文档库 最新最全的文档下载
当前位置:文档库 › 材料成形基本原理刘全坤课后答案

材料成形基本原理刘全坤课后答案

材料成形基本原理刘全坤课后答案
材料成形基本原理刘全坤课后答案

第一章液态金属的结构与性质习题

1 .液体与固体及气体比较各有哪些异同点?哪些现象说明金属的熔化并

不是原子间结合力的全部破坏?

(2)金属的熔化不是并不是原子间结合力的全部破坏可从以下二个方面说明:

①物质熔化时体积变化、熵变及焓变一般都不大。金属熔化时典型的体积

变化?V m/V为3%~5%左右,表明液体的原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度。

②金属熔化潜热?H m约为气化潜热?H b的1/15~1/30,表明熔化时其内部

原子结合键只有部分被破坏。

由此可见,金属的熔化并不是原子间结合键的全部破坏,液体金属内原子的局域分布仍具有一定的规律性。

2 .如何理解偶分布函数g(r) 的物理意义?液体的配位数N1、平均原子间

距r1各表示什么?

答:分布函数g(r) 的物理意义:距某一参考粒子r处找到另一个粒子的几率,换言之,表示离开参考原子(处于坐标原子r=0)距离为r的位置的数密度ρ(r)对于平均数密度ρo(=N/V)的相对偏差。

N1 表示参考原子周围最近邻(即第一壳层)原子数。

r1 表示参考原子与其周围第一配位层各原子的平均原子间距,也表示某液体的平均原子间距。

3.如何认识液态金属结构的“长程无序”和“近程有序”?试举几个实验例证说明液态金属或合金结构的近程有序(包括拓扑短程序和化学短程序)。

答:(1)长程无序是指液体的原子分布相对于周期有序的晶态固体是不规则的,液体结构宏观上不具备平移、对称性。

近程有序是指相对于完全无序的气体,液体中存在着许多不停“游荡”着的局域有序的原子集团

(2)说明液态金属或合金结构的近程有序的实验例证

①偶分布函数的特征

对于气体,由于其粒子(分子或原子)的统计分布的均匀性,其偶分布函数g(r)在任何位置均相等,呈一条直线g(r)=1。晶态固体因原子以特定方式周期排列,其g(r)以相应的规律呈分立的若干尖锐峰。而液体的g(r)出现若干渐衰的钝化峰直至几个原子间距后趋于直线g(r)=1,表明液体存在短程有序的局域范围,其半径只有几个原子间距大小。

②从金属熔化过程看

物质熔化时体积变化、熵变及焓变一般都不大。金属熔化时典型的体积变化?V m/V为3%~5%左右,表明液体的原子间距接近于固体,在熔点附近其系统混乱度只是稍大于固体而远小于气体的混乱度。另一方面,金属熔化潜热?H m约为气化潜热?H b的1/15~1/30,表明熔化时其内部原子结合键只有部分被破坏。由此可见,金属的熔化并不是原子间结合键的全部破坏,液体金属内原子的局域分布仍具有一定的规律性。

可以说,在熔点(或液相线)附近,液态金属(或合金)的原子集团内短程结构类似于固体。

③Richter等人利用X衍射、中子及电子衍射手段,对碱金属、Au、Ag、

Pb和Tl等熔体进行了十多年的系统研究,认为液体中存在着拓扑球状密排结构以及层状结构,它们的尺寸范围约为10-6-10-7cm。

④Reichert观察到液态Pb局域结构的五重对称性及二十面体的存在,并推

测二十面体存在于所有的单组元简单液体。

⑤在Li-Pb、Cs-Au、Mg-Bi、Mg-Zn、Mg-Sn、Cu-Ti、Cu-Sn、Al-Mg、

Al-Fe等固态具有金属间化合物的二元熔体中均被发现有化学短程序的存在。

4.如何理解实际液态金属结构及其三种“起伏”特征?

答:理想纯金属是不存在的,即使非常纯的实际金属中总存在着大量杂质原子。实际金属和合金的液体由大量时聚时散、此起彼伏游动着的原子团簇、空穴所组成,同时也含有各种固态、液态或气态杂质或化合物,而且还表现出能量、结构及浓度三种起伏特征,其结构相当复杂。能量起伏是指液态金属中处于热运动的原子能量有高有低,同一原子的能量也在随时间不停地变化,时高时低的现象。

结构起伏是指液态金属中大量不停“游动”着的原子团簇不断地分化组合,由于“能量起伏”,一部分金属原子(离子)从某个团簇中分化出去,

同时又会有另一些原子组合到该团簇中,此起彼伏,不断发生着这样的涨落过程,似乎原子团簇本身在“游动”一样,团簇的尺寸及其内部原子数量都随时间和空间发生着改变的现象。

浓度起伏是指在多组元液态金属中,由于同种元素及不同元素之间的原子

间结合力存在差别,结合力较强的原子容易聚集在一起,把别的原于排挤到别处,表现为游动原子团簇之间存在着成分差异,而且这种局域成分的不均匀性随原子热运动在不时发生着变化的现象。

5. 根据图1-10及式(1-7)说明为动力学粘度η的物理意义,并讨论液体

粘度η(内摩擦阻力)与液体的原子间结合力之间的关系。

答:物理意义:作用于液体表面的应力τ大小与垂直于该平面方向上的速

度梯度dV X /dy 的比例系数。

通常液体的粘度表达式为)/exp(T k U C B =η。这里B k 为Bolzmann 常数,U

为无外力作用时原子之间的结合能(或原子扩散势垒),C 为常数,T 为热力学温度。根据此式,液体的粘度η随结合能U 按指数关系增加,这可以理解为,液体的原子之间结合力越大,则内摩擦阻力越大,粘度也就越高。

6. 总结温度、原子间距(或体积)、合金元素或微量元素对液体粘度η高

低的影响。

答:η与温度T 的关系受两方面(正比的线性及负的指数关系)所共同制约,

但总的趋势随温度T 而下降。

粘度随原子间距δ增大而降低,与3δ成反比。

合金组元或微量元素对合金液粘度的影响比较复杂。许多研究者曾尝试描

述二元合金液的粘度规律,其中M-H (Moelwyn-Hughes )模型为:

???? ??-+=RT H X X m 21)(2211ηηη

(1-9)

式中η1、η2、X 1、X 2 分别为纯溶剂和溶质的粘度及各自在溶液中的mole

分数,R 为气体常数,H m 为两组元的混合热。按 M-H 模型,如果混合热H m 为负值,合金元素的增加会使合金液的粘度上升。根据热力学原理,H m 为负值表明异类原子间结合力大于同类原子,因此摩擦阻力及粘度随之提高。M-H 模型得到了一些实验结果的验证。

当溶质与溶剂在固态形成金属间化合物,由于合金液中存在异类原子间较

强的化学结合键,合金液的粘度将会明显高于纯溶剂金属液的粘度。 当合金液中存在表面及界面活性微量元素(如Al-Si 合金变质元素Na )时,

由于冷却过程中微量元素抑制原子集团的聚集长大,将阻碍金属液粘度的上升。通常,表面活性元素使液体粘度降低,非表面活性杂质的

存在使粘度提高。

8.过共析钢液η=0.0049Pa ﹒S ,钢液的密度为7000kg/m 3,表面张力为

1500mN/m ,加铝脱氧,生成密度为5400 kg/m 3的Al 2O 3 ,如能使Al 2O 3颗粒上浮到钢液表面就能获得质量较好的钢。假如脱氧产物在1524mm 深处生成,试确定钢液脱氧后2min 上浮到钢液表面的Al 2O 3最小颗粒的尺寸。

答: 根据流体力学的斯托克斯公式:ηρρυ2

)(92r g B m -?=,式中:υ为夹杂物

和气泡的上浮速度,r 为气泡或夹杂的半径,ρm 为液体合金密度,ρB 为夹杂或气泡密度,g 为重力加速度。

4

1034.1)(29-?=-?=B m g r ρρυηm

9.分析物质表面张力产生的原因以及与物质原子间结合力的关系。

答:表面张力是由于物体在表面上的质点受力不均所造成。由于液体或固

体的表面原子受内部的作用力较大,而朝着气体的方向受力较小,这种受力不均引起表面原子的势能比内部原子的势能高。因此,物体倾向于减小其表面积而产生表面张力。

原子间结合力越大,表面内能越大,表面张力也就越大。但表面张力的影

响因素不仅仅只是原子间结合力,与上述论点相反的例子大量存在。研究发现有些熔点高的物质,其表面张力却比熔点低的物质低,如Mg 与Zn 同样都是二价金属,Mg 的熔点为650℃,Zn 的熔点为420℃,但Mg 的表面张力为559mN/m ;Zn 的表面张力却为782mN/m 。此外,还发现金属的表面张力往往比非金属大几十倍,而比盐类大几倍。这说明单靠原子间的结合力是不能解释一切问题的。对于金属来说,还应当从它具有自由电子这一特性去考虑。

10. 表面张力与界面张力有何异同点?界面张力与界面两侧(两相)质点

间结合力的大小有何关系?

答:界面张力与界面自由能的关系相当于表面张力与表面自由能的关系,

即界面张力与界面自由能的大小和单位也都相同。表面与界面的差别在于后者泛指两相之间的交界面,而前者特指液体或固体与气体之间的交界面,但更严格说,应该是指液体或固体与其蒸汽的界面。广义上说,物体(液体或固体)与气相之间的界面能和界面张力为物体的表面能和表面张力。

当两个相共同组成一个界面时,其界面张力的大小与界面两侧(两相)质

点间结合力的大小成反比,两相质点间结合力越大,界面能越小,界面张力就越小;两相间结合力小,界面张力就大。相反,同一金属(或合金)液固之间,由于两者容易结合,界面张力就小。

14.液态金属的表面张力有哪些影响因素?试总结它们的规律。

答:液态金属的表面张力的影响因素有:

(1)原子间结合力

原子间结合力越大,表面内能越大,表面张力也就越大。但表面张力的影响因素不仅仅只是原子间结合力,研究发现有些熔点高的物质,其表面张力却比熔点低的物质低。此外,还发现金属的表面张力往往比非金属大几十倍,而比盐类大几倍。这说明单靠原子间的结合力是不能解释一切问题的。对于金属来说,还应当从它具有自由电子这一特性去考虑。

(2)温度

液态金属表面张力通常随温度升高而下降,因为原子间距随温度升高而增大。

(3)合金元素或微量杂质元素

合金元素或微量杂质元素对表面张力的影响,主要取决于原子间结合力的改变。向系统中加入削弱原子间结合力的组元,会使表面张力减小,使表面内能降低,这样,将会使表面张力降低。

合金元素对表面张力的影响还体现在溶质与溶剂原子体积之差。当溶质的原子体积大于溶剂原子体积,由于造成原子排布的畸变而使势能增加,所以倾向于被排挤到表面,以降低整个系统的能量。这些富集在表面层的元素,由于其本身的原子体积大,表面张力低,从而使整个系统的表面张力降低。原子体积很小的元素,如O、S、N等,在金属中容易进入到熔剂的间隙使势能增加,从而被排挤到金属表面,成为富集在表面的表面活性物质。由于这些元素的金属性很弱,自由电子很少,因此表面张力小,同样使金属的表面张力降低。

(4)溶质元素的自由电子数目

大凡自由电子数目多的溶质元素,由于其表面双电层的电荷密度大,从而造成对金属表面压力大,而使整个系统的表面张力增加。化合物表面张力之所以较低,就是由于其自由电子较少的缘故。

15.设凝固后期枝晶间液体相互隔绝,液膜两侧晶粒的拉应力为 1.5×103Mpa,液膜厚度为1.1×10-6mm,根据液膜理论计算产生热裂的液态金属临界表面张力。

答: = f T/2=0.825N/m

16.试述液态金属充型能力与流动性间的联系和区别,并分析合金成分及结晶潜热对充型能力的影响规律。

答:(1) 液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力,即液态金属充填铸型的能力,简称为液态金属充型能力。液态金属本身的流动能力称为“流动性”,是液态金属的工艺性能之一。液态金属的充型能力首先取决于金属本身的流动能力,同时又受外界条件,如铸型性质、浇注条件、铸件结构等因素的影响,是各种因素的综合反映。

在工程应用及研究中,通常,在相同的条件下(如相同的铸型性质、浇注系统,以及浇注时控制合金液相同过热度,等等)浇注各种合金的流动性试样,以试样的长度表示该合金的流动性,并以所测得的合金流动性表示合金的充型能力。因此可以认为:合金的流动性是在确定条件下的充型能力。对于同一种合金,也可以用流动性试样研究各铸造工艺因素对其充型能力的影响。

(2) 合金的化学成分决定了结晶温度范围,与流动性之间存在一定的规律。

一般而言,在流动性曲线上,对应着纯金属、共晶成分和金属间化合物之处流动性最好,流动性随着结晶温度范围的增大而下降,在结晶温度范围最大处流动性最差,也就是说充型能力随着结晶温度范围的增大而越来越差。因为对于纯金属、共晶和金属间化合物成分的合金,在固定的凝固温度下,已凝固的固相层由表面逐步向内部推进,固相层内表面比较光滑,对液体的流动阻力小,合金液流动时间长,所以流动性好,充型能力强。而具有宽结晶温度范围的合金在型腔中流动时,断面上存在着发达的树枝晶与未凝固的液体相混杂的两相区,金属液流动性不好,充型能力差。

(3)对于纯金属、共晶和金属间化合物成分的合金,在一般的浇注条件下,

放出的潜热越多,凝固过程进行的越慢,流动性越好,充型能力越强;

而对于宽结晶温度范围的合金,由于潜热放出15~20%以后,晶粒就连成网络而停止流动,潜热对充型能力影响不大。但也有例外的情况,由于Si晶体结晶潜热为α-Al的4倍以上,Al-Si合金由于潜热的影响,最好流动性并不在共晶成分处。

17.某飞机制造厂的一牌号Al-Mg合金(成分确定)机翼因铸造常出现“浇不足”缺陷而报废,如果你是该厂工程师,请问可采取哪些工艺措施来提高成品率?

答:机翼铸造常出现“浇不足”缺陷可能是由金属液的充型能力不足造成的,可采取以下工艺提高成品率:

(1)使用小蓄热系数的铸型来提高金属液的充型能力;采用预热铸型,减小金属与铸型的温差,提高金属液充型能力。

(2)提高浇注温度,加大充型压头,可以提高金属液的充型能力。

(3)改善浇注系统,提高金属液的充型能力。

第二章凝固温度场习题解答

1. 已知某半无限大板状铸钢件的热物性参数为:导热系数λ=46.5 W/(m·K),

比热容C=460.5 J/(kg·K), 密度ρ=7850 kg/m3,取浇铸温度为1570℃,铸型的初始温度为20℃。 用描点作图法绘出该铸件在砂型和金属型铸模(铸型壁均足够厚)中浇铸后0.02h 、0.2h 时刻的温度分布状况并作分析比较。铸型的有关热物性参数见表2-2。

解:(1)砂型: 1111ρλc b ==12965 2222ρλc b ==639

界面温度: 2

120

2101b b T b T b T i ++==1497℃ 铸件的热扩散率: ρ

λ

c a =1=1.3?10-5 m 2/s 根据公式 ()???? ??-+=t a x T T T T i i 11012erf

分别计算出两种时刻铸件中

的温度分布状况见表1。

根据表1结果做出相应温度分布曲线见图1。

(2)金属型: 1111ρλc b ==12965 2222ρλc b ==15434

界面温度: 21202101b b T b T b T i ++==727.6℃

同理可分别计算出两种时刻铸件中的温度分布状况见表2与图2。

(3) 分析:采用砂型时,铸件金属的冷却速度慢,温度梯度分布平坦,

与铸型界面处的温度高,而采用金属铸型时相反。原因在于砂型的蓄

热系数b 比金属铸型小得多。

2. 采用(2-17)、(2-18)两式计算凝固过程中的温度分布与实际温度分布

状况是否存在误差?分析误差产生的原因,说明什么情况下误差相对

较小?

解:是有误差的。因为在推导公式时做了多处假设与近似处理,如:

①没有考虑结晶潜热。若结晶潜热小,则误差就小;

②假设铸件的热物理参数1λ、1c 、1ρ与铸型的热物理参数2λ、2c 、2ρ 不随

温度变化。若它们受温度影响小,则误差就小;

③没有考虑界面热阻。若界面热阻不大,则误差就小;

④假设铸件单向散热,因此只能用于半无限大平板铸件温度场得估算,对

于形状差异大的铸件不适用。

3. 凝固速度对铸件凝固组织、性能与凝固缺陷的产生有重要影响。试分析

可以通过哪些工艺措施来改变或控制凝固速度?

解:① 改变铸件的浇注温度、浇铸方式与浇铸速度;

② 选用适当的铸型材料和起始(预热)温度;

③ 在铸型中适当布置冷铁、冒口与浇口;

④ 在铸型型腔内表面涂敷适当厚度与性能的涂料。

4. 比较同样体积大小的球状、块状、板状及杆状铸件凝固时间的长短。

解:一般在体积相同的情况下上述物体的表面积大小依次为:A 球

根据 K R =τ 与 1

1A V R =

所以凝固时间依次为: t 球>t 块>t 板>t 杆。 图1 铸件在砂型中凝固时的温度分布曲线 图2 铸件在金属型中凝固时的温度分布曲线 t=0.02h

t=0.0h

5. 在砂型中浇铸尺寸为300?300?20 mm 的纯铝板。设铸型的初始温度为

20℃,浇注后瞬间铸件-铸型界面温度立即升至纯铝熔点660℃,且在

铸件凝固期间保持不变。浇铸温度为670℃,金属与铸型材料的热物性

材料

J/kg 纯铝

212 1200 2700 6.5?10-5 3.9?105 砂型

0.739 1840 1600 2.5?10-7 试求:(1)根据平方根定律计算不同时刻铸件凝固层厚度s,并作出τ-s 曲

线;

(2)分别用“平方根定律”及“折算厚度法则”计算铸件的完全凝固时间,

并分析差别。

解:(1) 代入相关已知数解得: 2222ρλc b =,=1475 ,

()

()[]S i T T c L T T b K -+ρπ-=10112022 = 0.9433 (m s m /)

根据公式K ξ

τ=τξ-3。

(2) 利用“平方根定律”计算出铸件的完全凝固时间:

取ξ =10 mm , 代入公式解得: τ=112.4 (s) ;

利用“折算厚度法则”计算铸件的完全凝固时间:

11

A V R = = 8.824 (mm) 2??? ??=K R τ = 87.5 (s)

采用“平方根定律”计算出的铸件凝固时间比“折算厚度法则”的计算结

图3 τξ-关系曲线

果要长,这是因为“平方根定律”的推导过程没有考虑铸件沿四周板厚方向的散热。

8. 右图为一灰铸铁底座铸件的断面形状,其厚度为30mm,利用“模数法”

分析砂型铸造时底座的最后凝固部位,并估计凝固终了时间.

解:将底座分割成A、B、C、D

查表2-3得:K=0.72(m in

cm/)

对A有:R A= V A/A A=1.23cm

τA=R A2/K A2=2.9min

对B有: R B= V B/A B=1.33cm

τB=R B2/K B2=3.4min

对C有:R C= V C/A C=1.2cm

τC=R C2/K C2=2.57min

对D有:R D= V D/A D=1.26cm

τD=R D2/K D2=3.06min

因此最后凝固部位为底座中肋B

终了时间为3.4分钟。

9. 对于低碳钢薄板,采用钨极氩弧焊较容易实现单面焊双面成形(背面均

匀焊透)。采用同样焊接规范去焊同样厚度的不锈钢板或铝板会出现什么后果?为什么?

解:采用同样焊接规范去焊同样厚度的不锈钢板可能会出现烧穿,这是因为不锈钢材料的导热性能比低碳钢差,电弧热无法及时散开的缘故;相反,采用同样焊接规范去焊同样厚度的铝板可能会出现焊不透,这是因为铝材的导热能力优于低碳钢的缘故。

10. 对于板状对接单面焊焊缝,当焊接规范一定时,经常在起弧部位附近存

在一定长度的未焊透,分析其产生原因并提出相应工艺解决方案。解:(1)产生原因:在焊接起始端,准稳态的温度场尚未形成,周围焊件的温度较低,电弧热不足以将焊件熔透,因此会出现一定长度的未焊透。

(2)解决办法:焊接起始段时焊接速度慢一些,对焊件进行充分预热,或焊接电流加大一些,待焊件熔透后再恢复到正常焊接规范。生产中还常在焊件起始端固定一个引弧板,在引弧板上引燃电弧并进行过渡段焊接,之后再转移到焊件上正常焊接。

第三章金属凝固热力学与动力学

1.而下降的斜率大于固相G S的斜率的理由。并结合图3-1及式(3-6)说明

过冷度ΔT 是影响凝固相变驱动力ΔG 的决定因素。

答:(1)等压时物质自由能G 随温度上升而下降的理由如下:

由麦克斯韦尔关系式: V d P S d T dG +-= (1) 并根据数学上的全微分关系:dy y F dx x F y x dF x y ???? ????+??? ????=),(

得:

dP P G dT T G dG T P ??? ????+??? ????= (2) 比较(1)式和(2)式得: V P G S T G T P =??? ????-=??? ????,

等压时dP =0 ,此时 dT T G SdT dG P ??? ????=-= (3) 由于熵恒为正值,故物质自由能G 随温度上升而下降。

(2)液相自由能G L 随温度上升而下降的斜率大于固相G S 的斜率的理由如下: 因为液态熵大于固态熵,即: S L > S S

所以:

即液相自由能G L 随温度上升而下降 的斜率大于固相G S 的斜

率 。

(3)过冷度ΔT 是影响凝固相变驱动 力ΔG

的决定因素的理由如下:

右图即为图3-1

其中:V G ?表示液-固体积自由能之差

T m 表示液-固平衡凝固点

从图中可以看出:

T > T m 时,ΔG=Gs -G L ﹥0,此时 固相→液相

T = T m 时,ΔG=Gs -G L =0,此时 液固平衡

T < T m 时,ΔG=Gs -G L <0,此时 液相→固相

所以ΔG 即为相变驱动力。

再结合(3-6)式来看, m m V T T

H G ???-=?

(其中:ΔH m —熔化潜热, ΔT )(T T m -=—过冷度)

由于对某一特定金属或合金而言,T m 及ΔH m 均为定值,

所以过冷度ΔT 是影响凝固相变驱动力ΔG 的决定因素 。

2.怎样理解溶质平衡分配系数K 0的物理意义及热力学意义?

答:(1)K 0的物理意义如下:

溶质平衡分配系数K 0定义为:特定

温度T*下固相合金成分浓度

C *S 与液相合金成分浓度C *L

达到平衡时的比值:

K 0 = **L S

C C

K 0<1时,固相线、液相线构成的张

角朝下,K 0越小,固相线、液

相线张开程度越大,开始结晶时与终了结晶时的固相成分差

别越大,最终凝固组织的成分

偏析越严重。

K 0>1时,固相线、液相线构成的张角朝上,K 0越大,固相线、液相线张

开程度越大,开始结晶时与终了结晶时的固相成分差别越大,最终凝固组织的成分偏析越严重。

(2)K 0的热力学意义如下:

根据相平衡热力学条件,平衡时溶质在固相及液相中化学位相等 )()(T T S i L i μμ=

经推导

])()(exp[**0RT T T f f C C K S oi L oi S i L i L S μμ-== (1) 稀溶液时,,1==S i L i f f 于是有:

])()(exp[**0RT T T C C K S oi L oi L S

μμ-== (2) 由(1)及(2)式可知溶质平衡分配系数主

要取决于溶质在液、固两相中的标准化

学位,对于实际合金,还受溶质在液、

固两相中的活度系数f 影响。平衡时溶

质在固相和液相中化学位相等,即

)

()(T T S i L i μμ= 。当平衡被打破时,)()(T T S i L i μμ≠。欲达到新平衡,只有通

过溶质扩散改变液固两相溶质组元活

度,从而建立新的平衡,使

)

()(T T S i L i μμ=。 5.结合图3-3及图3-4解释临界晶核半径

r*和形核功ΔG*的意义,以及为什么形核要有一定过冷度。

答:(1)临界晶核半径r*的意义如下:

r <r*时,产生的晶核极不稳定,随即消散;

图3-3 液相中形成球形晶胚时自由能变化

r =r*时,产生的晶核处于介稳状态,既可消散也可生长;

r >r*时,不稳定的晶胚转化为稳定晶核,开始大量形核。

故r*表示原先不稳定的晶胚转变为稳定晶核的临界尺寸。

临界形核功ΔG*的意义如下:

表示形核过程系统需克服的能量障碍,即形核“能垒”。只有当ΔG≥ΔG*时,

液相才开始形核。

r 图3-4 液态金属r°、r*与T 的关系及临界过冷度ΔT *

(2)形核必须要有一定过冷度的原因如下:

由形核功的公式:

23316???? ?????=?*T H T V G m m S SL σπ (均质形核) he G *? =4cos cos 3231633θθπσ+-???? ??????m S m LS

H T V T (非均质形核)

对某种晶体而言,V S 、

均为定值,ΔG*∝ΔT -2,过冷度ΔT 越小,形核功ΔG*越大,ΔT→0时,

ΔG*→∞,这表明过冷度很小时难以形核,所以物质凝固形核必须要有一定过冷度。

6.比较式(3-14)与式(3-18)、式(3-15)与式(3-19),说明为什么异质

形核比均质形核容易,以及影响异质形核的基本因素和其它条件。

答: V S SL ho G V r ?-=*σ2T H T V m m s SL ?????=σ2 (3-14)

m

m SL T H 、、?σ

r he *=

T H T V G V m m S SL V S SL ??=?-σσ22 (3-18) 23316???

? ?????=?*T H T V G m m S SL ho σπ (3-15)

*he G ? 4cos cos 32316323θθπσ+-???? ??????=m S m LS H T V T (3-19)

(1)异质形核比均质形核容易的原因如下:

首先,从(3-14)式和(3-18)式可以看出:

非均质形核时的球缺的临界曲率半径与均质形核时的相同,但新生固相的

球缺实际体积却比均质形核时的晶核体积小得多 ,所以,从本质上说,液体中晶胚附在适当的基底界面上形核,体积比均质临界晶核体积小得多时便可达到临界晶核半径 。

再从(3-15)式和(3-19)式可以看出: ΔG **

??+-=ho he G )cos cos 32(413θθ

令 ()=θf 4

cos cos 323θθ+-,其数值在0~1之间变化 则 ΔG **

??=ho he G f )(θ

显然接触角θ大小(晶体与杂质基底相互润湿程度)影响非均质形核的难易程

度。

由于通常情况下,接触角θ远小于180o ,所以,非均质形核功ΔG *

he 远小于

均质形核功ΔG *ho ,非均质形核过冷度ΔT*比均质形核的要小得多。 综合上述几方面原因,所以异质形核比均质形核容易得多。

(2)影响异质形核的基本因素如下:

首先,非均质形核必须满足在液相中分布有一些杂质颗粒或铸型表面来提

供形核基底。其次,接触角180≠θ°, 因为当180=θ°时,*he G ?=ΔG ho *,此时非均质形核不起作用。

影响异质形核的其它条件:

a.基底晶体与结晶相的晶格错配度的影响。

%100?-=N

N c a a a δ (a N —结晶相点阵间隔,a C —杂质点阵间隔)

错配度δ越小,共格情况越好,界面张力σSC 越小,越容易进行非均质形核。 b.过冷度的影响。

过冷度越大,能促使非均匀形核的外来质点的种类和数量越多,非均匀

形核能力越强。

10.讨论两类固-液界面结构(粗糙面和光滑面)形成的本质及其判据。 答:(1)a.固-液界面结构主要取决于晶体生长时的热力学条件及晶面取向。 设晶体内部原子配位数为ν,界面上(某一晶面)的配位数为η,晶体表面

上有N 个原子位置只有N A 个固相原子(N N x A =),则在熔点T m 时,单个原子由液相向固-液界面的固相上沉积的相对自由能变化为:)1ln()1(ln )1(~x x x x x x kT H NkT F m m S m --++-??? ???=?νη )1ln()1(ln )1(x x x x x ax --++-= (1) ??? ???=νηαm kT H m ~ (2) k 为玻尔滋曼常数,S T H m m ~/~?=?f 为单个原子的熔融熵,α被称为Jackson 因子。

通过分析比较不同α值时相对自由能与界面原子占据率可以看出:

α≤2时,ΔF S

在x =0.5(晶体表面有一半空缺位置)时有一个极小值,即自由能最低;

2<α<5时,ΔFS 在偏离x 中心位置的两旁(但仍离x=0或x=1处有一定

距离)有两个极小值。此时,晶体表面尚有一小部分位置空缺或大部分位置空缺;

α>5时,ΔF S

在接近x=0或x=1处有两个极小值。此时,晶体表面位置几乎全被占满或仅有极少数位置被占据。α非常大时,ΔF S 的两个最小值出现在x →0,x →1的地方(晶体表面位置已被占满)。

若将α=2,ν

η

=0.5同时代入(2)式,单个原子的熔融熵为:f S ~?=v k T H m m ηα/~=? k k 45.012=?=,对于一摩尔,熔融熵

ΔS f =4kN A =4R (其中:N A 为阿伏加德罗常数,R 为气体常数)。由(2)式可知,熔融熵ΔS f 上升,则α增大,所以ΔS f ≤4R 时,界面以粗糙面为最稳定,此时晶体表面容易接纳液相中的原子而生长。熔融熵越小,越容易成为粗糙界面。因此,液-固微观界面结构究竟是粗糙面还是光滑面主要取决于物质的热力学性质。

另一方面,对于热力学性质一定的同种物质,η/ν值取决于界面是哪个晶面

族。对于密排晶面,η/ν值是高的,对于非密排晶面,η/ν值是低的,根据式(2),η/ν值越低,α值越小。这说明非密排晶面作为晶体表面(固-液界面)时,微观界面结构容易成为粗糙界面。

b.晶体生长界面结构还会受到动力学因素的影响,如凝固过冷度及结晶物质

在液体中的浓度等。过冷度大时,生长速度快,界面的原子层数较多,容易形成粗糙面结构,而过冷度小时界面的原子层数较少,粗糙度减小,容易形成光滑界面。浓度小的物质结晶时,界面生长易按台阶的

侧面扩展方式进行(固-液界面原子层厚度小),从而即使α<2时,其固-液界面也可能有光滑界面结构特征。

(2)可用Jackson 因子α作为两类固-液界面结构的判据:

α≤2 时,晶体表面有一半空缺位置时自由能最低,此时的固-液界面(晶体表面)为粗糙界面;

α>5 时,此时的固-液界面(晶体表面)为光滑界面;

α=2~5时,此时的固-液界面(晶体表面)常为多种方式的混合,Bi 、Si 、Sb 等属于此类。

11.固-液界面结构如何影响晶体生长方式和生长速度?同为光滑固-液界面,

螺旋位错生长机制与二维晶核生长机制的生长速度对过冷度的关系有何不同?

答:(1)固-液界面结构通过以下机理影响晶体生长方式:

粗糙面的界面结构,有许多位置可供原子着落,液相扩散来的原子很容易被

接纳并与晶体连接起来。由热力学因素可知生长过程中仍可维持粗糙面的界面结构。只要原子沉积供应不成问题,可以不断地进行“连续生长”,其生长方向为界面的法线方向。

对于光滑面,由于光滑界面在原子尺度界面是光滑的,单个原子与晶面的

结合较弱,容易跑走,因此,只有依靠在界面上出现台阶,然后从液相扩散来的原子沉积在台阶边缘,依靠台阶向侧面生长(“侧面生长”)。 台阶形成的方式有三种机制:二维晶核机制,螺旋位错机制,孪晶面机制 。

固-液界面结构通过以下机理晶体影响生长速度:

对粗糙界面而言,其生长方式为连续生长,生长速度R 1与实际过冷度ΔT

成线性关系 。

21m m T R T H D R ????==μ1ΔT (D 为原子的扩散系数,R 为气体常数,μ1为常数)

对光滑界面而言 :

二维晶核台阶生长的速度为 R 2 =???? ???-T b

exp 2μ (μ2、b 为常数)

螺旋位错台阶生长速度为 2

33T R ??=μ (μ3为常数)

(2)螺旋位错生长机制与二维晶核生长机制的生长速度对过冷度的关系不

同点如下:

对二维晶核生长机制而言,在ΔT 不大时生长速度R 2几乎为零,当达到一

定ΔT 时R 突然增加很快,其生长曲线R~ΔT 与连续生长曲线相遇,继续增大ΔT ,完全按连续方式进行。

对螺旋位错生长机制而言 ,在过冷度不太大时,速度与ΔT 的平方成正比。

在过冷度相当大时,其生长速度与连续生长方式相重合。由于其台阶在生长过程中不会消失,生长速度比二维台阶生长要快。此外,与二维晶核台阶生长相比较,二维晶核在ΔT 小时生长速度几乎为零,而螺旋位错生长方式在小ΔT 时却已具有一定的生长速度。

第四章 单相及多相合金的结晶

1.何谓结晶过程中的溶质再分配?它是否仅由平衡分配系数K 0所决定?当相

图上的液相线和固相线皆为直线时,试证明K 0为一常数。

答:结晶过程中的溶质再分配:是指在结晶过程中溶质在液、固两相重新

分布的现象。

溶质再分配不仅由平衡分配系数K 0决定 ,还受自身扩散性质的制约,

液相中的对流强弱等因素也将影响溶质再分配。

当相图上的液相线和固相线皆为直线时K 0为一常数,证明如下:如右图所

示:

液相线及固相线为直线,假设

其斜率分别为m L 及m S ,虽然 C *S 、C *L 随温度变化有不同值,但

L m S m L S m T T m T T C C K /)(/)(0****--===S L m m =常数,

此时,K 0与温度及浓度无关,

所以,当液相线和固相线为直

线时,不同温度和浓度下K 0为

定值。

2.某二元合金相图如右所示。合金液成分为C B =40%,置于长瓷舟中并从左

端开始凝固。温度梯度大到足以使固-液界面保持平面生长。假设固相无扩散,液相均匀混合。试求:①α相与液相之间的平衡分配系数K 0;②凝固后共晶体的数量占试棒长度的百分之几?③凝固后的试棒中溶质B 的浓度沿试棒长度的分布曲线。

解:(1)平衡分配系数K 0 的求解:

由于液相线及固相线均为直线不同温度和浓度下K 0为

定值,所以:如右图,

当T=500℃时,

K 0 =**L C C α=%60%30=0.5 K 0即为所求 α相与液相之间的

图 4-43 二元合金相图

平衡分配系数.

(2)凝固后共晶体的数量占试棒长度的百分数的计算:

由固相无扩散液相均匀混合下溶质再分配的正常偏析方程

)

1(00-*=K L L f C C 代入已知的*

L C = 60% , K 0 = 0.5, C 0= C B =40%

可求出此时的L f = 44.4%

由于T=500℃为共晶转变温度,所以此时残留的液相最终都将转变为共晶组

织,所以凝固后共晶体的数量占试棒长度的百分数也即为44.4%.

(3)凝固后的试棒中溶质B 的浓度沿试棒长度的分布曲线 (并注明各特征

成分及其位置)如下:

3.设上题合金成分为C 0=C B =10%。 )1(000)1(-*-=K S S f C K C

证明已凝固部分(s f )的平均成分S C 为()[]

0110K S S S f f C C --=

当试棒凝固时,液体成分增高,而这又会降低液相线温度。证明液相线温度T L 与s f 之间关系(m T 为纯组元A 的熔点,L m 为液相线斜率的值):

()1001---=K S L m L f C m T T 解: (a)

s f df f oC s f k c s s ko o o /0)1()1(??????=?--[]s s f k f c c f o o s o s /)1(--=()[]

110K S S S f f C C --=

(b) )1(-=ko l o l f c C

4.在固相无扩散而液相仅有扩散凝固条件下,分析凝固速变大(R 1→R 2,且

R 2>R 1)时,固相成分的变化情况,以及溶质富集层的变化情况。

答:在固相无扩散而液相仅有扩散条件下凝固速度变大时

(1)固相成分将发生下列变化:

当凝固速度增大时,固液界面前沿的液相 和固相都将经历:稳定态→ 不稳定态→ 稳定态的过程。如右图所示,当R 2>R 1时 在新、旧稳定状态之间,C S >C 0。重新 恢复到稳定时,C S 又回到C 0。R 2上升

越多,12/R R 越大, 不稳定区内C S 越高。

(2)溶质富集层的变化情况如下:

在其它条件不变的情况下,R 越大,在

固-液界面前沿溶质富集越严重,曲线

越陡峭。 如右图所示。

R 2越大, 富集层高度ΔC 越大,过渡

区时间(Δt )越长,过渡区间也就越

宽。 在新的稳定状态下,富集区的面

积将减小。

5.A-B 二元合金原始成分为C 0=C B =2.5%,K 0=0.2,L m =5,自左向右单向凝

固, 固相无扩散而液相仅有扩散(D L =3×10-5cm 2/s )。达到稳定态凝固时,求

(1)固-液界面的**L S C C 和;

(2)固-液界面保持平整界面的条件。

解:(1)求固-液界面的**L S C C 和 :

由于固相中无扩散而液相中仅有限扩散的情况下达到稳定状态时,满足:

00

*K C C L = ,C *S = C 0

R 2>R 1

R 2

R 1

R 2>R 1 )(1m l l T T m C l

--=()1001---=K S L m L f C m T T

代入C 0=C B =2.5%,K 0=0.2

即可得出:

00*K C C L ==2.0%5.2=12.5%

C *S = C 0 = 2.5%

(2)固-液界面保持平整界面的条件 :

当存在“成分过冷”时,随着的“成分过冷”的增大,固溶体生长方式

将 经历:胞状晶→柱状树枝晶→内部等轴晶(自由树枝晶) 的转变过程,所以只有当不发生成分过冷时,固-液界面才可保持平整界面,即需满足 R G L ≥000)1(K K D C m L L -

代入L m =5,C 0=C B =2.5% ,D L =3×10-5cm 2/s , K 0=0.2

可得出:

R G L

≥1.67×104 ℃/cm 2s 即为所求.

6.在同一幅图中表示第一节描述的四种方式的凝固过程中溶质再分配条件

固相成分的分布曲线。

答:四种方式凝固过程中溶质再分配条件下固相成分的分布曲线:

《高分子材料成型加工》课后部分习题参考答案

2.分别区分“通用塑料”和“工程塑料”,“热塑性塑料”和“热固性塑料”,“简单组分高分子材料”和“复杂组分高分子材料”,并请各举2~3例。 答:通用塑料:一般指产量大、用途广、成型性好、价廉的塑料。通用塑料有:PE,PP,PVC,PS等; 工程塑料:是指拉伸强度大于50MPa,冲击强度大于6kJ/m2 ,长期耐热温度超过100℃的,刚性好、蠕变小、自润 滑、电绝缘、耐腐蚀等,可代替金属用作结构件的塑料。工程塑料有:PA,PET,PBT,POM等; 工程塑料是指被用做工业零件或外壳材料的工业用塑料,是强度、耐冲击性、耐热性、硬度及抗老化性均优的塑料。日本业界将它定义为“可以做为构造用及机械零件用的高性能塑料,耐热性在100℃以上,主要运用在工业上”。 热塑性塑料:加热时变软以至流动,冷却变硬,这种过程是可逆的,可以反复进行。聚乙烯、聚丙烯、聚氯乙烯、聚苯乙烯、聚甲醛、聚砜、聚苯醚,氯化聚醚等都是热塑性塑料。(热塑性塑料中树脂分子链都是线型或带支链的结构,分子链之间无化学键产生,加热时软化流动、冷却变硬的过程是物理变化;) 热固性塑料:第一次加热时可以软化流动,加热到一定温度,产生化学反应一交链固化而变硬,这种变化是不可逆的,此后,再次加热时,已不能再变软流动了。正是借助这种特性进行成型加工,利用第一次加热时的塑化流动,在压力下充满型腔,进而固化成为确定形状和尺寸的制品。这种材料称为热固性塑料。(热固性塑料的树脂固化前是线型或带支链的,固化后分子链之间形成化学键,成为三维的网状结构,不仅不能再熔触,在溶剂中也不能溶解。)酚醛、脲醛、三聚氰胺甲醛、不饱和聚酯、有机硅等塑料,都是热固性塑料。 简单组分高分子材料:主要由高聚物组成(含量很高,可达95%以上),加入少量(或不加入)抗氧剂、润滑剂、着色剂等添加剂。如:PE、PP、PTFE。 复杂组分高分子材料:复杂组分塑料则是由合成树脂与多种起不同作用的配合剂组成,如填充剂、增塑剂、稳定剂等组成。如:PF、SPVC。 用天然或合成的聚合物为原料,经过人工加工制造的纤维状物质。可以分类两类 1)人造纤维:又称再生纤维,以天然聚合物为原料,经过人工加工而改性制得。如:粘胶纤维、醋酸纤维、蛋白质纤维等 2)合成纤维:以石油、天然气等为原料,通过人工合成和纺丝的方法制成。如:涤纶、尼龙、腈纶、丙纶、氨纶、维纶等 3.高分子材料成型加工的定义和实质。 高分子材料成型加工是将聚合物(有时还加入各种添加剂、助剂或改性材料等)转变成实用材料或制品的一种工程技术。 大多数情况下,聚合物加工通常包括两个过程:首先使原材料产生变形或流动,并取得所需要的形状,然后设法保持取得的形状(即硬化),流动-硬化是聚合物工过程的基本程序。 高分子材料加工的本质就是一个定构的过程,也就是使聚合物结构确定,并获得一定性能的过程。 第一章习题与思考题 2.请说出晶态与非晶态聚合物的熔融加工温度范围,并讨论两者作为材料的耐热性好坏。 答:晶态聚合物:Tm~Td;非晶态聚合物:Tf~Td。 对于作为塑料使用的高聚物来说,在不结晶或结晶度低时,最高使用温度是Tg,当结晶度达到40%以上时,晶区互相连接,形成贯穿整个材料的连续相,因此在Tg以上仍不会软化,其最高使用温度可提高到结晶熔点。 熔点(Tm):是晶态高聚物熔融时的温度。表征晶态高聚物耐热性的好坏。 3.为什么聚合物的结晶温度范围是Tg~Tm? 答:T>Tm 分子热运动自由能大于内能,难以形成有序结构 T

材料科学基础课后作业及答案(分章节)

第一章 8.计算下列晶体的离于键与共价键的相对比例 (1)NaF (2)CaO (3)ZnS 解:1、查表得:X Na =0.93,X F =3.98 根据鲍林公式可得NaF 中离子键比例为:21 (0.93 3.98)4 [1]100%90.2%e ---?= 共价键比例为:1-90.2%=9.8% 2、同理,CaO 中离子键比例为:21 (1.00 3.44)4 [1]100%77.4%e ---?= 共价键比例为:1-77.4%=22.6% 3、ZnS 中离子键比例为:2 1/4(2.581.65)[1]100%19.44%ZnS e --=-?=中离子键含量 共价键比例为:1-19.44%=80.56% 10说明结构转变的热力学条件与动力学条件的意义.说明稳态结构与亚稳态结构之间的关系。 答:结构转变的热力学条件决定转变是否可行,是结构转变的推动力,是转变的必要条件;动力学条件决定转变速度的大小,反映转变过程中阻力的大小。 稳态结构与亚稳态结构之间的关系:两种状态都是物质存在的状态,材料得到的结构是稳态或亚稳态,取决于转交过程的推动力和阻力(即热力学条件和动力学条件),阻力小时得到稳态结构,阻力很大时则得到亚稳态结构。稳态结构能量最低,热力学上最稳定,亚稳态结构能量高,热力学上不稳定,但向稳定结构转变速度慢,能保持相对稳定甚至长期存在。但在一定条件下,亚稳态结构向稳态结构转变。 第二章 1.回答下列问题: (1)在立方晶系的晶胞内画出具有下列密勒指数的晶面和晶向: (001)与[210],(111)与[112],(110)与 [111],(132)与[123],(322)与[236] (2)在立方晶系的一个晶胞中画出(111)和 (112)晶面,并写出两晶面交线的晶向指数。 (3)在立方晶系的一个晶胞中画出同时位于(101). (011)和(112)晶面上的[111]晶向。 解:1、 2.有一正交点阵的 a=b, c=a/2。某晶面在三个晶轴上的截距分别为 6个、2个和4个原子间距,求该晶面的密勒指数。 3.立方晶系的 {111}, 1110}, {123)晶面族各包括多少晶面?写出它们的密勒指数。 4.写出六方晶系的{1012}晶面族中所有晶面的密勒指数,在六方晶胞中画出[1120]、 [1101]晶向和(1012)晶面,并确定(1012)晶面与六方晶胞交线的晶向指数。 5.根据刚性球模型回答下列问题:

工程材料及成形技术基础A答案

、单项选择题(每小题1分,共15 分) 一、填空题(每空1分,共20分) 1. 机械设计时常用屈服强度和抗拉强度两种强度指标 2. 纯金属的晶格类型主要有面心立方、体心立方和密排六方三种。 3. 实际金属存在点 _____、 ____ 线______ 和面缺陷等三种缺陷。 4. F和A分别是碳在、丫-Fe 中所形成的间隙固溶体。 5. 加热是钢进行热处理的第一步,其目的是使钢获得奥氏体组织。 6. QT600-3中,QT表示球墨铸铁,600表示抗拉强度不小于600Mpa。 7?金属晶体通过滑移和孪生两种方式来发生塑性变形。 8 ?设计锻件时应尽量使零件工作时的正应力与流线方向相_同^而使切应力与流 线方向相垂直。 9?电焊条由药皮和焊芯两部分组成。 10 .冲裁是冲孔和落料工序的简称。 1. 在铁碳合金相图中,碳在奥氏体中的最大溶解度为(b )。 a 、0.77% b 、2.11% c 、0.02% d 、4.0% 2. 低碳钢的焊接接头中,(b )是薄弱部分,对焊接质量有严重影响,应尽可 能减小。 a 、熔合区和正火区 b 、熔合区和过热区 c、正火区和过热区d 、正火区和部分相变区 3. 碳含量为Wc= 4.3 %的铁碳合金具有良好的(c )。 a、可锻性b 、可焊性c 、铸造性能d、切削加工性 4. 钢中加入除Co之外的其它合金元素一般均能使其C曲线右移,从而(b ) a 、增大V K b、增加淬透性c、减少其淬透性d、增大其淬硬性

5. 高碳钢淬火后回火时,随回火温度升高其(a ) a 、强度硬度下降,塑性韧性提高 b 、强度硬度提高,塑性韧性下降 c、强度韧性提高,塑性硬度下降 d 、强度韧性下降,塑性硬度提高 6. 感应加热表面淬火的淬硬深度,主要决定于因素(d ) a 、淬透性b、冷却速度c、感应电流的大小d、感应电流的频率 7. 珠光体是一种(b ) a 、单相间隙固溶体b、两相混合物c、Fe与C的混合物d、单相置换固溶体 8. 灰铸铁的石墨形态是(a ) a 、片状 b 、团絮状 c 、球状 d 、蠕虫状 9. 反复弯折铁丝,铁丝会越来越硬,最后会断裂,这是由于产生了( a )

材料成形原理课后习题解答

材料成型原理 第一章(第二章的内容) 第一部分:液态金属凝固学 1.1 答:(1)纯金属的液态结构是由原子集团、游离原子、空穴或裂纹组成。原子集团的空穴或 裂纹内分布着排列无规则的游离的原子,这样的结构处于瞬息万变的状态,液体内部 存在着能量起伏。 (2)实际的液态合金是由各种成分的原子集团、游离原子、空穴、裂纹、杂质气泡 组成的鱼目混珠的“混浊”液体,也就是说,实际的液态合金除了存在能量起伏外, 还存在结构起伏。 1.2答:液态金属的表面张力是界面张力的一个特例。表面张力对应于液-气的交界面,而 界面张力对应于固-液、液-气、固-固、固-气、液-液、气-气的交界面。 表面张力?和界面张力ρ的关系如(1)ρ=2?/r,因表面张力而长生的曲面为球面时,r为球面的半径;(2)ρ=?(1/r1+1/r2),式中r1、r2分别为曲面的曲率半径。 附加压力是因为液面弯曲后由表面张力引起的。 1.3答:液态金属的流动性和冲型能力都是影响成形产品质量的因素;不同点:流动性是确 定条件下的冲型能力,它是液态金属本身的流动能力,由液态合金的成分、温度、杂 质含量决定,与外界因素无关。而冲型能力首先取决于流动性,同时又与铸件结构、 浇注条件及铸型等条件有关。 提高液态金属的冲型能力的措施: (1)金属性质方面:①改善合金成分;②结晶潜热L要大;③比热、密度、导热系大; ④粘度、表面张力大。 (2)铸型性质方面:①蓄热系数大;②适当提高铸型温度;③提高透气性。 (3)浇注条件方面:①提高浇注温度;②提高浇注压力。 (4)铸件结构方面:①在保证质量的前提下尽可能减小铸件厚度; ②降低结构复杂程度。 1.4 解:浇注模型如下:

材料成型设备复习资料--课后习题部分

第二章 2-1、曲柄压力机由那几部分组成?各部分的功能如何? 答:曲柄压力机由以下几部分组成:1、工作机构。由曲柄、连杆、滑块组成,将旋转运动 转换成往复直线运动。2、传动系统。由带传动和齿轮传动组成,将电动机的能量传输至工作机构。3、操作机构。主要由离合器、制动器和相应电器系统组成,控制工作机构的运行状态,使其能够间歇或连续工作。4、能源部分。由电动机和飞轮组成,电动机提供能源,飞轮储存和释放能量。5、支撑部分。由机身、工作台和紧固件等组成。它把压力机所有零部件连成一个整体。6、辅助系统。包括气路系统、润滑系统、过载保护装置、气垫、快换模、打料装置、监控装置等。提高压力机的安全性和操作方便性 2-2、曲柄压力机滑块位移、速度、加速度变化规律是怎样的?它们与冲压工艺的联系如何? 答:速度的变化规律为正弦曲线,加速度的变化规律为余弦曲线,位移的变化规律为 滑块位移与曲柄转角的关系:??????-+ -=)2cos 1(4)cos 1(S αλαR 滑块速度与曲柄转角的关系:)2sin 2R(sin v αλαω+ = 滑块速度与转角的关系:)2cos (cos a 2αλαω+- =R 曲轴受转矩:)2sin 2sin (αλα+=FR M L 2-5装模高度的调节方式有哪些?各有何特点? 1. 调节连杆长度。该方法结构紧凑,可降低压力机的高度,但连杆与滑块的铰接处为球头, 且球头和支撑座加工比较困难,需专用设备。螺杆的抗弯性能亦不强。 2. 调节滑块高度。柱销式连杆采用此种结构,与球头式连杆相比,柱销式连杆的抗弯强度 提高了,铰接柱销的加工也更为方便,较大型压力机采用柱面连接结构以改善圆柱销的受力。 3. 调节工作台高度。多用于小型压力机。 2-7、开式机身和闭式机身各有何特点?应用于何种场合?P26 1. 开式机身:操作空间三面敞开,工作台面不受导轨间距的限制,安装、调整模具具有较 大的操作空间,与自动送料机构的连接也很方便。但由于床身近似C 形,在受力变形时产生角位移和垂直位移,角位移会加剧模具磨损和影响冲压力质量,严重时会折断冲头。开式机身多用于小型压力机。 2. 闭式机身:形成一个对称的封闭框形结构,受力后仅产生垂直变形,刚度比开式机身好。 但由于框形结构及其它因素,它只能前后两面操作。整体机身加工装配工作量小,需大型加工设备,运输和安装困难。但采用组合机身可以解决运输和安装方面的困难。闭式机身广泛运用于中大型压力机。 2-9、转键离合器的操作机构是怎样工作的?它是怎样保证压力机的单次操作?P28 答:单次行程:先用销子11将拉杆5与右边的打棒3连接起来,后踩下踏板使电磁铁6通 电,衔铁7上吸,拉杆向下拉打棒,离合器接合。 在曲轴旋转一周前,由于凸块2将打棒向右撞开,经齿轮带动关闭器回到工作位置挡住尾板,迫使离合器脱开,曲轴在制动器作用下停止转动,滑块完成一次行程.

材料成形技术基础习题集答案

作业2 铸造工艺基础 专业_________班级________学号_______姓名___________ 2-1 判断题(正确的画O,错误的画×) 1.浇注温度是影响铸造合金充型能力和铸件质量的重要因素。提高浇注温度有利于获得形状完整、轮廓清晰、薄而复杂的铸件。因此,浇注温度越高越好。(×)2.合金收缩经历三个阶段。其中,液态收缩和凝固收缩是铸件产生缩孔、缩松的基本原因,而固态收缩是铸件产生内应力、变形和裂纹的主要原因。(O)3.结晶温度范围的大小对合金结晶过程有重要影响。铸造生产都希望采用结晶温度范围小的合金或共晶成分合金,原因是这些合金的流动性好,且易形成集中缩孔,从而可以通过设置冒口,将缩孔转移到冒口中,得到合格的铸件。(O) 4.为了防止铸件产生裂纹,在零件设计时,力求壁厚均匀;在合金成分上应严格限制钢和铸铁中的硫、磷含量;在工艺上应提高型砂及型芯砂的退让性。(O)5.铸造合金的充型能力主要取决于合金的流动性、浇注条件和铸型性质。所以当合金的成分和铸件结构一定时;控制合金充型能力的唯一因素是浇注温度。(×)6.铸造合金在冷却过程中产生的收缩分为液态收缩、凝固收缩和固态收缩。共晶成分合金由于在恒温下凝固,即开始凝固温度等于凝固终止温度,结晶温度范围为零。因此,共晶成分合金不产生凝固收缩,只产生液态收缩和固态收缩,具有很好的铸造性能。(×)7.气孔是气体在铸件内形成的孔洞。气孔不仅降低了铸件的力学性能,而且还降低了铸件的气密性。(O)8.采用顺序凝固原则,可以防止铸件产生缩孔缺陷,但它也增加了造型的复杂程度,并耗费许多合金液体,同时增大了铸件产生变形、裂纹的倾向。(O)

材料成型工艺基础部分复习题答案

材料成型工艺基础(第三版)部分课后习题答案 第一章 ⑵.合金流动性决定于那些因素?合金流动性不好对铸件品质有何影响? 答:①合金的流动性是指合金本身在液态下的流动能力。决定于合金的化学成分、结晶特性、粘度、凝固温度围、浇注温度、浇注压力、金属型导热能力。 ②合金流动性不好铸件易产生浇不到、冷隔等缺陷,也是引起铸件气孔、夹渣、縮孔缺陷的间接原因。 ⑷.何谓合金的收縮?影响合金收縮的因素有哪些? 答:①合金在浇注、凝固直至冷却至室温的过程中体积和尺寸縮减的现象,称为收縮。 ②影响合金收縮的因素:化学成分、浇注温度、铸件结构和铸型条件。 ⑹.何谓同时凝则和定向凝则? 答:①同时凝则:将浇道开在薄壁处,在远离浇道的厚壁处出放置冷铁,薄壁处因被高温金属液加热而凝固缓慢,厚壁出则因被冷铁激冷而凝固加快,从而达到同时凝固。 ②定向凝则:在铸件可能出现縮孔的厚大部位安放冒口,使铸件远离冒口的部位最先凝固,靠近冒口的部位后凝固,冒口本身最后凝固。 第二章 ⑴.试从石墨的存在和影响分析灰铸铁的力学性能和其他性能特征。 答:石墨在灰铸铁中以片状形式存在,易引起应力集中。石墨数量越多,形态愈粗大、分布愈不均匀,对金属基体的割裂就愈严重。灰铸铁的抗拉强度低、塑性差,但有良好的吸震性、减摩性和低的缺口敏感性,且易于铸造和切削加工。石墨化不充分易产生白口,铸铁硬、脆,难以切削加工;石墨化过分,则形成粗大的石墨,铸铁的力学性能降低。 ⑵.影响铸铁中石墨化过程的主要因素是什么?相同化学成分的铸铁件的力学性能是否相同? 答:①主要因素:化学成分和冷却速度。 ②铸铁件的化学成分相同时铸铁的壁厚不同,其组织和性能也不同。在厚壁处冷却速度较慢,铸件易获得铁素体基体和粗大的石墨片,力学性能较差;而在薄壁处,冷却速度较快,铸件易获得硬而脆的白口组织或麻口组织。 ⑸.什么是孕育铸铁?它与普通灰铸铁有何区别?如何获得孕育铸铁? 答:①经孕育处理后的灰铸铁称为孕育铸铁。 ②孕育铸铁的强度、硬度显著提高,冷却速度对其组织和性能的影响小,因此铸件上厚大截面的性能较均匀;但铸铁塑性、韧性仍然很低。 ③原理:先熔炼出相当于白口或麻口组织的低碳、硅含量的高温铁液,然后向铁液中冲入少量细状或粉末状的孕育剂,孕育剂在铁液中形成大量弥散的石墨结晶核心,使石墨化骤然增强,从而得到细化晶粒珠光体和分布均匀的细片状石墨组织。 ⑻.为什么普通灰铸铁热处理效果没球墨铸铁好?普通灰铸铁常用热处理方法有哪些?目的是什 么? 答:①普通灰铸铁组织中粗大的石墨片对基体的破坏作用不能依靠热处理来消除或改进;而球墨铸铁的热处理可以改善其金属基体,以获得所需的组织和性能,故球墨铸铁性能好。 ②普通灰铸铁常用的热处理方法:时效处理,目的是消除应力,防止加工后变形;软化退火,目的是消除白口、降低硬度、改善切削加工性能。 第三章 ⑴.为什么制造蜡模多采用糊状蜡料加压成形,而较少采用蜡液浇铸成形?为什么脱蜡时水温不应达到沸点? 答:蜡模材料可用石蜡、硬脂酸等配成,在常用的蜡料中,石蜡和硬脂酸各占50%,其熔点为50℃~60℃,高熔点蜡料可加入塑料,制模时,将蜡料熔为糊状,目的除了使温度均匀外,对含填充料的蜡料还有防止沉淀的作用。

材料科学基础习题与答案

- 第二章 思考题与例题 1. 离子键、共价键、分子键和金属键的特点,并解释金属键结合的固体材料的密度比离子键或共价键固体高的原因 2. 从结构、性能等方面描述晶体与非晶体的区别。 3. 何谓理想晶体何谓单晶、多晶、晶粒及亚晶为什么单晶体成各向异性而多晶体一般情况下不显示各向异性何谓空间点阵、晶体结构及晶胞晶胞有哪些重要的特征参数 4. 比较三种典型晶体结构的特征。(Al 、α-Fe 、Mg 三种材料属何种晶体结构描述它们的晶体结构特征并比较它们塑性的好坏并解释。)何谓配位数何谓致密度金属中常见的三种晶体结构从原子排列紧密程度等方面比较有何异同 5. 固溶体和中间相的类型、特点和性能。何谓间隙固溶体它与间隙相、间隙化合物之间有何区别(以金属为基的)固溶体与中间相的主要差异(如结构、键性、性能)是什么 6. 已知Cu 的原子直径为A ,求Cu 的晶格常数,并计算1mm 3Cu 的原子数。 ( 7. 已知Al 相对原子质量Ar (Al )=,原子半径γ=,求Al 晶体的密度。 8 bcc 铁的单位晶胞体积,在912℃时是;fcc 铁在相同温度时其单位晶胞体积是。当铁由 bcc 转变为fcc 时,其密度改变的百分比为多少 9. 何谓金属化合物常见金属化合物有几类影响它们形成和结构的主要因素是什么其性能如何 10. 在面心立方晶胞中画出[012]和[123]晶向。在面心立方晶胞中画出(012)和(123)晶面。 11. 设晶面(152)和(034)属六方晶系的正交坐标表述,试给出其四轴坐标的表示。反之,求(3121)及(2112)的正交坐标的表示。(练习),上题中均改为相应晶向指数,求相互转换后结果。 12.在一个立方晶胞中确定6个表面面心位置的坐标,6个面心构成一个正八面体,指出这个八面体各个表面的晶面指数,各个棱边和对角线的晶向指数。 13. 写出立方晶系的{110}、{100}、{111}、{112}晶面族包括的等价晶面,请分别画出。

《材料成形技术基础》习题集答案.doc

作业 2 铸造工艺基础 专业 _________班级 ________学号 _______姓名 ___________ 2-1 判断题(正确的画O,错误的画×) 1.浇注温度是影响铸造合金充型能力和铸件质量的重要因素。提高浇注温度有 利于获得形状完整、轮廓清晰、薄而复杂的铸件。因此,浇注温度越高越好。(× )2.合金收缩经历三个阶段。其中,液态收缩和凝固收缩是铸件产生缩孔、缩松 的基本原因,而固态收缩是铸件产生内应力、变形和裂纹的主要原因。( O)3.结晶温度范围的大小对合金结晶过程有重要影响。铸造生产都希望采用结晶 温度范围小的合金或共晶成分合金,原因是这些合金的流动性好,且易形成集中缩孔, 从而可以通过设置冒口,将缩孔转移到冒口中,得到合格的铸件。( O)4.为了防止铸件产生裂纹,在零件设计时,力求壁厚均匀;在合金成分上应严 格限制钢和铸铁中的硫、磷含量;在工艺上应提高型砂及型芯砂的退让性。(O)5.铸造合金的充型能力主要取决于合金的流动性、浇注条件和铸型性质。所以 当合金的成分和铸件结构一定时;控制合金充型能力的唯一因素是浇注温度。(×)6.铸造合金在冷却过程中产生的收缩分为液态收缩、凝固收缩和固态收缩。共 晶成分合金由于在恒温下凝固,即开始凝固温度等于凝固终止温度,结晶温度范围为零。因此,共晶成分合金不产生凝固收缩,只产生液态收缩和固态收缩,具有很好的 铸造性能。(×) 7.气孔是气体在铸件内形成的孔洞。气孔不仅降低了铸件的力学性能,而且还 降低了铸件的气密性。( O)8.采用顺序凝固原则,可以防止铸件产生缩孔缺陷,但它也增加了造型的复杂 程度,并耗费许多合金液体,同时增大了铸件产生变形、裂纹的倾向。( O) 2-2 选择题 1.为了防止铸件产生浇不足、冷隔等缺陷,可以采用的措施有( A .减弱铸型的冷却能力; B .增加铸型的直浇口高度; C.提高合金的浇注温度;D. A 、 B 和 C;E.A 和 C。 D )。 2.顺序凝固和同时凝固均有各自的优缺点。为保证铸件质量,通常顺序凝固适 合于( D ),而同时凝固适合于( B )。 A .吸气倾向大的铸造合金;C.流动性差的铸造合金; B .产生变形和裂纹倾向大的铸造合金; D .产生缩孔倾向大的铸造合金。 3.铸造应力过大将导致铸件产生变形或裂纹。消除铸件中残余应力的方法是(D);消除铸件中机械应力的方法是(C)。 A .采用同时凝固原则; B .提高型、芯砂的退让性;

材料成形原理经典试题及答案

《材料成形基础》试卷(A)卷 考试时间:120 分钟考试方式:半开卷学院班级姓名学号 一、填空题(每空0.5分,共20分) 1. 润湿角是衡量界面张力的标志,润湿角?≥90°,表面液体不能润湿固体;2.晶体结晶时,有时会以枝晶生长方式进行,此时固液界面前液体中的温度梯度为负。3.灰铸铁凝固时,其收缩量远小于白口铁或钢,其原因在于碳的石墨化膨胀作用。 4. 孕育和变质处理是控制金属(或合金)铸态组织的主要方法,两者的主要区别在于孕育主要影响生核过程,而变质则主要改变晶体生长方式。 5.液态金属成形过程中在固相线附近产生的裂纹称为热裂纹,而在室温附近产生的裂纹称为冷裂纹。 6.铸造合金从浇注温度冷却到室温一般要经历液态收缩、固态收缩和凝固收缩三个收缩阶段。 7.焊缝中的宏观偏析可分为层状偏析和区域偏析。 8.液态金属成形过程中在附近产生的裂纹称为热裂纹,而在附近产生的裂纹成为冷裂纹。 9.铸件凝固方式有逐层凝固、体积凝固、中间凝固,其中逐层凝固方式容易产生集中性缩孔,一般采用同时凝固原则可以消除;体积凝固方式易产生分散性缩松,采用顺序凝固原则可以消除此缺陷。 10.金属塑性加工就是在外力作用下使金属产生塑性变形加工方法。

1.12.塑性变形时,由于外力所作的功转化为热能,从而使物体的温度升高的现象称为 温度效应。 2.13.在完全不产生回复和再结晶温度以下进行的塑性变形称为冷变形。 14.多晶体塑性变形时,除了晶内的滑移和产生,还包括晶界的滑动和转动。 3.15.单位面积上的内力称为应力。 4.16.物体在变形时,如果只在一个平面内产生变形,在这个平面称为塑性流平面。17.细晶超塑性时要求其组织超细化、等轴化和稳定化。18.轧制时,变形区可以分为后滑区、中性区和前滑区三个区域。19.棒材挤压变形时,其变形过程分为填充和挤压两个阶段。20.冲裁件的切断面由圆角带、光亮带、断裂带三个部分组成。 二、判断题(在括号内打“√”或“×”,每小题0.5分,共10分)1.酸性渣一般称为长渣,碱性渣一般称为短渣,前者不适宜仰焊,后者可适用于全位置焊。(√ ) 2.低合金高强度钢焊接时,通常的焊接工艺为:采取预热、后热处理,大的线能量。( x ) 3.电弧电压增加,焊缝含氮量增加;焊接电流增加,焊缝含氮量减少。(√ ) 4.电弧电压增加时,熔池的最大深度增大;焊接电流增加,熔池的最大宽度增大。( x ) 5.在非均质生核中,外来固相凹面衬底的生核能力比凸面衬底弱。( x ) 6.液态金属导热系数越小,其相应的充型能力就越好;与此相同,铸型的导热系数越小,越有利于液态金属的充型。(√ ) 7.在K0<1的合金中,由于逆偏析,使得合金铸件表层范围内溶质的浓度分布由外向内逐渐降低。(√ ) 8. 粘度反映了原子间结合力的强弱,与熔点有共同性,难熔化合物的粘度较高,而熔点较低的共晶成分合金其粘度较熔点较高的非共晶成分合金的低。 (√ ) 9.两边是塑性区的速度间断线在速端图中为两条光滑曲线,并且两曲线的距离即为速度间断线的间断值。(√ )

#材料成型复习题(答案)

材料成型复习题(答案) 一、 1落料和冲孔:落料和冲孔又称冲裁,是使坯料按封闭轮廓分离。落料是被分离的部分为所需要的工件,而留下的周边是废料;冲孔则相反。 2 焊接:将分离的金属用局部加热或加压,或两者兼而使用等手段,借助于金属内部原子的 结合和扩散作用牢固的连接起来,形成永久性接头的过程。 3顺序凝固:是采用各种措施保证铸件结构各部分,从远离冒口的部分到冒口之间建立一个逐渐递增的温度梯度,实现由远离冒口的部分最先凝固,在向冒口方向顺序凝固,使缩孔移至冒口中,切除冒口即可获得合格零件的铸造工艺 同时凝固:是指采取一些工艺措施,使铸件个部分温差很小,几乎同时进行凝固获得合格零件的铸造工艺 4.缩孔、缩松液态金属在凝固过程中,由于液态收缩和凝固收缩,因而在铸件最后凝固部位出现大而集中的孔洞,这种孔洞称为缩孔,而细小而分散的孔洞称为分散性缩孔,简称缩松。 5.直流正接:将焊件接电焊机的正极,焊条接其负极;用于较厚或高熔点金属的焊接。 直流反接:将焊件接电焊机的负极,焊条接其正极;用于轻薄或低熔点金属的焊接。 6 自由锻造:利用冲击力或压力使金属材料在上下两个砧铁之间或锤头与砧铁之间产生变形,从而获得所需形状、尺寸和力学性能的锻件的成形过程。 模型锻造:它包括模锻和镦锻,它是将加热或不加热的坯料置于锻模模膛内,然后施加冲击力或压力使坯料发生塑性变形而获得锻件的锻造成型过程。 7.钎焊:利用熔点比钎焊金属低的钎料作填充金属,适当加热后,钎料熔化将处于固态的焊件连接起来的一种方法。 8.金属焊接性:金属在一定条件下,获得优质焊接接头的难易程度,即金属材料对焊接加工的适应性。 9,粉末冶金:是用金属粉末做原料,经压制后烧结而制造各种零件和产品的方法。 二、 1、铸件中可能存在的气孔有侵入气孔、析出气孔、反应气孔三种。 2、金属粉末的基本性能包括成分、粒径分布、颗粒形状和大小以及技术特征等。 3、砂型铸造常用的机器造型方法有震实造型、微震实造型、高压造型、抛砂造型等。 4、影响金属焊接的主要因素有温度、压力。 5、粉末压制生产技术流程为粉末制取、配混、压制成形、烧结、其他处理加工。 6、影响液态金属充型能力的因素有金属流动性、铸型性质、浇注条件、铸件结构四个方面。 7、金属材料的可锻性常用金属的塑性指标和变形抗力来综合衡量。 8、熔化焊接用焊条通常由焊芯和药皮组成,其中焊芯的主要作用为作为电源的一个电极,传导电流,产生电弧、熔化后作为填充材料,与母材一起构成焊缝金属等。 9、金属塑性变形的基本规律是体积不变定律和最小阻力定律。 10、一般砂型铸造技术的浇注系统结构主要由浇口杯,直浇道,横浇道,内浇道组成。 11、硬质合金是将一些难熔的金属碳化物和金属黏结剂

材料成型技术基础试题答案

《材料成形技术基础》考试样题答题页 (本卷共10页) 、判断题(每题分,共分,正确的画“O ”,错误的打“X ”) 、选择题(每空1分,共38分) 三、填空(每空0.5分,共26分) 1.( 化学成分) ( 浇注条件) ( 铸型性质) 2.( 浇注温度) 3.( 复杂) ( 广) 4.( 大) 5.( 补缩) ( 控制凝固顺序)6.( 球铁) ( 2 17% ) 7.( 缺口敏感性) ( 工艺)8.( 冷却速度) ( 化学成分) 9.( 低) 10.( 稀土镁合金)11.( 非加工)12.( 起模斜度) ( 没有) 13.( 非铁) ( 简单)14.( 再结晶)15.( 变形抗力) 16.( 再结晶) ( 纤维组织)17.( 敷料) ( 锻件公差) 18.( 飞边槽)19.( 工艺万能性)20.( 三) ( 二) 21.( -二二) ( 三)22.( 再结晶退火)23.( 三) 24.( -二二)25.( 拉) ( 压)26.( 化学成分) ( 脱P、S、O )27.( 作为电极) ( 填充金属)28.( 碱性) 29.( 成本) ( 清理)30.( 润湿能力)31.( 形成熔池) (达到咼塑性状态) ( 使钎料熔化)32.( 低氢型药皮) ( 直流专用)

Ct 230 图5 四、综合题(20分) 1、绘制图5的铸造工艺图(6分) ? 2J0 环O' 4 “ei吋 纯 2、绘制图6的自由锻件图,并按顺序选择自由锻基本工序(6 分)。 O O 2 令 i 1 q―1 孔U 400 圈6 3、请修改图7?图10的焊接结构,并写出修改原因。 自由锻基本工序: 拔长、局部镦粗、拔长 图7手弧焊钢板焊接结构(2 分)图8手弧焊不同厚度钢板结构(2 分) 修改原因:避免焊缝交叉修改原因:避免应力集中(平滑过 度)

材料科学基础课后习题答案第二章

第2章习题 2-1 a )试证明均匀形核时,形成临界晶粒的△ G K 与其临界晶核体积 V K 之间的关系式为 2 G V ; b )当非均匀形核形成球冠形晶核时,其△ 所以 所以 2-2如果临界晶核是边长为 a 的正方体,试求出其厶G K 与a 的关系。为什么形成立方体晶核 的厶G K 比球形晶核要大? 解:形核时的吉布斯自由能变化为 a )证明因为临界晶核半径 r K 临界晶核形成功 G K 16 故临界晶核的体积 V K 4 r ; G V )2 2 G K G V b )当非均匀形核形成球冠形晶核时, 非 r K 2 SL G V 临界晶核形成功 3 3( G ;7(2 3cos 3 cos 故临界晶核的体积 V K 3(r 非)3(2 3 3cos 3 cos V K G V 1 ( 3 卸2 3 3cos cos )G V 3 3(書 (2 3cos cos 3 ) G K % G K 与V K 之间的关系如何? G K

G V G v A a3G v 6a2 3 得临界晶核边长a K G V

临界形核功 将两式相比较 可见形成球形晶核得临界形核功仅为形成立方形晶核的 1/2。 2-3为什么金属结晶时一定要有过冷度?影响过冷度的因素是什么?固态金属熔化时是否 会出现过热?为什么? 答:金属结晶时要有过冷度是相变热力学条件所需求的, 只有△ T>0时,才能造成固相的自 由能低于液相的自由能的条件,液固相间的自由能差便是结晶的驱动力。 金属结晶需在一定的过冷度下进行,是因为结晶时表面能增加造成阻力。固态金属熔 化时是否会出现过热现象,需要看熔化时表面能的变化。如果熔化前后表面能是降低的, 则 不需要过热;反之,则可能出现过热。 如果熔化时,液相与气相接触,当有少量液体金属在固体表面形成时,就会很快覆盖 在整个固体表面(因为液态金属总是润湿其同种固体金属 )。熔化时表面自由能的变化为: G 表面 G 终态 G 始态 A( GL SL SG ) 式中G 始态表示金属熔化前的表面自由能; G 终态表示当在少量液体金属在固体金属表面形成 时的表面自由能;A 表示液态金属润湿固态金属表面的面积;b GL 、CSL 、CSG 分别表示气液相 比表面能、固液相比表面能、固气相比表面能。因为液态金属总是润湿其同种固体金属,根 据润湿时表面张力之间的关系式可写出:b SG 》6GL + (SL 。这说明在熔化时,表面自由能的变 化厶G 表w o ,即不存在表面能障碍,也就不必过热。实际金属多属于这种情况。如果固体 16 3 3( G v )2 1 32 3 6 2 (G v )2 b K t K 4 G V )3 G V 6( 4 G v )2 64 3 96 3 32 r K 2 ~G ?, 球形核胚的临界形核功 (G v )2 (G v )2 (G v )2 G b K 2 G v )3 16 3( G v )2

材料成形技术基础(问答题答案整理)

第二章铸造成形 问答题: 合金的流动性(充型能力)取决于哪些因素?提高液态金属充型能力一般采用哪些方法?答:因素及提高的方法: (1)金属的流动性:尽量采用共晶成分的合金或结晶温度范围较小的合金,提高金属液的品质; (2)铸型性质:较小铸型与金属液的温差; (3)浇注条件:合理确定浇注温度、浇注速度和充型压头,合理设置浇注系统; (4)铸件结构:改进不合理的浇注结构。 影响合金收缩的因素有哪些? 答:金属自身的化学成分,结晶温度,金属相变,外界阻力(铸型表面的摩擦阻力、热阻力、机械阻力) 分别说出铸造应力有哪几类? 答:(1)热应力(由于壁厚不均、冷却速度不同、收缩量不同) (2)相变应力(固态相变、比容变化) (3)机械阻碍应力 铸件成分偏析分为几类?产生的原因是什么? 答:铸件成分偏析的分类:(1)微观偏析 晶内偏析:产生于具有结晶温度范围能形成固溶体的合金内。(因为不平衡结晶) 晶界偏析:(原因:(两个晶粒相对生长,相互接近、相遇;(晶界位置与晶粒生长方向平行。)(2)宏观偏析 正偏析(因为铸型强烈地定向散热,在进行凝固的合金内形成一个温度梯度) 逆偏析 产生偏析的原因:结晶速度大于溶质扩散的速度 铸件气孔有哪几种? 答:侵入气孔、析出气孔、反应气孔 如何区分铸件裂纹的性质(热裂纹和冷裂纹)? 答:热裂纹:裂缝短,缝隙宽,形状曲折,缝内呈氧化颜色 冷裂纹:裂纹细小,呈连续直线状,缝内有金属光泽或轻微氧化色。 七:什么是封闭式浇注系统?什么是开放式浇注系统?他们各组元横截面尺寸的关系如何?答:封闭式浇注系统:从浇口杯底孔到内浇道的截面逐渐减小,阻流截面在直浇道下口的浇注系统。(ΣF内<ΣF横ΣF横>F直下端>F直上端) 浇注位置和分型面选择的基本原则有哪些? 答:浇注位置选择:(1)逐渐的重要表面朝下或处于侧面;(原因:以避免气孔、砂眼、缩孔、缩松等铸造缺陷) (2)铸件的宽大平面朝下或倾斜浇注; (3)铸件的薄壁部分朝下;(原因:可保证铸件易于充型,防止产生浇不足、冷隔缺陷)(4)铸件的厚大部分朝上。(原因:便于补缩)容易形成缩孔的铸件,厚大部分朝上。(原因:便于安置冒口实现自上而下的定向凝固,防止产生缩孔) 分型面的选择:(1)应尽可能使全部或大部分构件,或者加工基准面与重要的加工面处于同

材料科学基础课后习题答案

《材料科学基础》课后习题答案 第一章材料结构的基本知识 4. 简述一次键和二次键区别 答:根据结合力的强弱可把结合键分成一次键和二次键两大类。其中一次键的结合力较强,包括离子键、共价键和金属键。一次键的三种结合方式都是依靠外壳层电子转移或共享以形成稳定的电子壳层,从而使原子间相互结合起来。二次键的结合力较弱,包括范德瓦耳斯键和氢键。二次键是一种在原子和分子之间,由诱导或永久电偶相互作用而产生的一种副键。 6. 为什么金属键结合的固体材料的密度比离子键或共价键固体为高? 答:材料的密度与结合键类型有关。一般金属键结合的固体材料的高密度有两个原因:(1)金属元素有较高的相对原子质量;(2)金属键的结合方式没有方向性,因此金属原子总是趋于密集排列。相反,对于离子键或共价键结合的材料,原子排列不可能很致密。共价键结合时,相邻原子的个数要受到共价键数目的限制;离子键结合时,则要满足正、负离子间电荷平衡的要求,它们的相邻原子数都不如金属多,因此离子键或共价键结合的材料密度较低。 9. 什么是单相组织?什么是两相组织?以它们为例说明显微组织的含义以及显微组织对性能的影响。 答:单相组织,顾名思义是具有单一相的组织。即所有晶粒的化学组成相同,晶体结构也相同。两相组织是指具有两相的组织。单相组织特征的主要有晶粒尺寸及形状。晶粒尺寸对材料性能有重要的影响,细化晶粒可以明显地提高材料的强度,改善材料的塑性和韧性。单相组织中,根据各方向生长条件的不同,会生成等轴晶和柱状晶。等轴晶的材料各方向上性能接近,而柱状晶则在各个方向上表现出性能的差异。对于两相组织,如果两个相的晶粒尺度相当,两者均匀地交替分布,此时合金的力学性能取决于两个相或者两种相或两种组织组成物的相对量及各自的性能。如果两个相的晶粒尺度相差甚远,其中尺寸较细的相以球状、点状、片状或针状等形态弥散地分布于另一相晶粒的基体内。如果弥散相的硬度明显高于基体相,则将显著提高材料的强度,同时降低材料的塑韧性。 10. 说明结构转变的热力学条件与动力学条件的意义,说明稳态结构和亚稳态结构之间的关系。 答:同一种材料在不同条件下可以得到不同的结构,其中能量最低的结构称为稳态结构或平衡太结构,而能量相对较高的结构则称为亚稳态结构。所谓的热力学条件是指结构形成时必须沿着能量降低的方向进行,或者说结构转变必须存在一个推动力,过程才能自发进行。热力学条件只预言了过程的可能性,至于过程是否真正实现,还需要考虑动力学条件,即反应速度。动力学条件的实质是考虑阻力。材料最终得到什么结构取决于何者起支配作用。如果热力学推动力起支配作用,则阻力并不大,材料最终得到稳态结构。从原则上讲,亚稳态结构有可能向稳态结构转变,以达到能量的最低状态,但这一转变必须在原子有足够活动能力的前提下才能够实现,而常温下的这种转变很难进行,因此亚稳态结构仍可以保持相对稳定。 第二章材料中的晶体结构 1. 回答下列问题: (1)在立方晶系的晶胞内画出具有下列密勒指数的晶面和晶向: 32)与[236] (001)与[210],(111)与[112],(110)与[111],(132)与[123],(2 (2)在立方晶系的一个晶胞中画出(111)和(112)晶面,并写出两晶面交线的晶向指数。 解:(1)

材料成形技术基础习题集答案

2?顺序凝固和同时凝固均有各自的优缺点。为保证铸件质量,通常顺序凝固适 合于( D ),而同时凝固适合于( B A .吸气倾向大的铸造合金; B .产生变形和裂纹倾向大的铸造合金; C.流动性差的铸造合金; D ?产生缩孔倾向大的铸造合金。 3 ?铸造应力过大将导致铸件产生变形或裂纹。消除铸件中残余应力的方法是 ( D );消除铸件中机械应力的方法是( C )o A .采用同时凝固原则; B ?提高型、芯砂的退让性; C.及时落砂; D .去应力 退火。 4.合金的铸造性能主要是指合金的( B )。 C )和( G )。 作业 2 铸造工艺基础 2-1 判断题(正确的画0,错误的画X ) 1 .浇注温度是影响铸造合金充型能力和铸件质量的重要因素。提高浇注温度有 利于获得 形状完整、 轮廓清晰、 薄而复杂的铸件。 因此, 浇注温度越高越好。 (X ) 2.合金收缩经历三个阶段。其中,液态收缩和凝固收缩是铸件产生缩孔、缩松 的基本原 因,而固态收缩是铸件产生内应力、变形和裂纹的主要原因。 ( 0 ) 3.结晶温度范围的大小对合金结晶过程有重要影响。铸造生产都希望采用结晶 温度范围 小的合金或共晶成分合金, 原因是这些合金的流动性好, 且易形成集中缩孔, 从而可以通过设置冒口,将缩孔转移到冒口中,得到合格的铸件。 4 .为了防止铸件产生裂纹,在零件设计时,力求壁厚均匀;在合金成分上应严 格限制 钢和铸铁中的硫、磷含量;在工艺上应提高型砂及型芯砂的退让性。 5.铸造合金的充型能力主要取决于合金的流动性、浇注条件和铸型性质。所以 当 合金的成分和铸件结构一定时;控制合金充型能力的唯一因素是浇注温度。 6.铸造合金在冷却过程中产生的收缩分为液态收缩、凝固收缩和固态收缩。共 专业 班级 学号 姓名 O ) O ) (X) 晶成分合金由于在恒温下凝固, 即开始凝固温度等于凝固终止温度, 结晶温度范围为 零。因此,共晶成分合金不产生凝固收缩,只产生液态收缩和固态收缩,具有很好的 铸造性能。 7.气孔是气体在铸件内形成的孔洞。气孔不仅降低了铸件的力学性能,而且还 降低了 铸件的气密性。 8.采用顺序凝固原则,可以防止铸件产生缩孔缺陷,但它也增加了造型的复杂 程度,并 耗费许多合金液体,同时增大了铸件产生变形、裂纹的倾向。 (X) O ) O ) 2- 2 选择题 1 .为了防止铸件产生浇不 足、 A .减弱铸型的冷却能力; 冷隔等缺陷,可以采用的措施有( B .增加铸型的直浇口高度; D . A 、B 和 C ; E . A 和 C o )。

材料成形原理课后习题解答

材料成型原理 第一章(第二章的内容) 第一部分:液态金属凝固学 答:(1)纯金属的液态结构是由原子集团、游离原子、空穴或裂纹组成。原子集团的空穴或裂 纹内分布着排列无规则的游离的原子,这样的结构处于瞬息万变的状态,液体内部存在着能量起伏。 (2)实际的液态合金是由各种成分的原子集团、游离原子、空穴、裂纹、杂质气泡组成的鱼目混珠的“混浊”液体,也就是说,实际的液态合金除了存在能量起伏外,还存在结构起伏。 答: 液态金属的表面张力是界面张力的一个特例。表面张力对应于液-气的交界面,而界 面张力对应于固-液、液-气、固-固、固-气、液-液、气-气的交界面。 表面张力σ和界面张力ρ的关系如(1)ρ=2σ/r,因表面张力而长生的曲面为球面时,r 为球面的半径;(2)ρ=σ(1/r 1+1/r 2),式中r 1、r 2分别为曲面的曲率半径。 附加压力是因为液面弯曲后由表面张力引起的。 答: 液态金属的流动性和冲型能力都是影响成形产品质量的因素;不同点:流动性是确定条 件下的冲型能力,它是液态金属本身的流动能力,由液态合金的成分、温度、杂质含量决定,与外界因素无关。而冲型能力首先取决于流动性,同时又与铸件结构、浇注条件及铸型等条件有关。 提高液态金属的冲型能力的措施: (1)金属性质方面:①改善合金成分;②结晶潜热L 要大;③比热、密度、导热系大; ④粘度、表面张力大。 (2)铸型性质方面:①蓄热系数大;②适当提高铸型温度;③提高透气性。 (3)浇注条件方面:①提高浇注温度;②提高浇注压力。 (4)铸件结构方面:①在保证质量的前提下尽可能减小铸件厚度; ②降低结构复杂程度。 解: 浇注模型如下: 则产生机械粘砂的临界压力 ρ=2σ/r 显然 r = 2 1 ×= 则 ρ=4 10*5.05 .1*2-=6000Pa 不产生机械粘砂所允许的压头为 H =ρ/(ρ液*g )= 10 *75006000 = 解: 由Stokes 公式 上浮速度 9 2(2v )12r r r -=

相关文档
相关文档 最新文档