文档库 最新最全的文档下载
当前位置:文档库 › 名称激光器系统

名称激光器系统

名称激光器系统
名称激光器系统

名称:激光器系统

参考品牌:Apollo

参考型号:F100-793-2

数量:1套

用途:主要用于Tm:YAP激光晶体泵浦,用于掺铥增益光纤泵浦,用于研究Tm:YAP晶体工作时端面温度分布。

技术参数:

波长: 793nm±5nm

功率: ≥100W

光纤直径: 200μm

光谱宽度:≤4nm

波长温度偏移:≤0.4nm/℃

光纤接口:SMA905

工作温度:10~30℃

储存温度:-10~60℃

光纤类型:NA 0.22

配件:

(1) 电源驱动

(2) 声光Q开关:1900-2100nm, 4mm aperture Loss

modulation≥70%, water cooled

(3) 射频驱动器:40.68Mhz RF driver, 50W RF power

供应商服务要求:

1、保修1年;

2、送货上门,货到验收合格付全款;

3、送货同时开具增值税专用发票;

4、供应商应具有该产品销售范围的营业执照。

5、

半导体激光器系统的动态特性研究资料

山西大学 物理电子工程学院实验论文 半导体激光器稳频系统的动态特性研究 学院:物理电子工程学院 专业:光信息科学与技术 导师:王彦华 姓名:杜小娇任思宇 学号:2013274002 20132740

半导体激光器稳频系统的动态特性研究 摘要:本实验在现代社会中自动控制系统技术的启发下,考虑到目前激光技术的发展前景广阔,应用也比较广泛,决定将用类似的方法研究激光器稳频系统的动态特性。在闭环系统中通过不同干扰信号的扰动,观察整个系统的响应,最终得到传递函数,进而分析出该系统的幅频和相频特性。关键字:激光器稳频系统干扰信号传递函数幅频特性相频特性 (一)引言 提高激光器系统稳定性在激光技术、超精密加工、测量设备量子信息等诸多科技前沿领域有着举足轻重的地位。影响激光系统稳定性的因素有很多,例如激光器、气压、震动等。如果激光器系统的稳定性提高到十几个小时乃至更高,那么对于恶劣环境的干扰就可以得以消除,更有利于实验的进行。对于激光器稳定性的研究更显得尤为重要,在激光器输出功率稳定性[1-2]的系统中,都实现了激光器输出功率的长期稳定性。在山西大学[3-6]也有很多实验需要建立在稳定系统来进一步发展。二阶闭环系统稳定的研究过程中针对信号及信号处理[7-8]已经有了较为成熟的一系列体系。因此,结合自动控制理论研究激光器系统及其动态响应,以实验结果为依据,对特定环境下激光器的结构设计的优化以及环路的参数的确定和调试,进行数学建模,从而提供更科学的处理方案,并给出一些的针对性的建议是非常重要的研究工作。 (二)实验原理 2.1半导体激光器(ECDL) 激光器的种类很多,分类的依据也有很多。其中根据其增益介质的不同可分为气体激光器、固体激光器、光纤激光器、染料激光器以及半导体激光器。半导体激光器因其结构紧凑、操作简单、便于集成、价格低廉、功耗低、工作波长范围大等优点而被广泛应用于冷原子物理、量子操控等前沿研究和高分辨率光谱,高精度测量很多技术领域。因此实验中将对半导体激光器稳定性进行了研究与分析。 我们在实验中为了更好控制半导体中发光二极管发出的光经谐振腔不断放大后发射出激光的不同模式,采用了光栅反馈式选模。光栅对激光有色散的作用,进而不同波长的波可以清楚辨别,通过调节光栅的角度,进而可以实现不同频率的激光反馈回激光器中。

激光器激励原理

激光器激励原理 —固体激光器 1311310黄汉青 1311343张旭日辅导老师:

摘要:固体激光器目前是用最广泛的激光器之一,它有着一些非常突出的优点。介绍固体激光器的工作原理及应用,更能够加深对其的了解。本论文先从基本原理和结构介绍固体激光器,接着介绍一些典型的固体激光器,最后介绍其在军事国防、工业技术、医疗美容等三个方面的应用及未来的发展方向。 关键词:固体激光器基本原理基本结构应用 1引用 世界上第一台激光器—红宝石激光器(固体激光器)于1960年7月诞生了,距今已有整整五十年了。在这五十年时间里固体激光的发展与应用研究有了极大的飞跃,并且对人类社会产生了巨大的影响。 固体激光器从其诞生开始至今,一直是备受关注。其输出能量大,峰值功率高,结构紧凑牢固耐用,因此在各方面都得到了广泛的用途,其价值不言而喻。正是由于这些突出的特点,其在工业、国防、医疗、科研等方面得到了广泛的应用,给我们的现实生活带了许多便利。 未来的固体激光器将朝着以下几个方向发展: a)高功率及高能量 b)超短脉冲激光 c)高便携性 d)低成本高质量 现在,激光应用已经遍及光学、医学、原子能、天文、地理、海洋等领域,它标志着新技术革命的发展。诚然,如果将激光发展的历史与电子学及航空发展的历史相比,你不得不意识到现在还是激光发展的早期阶段,更令人激动的美好前景将要来到。 2激光与激光器

2.1激光 2.1.1激光(LASER) 激光的英文名——LASER,是英语词组Light Amplification by Stimulated Emission of Radiation(受激辐射的光放大)的缩写[1]。2.1.2产生激光的条件 产生激光有三个必要的条件[2]: 1)有提供放大作用的增益介质作为激光工作物质,其激活粒子(原子、分子或离子)有适合于产生受激辐射的能级结构; 2)有外界激励源,将下能级的粒子抽运到上能级,使激光上下能级之间产生粒子数反转; 3)有光学谐振腔,增长激活介质的工作长度,控制光束的传播方向,选择被放大的受激辐射光频率以提高单色性。 3固体激光器 3.1工作原理和基本结构 在固体激光器中,由泵浦系统辐射的光能,经过聚焦腔,使在固体工作物质中的激活粒子能够有效的吸收光能,让工作物质中形成粒子数反转,通过谐振腔,从而输出激光。 如图1所示,固体激光器的基本结构(有部分结构没有画出)。固体激光器主要由工作物质、泵浦系统、聚光系统、光学谐振腔及冷却与滤光系统等五个部分组成[4]。

半导体激光器TEC温控实验

半导体激光器TEC温控实验 温度对半导体激光器的特性有很大的影响.为了使半导体激光器输出功率稳定,必须对其温度进行高精度的控制.TEC-10A利用PID模糊控制网络设计了温控系统,控制精度达到0.0625℃,与无PID控制网络相比,极大的提高了系统的瞬态特性,并且试验发现TEC-10A采用带有温控系统的半导体激光器的输出功率稳定性比没有温控系统的输出功率得到显著改善。 TEC-10A使用上位机软件,获得数据如下: 图1 目标温度设定为60度的加热曲线图 TEC-10A模糊自适应PID 算法比传统PID 算法具有更小的温度过冲和更高的控温精度,精度为±0.0625℃,达到稳定的时间小于70s。 TEC-10A的“模糊控制理论”是由美国加利福尼亚大学教授L.A.Zadeh 于1965 年首先提出的,至今只有40 余年的时间,它属于智能控制的范畴。那么到底什么是模糊控制?其实模糊控制是一种被精确定义的特殊的非线性控制,它利用类似人类的启发式知识对系统进行控制。模糊控制的基本原理框图如下图所示。 图2 模糊算法 首先建立模糊规则 根据上面的输入量的模糊化,确定了误差及误差变化的模糊集合,下面将建立模糊规则。模糊控制规则主要有两种形式:一种是经验归纳法,一种是采用数学的推理合成法。经验归纳法是根据操作者对控制经验的整理、加工而形成的控制规则,虽然具有主观臆断,但其中

必须经过对客观事实的合理归纳而形成。下面的表就是根据经验归纳法总结的模糊控制规则表。 下面是一些简单的一维和二维控制形式: “如果A,那么B”(IfAThen B);例如,如果激光器的温度很高,那么快速降温。“如果A,那么B,否则C”(If A Then B Else C);例如,如果激光器温度很低,那么快速加热,否则缓慢加热。 “如果A 且B,那么C”(If A And B Then C)。例,如果激光器温度很高且温度下降很慢,那么快速加热。 在实际操作中第三种形式较常见,“A”为偏差e,“B”为偏差变化量Ec。 TEC-10A的尺寸也是比较小的,如下图所示: 图3 TEC-10A具有较小尺寸 TEC-10A是一款高功率密度的TEC温度控制器,额定工作负载5A,峰值电流可达10A。此温度控制器可以连接专用调试器来进行参数的调节,参数调节完毕并保存后,撤去调试器,此温度控制器仍可以独立工作。可以通过专用RS232调试线和电脑进行通讯,以进行参数设

医学中常用的激光器

医学中常用的激光器 自第一台激光器问世后,人们对激光器件及技术进行了大量的研制工作,取得了相当可观的成果。目前能实现激光运转的工作物质达数百种以上,大体上分为气体、固体、半导体、染料等几大类。人们在探索激光产生机理的同时,扩展了激光的频谱范围,几千条谱线遍布于真空紫外到远红外的广阔光谱区域。激光方向性好、强度大,可以使被照物体在1/1000s内产生几千度的高温,瞬间发生汽化。由于激光的物理特性决定了其具有明显的生物学效应,。各种不同的激光具有不同的特性和组织效应,正确认识激光的这些特点,是选择和合理利用激光的基础。 一.气体激光器 气体激光器,按工作物质的性质,大致可分成下列三种:(1)原子激光器:利用原子跃迁产生激光振荡,以氦氖激光器为代表。氩、氪、氙等惰性气体,铜、镉、汞等金属蒸气,氯、溴、碘等卤素,它们的原子均能产生激光。原子激光器的输出谱线在可见和红外波段,典型输出功率为10毫瓦数量级。 (2)分子激光器:利用分子振动或转动状态的变化产生辐射制成的,输出的激光是分子的振转光谱。分 子激光器以二氧化碳(CO 2)激光器为代表,其他还有氢分子(H 2 ),氮分子(N 2 )和一氧化碳(CO)分子等激光 器。分子激光器的输出光谱大多在近红外和远红外波段,输出功率从数十瓦到数万瓦。(3)离子激光器:这类激光器的激活介质是离子,由被激发的离子产生激光放大作用,如氩离子(激活介质为Ar+)激光器。氦镉激光器(激活介质为Cd+)等。离子激光器的输出光谱大多在可见光和紫外波段,输出功率从几毫瓦到几十瓦。 气体激光器是覆盖波谱范围最广的一类器件,能产生连续输出。其方向性、单色性也比其他类型器件好,加之制造方便、成本低、可靠性高,因此成为目前应用最广的一类器体。 1、氦氖激光器 氦氖激光器能输出波长为632.8nm的可见光,具有连续输出的特性。它的光束质量很好(发散角小,单色性好,单色亮度大)。激光器结构简单,成本低,但输出功率较小。氦氖激光器在工业、科研、国防上应用很广,医疗上主要用于照射,有刺激、消炎、镇痛、扩张血管和针灸等作用,广泛用于内科、皮肤科、口腔科及细胞的显微研究。 氦氖激光器有三种结构形式:内腔式、外腔式和半内腔式。它们均由放电管、谐振腔、激励电源等三部分组成。以内腔式为例,放电毛细管是产生气体放电和激光的区域,它的内径很小,约在1到几毫米。电极A为阳极,由钨杆或钼(或镍)筒制成。阴极K为金属圆筒,由铝、钼、钽等制成,它们均有足够的电子发射能力和抗溅射能力。组成谐振腔的两块反射镜紧贴于放电管两端,并镀以多层介质膜。其中一个为全反射镜,另一个则为部分反射镜,整个谐振腔在出厂前已调整完毕,因此使用简单、方便。放电管的管径比放电毛细管粗几十倍,用以保持氦氖气压比及加固谐振腔。为了避免放电管变形而引起激光输出下降,内腔管的长度不宜过大,一般不超过一米。外腔式激光器可以更换不同的反射镜,使输出功率最大,光束发散角最小。也可在反射镜和放电管之间插入光学元件,以研究激光器的输出特性,调制它的频率或幅度,并可制成单频大功率激光器。 2、二氧化碳激光器 二氧化碳激光器的能量转换效率达20~25%(氦氖激光器的能量转换效率仅为千分之几)。它的输出波长为10.6微米,属于远红外区,连续输出功率可达万瓦级,常用电激励,结构比较简单紧凑,使用 方便,是目前最常用的激光器之一,在医学上,CO 2激光器作为手术刀使用日益引起人们的重视。CO 2 激 光器也用于皮肤科、外科、神经外科、整形外科、妇科和五官科的手术,在癌症的治疗上也有一定成效。 最常见的封离型内腔式二氧化碳激光器的管壳是由硬质玻璃或石英材料制成的。常见为三层玻璃套管结构,其最内层是放电管,中间层是水冷套,外层是储气管。在内外层之间有气体循环通路,这是为了保证混合气体的均匀分布而设计的。其光学谐振腔通常用平凹球面腔。球面镜可用石英或其他光学玻璃做基片,然后,在表面上镀层金属膜。平面镜是输出窗片,要求它对10.6μm的激光有很好的透过率,且表面不易损伤,机械性能好等。一般中小功率的激光器常常采用锗单晶做输出片,大功率的用砷化镓

激光治疗的操作规范及管理讲解

激光治疗的操作规范及管理 激光治疗具有相当的风险性,因而有必要在各方面严格遵循质控要求和有关的规章制度。唯有如此,才能充分保障患者的健康及安全,最大限度地减少并避免医疗事故。 【对操作人员的要求】 (1激光从业医技人员必须具备执业资格。 (2从事皮肤激光治疗的医师,应有一定的皮肤科临床经验。 (3从事皮肤激光治疗的医师均应经过正规培训,掌握激光的基本知识、激光的技术参数和操作方法。 (4从业人员应定期接受培训和再教育。 【操作规程】 (1与患者及家属进行术前谈话,告知激光手术可能的风险及术后注意事项,使患者的期望值达到合理水平,患者术前均应签署知情同意书。 (2按常规进行术前准备,根据需要清洁手术区、常规消毒,必要时还应予以局部麻醉和表面麻醉。麻醉剂的使用应遵循安全、规范的原则。 (3根据对患者的诊断,选择合适的激光器和激光参数进行治疗。治疗时,对周围正常皮肤要给予妥善防护,工作人员应佩戴防护目镜以保护眼部。 (4治疗完毕后,根据需要在创面上外用保护剂,以预防感染。 (5术后应避免感染,可外用和(或)口服抗生素,治疗区应避免 搔抓,避免剧烈运动。美容激光或光子嫩肤术后应避免日晒。 (6患者术后如有意外情况,应尽早与医师联系并复诊。【激光器的分级】

激光器按其对人体的危害,可分为4级,这主要是参照美国辐射卫生局制定的标准。 I级激光器:在通常操作的情况下,这一级激光器对人体无辐射危害,因而可以免除控制措施,也不必使用警示标志。 Ⅱ级激光器:又称为低功率激光器。在使用时,只要仔细操作即可,一般不需要特别的安全防护措施,但是在机器的外罩上要使用警示标志。 Ⅲ级激光器:又称为中功率激光器,其中Ⅲ-A 类型对人体有低度危险性,Ⅲ-B 类型对人体有中度危险性。由于本级激光器对人体可造成直接的危害,因此必须采取防护措施,严禁直视激光束,同时尽可能减少激光反射。机器的外罩上应使用警示标志。 Ⅳ级激光器:此类激光器输出功率高,对人体具有高度危险性。因此必须采取严格的防护措施,并使用警示标志。同对激光器最好安放于单独的房间内,实行远距离操作。 【激光室的管理】 (1激光治疗室应定期清洁或消毒,手术器械也要定期消毒。 (2激光治疗室要有充分的照明、通风条件,尽量减少能形成漫反射的物质。 (3二氧化碳激光、铒激光等治疗时易产生烟尘,安放这些设备的 手术室要安装吸烟尘装置。 (4病史资料及各种物品应由专人负责管理。 【皮肤激光治疗的防护】 (1Ⅱ~Ⅳ级激光器应贴有警示标志。

半导体激光器驱动电源的控制系统

半导体激光器驱动电源的控制系统 使用单片机对激光器驱动电源的程序化控制,不仅能够有效地实现上述功能,而且可提高整机的自动化程度。同时为激光器驱动电源性能的提高和扩展提供了有利条件。 1 总体结构框图 本系统原理,主要实现电流源驱动及保护、光功率反馈控制、恒温控制、错误报警及键盘显示等功能,整个系统由单片机控制。本系统中选用了C8051F单片机。C8051F单片机是完全集成的混合信号系统级芯片(SOC),他在一个芯片内集成了构成一个单片机数据采集或控制系统所需要的几乎所有模拟和数字外设及其他功能部件,如本系统中用到的ADC和DAC。这些外设部件的高度集成为设计小体积、低功耗、高可靠性、高性能的单片机应用系统提供了方便,也大大降低了系统的成本。光功率及温度采样模拟信号经放大后由单片机内部A/D 转换为数字信号,进行运算处理,反馈控制信号经内部D/A转换后再分别送往激光器电流源电路和温控电路,形成光功率和温度的闭环控制。光功率设定从键盘输入,并由LED数码管显示激光功率和电流等数据。 2 半导体激光器电源控制系统设计 目前,凡是高精密的恒流源,大多数都使用了集成运算放大器。其基本原理是通过负反作用,使加到比较放大器两个输入端的电压相等,从而保持输出电流恒定。并且影响恒流源输出电流稳定性的因素可归纳为两部分:一是构成恒流源的内部因素,包括:基准电压、采样电阻、放大器增益(包括调整环节)、零点漂移和噪声电压;二是恒流源所处的外部因素,包括:输入电源电压、负载电阻和环境温度的变化。 2.1 慢启动电路 半导体激光器往往会因为接在同一电网上的多种电器的突然开启或者关闭而受到损坏,这主要是由于开关的闭合和开启的瞬间会产生一个很大的冲击电流,就是该电流致使半导体激光器损坏,介于这种情况,必须加以克服。因此,驱动电源的输入应该设计成慢启动电路,以防损坏,:左边输入端接稳压后的直流电压,右边为输出端。整个电路的结构可看作是在射级输出器上添加了两个Ⅱ型滤波网络,分别由L1,C1,C2和L2,C6,C7组成。电容C5构成的C型滤波网络及一个时间延迟网络。慢启动输入电压V在开关和闭合的瞬间产生大量的高频成分,经过图中的两个Ⅱ型网络滤出大部分的高频分量,直流以及低频分量则可以顺利地经过。到达电阻R和C组成的时间延迟网络,C2和C4并联是为了减少电解电容对高频分量的电感效应。 2.2 恒流源电路的设计 为了使半导体激光器稳定工作,对流过激光器的电流要求非常严格,供电电路必须是低噪声的稳定恒流源驱动,具体电路。 使用单片机对激光器驱动电源的程序化控制,不仅能够有效地实现上述功能,而且可提高整机的自动化程度。同时为激光器驱动电源性能的提高和扩展提供了有利条件。 1 总体结构框图 本系统原理,主要实现电流源驱动及保护、光功率反馈控制、恒温控制、错误报警及键盘显示等功能,整个系统由单片机控制。本系统中选用了C8051F单片机。C8051F单片机是完全集成的混合信号系统级芯片(SOC),他在一个芯片内集成了构成一个单片机数据采集或控制系统所需要的几乎所有模拟和数字外设及其他功能部件,如本系统中用到的ADC和DAC。

激光器的种类及性能参数总结

激光器的种类及性能参数总结 半导体激光器——用半导体材料作为工作物质的一类激光器 中文名称: 半导体激光器 英文名称: semiconductor laser 定义1: 用一定的半导体材料作为工作物质来产生激光的器件。 所属学科: 测绘学(一级学科);测绘仪器(二级学科) 定义2: 以半导体材料为工作物质的激光器。 所属学科: 机械工程(一级学科);光学仪器(二级学科);激光器件和激光设备-激光器名称(三级学科) 定义3: 一种利用半导体材料PN结制造的激光器。 所属学科: 通信科技(一级学科);光纤传输与接入(二级学科) 半导体激光器的常用参数可分为:波长、阈值电流Ith 、工作电流Iop 、垂直发散角θ⊥、水平发散角θ∥、监控电流Im 。 (1)波长:即激光管工作波长,目前可作光电开关用的激光管波长有635nm、650nm、670nm、激光二极管690nm、780nm、810nm、860nm、980nm等。 (2)阈值电流Ith :即激光管开始产生激光振荡的电流,对一般小功率激光管而言,其值约在数十毫安,具有应变多量子阱结构的激光管阈值电流可低至10mA以下。 (3)工作电流Iop :即激光管达到额定输出功率时的驱动电流,此值对于设计调试激光驱动电路较重要。 (4)垂直发散角θ⊥:激光二极管的发光带在垂直PN结方向张开的角度,一般在15?~40?左右。 (5)水平发散角θ∥:激光二极管的发光带在与PN结平行方向所张开的角度,一般在6?~ 10?左右。 (6)监控电流Im :即激光管在额定输出功率时,在PIN管上流过的电流。 工业激光设备上用的半导体激光器一般为1064nm、532nm、808nm,功率从几瓦到几千瓦不等。一般在激光打标机上使用的是1064nm的,而532nm的则是绿激光。 准分子激光器——以准分子为工作物质的一类气体激光器件。 中文名称: 准分子激光器 英文名称: excimer laser 定义:

光纤激光器的控制系统

光纤激光器的控制系统 随着激光器在切割、焊接、表面处理等广泛应用。文中设计了应用于激光打标的功率控制系统,采用数字电位器方式使激光器的性能得到大幅提高,硬件电路设计结构简单、系统响应速度快,不需要额外器件,成本低廉、功能齐全、实用性强。 1、系统总体设计 1.1、控制系统设计 控制系统主要由单片机MC9S12XDP512、开关电源PC0-6131、数字电位器DS1867、数字温度传感器DS18B20、LCD1602显示器、键盘和报警装置等组成。 系统进行读写操作时,光纤激光器输出功率由单片机进行控制调节,提供所需要的激光功率,功率设定时,由单片机MC9S12XDP512对数字电位器DS1867输出电阻进行控制,以改变开关电源控制端的输入电压,使开关电源的输出电流改变,得到光纤激光器输出功率所需要的驱动电流,从而实现激光输出功率的变化。同时利用数字温度传感器对光纤激光器工作环境温度进行采集,利用单片机实现对温度数据的处理,当温度超出规定的40℃时,单片机会控制发光二级管进行温度报警,并利用LCD显示装置显示信息,用户可实时了解激光器的工作情况。 1.2、控制原理 激光器为电流型驱动器件,驱动电流是输出光功率的前提,通过改变激光器电源电流的大小来改变激光器的输出功率。系统控制激光器的输出功率的基本方法是:由单片机控制数字电位器DS1867的输出电阻,使开关电源控制端的电压改变,从而控制了开关电源的输出电流,改变光纤激光器功率的输出。 数字电位器DS1867的输出电阻由式(1)计算 R=D×RWL+RW (1) 其中,RW为滑臂电阻,即为内部电位器电子开关电阻,通常RW≤100 Ω,典型值为40 Ω;RWL为数字电位器DS1867内部电子阵列中每个电阻单元的阻值;D为输入的数字量。根据光纤激光器功率控制的要求,即用户对光纤激光器的输出功率性能的要求,设计出用户要求的10等级功率输出产品,不同的功率等级输出对激光打标的对象有不同的要求。经实验得出,系统设计需要开关电源输出电流的变化范围为0~12 A,功率对应电流线性输出,允许功率稳定度有1%的误差波动。把光功率分成10个等级输出,输入数字量D的值如表1所示,可以通过查表实现。 2、系统的硬件设计 2.1、单片机的选择 单片机MC9S12xDP512是Freescale公司生产的一种16位器件,其包括大量的片上存储器和外部I/O。由16位中央处理单元(CPU12X)、512 kB程序Flash、12 kB RAM、8 kB 数据Flash组成片内存储器。同时还包含两个异步串行通信接口(SCI)、一个串行外设接口(SPI)、一个8通道输入捕捉/输出比较(IC/OC)定时模块(TIM)、16通道12位A/D转换器(ADC)和一个8通道脉冲宽度调制模块(PWM)。MC9S12XD512具有91个独立的数字I /O口,其中某些数字I/O口具有中断和唤醒功能。该单片机功能强大、运算速度快、可

CO2激光器原理及应用

目录 摘要 (1) 关键词 (1) Abstract (1) Keywords (1) 1引言 (2) 2激光 (2) 2.1激光产生的三个条件 (3) 2.2激光的特点 (3) 2.3激光器 (3) 3 CO2激光器的原理 (5) 3.1 CO2激光器的基本结构 (5) 3.2 CO2激光器基本工作原理 (7) 3.3 CO2激光器的优缺点 (8) 4 CO2激光器的应用 (9) 4.1军事上的应用 (9) 4.2医疗上的应用 (10) 4.3工业上的应用 (12) 5 CO2激光器的研究现状与发展前景 (14) 5.1 CO2激光器的研究现状 (14) 5.2 CO2激光器的发展前景 (15) 6 结束语 (17) 参考文献 (19) 致谢 (20)

摘要:本文从引言出发介绍了CO2激光技术的基本情况,简单介绍了激光和激光器的一些特点,重点介绍了气体激光器中的CO2激光器的相关应用,目前CO2激光器是用最广泛的激光器之一,它有着一些非常突出的高功率、高质量等优点。论文首先介绍了应用型CO2激光器的基本结构和工作原理,着重介绍了应用型CO2激光器在军事、医疗和工业三个主要领域的应用,最后介绍应用型CO2激光器的研究前景和现状。通过这些介绍使得人们能够加深对CO2激光器的了解和认识。 关键词: CO2激光器;基本原理;基本结构;应用; Abstract: This departure from the introduction of CO2 laser technology, introduced the basic situation, briefly introduced some of the characteristics of laser and laser to highlight the CO 2gas laser in laser-related applications, the current CO 2 laser was one of the most extensive laser, it had some very prominent high-power, high quality and so on. Paper introduced the application of CO 2 laser-type basic structure and working principle, focusing on the application type CO 2 laser in the military, medical and industrial application of the three main areas, Finally, applied research prospects for CO 2 laser and status. Through these presentations allowed people to deepen their knowledge and understanding of CO s lasers. Keywords:CO2Laser Basic Principle Basic Structure Application

采用TPS63000的EML激光器温度控制电路的设计与应用

采用TPS63000的EML激光器温度控制电路的设计与应用 引言 在光通信领域中,用于高速、长距离通信的电吸收调制激光器(Electlro-absorption Modulated Laser,EML)对温度稳定性的要求很高,并朝着小型化和高密度化方向发展。EML 激光器是第一种大量生产的铟镓砷磷(InGaAsP)光电集成器件。目前宽带城域网(BMAN)正成为信息化建设的热点,DWDM(密集波分复用)的巨大带宽和传输数据的透明性,无疑是当今光纤应用领域的首选技术。然而,MAN等具有传输距离短、拓扑灵活和接入类型多等特点,如照搬主要用于长途传输的DWDM,必然成本过高;同时早期DWDM对MAN等灵活多样性也难以适应。面对这种低成本城域范围的宽带需求,CWDM(粗波分复用)技术应运而生,并很快成为一种实用性的设备。对光通信来说,其技术基本成熟,而业务需求相对不足。以被誉为"宽带接入最终目标"的FTTH为例,其实现技术EPON已经完全成熟,但由于普通用户上网需要的带宽不高,使FTTH的商用只限于一些试点地区。但是,在2006年,随着IPTV等三重播放业务开展,运营商提供的带宽已经不能满足用户对高清晰电视的要求,随之FTTH的部署也提上了日程。无独有偶,ASON对传输网络控制灵活,可为企业客户提供个性化服务,不少运营商为发展和维系企业客户,不惜重金投资建设ASON. EML激光器的输出波长、电流阈值、最大输出功率和最小功率的波动都直接受工作温度的影响。同时,光源的啁啾声受限于光通道的最大允许色散,虽然光纤放大器可延长信号传输距离,但色散值随传输距离的线性累积与光纤放大器无关,因此只能对光源的啁啾提出很苛刻的要求。使用直接调制激光器远远满足不了系统对光源性能的要求,就目前技术而言,最简单的方法是使用带温度控制的电吸收激光源。 本设计方案采用体积小且易于控制的热电制冷器(ThermoElectric Cooler,TEC)作为制冷和加热器件,并采用高精度的负温度系数热敏电阻(NTC)作为温度传感器,以MCU为控制核心,对EML激光器进行精密温度控制。EML的内部结构框图如图1所示。虚线框内,上面的二极管负责监控激光器和控制开关,下面的二极管控制背光电流。

激光器介绍

激光器介绍 WALC4020数控激光切割机 更快、更宽、更厚的钣金切割专家 1、产品简介 更高性能的激光切割系统: WALC4020选择了世界最先进的激光器、切割头。拥有最高质量的部件和最好的结构。如西门子的控制系统和直线驱动系统,STAR的直线导轨。 更先进的结构型式: A.横梁 WALC4020激光切割机采用横梁倒挂结构,此结构有如下优势: 1.与横梁悬臂式相比,横梁的运行速度更高,运行更平稳,可达200米/分。这是因为驱动力的作用点位于横梁的重心,不会产生附加力矩,驱动效率更高,运行更平稳。 2.与小龙门移动式相比,电气控制更简单,系统更可靠。操作更方便。 因此,WALC4020更适用于高速,高功率切割。 B.交换工作台: 采用垂直升降式交换工作台,此型式的交换方式与目前使用的斜升式相比有如下优点: A.提升能力更大,安装更方便。 B.与横梁倒挂结构配合,结构更合理。 C.在切割区内,工作台下的空间更大,以便布置排渣装置及抽风除尘装置。 C.驱动: WALC4020激光切割机的X、Y轴采用了西门子的控制系统和直线驱动系统,与传统电机+滚珠丝杠(齿条)相比,驱动力更大,加速度更高。加速度可达3G,速度最高可达200米/分。而且运行更平稳。 X,Y,Z轴的导轨采用STAR高品质直线导轨,精度更高,运行更平稳。 2、产品特性 WALC4020融合了激光最新技术的应用 一.控制 WALC4020的控制器是SIEMENS 840D。该控制器的界面已经进行了改进,以适合激光切割系统的应用。 二.穿透检测 在打孔时,穿透检测使用传感器来确定光束是不是已经穿透了板材,这样可以得到最高质量的穿透效果,节省时间。

常用激光器简介

几种常用激光器的概述 一、CO2激光器 1、背景 气体激光技术自61年问世以来,发展极为迅速,受到许多国家的极大重视。特别是近两年,以二氧化碳为主体工作物质的分子气体激光器的进展更为神速,已成为气体激光器中最有发展前途的器件。 二氧化碳分子气体激光器不仅工作波长(10.6微米)在大气“窗口”,而且它正向连续波大功率和高效率器件迈进。1961年,Pola-nyi指出了分子的受激振动能级之间获得粒子反转的可能性。在1964年1月美国贝尔电话实验室的C.K.N.Pate 研制出第一支二氧化碳分子气体激光器,输出功率仅为1毫瓦,其效率为0.01%。不到两年,现在该类器件的连续波输出功率高达1200瓦,其效率为17 %,电源激励脉冲输出功率为825瓦,采用Q开关技术已获得50千瓦的脉冲功率输出。最近,有人认为,进一步提高现有的工艺水平,近期可以达到几千瓦的连续波功率输出和30~40% 的效率。 2、工作原理 CO2激光器中,主要的工作物质由CO?,氮气,氦气三种气体组成。其中CO?是产生激光辐射的气体、氮气及氦气为辅助性气体。加入其中的氦,可以加速010能级热弛预过程,因此有利于激光能级100及020的抽空。氮气加入主要在CO?激光器中起能量传递作用,为CO?激光上能级粒子数的积累与大功率高效率的激光输出起到强有力的作用。CO?分子激光跃迁能级图CO?激光器的激发条件:放电管中,通常输入几十mA或几百mA的直流电流。放电时,放电管中的混合气体内的氮分子由于受到电子的撞击而被激发起来。这时受到激发的氮分子便和CO?分子发生碰撞,N2分子把自己的能量传递给CO2分子,CO?分子从低能级跃迁到高能级上形成粒子数反转发出激光。 3、特点 二氧化碳分子气体激光器不但具有一般气体激光器的高度相干性和频率稳定性的特点,而且还具有另外三个独有的特点: (1)工作波长处于大气“窗口”,可用于多路远距离通讯和红外雷达。 (2)大功率和高效率( 目前,氩离子激光器最高连续波输出功率为100瓦,其效率为0.17 %,原子激光器的连续波输出功率一般为毫瓦极,其效率约为0.1%,而二氧化碳分子激光器连续波输出功率高达1200瓦,其效率为17%)。 (3)结构简单,使用一般工业气体,操作简单,价格低廉。由此可见,随着研究工作的进展、新技术的使用,输出功率和效率会不断提高,寿命也会不断增长,将会出现一系列新颖的应用。例如大气和宇宙通讯、相干探测和导航、超外

半导体激光器温度控制系统.

半导体激光器温度控制系统 半导体激光器广泛应用在工业加工、精密测量、通讯等领域。半导体 激光器是一个对温度很敏感的器件,它的输出波长和功率会随着温度的变化而改变,工作寿命也会因此而缩短。所以为了保证半导体激光器工作性能的良好,必 须要控制半导体激光器的温度。本文利用半导体制冷器作为系统的执行元件,设计出了半导体激光器的温度控制系统。目前半导体激光器的温控执行元件大多 使用半导体制冷器。半导体制冷器是根据珀尔贴效应而制成的,当给它通上直流电时,半导体制冷器就会加热或制冷,从而控制半导体激光器的温度。本文首先 研究了半导体制冷器的工作原理,而后在此基础上应用小信号分析法,建立出在 平均意义下的半导体制冷器的数学模型。其次研究半导体激光器和温度传感器 的模型,得出了温控系统的传递函数,通过分析温控系统的传函和温控系统需要 达到的性能要求,设计了PID控制器和模糊自适应PID控制器来优化系统,得出 应用模糊自适应PID的系统控制精度可以达到0.01℃。然后又利用遗传算法对 系统进行寻优,遗传算法不需要任何初始信息便可以寻求到全局最优解,本文设 计出基于遗传算法的PID控制器,与PID控制和模糊自适应PID进行比较,经过 仿真比较,得出基于遗传优化的PID控制效果更好。最后,设计温度控制系统的 硬件部分。详细介绍了系统的数据采集部分、单片机接口部分、功率驱动器部 分和显示器部分。 同主题文章 [1]. 高俊杰,马俊芝. 结构参数对半导体激光器激光特性的影响' [J]. 激 光技术. 1981.(03) [2]. 史一京. 半导体激光器的光注入调试' [J]. 中国激光. 1983.(Z1) [3]. 徐振华. 室温下15GHz直接调制的半导体激光器' [J]. 半导体光电. 1986.(01) [4]. 罗本清. PCM二次群和三次群光发射盘' [J]. 半导体光电. 1987.(03) [5]. 陈其道. 在快速激发下,DC—PBH 1.3μm InGaAsP/InP激光器的动 态光谱展宽' [J]. 半导体光电. 1987.(03) [6]. 刘弘度,林祥芝,鲍学军. 单纵模耦合腔半导体激光器' [J]. 光通信技术. 1987.(01) [7]. 史一京,李东姝,潘贵生. 用计算机对半导体激光器L-I特性等的测量'

2020年常用激光器简介

作者:非成败 作品编号:92032155GZ5702241547853215475102 时间:2020.12.13 几种常用激光器的概述 一、CO2激光器 1、背景 气体激光技术自61年问世以来,发展极为迅速,受到许多国家的极大重视。特别是近两年,以二氧化碳为主体工作物质的分子气体激光器的进展更为神速,已成为气体激光器中最有发展前途的器件。 二氧化碳分子气体激光器不仅工作波长(10.6微米)在大气“窗口”,而且它正向连续波大功率和高效率器件迈进。1961年,Pola-nyi指出了分子的受激振动能级之间获得粒子反转的可能性。在1964年1月美国贝尔电话实验室的C.K.N.Pate 研制出第一支二氧化碳分子气体激光器,输出功率仅为1毫瓦,其效率为0.01%。不到两年,现在该类器件的连续波输出功率高达1200瓦,其效率为17 %,电源激励脉冲输出功率为825瓦,采用Q开关技术已获得50千瓦的脉冲功率输出。最近,有人认为,进一步提高现有的工艺水平,近期可以达到几千瓦的连续波功率输出和30~40% 的效率。 2、工作原理 CO2激光器中,主要的工作物质由CO?,氮气,氦气三种气体组成。其中CO?是产生激光辐射的气体、氮气及氦气为辅助性气体。加入其中的氦,可以加速010能级热弛预过程,因此有利于激光能级100及020的抽空。氮气加入主要在CO?激光器中起能量传递作用,为CO?激光上能级粒子数的积累与大功率高效率的激光输出起到强有力的作用。CO?分子激光跃迁能级图CO?激光器的激发条件:放电管中,通常输入几十mA或几百mA的直流电流。放电时,放电管中的混合气体内的氮分子由于受到电子的撞击而被激发起来。这时受到激发的氮分子便和CO?分子发生碰撞,N2分子把自己的能量传递给CO2分子,CO?分子从低能级跃迁到高能级上形成粒子数反转发出激光。 3、特点 二氧化碳分子气体激光器不但具有一般气体激光器的高度相干性和频率稳定性的特点,而且还具有另外三个独有的特点: (1)工作波长处于大气“窗口”,可用于多路远距离通讯和红外雷达。 (2)大功率和高效率( 目前,氩离子激光器最高连续波输出功率为100瓦,

半导体激光器自动温度控制电路设计

半导体激光器自动温度控制电路设计 作者:赵京 来源:《电子世界》2013年第17期 【摘要】本文对用于通信设备的半导体激光器温度控制电路进行了模型建立和分析,并从自动控制的角度对温控电路形式进行了详细的性能指标分析和测试,通过对不同的控制方法的仿真分析和实测数据的对比得出了一种较为有效的温度控制电路,可以满足一般温控系统的要求。 【关键词】温度检测;自动温度控制;TEC 在光纤通信领域,通常使用半导体激光器作为光源,而半导体激光器的发射波长与管芯的温度密切相关,温度升高将导致波长变长(一般为0.1nm℃),对于一般的单波长光通信系统来说,波长的漂移对系统性能并无太大影响。但对于密集波分复用系统(DWDM),由于通道间的波长间隔已经很小,保持波长的稳定就变得非常重要。例如,工作在C波段的32波系统,通路波长间隔为100GHz(约0.8nm),而工作在C+L波段的160波系统,通路波长间隔为50GHz(约0.4nm)。因此,如果不对激光器管芯的温度加以控制,微小的温度变化将导致整个系统的不可用。另外,半导体激光器是对温度敏感的器件,其阈值电流、输出波长以及输出光功率的稳定性都对温度非常敏感,其工作寿命也与其工作温度密切相关。 实验表明,温度每升高30℃激光器的寿命会降低一个数量级[1]-[4]。对于可靠性要求高的场合,且保证激光器的寿命就需要对管芯温度加以控制,这样在系统中就需要附加一个自动温度控制电路(ATC)来实现对激光器管芯的温度控制。 1.温度控制系统原理 2.热模型的建立 一般带致冷激光器的常见结构是首先将激光器、背光管、热敏电阻等组件安装在一个子热沉上,然后再固定到TEC制冷器上,当温控电路正常工作时,位于TEC上的子热沉将恒定在某一设定温度值。当给TEC致冷器通不同极性的电流时能够分别实现致冷或致热,无论处于致冷还是致热状态,温度都不会突变,而是一个缓慢变化的过程。而在一定的电流下,当时间足够长时由于外界的热交换达到了平衡状态,温度将维持在某一个值(即与壳体间的恒定温差)。因此可以推测TEC致冷器在传递函数模型上类似于一阶惯性环节:,(为致热致冷效率,为时间常数),为了确定和,以某恒定电流作为TEC致冷器输入,并通过热敏电阻检测温度的变化,将采集到的温度与时间的关系通过计算机绘制得到相应的曲线。以激光器FUJITSU的FLD5F6CXF为例,经过测量可取6秒,可取90,即1安培电流能获得的温差约为90℃。由于TEC致冷器和温度传感器之间存在一定的距离,所以还需考虑这种距离带来的温度

半导体激光器温度控制电路设计

龙源期刊网 https://www.wendangku.net/doc/563883098.html, 半导体激光器温度控制电路设计 作者:霍佳皓李洪祚 来源:《现代电子技术》2013年第20期 摘要:在对激光器的温度控制理论作了深入研究的基础上,为了使激光器工作时温度恒定,设计了一种新型的温度控制电路,电路中采用了ADN8831作为的核心器件,结合PWM 控制方案,完成了包括输入级、补偿环节、输出级、滤波电路和保护及检测电路的硬件电路设计。经过实际连接激光器实验,温度控制精度可达0.01 ℃。电路具有体积小、效率高、可靠 性高、驱动能力强等特点,可以为激光器提供恒定的温度控制。 关键词:温度控制;半导体激光器; TEC; PID 中图分类号: TN722?34 文献标识码: A 文章编号: 1004?373X(2013)20?0153?03 0 引言 通过对半导体激光器特性的研究,可知温度对激光器的正常工作有着重要的影响。温度会直接影响到半导体激光器的工作参数包括[1]:阈值电流、V?I关系、输出波长、P?I关系等。同时高温也会对激光器产生极大的影响,严重影响其使用寿命和效率。本文采用ADN8831温度控制芯片[3]为激光器提供恒定且可调的工作温度来保证激光器高效率工作。 1 温度控制芯片介绍 根据半导体激光器对温度的要求,选定ADN8831作为激光器的温度控制主芯片。 ADN8831芯片是目前最优秀的单芯片高集成度、高输出效率和高性能的TEC驱动模块之一。ADN8831的最大温漂电压低于250 mV,能够使设定温度误差控制在±0.01 ℃左右。在工作过程中,ADN8831输入端的电压值对应一个设定好的目标温度。适当大小的电流流过TEC,使TEC加热或制冷,在这个过程中使激光器表面温度向设定温度值靠近[2]。此芯片还有过流保 护功能,可编程开关频率最高可达1 MHz。 2 TEC控制原理 TEC(Thermo Electric Cooler)实际上是用两种材料不同半导体(P型和N型)组成PN 结,当PN结中有直流电流通过时,由于两种材料中的电子和空穴在跨越PN结移动过程中产生吸热或放热效应(帕尔帖效应[4]),就会使PN结表现出制冷或制热的效果,改变电流方向即可实现TEC加热或制冷,调节电流大小即可控制加热或制冷量的输出[5]。利用TEC稳定激光器温度方法的系统框图[6]如图1所示。 图1中贴着激光器右侧的是温度传感器,这里使用具有负温度系数的热敏电阻。这个热敏电阻是用来测量安放在TEC表面上的激光器的温度。期望的激光器温度用一个固定的电压值

YLPM激光器使用说明

●更宽的频率调节范围(1.6kHz~1000kHz); ●更高的峰值功率; ●可广泛应用于塑胶按键及阳极铝打黑等项目上。 ●更快的开关光速度,打标速度更快。 在安装打标软件时,注意选择选择“YLPM型激光器”, 在控制界面,YLP-M比YLP-F多了一个打标参数:激光模式。共有8种激光模式可选。可直接把所需的模式填入。 8种模式都有标称频率,即RR值,如果设定的频率低于该值时,激光器会自动降低输出功率,以保护激光器。 其中,T1模式配160镜头可在阳极铝上打黑,其效果类似皮秒激光器; T2模式配254镜头也可在阳极铝上打黑,效果可与SPI激光器的3号波形的

效果媲美; 而打标参数与SPI 激光器3号波形下的参数大致相同。 另,T2模式可用在含激光粉的PC,ABS材料上打白。 6.1ns T2模式,RR=200kHz,上升时间:3.8ns,50%时的脉冲宽度:8.4ns,10%时的脉冲宽度: 15.4ns T3模式, RR=125kHz,上升时间:3.8ns,50%时的脉冲宽度:14.4ns,10%时的脉冲宽度:21.1n s T4模式, RR=105kHz,上升时间:3.8ns,50%时的脉冲宽度:14.9ns,10%时的脉冲宽度:26.3ns T5模式, RR=85kHz,上升时间:4.0ns,50%时的脉冲宽度:14.6ns,10%时的脉冲宽度:31.5ns

T6模式, RR=60kHz,上升时间:3.2ns,50%时的脉冲宽度:14.8ns,10%时的脉冲宽度:53.6ns T7模式, RR=40kHz,上升时间:3.3ns,50%时的脉冲宽度:24.5ns,10%时的脉冲宽度:100.3ns

相关文档