文档库 最新最全的文档下载
当前位置:文档库 › 立体几何——求异面直线距离

立体几何——求异面直线距离

立体几何——求异面直线距离
立体几何——求异面直线距离

异面直线距离

一. 直接法

直接法就是根据定义,直接找出公垂线段,再求其长,这是解题时首先要考虑的方法。

例1. 如图1所示,已知正四棱柱ABCD —A 1B 1C 1D 1,点E 在棱D 1D 上,截面EAC//D 1B ,且平面EAC 与底面ABCD 所成的角为45°,AB=a ,求异面直线A B 11与AC 之间的距离。

解:连结DB ,设DB 交AC 于点O 由题设知ABCD A B C D -1111是正四棱柱 则A A ABCD A A AC A A A B 11111⊥⊥⊥底面,即,而

所以A A 1是异面直线A B 11与AC 的公垂线段

由题意分析知∠为平面与底面DOE EAC ABCD 所成的角

则∠DOE=45°

又∵截面EAC//D 1B ,且平面D 1BD 与平面EAC 的交线为EO ∴D 1B//EO ,∠DBD 1=∠DOE=45°

∴D 1D=DB=2a

∵AA 1=D 1D

∴异面直线A 1B 1与AC 之间的距离为2a

二. 间接法

间接法就是当采用直接法不便于求解或证明时,可利用已知条件进行间接求解或证明的方法。

(1)线面距离法

线面距离法就是选择异面直线中的一条,过它作另一条直线的平行平面,则此直线与平行平面的距离即为异面直线间的距离。

例2. 在长方体ABCD—A1B1C1D1中,AB=2,AD=3,AA1=4,求异面直线AB与A1C间的距离。

解:如图2所示,连结A1D

由AB//DC,得AB//平面A1DC

故AB到平面A1DC的距离即为AB与A1C间的距离

又平面A1D⊥平面A1DC及平面A1D⊥AB

故可在平面A1D内过A作AE⊥A1D于点E

则AE为AB到平面A1DC的距离即为异面直线AB与A1C间的距离。

由AD AA A D AE

··

11

=

可得AE=12

5

图2

(2)面面距离法

面面距离法就是把所求异面直线间的距离转化为分别过两条异面直线的两个平行平面间的距离。

例3. 如图3所示,正方体ABCD A B C D

-

1111

的棱长为1,求异面直线A1D与

AC 间的距离。

图3

解:连结A C C D AB B C A D AC 11111、、、,与分别在两个相互平行的平面A DC 11和B CA 1内,则A 1D 与AC 间的距离就是两个相互平行的平面A 1DC 1和B 1CA 之间的距离。

连结BD ,且交AC 于点O ,作OO 1⊥平面AC 交平面A 1C 1于O 1 连结DO 1,作OE ⊥DO 1于E

可知OE 为两平行平面A 1DC 1和B 1CA 之间的距离

在Rt △DOO 1中,OO DO DO 1112262==

=,,。 ∴·

OE OO DO DO ==1133 ∴异面直线A 1D 与AC 间的距离为

33

暑假立体几何中的距离问题

立体几何中的距离问题 【要点精讲】 1距离 空间中的距离是立体几何的重要内容,其内容主要包括:点点距,点线距,点面距,线 线距,线面距,面面距。其中重点是点点距、点线距、点面距以及两异面直线间的距离?因此,掌握点、线、面之间距离的概念,理解距离的垂直性和最近性,理解距离都指相应线段的长度,懂得几种距离之间的转化关系,所有这些都是十分重要的 求距离的重点在点到平面的距离,直线到平面的距离和两个平面的距离可以转化成点到平面的距离,一个点到平面的距离也可以转化成另外一个点到这个平面的距离。 两条异面直线的距离 两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离; 求法:如果知道两条异面直线的公垂线,那么就转化成求公垂线段的长度 点到平面的距离 平面外一点P在该平面上的射影为P',则线段PP的长度就是点到平面的距离;求 法:①"一找二证三求”,三步都必须要清楚地写出来。(2)等体积法。 直线与平面的距离: 一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的 距离; 平行平面间的距离: 两个平行平面的公垂线段的长度,叫做两个平行平面的距离。 求距离的一般方法和步骤:应用各种距离之间的转化关系和“平行移动”的思想方法, 把所求的距离转化为点点距、点线距或点面距求之,其一般步骤是:①找出或作出表示有关 距离的线段;②证明它符合定义;③归到解某个三角形. 若表示距离的线段不容易找出或作出,可用体积等积法计算求之。 异面直线上两点间距离公式,如果两条异面直线a、b所成的角为,它们的公垂线AA '的长度为d,在a上有线段A' E = m , b上有线段AF = n,那么EF = 、d2 m2 n2 2mncos (“土”符号由实际情况选定)

立体几何(角度、距离、体积)

立体几何 一、角度问题。 1. 如图,四棱锥P ABCD -中,PA ABCD ⊥底面, 2,4,3 BC CD AC ACB ACD π ===∠=∠=,F 为PC 的中点,AF PB ⊥. (1)求PA 的长; (2)求二面角B AF D --的正弦值. 【答案】

2. 如图,圆锥顶点为p .底面圆心为o ,其母线与底面所成的角为22.5°.AB 和CD 是底 面圆O 上的两条平行的弦,轴OP 与平面PCD 所成的角为60°. (Ⅰ)证明:平面PAB 与平面PCD 的交线平行于底面; (Ⅱ)求cos COD ∠. 【答案】解: (Ⅰ) PAB P D ,////C m AB CD CD PCD AB PCD ?=??设面面直线且面面 //AB m ?直线 ABCD m ABCD AB 面直线面//?? . 所以,ABCD D P PAB 的公共交线平行底面与面面C . (Ⅱ)

r PO OPF F CD r =??=∠5.22tan .60,由题知,则的中点为线段设底面半径为. ? -?=?∠==????=?5.22tan 15.22tan 245tan ,2cos 5.22tan 60tan 60tan ,2COD r OF PO OF . )223(3)],1-2(3[2 1cos ,1-25.22tan 12cos 2cos 22-==+∠=??-∠=∠COD COD COD 212-17cos .212-17cos =∠=∠COD COD 所以. 3. 如图,在四面体BCD A -中,⊥AD 平面BCD ,22,2,==⊥BD AD CD BC .M 是 AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且QC AQ 3=. (1)证明://PQ 平面BCD ;(2)若二面角D BM C --的大小为060,求BDC ∠的大 小. 【答案】解:证明(Ⅰ)方法一:如图6,取MD 的中点F ,且M 是AD 中点,所以3AF FD =.因为P 是BM 中点,所以//PF BD ;又因为(Ⅰ)3AQ QC =且 3AF FD =,所以//QF BD ,所以面//PQF 面BDC ,且PQ ?面BDC ,所以 //PQ 面BDC ; 方法二:如图7所示,取BD 中点O ,且P 是BM 中点,所以1// 2 PO MD ;取CD 的三等分点H ,使3DH CH =,且3AQ QC =,所以11////42QH AD MD ,所以A B C D P Q M (第20题图)

立体几何中体积与距离的问题

………………………………………………最新资料推荐……………………………………… 1 / 1 B A C D 1A 1B C D 1C 1 B 1 A 1 E D C B A 立体几何中体积与距离的问题 考点一:两条异面直线间的距离 例1如图,在空间四边形ABCD 中,AB =BC =CD =DA =AC =BD =a ,E 、F 分别是AB 、CD 的中点.求证:(1)EF 是AB 和CD 的公垂线;(2)求AB 和CD 间的距离; 考点二:点到平面的距离 例2如图,在长方体AC 1中,AD=AA 1=1,AB=2,当E 为AB 的中点时, (1)证明:D 1E ⊥A 1D ;(2)求点E 到面ACD 1的距离; 例3正三棱柱111C B A ABC -的底面边长为8,对角线101=C B ,D 是AC 的中点。 (1)求点1B 到直线AC 的距离.(2)求直线1AB 到平面BD C 1的距离. 考点三:几何体的体积 1、如图所示,在三棱锥ABC P -中,6AB BC == ,平面⊥PAC 平面ABC ,AC PD ⊥于点D ,1AD =,3CD =,2=PD .求三棱锥ABC P -的体积; 2、已知四棱锥P ABCD -的底面ABCD 是边长为4的正方形,PD ABCD ⊥平面,6,,PD E F =分别为,PB AB 中点。 (1)证明:BC PDC ⊥平面;(2)求三棱锥P DEF -的体积。 3.已知在四棱锥ABCD P -中,底面ABCD 是边长为4的正方形, PAD ?是正三角形,平面PAD ⊥平面ABCD ,G F E ,,分别是 BC PC PD ,,的中点. 1)求平面EFG ⊥平面PAD ;2)若M 是线段CD 上一点,求三棱锥EFG M -的体积. 练习1、如图,三棱柱ABC-A 1B 1C 1中,CA=CB ,AB=A A 1,∠BA A 1=60°. (Ⅰ)证明AB ⊥A 1C;(Ⅱ)若AB=CB=2,A 1C=6,求三棱柱ABC-A 1B 1C 1的体积 练习2如图,三棱柱ABC -A 1B 1C 1中侧棱垂直底面,∠ACB=90°,AC=BC=1 2AA 1,D 是棱AA 1的中点。(I) 证明平面BDC 1⊥平面BDC (Ⅱ)平面BDC 1分此棱柱为两部分,求这两部分体积的比。 A B C C 1 A 1 B 1 B 1 C B A D C 1 A 1 图5 B P A D

空间几何中的角和距离的计算

空间角和距离的计算(1) 一 线线角 1.直三棱柱A 1B 1C 1-ABC ,∠BCA=900,点D 1,F 1分别是A 1B 1和A 1C 1的中点,若BC=CA=CC 1,求BD 1与AF 1所成角的余弦值. 2.在四棱锥P-ABCD 中,底面ABCD 是直角梯形,∠BAD=900,AD ∥BC ,AB=BC=a ,AD=2a ,且PA ⊥面ABCD ,PD 与底面成300角. (1)若AE ⊥PD ,E 为垂足,求证:BE ⊥PD ; (2)若AE ⊥PD ,求异面直线AE 与CD 所成角的大小. 二.线面角 1.正方体ABCD-A 1B 1C 1D 1中,E ,F 分别为BB 1、CD 的中点,且正方体的棱长为2. (1)求直线D 1F 和AB 和所成的角; (2)求D 1F 与平面AED 所成的角. F 1D 1B 1 C 1A 1 B A C A B C D P E C D E F D 1 C 1 B 1 A 1 A B

2.在三棱柱A 1B 1C 1-ABC 中,四边形AA 1B 1B 是菱形,四边形BCC 1B 1是矩形,C 1B 1⊥AB ,AB=4,C 1B 1=3,∠ABB 1=600,求AC 1与平面BCC 1B 1所成角的大小. 三.二面角 1.已知A 1B 1C 1-ABC 是正三棱柱,D 是AC 中点. (1)证明AB 1∥平面DBC 1; (2)设AB 1⊥BC 1,求以BC 1为棱,DBC 1与CBC 1为面的二面角的大小. 2.ABCD 是直角梯形,∠ABC=900,SA ⊥面ABCD ,SA=AB=BC=1,AD=0.5. (1)求面SCD 与面SBA 所成的二面角的大小; (2)求SC 与面ABCD 所成的角. 3.已知A 1B 1C 1-ABC 是三棱柱,底面是正三角形,∠A 1AC=600,∠A 1AB=450,求二面角B —AA 1—C 的大小. B 1 C 1 A 1 B A C D B 1 C 1 A 1B A C B A D C S B 1 C 1 B C A 1

立体几何中角度与距离求法

立体几何中角度距离的求法 一 空间向量及其运算 1 .空间向量的坐标表示及应用 (1)数量积的坐标运算 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a·b =___________. (2)共线与垂直的坐标表示 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ?______________ a ⊥b ?__________?________________________(a ,b 均为非零向量). (3)模、夹角和距离公式 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则|a |=a·a =__________________, cos 〈a ,b 〉=a·b |a||b|=__________. 设A (a 1,b 1,c 1),B (a 2,b 2,c 2), 则d AB =|AB → |=___________. 2.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角,已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB → =b ,则∠AOB 叫做向量a 与b 的夹角,记作____________,其范围是____________,若〈a ,b 〉=π2,则 称a 与b __________,记作a ⊥b . ②两向量的数量积,已知空间两个非零向量a ,b ,则____________叫做向量a ,b 的数量积,记作__________,即__________________. (2)空间向量数量积的运算律①结合律:(λa )·b =____________; ②交换律:a·b =__________; ③分配律:a·(b +c )=__________. 2.共线向量、共面向量定理和空间向量基本定理 (1)共线向量定理对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是 ________________________. 推论,如图所示,点P 在l 上的充要条件是:OP →=OA → +t a ① 其中a 叫直线l 的方向向量,t ∈R ,在l 上取AB → =a , 则①可化为OP →=________或OP →=(1-t )OA →+tOB → . (2)共面向量定理的向量表达式:p =____________,其中x ,y ∈R ,a ,b 为不共线向量,推论的表达式为MP →=xMA →+yMB →或对空间任意一点O ,有OP →=____________或OP →=xOM → +yOA →+zOB → ,其中x +y +z =______. (3)空间向量基本定理,如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =____________,把{a ,b ,c }叫做空间的一个基底.

高中数学立体几何空间距离问题

立体几何空间距离问题 空间中距离的求法是历年高考考查的重点,其中以点与点、点到线、点到面的距离为基础,求其他几种距离一般化归为这三种距离. ●难点磁场 (★★★★)如图,已知ABCD是矩形,AB=a,AD=b,P A⊥平面ABCD,P A=2c,Q 是P A的中点. 求:(1)Q到BD的距离; (2)P到平面BQD的距离. P为RT△ABC所在平面α外一点,∠ACB=90°(如图) (1)若PC=a,∠PCA=∠PCB=60°,求P到面α的距离及PC和α所成的角 (2)若PC=24,P到AC,BC的距离都是6√10,求P到α的距离及PC和α所成角(3)若PC=PB=PA,AC=18,P到α的距离为40,求P到BC的距离

●案例探究 [例1]把正方形ABCD 沿对角线AC 折起成直二面角,点E 、F 分别是AD 、BC 的中点,点O 是原正方形的中心,求: (1)EF 的长; (2)折起后∠EOF 的大小. 命题意图:考查利用空间向量的坐标运算来解决立体几何问题,属★★★★级题目. 知识依托:空间向量的坐标运算及数量积公式. 错解分析:建立正确的空间直角坐标系.其中必须保证x 轴、y 轴、z 轴两两互相垂直. 技巧与方法:建系方式有多种,其中以O 点为 原点,以OB 、OC 、OD 的方向分别为x 轴、y 轴、z 轴的正方向最为简单. 解:如图,以O 点为原点建立空间直角坐标系O —xyz ,设正方形ABCD 边长为a ,则A (0,-22a ,0),B (22a ,0,0),C (0, 22a ,0),D (0,0, 22a ),E (0,-4 2 a , a ),F ( 42a , 4 2 a ,0) 21| |||,cos ,2||,2||8042)42)(42(420) 0,4 2 ,42(),42,42,0()2(23 ,43)420()4242()042(||)1(2 2222-=?>=<== - =?+-+?=?=-==∴=-+++-=OF OE OF OE OF OE a OF a OE a a a a a OF OE a a OF a a OE a EF a a a a a EF ∴∠EOF =120° [例2]正方体ABCD —A 1B 1C 1D 1的棱长为1,求异面直线A 1C 1与AB 1间的距离. 命题意图:本题主要考查异面直线间距离的求法,属★★★★级题目. 知识依托:求异面直线的距离,可求两异面直线的公垂线,或转化为求线面距离,或面面距离,亦可由最值法求得.

《立体几何中的角度与距离问题》

二年级下学期小学期末检测 数学试卷 (考试时间:60分钟,满分100分) 题号一二三四五六总分 得分 一、我会算。(12分) 35÷7=900-700=73-(13+27)=9×9÷9= 280+300=1000-600=56-(90-60)= 37+8÷8= 860-260= 60-27÷3= 4×(78-70)= (40-8)÷4= 二、我会填。(22分) 1、有一个四位数,最高位上是5,十位上是3,其余各位上是0,这个数是(),读作()。 2、□÷7=3……□,余数最大是(),当余数最大时,被除数是()。 3、找规律填数。 537,437,(),237,();150,200,(),300,()。 4、605是()位数,最高位上的数字是(),这里的5表示()个()。 5、()×7<50,括号里最大能填()。 6、在()里填上合适的单位名称: 教室的门高2();铅笔长14();数学书厚4();课桌高8()。7、在○里填上“>”、“<”、“=”。 5千米○5000米30mm○3dm纯角○锐角 8、最大的两位数是(),与它相邻的两个数分别是()和()。 三、我是小判官。(对的画“√”,错的画“×”)(12分) 1、50÷7=6……8。…………………………………………………………………() 2、“333”里的“3”表示的意思一样。…………………………………………() 3、正方形和长方形都有4条边,4个直角。………………………………………() 4、角的大小与边的长短有关系。…………………………………………………() 5、2+10÷2=12÷2=6。…………………………………………………………() 6、左图中共有6个角。………………………………………………() 四、我是计算能手。(14分) 1、用竖式计算并验算。(6分) 284+357923-657

立体几何中的距离问题

立 体 几 何 中 的 求 距 离 问 题 集美中学数学组 刘 海 江 一、记一记,填一填,这些知识你掌握了吗? 1、两点间的距离:连接两点的线段的长。 求法:(1)纳入三角形,将其作为三角形的一边,通过解三角形求得 (2)用公式,),,(),,,(222111z y x B z y x A ,则|AB|= 。 (3)利用向量的模,|AB|=|AB … (4)两点间的球面距离 :A ,B 为半径是R 的球O 上的两点,若<,>=θ 则A ,B 两点间的球面距离为 。 2、点到直线的距离:从点向直线作(相交)垂线,该点与垂足间的线段长。 求法:(1)解三角形:所求距离是某直角三角形的直角边长,解此三角形即可。 (2)等积法:所求距离是某三角形的一高,利用面积相等可求此距离。 (3 ) 利用三垂线定理:所求距离视作某平面的斜线段长,先求出此平面的垂线段和射 影的长,再由勾股定理求出所求的距离。 (4)利用公式:A 0:),,(00=++C By Ax l y x 到直线的距离为 。 基本思想是将点线距转化为点点距。 3、点到平面的距离与直线到平面的距离(重点) (1)从平面外一点引平面的一条垂线,这个点和____________的距离,叫做这个点到这个平面的距离。 求法: ①利用定义、做出平面的垂线,将垂线段纳入某个三角形内,通过解三角形求出此 距离; ②利用等积法、将此距离看作某个三棱锥的高,利用体积相等求出此距离; ③利用向量、点A ,平面α,满足ααα⊥∈?O A ,,, 则点A 到平面α的距离||n d = ( 是平面α的法向量 ) (2)一条直线和一个平面平行时,这条直线上任意_________到这个平面的_________,叫做这条直线和这个平面的距离。 (一条直线和一个平面平行时,直线上任意两点到平面的距离相等) 求法:转化为点到平面的距离来求;(具体方法参照点到平面的距离的求法) 4、两个平行平面的距离 一条直线垂直于两个平行平面中的一个平面,那么它也_________另一个平面,这条直线叫做两个平面的__________,它夹在两个平行平面间的部分叫做这两个平面的_______,它的长度叫做两个平行平面的____________。 求法:转化为点到平面的距离来求;(具体方法参照点到平面的距离的求法)

最新高考数学专题复习立体几何重点题型空间距离空间角(师)

立体几何题型 【考点透视】 (A)版.掌握两条直线所成的角和距离的概念,对于异面直线的距离,只要求会计算已给出公垂线时的距离.掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念.掌握二面角、二面角的平面角、两个平行平面间的距离的概念. (B)版. ①理解空间向量的概念,掌握空间向量的加法、减法和数乘. ②了解空间向量的基本定理,理解空间向量坐标的概念,掌握空间向量的坐标运算. ③掌握空间向量的数量积的定义及其性质,掌握用直角坐标计算空间向量数量积公式. ④理解直线的方向向量、平面的法向量,向量在平面内的射影等概念. ⑤了解多面体、凸多面体、正多面体、棱柱、棱锥、球的概念. ⑥掌握棱柱、棱锥、球的性质,掌握球的表面积、体积公式. ⑦会画直棱柱、正棱锥的直观图. 空间距离和角是高考考查的重点:特别是以两点间距离,点到平面的距离,两异面直线的距离,直线与平面的距离以及两异面直线所成的角,直线与平面所成的角,二面角等作为命题的重点内容,高考试题中常将上述内容综合在一起放在解答题中进行考查,分为多个小问题,也可能作为客观题进行单独考查.考查空间距离和角的试题一般作为整套试卷的中档题,但也可能在最后一问中设置有难度的问题. 不论是求空间距离还是空间角,都要按照“一作,二证,三算”的步骤来完成,即寓证明于运算之中,正是本专题的一大特色. 求解空间距离和角的方法有两种:一是利用传统的几何方法,二是利用空间向量。 【例题解析】 考点1 点到平面的距离 求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面内的垂足, 当然别忘了转化法与等体积法的应用. 典型例题 例1如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点. (Ⅰ)求证: 1AB ⊥ 平面 1A BD ; (Ⅱ)求二面角 1A A D B --的大小; (Ⅲ)求点C 到平面1A BD 的距离. 考查目的:本小题主要考查直线与平面的位置关系,二面角的 A B C D 1 A 1 C 1 B

立体几何中的夹角、距离、向量归纳

D B A C α 一、空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角 1、异面直线所成的角 (1)异面直线所成的角的范围是]2 ,0(π 。 (2)求两条异面直线所成的角的大小一般方法是通过平行移动直线,把异面问题转化为共面问题来解决 (3)具体步骤如下: ①利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选择在特殊的位置上; ②证明作出的角即为所求的角; ③利用三角形来求角 2、直线与平面所成的角 (1)直线与平面所成的角的范围是2 ,0[π 。 (2)求直线和平面所成的角用的是射影转化法。 (3)具体步骤如下: ①找过斜线上一点与平面垂直的直线; ②连结垂足和斜足,得出斜线在平面的射影,确定出所求的角; ③把该角置于三角形中计算。 3、二面角 (1)二面角的范围在课本中没有给出,一般是指],0(π,解题时要注意图形的位置和题目的要求。 (2)作二面角的平面角常有三种方法 图一 图二 图三 ①棱上一点双垂线法:在棱上任取一点,过这点在两个平面内分别引棱的垂线,这两条射线所成的角,就是二面角的平面角; 如图一示 ②面上一点三垂线法:自二面角的一个面上一点向另一面引垂线,再由垂足向棱作垂线得到棱上的点(即垂足),斜足与面上一点连线和斜足与垂足连线所夹的角,即为二面角的平面角; 如图二示 ③空间一点垂面法:自空间一点作与棱垂直的平面,截二面角得两条射线,这两条射线所成的角就是二面角的平面角 如图三示

1、点到直线的距离: 点P到直线a 的距离为点P到直线a 的垂线段的长,常先找或作直线a 所在平面的垂线,得垂足为A,过A作a 的垂线,垂足为B连PB,则由三垂线定理可得线段PB即为点P到直线a 的距离。在直角三角形PAB中求出PB的长即可。 例1、在△ABC 中,AB=2,BC=3,AC=4,求点A 到BC 的距离。 解:作BC AD ⊥,垂足为D ,又 AB=2,BC=3,AC=4, 8 74 322432c o s 2 222 2 2 =??-+= ?-+= ∴BC AC AB BC AC C 8 15)8 7(1sin 2= -=∴C 4 1538 15432 1sin 432 1= ???=??= ∴?C S ABC AD BC S ABC ?= ?2 1 又 2 153 415322= ?= = ∴?BC S AD ABC ∴点A 到BC 的距离为 2 15 2、点到平面的距离: 点P到平面α的距离为点P到平面α的垂线段的长.常用求法①作出点P到平面的垂线后求出垂线段的长;②转移法,如果平面α的斜线上两点A,B到斜足C的距离AB,AC的比为n m :,则点A,B到平面α的距离之比也为n m :.特别地,AB=AC时,点A,B到平面α的距离相等;③体积法 例2、如图,在长方体1111D C B A ABCD -中,,22,2,51===AA BC AB E 在AD 上,且AE=1,F 在AB 上,且AF=3,(1)求点1C 到直线EF 的距离;(2)求点C 到平面EF C 1的距离。 解:(1)连接FC,EC, 由已知FC=22, 41=∴FC ,34 82511=++= EC , 10 91= += EF 10 104 1023416102cos 1 2 12 12 1- =??-+= ?-+= ∠FC EF EC FC EF EFC B

高考典型题型训练——立体几何中求角与距离

C A1 E B1 C1 高考典型题型训练——立体几何中求角与距离 1. 四棱锥P —ABCD 的底面是边长为a 的正方形,PB ⊥面ABCD. (1)若面PAD 与面ABCD 所成的二面角为60°,求这个四棱锥的体积; (2)证明无论四棱锥的高怎样变化,面PAD 与面PCD 所成的二面角恒大于90° 2如图,直三棱柱ABC-A 1B 1C 1的底面ABC 为等腰直角三角形,∠ACB=900,AC=1,C 点到AB 1的距离为CE= 2 3 ,D 为AB 的中点. (1)求证:AB 1⊥平面CED ; (2)求异面直线AB 1与CD 之间的距离; (3)求二面角B 1—AC —B 的平面角.

3. 如图a—l—β是120°的二面角,A,B两点在棱上,AB=2,D在α内,三角形ABD是等腰直角三角形,∠DAB=90°,C在β内,?ABC是等腰直角三角形∠ACB=. 900 (I)求三棱锥D—ABC的体积; (2)求二面角D—AC—B的大小; (3)求异面直线AB、CD所成的角. 4. 在边长为a的正三角形的三个角处各剪去一个四边形.这个四边形是由两个全等的直角三角形组成的,并且这三个四边形也全等,如图①.若用剩下的部分

折成一个无盖的正三棱柱形容器,如图②.则当容器的高为多少时,可使这个容器的容积最大,并求出容积的最大值. 图①图② 5. 已知三棱锥P—ABC中,PC⊥底面ABC,AB=BC, D、F分别为AC、PC的中点,DE⊥AP于E. (1)求证:AP⊥平面BDE; (2)求证:平面BDE⊥平面BDF; (3)若AE∶EP=1∶2,求截面BEF分三棱锥 P—ABC所成两部分的体积比.

立体几何文科 距离 体积

距离问题 1、如图,四棱锥中,底面, ,,. (1)求证:;(2)求点到平面的距离. 2、如图,已知四棱锥的底面为菱形,,, . (Ⅰ)求证:⊥; (Ⅱ)求点到平面的距离.

3、如图,正三棱柱(底面为正三角形,侧棱垂直于底面)中,是的中点, . (1)求证:直线平面; (2)求点到平面的距离. 4、在四棱柱中,底面,底面为菱形,为与的交点,已知 ,. (1)求证:平面平面; (2)求点到平面的距离.

体积问题 【2014高考北京文第17题】如图,在三棱柱111ABC A B C -中,侧棱垂直于底面, AB BC ⊥,12AA AC ==,E 、F 分别为11AC 、BC 的中点. (1)求证:平面ABE ⊥平面11B BCC ; (2)求证:1//C F 平面ABE ; (3)求三棱锥E ABC -的体积. C 1 B 1 A 1 F E C B A 3. 【2015高考北京,文18】(本小题满分14分)如图,在三棱锥V C -AB 中, 平面V AB ⊥平面C AB ,V ?AB 为等边三角形, C C A ⊥B 且C C A =B =O ,M 分别为AB ,V A 的中点. (I )求证:V //B 平面C MO ; (II )求证:平面C MO ⊥平面V AB ; (III )求三棱锥V C -AB 的体积.

5. [2016高考新课标Ⅲ文数]如图,四棱锥P ABC -中,PA ⊥平面ABCD , AD BC ,3AB AD AC ===, 4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的中点. (I )证明MN 平面PAB ; (II )求四面体N BCM -的体积. 23. 【2015高考新课标1,文18】(本小题满分12分)如图四边形ABCD 为菱 形,G 为AC 与BD 交点,BE ABCD ⊥平面, (I )证明:平面AEC ⊥平面BED ; (II )若120ABC ∠=,,AE EC ⊥ 三棱锥E ACD -求该三棱锥的侧面积.

立体几何中的角度与距离问题

立体几何中的角度与距离问题 【基础知识】 一.空间角度问题 (一)理解空间中各种角的定义及其取值范围 1.异面直线所成的角、直线与平面所成的角及二面角的概念。 2.各种角的取值范围:(1)异面直线所成的角的取值范围是:0°< θ ≤90°;(2)直线于平面所成的角的取值范围是: 0°≤ θ ≤90°;(3)二面角的大小可以用它的平面角来度量,通常认为二面角平面角的取值范围是: 0°< θ ≤180° (二)空间中的角的计算 1、用直接法求角的一般步骤是:(1)找出或做出有关角的图形;(2)证明它符合定义(3)计算(一般通过解三角形) 2、异面直线所成的角:用平移转化的方法使它成为相交直线所成的角。 当异面直线垂直时,运用直线垂直平面的定义或三垂线定理(或逆定理)判定所成角是90°. 3. 斜线和平面所成的角是一个直角三角形所成的锐角,它的三条边分别是平面的垂线段/斜线段及斜线段在平面内的射影。 4. 二面角要转化为其平面角,掌握以下三种基本做法:(1)直接利用定义;(2)利用三垂线定理及其逆定理(3)作棱的垂面 另外,还要特别注意观察图形本身是否已含有所求的平面角 注意:1.空间各种角的计算方法都是转化为平面角来计算的,应熟练掌握这种转化。 2.计算题必须有推理过程。 二.空间距离问题 1.立体几何中的各种距离有:(1)点到直线的距离(2)点到平面的距离(3)平行直线间的距离(4)异面直线间的距离(5)直线与平面的距离(6)两个平面间的距离(7)球面上两点间距离 2.空间七种距离求法,通常是转化为平面上两点间的距离:(1)找出或作出有关距离的图形;(2)证明它们就是所求的距离;(3)利用平面几何和解三角形的知识在平面内计算 α β A O P A B O P α β (1) (2) (3)

立体几何中夹角与距离的计算(绝对精品)

第三节 立体几何中夹角与距离的计算 一、求距离: 1、点到平面的距离:①直接法:平面外一点P 在该平面上的射影为P ′,则线段PP ′的长度就是点到平面的距离, “一找二证三计算”;②等体积法:三棱锥换顶点等体积法。 2、直线与平面的距离:一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的距离; 3、平行平面间的距离:两个平行平面的公垂线段的长度,叫做两个平行平面的距离。 点到平面的距离平面到平面的距离 直线到平面的距离???? 二、求夹角 1、两条异面直线所成的角:求法:先通过其中一条直线或者两条直线的平移,找出这两条异面直线所成的角,然后通过解三角形去求得; 2、直线和平面所成的角:“一找二证三求”,三步都必须要清楚地写出来。除特殊位置外,主要是指平面的斜线与它在平面内的射影之间的夹角; 3、二面角:通常的作法有:①定义法:在二面角的棱上任取一点O (常指特殊点),过点O 分别在两个半平面内作垂直于棱的射线OA 和OB ,则∠AOB 即为所求二面角的平面角;②三垂线定理或逆定理:过一个半平面内一点P 向另一个半平面作垂线PA ,过点A 向棱作垂线AB ,连接PB ,则∠PAB 即为所求二面角的平面角;③自空间一点作棱垂直的垂面,截二面角得两条射线所成的角,俗称垂面法.④射影面积法解之,cos θ= S S ',其中S 为斜面面积,S ′为射影面积,θ为斜面与射影面所成的二面角 题型一:异面直线的夹角及二面角 例1、如图,在五面体ABCDEF 中,FA ⊥平面ABCD, AD//BC//FE , AB ⊥AD ,M 为EC 的中点,AF=AB=BC=FE=12 A (I) 求异面直线BF 与DE 所成的角的大小; (II) 证明平面AMD ⊥平面CDE ; (III )求二面角A-CD-E 的余弦值

立体几何经典难题汇编

立体几何难题汇编1 1. 在正方体的顶点中任意选择4个顶点,对于由这4个顶点构成的各种几何形体的以下判断中,所有正确的结论个数是() ①能构成矩形; ②能构成不是矩形的平行四边形; ③能构成每个面都是等边三角形的四面体; ④能构成每个面都是直角三角形的四面体; ⑤能构成三个面为全等的等腰直角三角形,一个面为等边三角形的四面体. A.2 B.3 C.4 D.5 【考点】命题的真假判断与应用. 【专题】证明题. 【分析】画出图形,分类找出所有情况即可. 【解答】解:作出正方体: 在正方体的顶点中任意选择4个顶点,对于由这4个顶点构成的各种几何形体z只能有以下四种情况: ①任意一个侧面和对角面皆为矩形,所以正确; ③四面体A 1-BC1D是每个面都是等边三角形的四面体,所以正确; ④四面体B 1-ABD 的每个面都是直角三角形,所以正确; ⑤四面体A 1-ABD 的三个面都是等腰直角三角形,第四个面A1BD是等边三角 形. 由以上可知:不能构成不是矩形的平行四边形,故②不正确. 综上可知:正确的结论个数是4. 故选C. 【点评】全面了解正方体中的任意四个顶点构成的四面体和平面四边形是解题的关键.

【解答】 解:作BE ⊥AD 于E ,连接CE ,则AD ⊥平面BEC ,所以CE ⊥AD , 由题设,B 与C 都是在以AD 为焦点的椭圆上, 且BE 、CE 都垂直于焦距AD , AB+BD=AC+CD=2a ,显然△ABD ≌△ACD ,所以BE=CE . 取BC 中点F ,∴EF ⊥BC ,EF ⊥AD ,要求四面体ABCD 的体积的最大值, 因为AD 是定值,只需三角形EBC 的面积最大,因为BC 是定值,所以只需EF 最大即可, 当△ABD 是等腰直角三角形时几何体的体积最大,∵AB+BD=AC+CD=2a , ∴AB=a ,所以EB= EF= 所以几何体的体积为: . 故答案为: 【点评】本题考查棱柱、棱锥、棱台的体积,考查空间想象能力,逻辑推理能 力以及计算能力. 4. 如图,直线l ⊥平面α,垂足为O ,已知在直角三角形ABC 中,BC=1,AC=2, AB= .该直角三角形在空间做符合以下条件的自由运动:(1)A ∈l , (2)C ∈α.则B 、O 两点间的最大距离为 _________. 22.a c -22 1.a c --2222112*21*2* 1. 323a c c c a c --=--222 1. 3c a c --5

立体几何第三课用传统方法求距离和角度

D B A C α 立体几何第三课 §用传统方法求距离和角度 一、知识点 1.空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角。 (1)异面直线所成的角的范围是] 2 ,0( π 。 求两条异面直线所成的角的大小一般方法是通过平行移动直线,把异面问题转化为共面问题来解决。 具体步骤如下: ①作平行四边形对边; ②作三角形中位线; (2)直线与平面所成的角的范围是] 2 ,0[ π 。 求直线和平面所成的角用的是射影转化法。 具体步骤如下: ①找过斜线上一点与平面垂直的直线; ②连结垂足和斜足,得出斜线在平面的射影,确定出所求的角; ③把该角置于三角形中计算。 注:斜线和平面所成的角,是它和平面内任何一条直线所成的一切角中的最小角,即若θ为线面角,α为斜线与平面内任何一条直线所成的角,则有α θ≤; (3)二面角的范围是] ,0(π, 作二面角的平面角常有三种方法 ①定义法:在棱上任取一点,过这点在两个平面内分别引棱的垂线,这两条射线所成的角,就是二面角的平面角; ②三垂线法:自二面角的一个面上一点向另一面引垂线,再由垂足向棱作垂线得到棱上的点(即垂足),斜足与面 上一点连线和斜足与垂足连线所夹的角,即为二面角的平面角; ③射影面积法:θ cos ? = 'S S(S为原斜面面积,S'为射影面积,θ为斜面与射影所成二面角的平面角) 2.空间的距离 求距离的重点在点到平面的距离,直线到平面的距离和两个平面的距离可以转化成点到平面的距离,一个点到平面的距离也可以转化成另外一个点到这个平面的距离。 点到平面的距离:点P到平面α的距离为点P到平面α的垂线段的长. 常用求法①作出点P到平面的垂线后求出垂线段的长,“一找二证三求”; ②等体积法锥体体积:Sh V 3 1 =(S为底面积,h为高)

立体几何三空间的角与距离.

、空间的角与距离 1?异面直线所成的角: 范围是(0,—]; 2 一般方法是平移直线,构造三角形,把异面问题转化为共面问题来解决。平移时,固定一条,平移另一条( 在某平面 内),或两条同时平移到某特殊位置,顶点选择在特殊位置上; 2?直线与平面所成的角: 范围是[0,—]。 2 关键是:找过斜线上一点与平面垂直的直线 ;连结垂足和斜足,得出斜线在平面的射影,确定出所求的角;把该角置 于三角形中计算。 注:确定点的射影位置有以下几种方法: ① 结论:如果一个角所在的平面外一点到角的两边距离相等,那么这一点在平面上的射影在这个角的平分线上; 如果一条直线与一个角的两边的夹角相等,那么这一条直线在平面上的射影在这个角的平分线上; ② 两个平面相互垂直,一个平面上的点在另一个平面上的射影一定落在这两个平面的交线上; ③ 利用三棱锥的有关性质: a 若侧棱相等或侧棱与底面所成的角相等,则顶点落在底面上的射影是底面三角形的外心; b. 若顶点到底面各边距离相等或侧面与底面所成的角相等,则顶点落在底面上的射影是底面三角形的内心 c. 如果侧棱两两垂直或各组对棱互相垂直,则顶点落在底面上的射影是底面三角形的垂心; 3.二面角 二面角的范围一般是指 (0,]。 作二面角的平面角常有三种方法 ① 定义法: ② 三垂线定理法:自二面角的一个面上一点向另一 面引垂线,再由垂足向棱作垂线得到棱上的点 垂 足),斜足与面上一点连线和斜足与垂足连线所 夹的 角,即为二面角的平面角; ③垂面法: 作与棱垂直的平面,截二面角得两条射线所成的角就是二面角的平面角。 ④面积射影法:S S c o s (S 为原斜面面积 ,S 为射影面积,为斜面与射影所成二面角的平面角 它对于任意多边形都成立,是求二面角的好方法 .当作角困难时,易求斜面及射影面积,可直接用公式求出二面角的大小。 二.空间的距离 (1) 点到平面的距离常用求法 (点到直线的距离、直线到平面的距离及平面与平面间的距离(仅平行时)略) ① 定义法:作垂线 ② 转移法:平行线转移或中点转移(斜线中点)等 ③ 等体积法: (2) 异面直线间的距离常有求法: 异面直线a,b 间的距离为a,b 间的公垂线段的长. ① 定义法 ② 转化为线面距离: 找或作出过b 且与a 平行的平面,则直线 a 到平面的距离就是异面直线 a,b 间的距离. ③ 转化为面面距离: 找或作出分别过a,b 且与b , a 分别平行的平面,则它们距离就是异面直线 a,b 间的距离. 1、已知四棱锥 P — ABCD 底面ABCD 是菱形 DAB 60 , PD 平面ABCD PD=AD 点E 为AB 中点,点F 为PD 中 (或旁心); (

暑假立体几何中的距离问题

立体几何中的距离问题 【要点精讲】 1.距离 空间中的距离是立体几何的重要内容,其内容主要包括:点点距,点线距,点面距,线线距,线面距,面面距。其中重点是点点距、点线距、点面距以及两异面直线间的距离.因此,掌握点、线、面之间距离的概念,理解距离的垂直性和最近性,理解距离都指相应线段的长度,懂得几种距离之间的转化关系,所有这些都是十分重要的 求距离的重点在点到平面的距离,直线到平面的距离和两个平面的距离可以转化成点到平面的距离,一个点到平面的距离也可以转化成另外一个点到这个平面的距离。 两条异面直线的距离 两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离;求法:如果知道两条异面直线的公垂线,那么就转化成求公垂线段的长度 点到平面的距离 平面外一点P 在该平面上的射影为P ′,则线段PP ′的长度就是点到平面的距离;求法:○1“一找二证三求”,三步都必须要清楚地写出来。○2等体积法。 直线与平面的距离: 一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的距离; 平行平面间的距离: 两个平行平面的公垂线段的长度,叫做两个平行平面的距离。 求距离的一般方法和步骤:应用各种距离之间的转化关系和“平行移动”的思想方法,把所求的距离转化为点点距、点线距或点面距求之,其一般步骤是:①找出或作出表示有关距离的线段;②证明它符合定义;③归到解某个三角形. 若表示距离的线段不容易找出或作出,可用体积等积法计算求之。 异面直线上两点间距离公式,如果两条异面直线a 、b 所成的角为 ,它们的公垂线 AA ′的长度为d ,在a 上有线段A ′E =m ,b 上有线段AF =n ,那么EF = θcos 2222mn n m d ±++( “±”符号由实际情况选定) 点到面的距离的做题过程中思考的几个方面:

立体几何空间距离问题

空间距离问题 (专注高三数学辅导:QQ1550869062) 空间中距离的求法是历年高考考查的重点,其中以点与点、点到线、点到面的距离为基础,求其他几种距离一般化归为这三种距离. ●难点磁场 (★★★★)如图,已知ABCD是矩形,AB=a,AD=b,P A⊥平面ABCD,P A=2c,Q 是P A的中点. 求:(1)Q到BD的距离; (2)P到平面BQD的距离. P为RT△ABC所在平面α外一点,∠ACB=90°(如图) (1)若PC=a,∠PCA=∠PCB=60°,求P到面α的距离及PC和α所成的角 (2)若PC=24,P到AC,BC的距离都是6√10,求P到α的距离及PC和α所成角(3)若PC=PB=PA,AC=18,P到α的距离为40,求P到BC的距离 ●案例探究

[例1]把正方形ABCD 沿对角线AC 折起成直二面角,点E 、F 分别是AD 、BC 的中点,点O 是原正方形的中心,求: (1)EF 的长; (2)折起后∠EOF 的大小. 命题意图:考查利用空间向量的坐标运算来解决立体几何问题,属★★★★级题目. 知识依托:空间向量的坐标运算及数量积公式. 错解分析:建立正确的空间直角坐标系.其中必须保证x 轴、y 轴、z 轴两两互相垂直. 技巧与方法:建系方式有多种,其中以O 点为 原点,以、、的方向分别为x 轴、y 轴、z 轴的正方向最为简单. 解:如图,以O 点为原点建立空间直角坐标系O —xyz ,设正方形ABCD 边长为a ,则A (0,-22a ,0),B (22a ,0,0),C (0, 22a ,0),D (0,0, 22a ),E (0,-4 2 a , a ),F ( 42a , 4 2 a ,0) 21| |||,cos ,2||,2||8042)42)(42(420) 0,4 2 ,42(),42,42,0()2(23 ,43)420()4242()042(||)1(2 2222-=>=<== - =?+-+?=?=-==∴=-+++-=OF OE a a a a a a a a a a a a EF a a a a a ∴∠EOF =120° [例2]正方体ABCD —A 1B 1C 1D 1的棱长为1,求异面直线A 1C 1与AB 1间的距离. 命题意图:本题主要考查异面直线间距离的求法,属★★★★级题目. 知识依托:求异面直线的距离,可求两异面直线的公垂线,或转化为求线面距离,或面面距离,亦可由最值法求得. 错解分析:本题容易错误认为O 1B 是A 1C 与AB 1 的距离,这主要是对异面

相关文档
相关文档 最新文档