小于180V时,经3~4s本装置将切断用电设备的交流供电,并用LED发光警示。在电网交流电压恢复正常后,经本装置延时3~5分钟后恢复用电设备的交流供电。 ?当电网交流电压大于250V或小于180V时,经3~4s本装置将切断用电设备的交流供电,并用LED发光警示。 ?在电网交流电压恢复正常后,经本装置延时3~5分钟后恢复用电设备的交流供电。 2 总体方案设计与选择 过压比较器同相输入端与欠压比较器反相输入端端接电源部分采集到的电压,过压比较器的反相输入端与欠压比较器的同相输入端则可以端接两种电路,这个部分经过查阅资料与讨论,制定出两套方案: 方案一:可以通过电源部分分别将250v与180v所对应的电压测试出来,分别为11.158v与7.89v。然后分别在过压与欠压比较器的相应输入端接入相同电压值的直流电源。 图1 方案一框图 方案二:从电源部分的输入端接并联个单相桥式整流电容滤波电路,对其输出电压进行稳压,使其电压值高于或等于250v所对应的电压,这个电压值为基准电压,经过测试后为11.77v,在过压与欠压比较器的相应输入端接入一个滑动比较器,起调节基准电压的作用,然后将基准电压与滑动变阻器连接,这时便可以通过滑动变阻器将基准电压调节为两个比较器的标准电压。

瞬态电压抑制器(TVS)选型指南及注解

瞬态电压抑制器(TVS)选型指南及注解 作者:时间:2008-08-29 来源:eaw 一、选用指南 1、首先确定被保护电路的最大直流或连续工作电压,电路的额定标准电压和“高端”容限。 2、TVS的额定反向关断电压VWM应大于或等于被保护电路的最大工作电压,若选用的VWM太低,器件有可能进入雪崩状态或因反向漏电流太大影响电路的正常工作。 3、TVS的最大箝位电压VC应小于被保护电路的损坏电压。 4、TVS的最大峰值脉冲功率PW必须大于被保护电路内可能出现的峰值脉冲功率。 5、在确定了TVS的最大箝位电压后,其峰值脉冲电流应大于瞬态浪涌电流。 6、对于数据接口电路的保护,必须注意选取尽可能小的电容值C的TVS器件。 7、带A的TVS二极管比不带A的TVS二极管的离散性要好,在TVS二极管A前面加C的型号表示双向TVS二极管。 8、直流保护一般选用单向TVS二极管,交流保护一般选用双向TVS二极管,多路保护选用TVS阵列器件,大功率保护选用TVS专用保护模块。特殊情况,如:RS-485和RS-232保护可选用双向TVS二极管或TVS阵列。 9、TVS二极管可以在-55℃到+150℃之间工作,如果需要TVS在一个变化的温度下工作,由于其反向漏电流ID是随温度的增加而增大;功耗随TVS结温度增加而下降,故在选用TVS时应考虑温度变化对其特性的影响。 10、TVS二极管可以串/并应用,串行连接分电压,并行连接分电流。但考虑到TVS的离散性,使用时应尽可能的减少串/并数量。 二、注解 1、VWM—是TVS最大连续工作的直流或脉冲电压,当这个反向电压加于TVS两极时,它处于反向关断状态,流过它的电流小于或等于其最大反向漏电流ID。 2、VBR—是TVS最小的雪崩电压。25℃时,在这个电压之前,保护TVS是不导通的。当TVS 流过规定的1mA电流IR时,加于TVS两极间的电压为其最小击穿电压VBR。 3、IT—--测试电流。 4、ID—--反向漏电流。 5、VC—当持续时间为20us的脉冲峰值电流IPP流过TVS时,其两极间出现的最大峰值电压为VC。它是串联电阻和热温升两者电压上升的组合。 6、IPP—最大的峰值脉冲电流。 7、C----电容值(pF)。在收/发的总线接口电路里,选取电容值小的TVS器件尤为有利。 标签:TVS箝位电压VWM VBR IT ID VC IPP

输出过压保护电路

输出过压保护电路 ① 输出过压保护电路的作用是:当输出电压超过设计值时,把输出电压限定在一安全值的范围内。当开关电源内部稳压环路出现故障或者由于用户操作不当引起输出过压现象时,过压保护电路进行保护以防止损坏后级用电设备。在测试与测量应用中,必须为放大器、电源以及类似部件的输出端提供过压保护。实现这一任务的传统方式是在输出节点中增加串联电阻,并在电源线路或其它阈值电压上增加箝位二极管(图1)。这个电阻大大减小了电流输出的能力,以及低阻负载的输出电压摆幅。另外一种方案是用保险丝或其它限流器件,它优于这些箝位电路的高吸能能力。当源电阻R6上的压降大于耗尽型MOSFET Q1与Q2的栅极阈值电压时,图2电路是作为一个双极电流源,从而限制了通过箝位二极管的电流。这种方案的缺点是在过载条件下,串联元件上有大的功耗。

② 有一种合理的方案是当输出端子上存在过载电压时,将放大器输出节点与输出端子断开一段时间。几十年来,工程师都在音响功率放大器中使用机电继电器完成这种串联断接,不过原因不同,他们是用于扬声器保护。SSR(固态继电器)(包括光电子、光伏电池、OptoMOS和PhotoMOS器件)适合完成中等强度电流的负载断接任务,因为其控制端与负载端之间有电流绝缘。 ③

图3中的串联保护电路使用一只串接的大电压SSR,切断放大器的输出端。当输出电压升高到正基准电压以上或低于负基准电压阈值时,就会使IC2或IC3比较器变换自己的输出状态,通过与逻辑器件IC5关断SSR IC4。图4显示了实现这种方案的简单电路。 图4中的电路只需要少量外接元件,使用一只SSR作输出过压保护。上升的过压使IC2中的两只晶体管截止,切断了流经IC3控制LED的电流。继电器IC3打开,保护放大器与箝位二极管。该电路经过了一系列Clare、Matsushita Electronic Works和Panasonic SSR的测试,它们有的带内部电流保护,有的不带。电源线路电压是±15V;R10、R11和R12设定触发电平为±16 V。省略R11可将触发电平移至±14.5V。在保护电路工作时,针对0.5V过压保护继电器,SSR的关断延迟为100μs~200μs,较高过压下延迟会更短些。注意在使用低导通电阻SSR 时,通过箝位二极管的峰值电流可能会相当大。 ④

相关文档
相关文档 最新文档