文档库 最新最全的文档下载
当前位置:文档库 › 红外设计

红外设计

红外设计
红外设计

论文关键词:红外多路遥控系统单片机红外发射红外接收

论文摘要:本文介绍了红外多路遥控系统。红外多路遥控系统可实现16路的红外开关控制。以码分制多通道红外遥控为设计的基本思路。通过键盘及代码生成电路、编码、脉冲调制振荡和红外发射构成红外发射电路。通过红外接收,解码以及由单片机控制的医码控制电路组成红外接收电路。

Abstract:The passage has introduced the infrared multichannel system of remote control. The infrared multichannel system of remote control can realize the infrared switch control of 16 roads. With yard divide into system the basic train of thought with much passageway infrared remote control of design. Through keyboard and code generation circuit, coding and pulse modulation vibration with infrared project to form infrared project circuit. Pass infrared take over , decode as well as the medical yard control circuit composition that controled by single flat machine are infrared to take over circuit.

Keyword :the infrared multichannel system of remote control; MCU; infrared to project; infrared to take over

1.前言

1.1序言

随着电子技术的飞速发展,尤其是跨入2000年后,红外技术得到了迅猛发展。红外遥控已渗透到国民经济的各行各业和人们日常生活的方方面面,在工业自动化、生产控制过程、信息采集和处理、通信、红外制导、激光武器、电子对抗、环境监测、红外育种安全防范、家用电器控制及日常生活各个方面都得到了广泛的应用。

1.2国内外研究概况

目前国内外都在进行红外的研究开发,已取得了相当不错的成绩。红外技术的研究开发是自动化控制的主要方向。它的研究针对国民经济的各行各业和人们日常生活的方方面面,在工业自动化、生产控制过程、信息采集和处理、通信、红外制导、激光武器、电子对抗、环境监测、红外育种安全防范、家用电器控制及日常生活(如节能灯控制、自动门控制、节水节能控制、红外医疗与美容、智能玩具、空调、彩灯遥控以及VCD、SVCD和DVD机录放等)各个方面都在进行红外研究开发和控制。

1.3论文主要工作概述

针对国内外的发展情况,可见红外遥控系统是我国未来智能化发展方向。本课题要设计的红外多路遥控系统,主要红外发射和红外接收这两部分,本设计依托市面上常见的红外发射和红外接收元器件,使设计具有传输距离一般、硬件简单、安装方便、价格便宜的优点。本文所介绍的红外多路遥控系统,是采用码分制多通道红外遥控系统装置。早期的码分制的

脉冲指令编码多采用分离元器件及小规模数字集成电路,编码、译码电路弄得很复杂,可靠性也差。但随着大规模数字集成技术的发展和日趋成熟,各种大规模专用集成编、译码集成器件的层出不穷,使外围元器件很少,电路简单,功能完善。

2.系统总体方案设计

2.1方案比较

方案一:采用频分制多通道红外遥控发射和接收系统。频分制的频率编码一般采用频道编码开关,通过改变振荡电路的参数来改变振荡电路的振荡参数和频率。当按下不同的编码键时,振荡器就会输出不同频率的指令信号。这些指令信号经驱动级放大后对高频载波进行调制,并驱动红外发光管发出红外光脉冲信号。

红外接收控制电路的组成框图包括红外接收光电转换器、前置放大器、频率译码电路、驱动级和执行机件等。当红外光电检测器接收到发射器发来的红外编码指令后,光电检测管随即将其转换成相应的电信号,再经过前置电压放大器放大后,加至频率译码电路和选频电路,选出不同指令的频率信号,并加至相应的驱动级及执行机件。对应每一频率的指令信号,应有一个相应的选频电路。

在频分制红外遥控电路中,代表控制指令信号的频率一般为几百赫兹至几十千赫兹。发射电路中的频率编码开关的位号应与接收电路中的选频电路的位号相对应,以选出不同频率的指令信号。

红外接收、译码电路由红外接收器、前置放大器、解调器、指令译码器、记忆和驱动级组成。红外光电二极管将接收到的红外光信号转变成相应的电脉冲信号,再经高倍数电压放大后加至解调器进行解调,然后由指令译码器解码出指令信号。指令译码器是与指令编码器相对应的译码器,用于脉冲指令信号译出。译出的指令信号加至相应的记忆和驱动级,驱动执行机件动作,实现红外光遥控。

图2-1:方案一的方框图

方案二:采用码分制多通道红外遥控发射和接收系统。码分制的遥控指令信号是由编码脉冲发生器(一般由数字集成电路和少量外围元件组成)产生的。码分指令是用不同的脉冲数目或不同宽度的脉冲组合而成的。

指令编码器由基本脉冲发生电路和指令编码开关组成。当按下S1—Sn中的某个指令键时,指令编码器将产生不同编码的指令信号。该编码信号经调制器调制后变为编码脉冲调制信号,再经驱动电路功率放大后加至红外发射级,驱动红外发射管发出红外编码脉冲光信号。

图2.2:方案二的方框图

2.2方案论证

方案一:采用频分制多通道红外遥控系统。主要用在单通道或者几通道的红外遥控系统中。能够形成一个无线的短距离的遥控系统。主要由发射和接收并执行两部分组成。先是发射部分,用户根据需要按下功能键,在经过编码后通过红外发光二极管发射出信号。经过无线传输后,接收部分接收到发射信号,然后经过芯片内部译码并执行对应遥控路上的发光二极管发光

方案二:采用码分制多通道红外遥控系统。主要用在多通道的红外遥控系统中,遥控系统抗干扰强。能够形成一个无线的中距离的遥控系统。主要由发射和接收并执行两部分组成。用户根据需要按下功能键,先是指令编码器进行编码,在进行信号调制,在由红外发光二极管发射出信号,经过无线传输后,接收部分接收到发射信号,先经过信号处理,在通过单片机软件译码,查表控制对应遥控路上的发光二极管发光

2.3方案选择

频分制红外光遥控电路比较简单,通常应用在遥控通道数目不太多的控制系统中。当频道数目较多时,选频电路和相应电路的数目加多,电路复杂,且各频道间的相互干扰加重,导致误控或误报。采用高品质因数的LC振荡器或选频回路,可提高选频精度和稳定度,但会使LC回路的体积加大,电路便得复杂,调试困难,成本也加大。因此,这次我们设计的是16路遥控,遥控数目较多,所以不宜采用频分制而采用码分制遥控方式。

3.单元模块电路设计

3.1红外发射电路设计

红外发射电路的设计包括4个部分:(1)键盘及代码产生电路,(2)编码电路,(3)调制振荡电路,(4)红外发射电路。

3.1.1 8421-BCD码控制电路的设计

8421-BCD码控制电路采用CMOS型16路模拟开关集成电路CD4067,它和S2-S17按压开关等构成开关编码控制电路,将输入开关状态编成8421-BCD码,并由CD4067的第10,11,13,14脚输出地址码。CD4067的二进制编码的十进制(BCD)与S2-S17接通通道之间的关系如表1所示。

表3-1:CD4067的真值表

图3-2 8421-BCD码控制电路

3.1.2数据编码电路设计

由集成电路MC146026组成的编码电路如图所示,虚线框内是MC145026的内部框图,外围器件RS、CTC、RTC决定编码器的时钟频率。在图中:A1-A5是地址线,A6/D6-A9/D9是地址/数据复用线,即MC145026可对9位并行输入数据进行编码,并在接收到传输启动信号(TE)时,输出串行数据。TE是传输启动信号的输入端。当它为低电平时,器件开始启动传输过程,为高电平时,器件完全被阻塞,无信号输出。RS、CTC、RTC是内部振荡器的外接元件,其参数决定振荡器的振荡频率。通常RS、CTC、RTC取值为400pF< CTC<15μF, RS=2RTC, RS>=20KΩ,RTC>=10kΩ,振荡器的频率f≈1/(2.3CTCRTC),取值范围为

1KHZ-40KHZ。若频率超过此范围,精度将降低。DOUT是数据输出端,依次送出经过编码的数据。

图3-3 编码电路

该振荡器的频率为1.6KHZ,RS=100KΩ,则CTC=2700PF,RTC=50KΩ。当振荡器经过4

分频电路送至并/串转换电路作为时钟,将输入的代码按A1-A5、A6/D6-A9/D9的顺序移至三态编码器,对输入为逻辑“0”(低电平)时,输出为两个窄脉冲;输入为逻辑“1”(高电平)时,输出为两个宽脉冲;当输入为开路(高阻)时,输出为一个宽脉冲和一个窄脉冲。当TE为低电平时,MC145026按以上编码规律将输入A1-A5、A6/D6-A9/D9进行编码并输出串行数据。只要它保持低电平,MC145026可以不间断的输出

图3-4 MC145026的三态编码波形

3.1.3脉冲调制振荡和红外发射电路设计

为了提高传输信号的抗干扰能力,因此将编码信号调制在较高频率的载波上发射,设计的技术指标要求载波频率为50KHZ,所以采用CMOS门电路构成的脉冲调制振荡电路。它采用四2输入端与非门集成电路CD4011,其中YF2,YF3和R2,RP1、C2组成可控式载波振荡器。所谓可控是指该振荡器振荡与否取决于YF2第6脚电平的高低。当MC145026输出的编码脉冲为低电平时,振荡器不会振荡;当为高电平时,振荡器起振。振荡器的振荡频率取决于RP1C1时间常数,调节RP1使之振荡在40HZ。MC145026输出脉冲对振荡器的控制,实质上是编码脉冲对载波振荡器的载波调制,YF3输出的已调载波信号经YF4整形后,加至由VT1,VT2组成的达林顿型放大器的基级,经放大后驱动红外发光二极管发出红外载波调制指令信号。

图3-5 脉冲调制振荡电路和红外发射电路

3.2红外接收电路设计

红外接收电路主要由红外接收电路,解码电路和单片机控制的译码及控制电路组成。

3.2.1红外接收电路设计

虽然在设计中我们采用的是FPS-4091芯片,但由于它是由CX20106组成的,所以还是有必要对CX20106进行一定的介绍。红外接收管PH302将光信号转换为电信号,从CX20106的第一脚输入,经前置放大器,限幅放大器放大后送至带通滤波器,带通滤波器的中心频率与红外发射载波频率相同。检波器,积分器组成的解调电路对接收信号进行解调。施密特触发器对解调信号进行整形,从第七脚输出,该输出为集电极开路电路,因此要接上上拉电阻R3,外围器件R1,C1的参数决定放大器的增益,当R1=4.7Ω,C1=1υF时,电压增益约为79dB,R1增大,C1减小则会使增益降低。R2确定带通滤波器的中心频率,调节R2可使F0的变化范围为30KHZ—60KHZ。C3是检波电容,一般取值为2.2υF—4.7υF。R3是上拉电阻,一般取值为1KΩ—3KΩ。

图3-6 CX20106构成的红外接收电路

FPS—4091是一种高灵敏度接收组件,它内含一个红外光电二极管和红外接收放大电路。红外光电二极管选用PH302,红外接收器件采用CX20106。它的外壳用铜皮或铁皮封装,形成一个抗电磁干扰的屏蔽盒,外部只露出三个引脚。如下图所示为它的内部电路图,它其实与CX20106构成的红外接收电路差不多了,之所以选择FPS—4091是因为它比

CX20106更集成化,更利于我们的操作。

图3-7 FPS—4091内部结构图

FPS—4091的输出信号经反向器放大、倒相后,经由VD2、VD3和C7组成的整流器电路整流、滤波后输出,可消除杂散的电磁干扰或瞬间接收到的红外光干扰信号。

图3-8 红外接收电路

3.2.2 解码电路设计

解码电路的功能是将解调后的串行数据进行解码,使其成为BCD控制代码,并使控制代码并行输出。MC145027是与MC145026配对使用的通用接收解码器,MC145027的内部结构及其组成的解码电路如图所示。图中数据提取电路的作用是判别和检测输入数据的特性;其外围电路中R1C1组成的电路用来判定接收到的脉冲是窄脉冲还是宽脉冲,时间常数R1C1应调整为1.72*编码器时钟周期,即

R1C1=3.95*RTCCTC

R2、C2组成的电路用来检测按接收到的末位信号,时间常数R2C2应等于33.5*编码时钟周期,即

R2C2=77*RTCCTC

这个时间常数用来判定输入Din保留低电平的时间是否已达到4个数据周期,达到了则数据提取电路将提取到的低电平信号送到控制逻辑电路,控制逻辑电路使有效传输输出端VT为低电平,此时传输终止。

图3-9 解码电路及其内部组成图

收到的串行数据从MC145027的第7脚输入,经数据提取电路判别后与序列发生器产生的本地地址码一比特一比特的进行比较。如果第一次收到的地址码和本地地址码相符,则将紧接着收到的4位数据码储存在内部4比特移位寄存器中(不移到输出锁存器)。当第二次收到的地址码仍与本地地址码相符,则将新收到的数据码与上一次存储的数据码加以比较,若两次相同则控制逻辑电路使有效传输输出端VT为高电平。4比特移位寄存器中的数据码转移到输出锁存器,并且在输出锁存器保留,直到新的数据代替它。保留在锁存器的数据经缓冲器后输出,同时有效传输输出端VT保持高电平。若两次不相同或4个数据周期内没有收到信号,则VT为低电平。

在发送端,MC145026的地址信息和数据信息均可用三态码来表示,但在接收端,地址可置成三态地址,而数据中的“开路”将被译为1。因此数据信息必须是1或0。

图3-10 封装后的解码电路

3.2.3 译码及控制电路设计

经过解码电路后我们采用的是单片机进行译码,这样不仅硬件电路利于扩展,而且还使电路看起来简单。用P1口的P10--P13来作为经过解码后的单片机的输入,然后通过对其编程实现译码,译码后用P0和P1口共16个引脚来作为译码后的输出去控制利用发光二极管作成的开关显示部分。

图3-11 单片机控制电路

图3-12 开关指示电路

3.2.4电源电路设计

图3-13 直流稳压电源的组成框图

(1)电源变压器:将220V,50HZ的交流电压转换成10V整流电路

(2)滤波电路:利用电感和电容的阻抗特性,将整流后的单向脉动电流中的交流分量滤去,是单向脉动电流变换成平滑的直流电。

(3)稳压电路:当电网电压波动或负载的变动会导致负载上得到的直流电不稳定,影响电子设备的性能,用稳压管,即采用一些负反馈方式的稳压电路,使之自动调节不稳定因素,从而得到稳定电压本图中二极管的作用是:放电使LM系列两端的电压差稳定(约0.5-0.7V),小电容的作用是防止自激振荡,后面的电容有存储能的作用,5V电源的发光二极管是指示灯,供电部分输入220V、50HZ的交流电,输出电压+5V,供给整个电路电源,电流最大为400mA;LM7815和LM7805负载重,功率大,加装了散热片,LM7915则不需要散热片,这样在保证了性能的同时也降低了成本,对于电容的选择要考虑LM7815 、LM7805 和LM7915最小允许电压降Ud,电网的波动。

参数计算:

(1)允许纹波峰峰值△t=18*1.414(1-10%)-0.7-Ud-15=4.9V

C=I*△t/△U=1430μf

选取滤波电容C=2200/30μf

(2)+5V电源

允许的最大纹波峰峰值△t(max)=9*1.414(1-10%)-1.4-2.3-5=2.76V

C=I*△t/△U=3600μf

选取滤波电容C=4700/16μf

图3-14 电源部分电路图

4.软件设计

4.1译码控制部分的软件编制

首先来看我们的编程思路,即程序的流程图。我们在查询有了解码以后将其分为了两组。而不是一起的。

4.1.1定义程序

#ifndef _define_h

#define _define_h

#include

#include

sbit EOC = P1^4;

#define uchar unsigned char

#endif

4.1.2主程序

#include "define.h"

uchar code disp[]={

0xFE,0xFD, 0xFB, 0xF7, 0xEF, 0xDF, 0xBF,0x7F, //P0 管脚为低电平时,发光二极管发光

0xFE,0xFD, 0xFB, 0xF7, 0xEF, 0xDF, 0xBF,0x7F //P2 管脚为低电平时,发光二极管发光

};//P0口与P2口各管脚依次为低

uchar temp,i;

main()

{

P0=0xff;P2=0xff;P1=0x00;

EOC=0;

while(1)

{

if(EOC=1)//查询有解码信号输出?有EOC=1

{

temp=P1;//把P1口P1.0 P1.1 P1.2 P1.3 上的解码数据存入temp

if (temp<0x08)//如果temp小于9,为前八路遥控,

{

i=temp; //P0口为前8路的显示指示,通过查表控制对应那路的显示发光P0=disp[i];

}

else

{

i=temp;//P2口为后8路的显示指示,通过查表控制对应那路的显示发光P2=disp[i];

}

}

}

5.系统调试

在器件焊接好后我们先进行硬件调试,电源模块调试:依据电源模块电路图把元器件焊接好之后,仔细检查元器件是否焊接有误,电路板是否存在虚焊或焊渣短路等现象,检查无误后,把稳压电源的一端接上单片机电源接口,打开稳压电源开关,调节到7V左右,接着用试触法,把另一端与模块电源另一端试触,试触时间要短,观察稳压电源的电流显示,如果电流不是很大,一般小于0.1A,证明焊接可以,如果电流很大,则要再检查电路是否真的焊接好了。假如试触没有大的电流,就把稳压电源加到电源模块上。把万用表打开到20V 量程档,把万用表的接地端,即黑表笔接到单片机插座的第20引脚上,单片机20引脚是接地的,再用万用表的红表笔试触单片机的第40引脚,40端是接电源的,试触的同时观察万用表,如果万用表显示不超过5V,则证明焊接没有我们问题,假如电压很高,则证明焊接还需仔细检查,至此电源模块调试完毕。单片机模块调试:电源模块调试完毕后,把元器件插进插座,仔细检查无误后,接上电源,我们利用单片机本身的程序,假如单片机是好的,电路焊接也没有问题,我们可以观察到8个发光二极管流水似的轮流发光,假如没有反应,则检查电路板和器件。把万用表打开到蜂鸣档,万用表接地端接到二极管接地端,电源端接试触接到另一端引出脚上,假如看到发光二极管发光,则证明发光二极管焊接正确。确保硬件没有问题后,我们进行软件调试。从而进行各部分模块调试。

5.1红外发射机的调试

红外发射机的调试可以按照控制代码---编码---脉码调制---红外发射的顺序进行调试。(1)调试控制代码形成电路即键盘及其代码产生电路时,可依次固定16路的按键电平为低电平,用示波器依次测试CD4067的输出ABCD点的电平,应符合BCD码的逻辑电平。(2)调试编码部分时,应先将编码时钟频率调到设计值,可用频率计在MC145026的第12脚测试,然后按下第一路按键电平为S1,用双踪示波器测MC145026第12脚的时钟波形和第15脚的输出波形。(3)调试脉码调制振荡电路,应先与编码输出断开,将载频调到设计值。再与输出相连接,使第一路按键为低电平,用示波器测其波形,观察与设计预期波形是否相符。

5.2红外接收机的调试

红外接收机的调试应先调接收电路的增益和接收中心频率,从使用的是通用型FPS-4091红外接收模块,在第二脚用示波器检测其输出波形是否是输出整形后的指令码脉冲。在红外接收时还需要对单片机的软件部分进行调试,看其是否符合要求。

5.3联机调试

系统在连调时,可先将编、解码电路进行有线连调,即将红外发射器的输出(MC145026

的第15脚)与红外接收机解码器的输入(MC145027的第9脚)直接相连,按各路按键,所对应的发光二极管能亮、灭转换。有线联调正确后,则可进行无线联调。

在无线联调时常见的故障是遥控距离较短,不满足要求,一般可通过增大红外管发射电流,或将几个红外发射管串联发射等,还可以将红外发射管和红外接收管均放入黑盒屏蔽,仅在发射和接收处开个小窗口,这样可消除杂散红外光的干扰,使有用信号增强。

引起遥控距离较短的原因还有可能是发射的载波频率与接收机带通滤波器的中心频率不一致,可试着微调发射载波的频率,观察遥控距离的变化,使系统达到最佳工作状态。

6.系统功能和指标参数

6.1红外多路遥控系统的功能

1、遥控路数为16路。

2、可控制设备的开关状态,并且在接收端能判别开关信号,以发光二极管的亮、暗表示受控设备的开关。

3、工作频率为40KHZ。

4、遥控距离不小于3m。

6.2系统的指标参数

在设计其载波频率为40KHZ时,着主要取决于RC振荡器RC时间常数即

F0≈1/(2.2(R2+RP1)C1)

调节RP1的值就可使振荡频率为40KHZ。

红外多路遥控系统根据其所在的地理位置不同就有不同原因的干扰。根据其来源不同,主要有空间干扰(通过电磁辐射进入)、供电系统干扰以及印制板与电路间产生的相互干扰。所以在设计上,应该采取必要的软硬件措施,免除和减小各种不良因素对系统的影响和损害,从而提高系统的稳定性和可靠性。

本系统在硬件设计过程中,主要采取以下几个方面的指标来提高系统的抗干扰能力:对于空间辐射干扰的抑制,主要解决办法是屏蔽。静电屏蔽使用导体材料即可。为达到电磁屏蔽的目的,可以把控制系统安装在用铁板做成的封闭机箱内,来屏蔽外部静电和电磁场的干扰。

①设计印制电路板时,合理布线,力求将系统中个元件之间、电路之间可能产生的不利影响限制在最低程度;

②元件排列及信号走线尽量有序,短直,简洁,避免相邻电路相互影响;

③尽量避免过长的平行走线,减少布线的分布电容;

④接地线尽量加宽以减少接地电阻,并解决好接地点问题;

⑤了避免印制电路形成环路接受噪声形成干扰;

⑥按钮等在操作时会产生火花,必须利用RC电路加以吸收;

⑦电源的设计将强弱电严格分开,不把它们设计在一块电路板上,电源线的走向尽量与数据传递的方向一致。在印制电路板的各个关键部位配置去藕电容,电源输入端跨接10uF 的电解电容。每片集成电路电源的引脚上并接O.OluF高频电容。对于抗噪声能力弱、关断时电流变化大的器件,应在芯片的电源线((VCC)和地线(CGND)间直接接入0.01uF去耦电容。

⑧CMOS芯片的阻抗很高,易受外界的干扰,故电路中不使用的输入端不允许悬空,否则会引起逻辑电平不正常。根据实际情况,将多余的输入端与正电源或地相接。

7.设计总结

此次智能仪器课程设计经过为我的不懈努力,目前基本达到了预期的要求,通过对整个系统的调试,可得到如下结论:16路开关可通过红外发射和接收对遥控距离不小于3m的可控式开关进行控制,这次是以发光二极管的亮、暗表示受控设备的开关,即可让正确的发光二极管暗或亮。而且在译码部分利用的是单片机还可以进行扩展,增大该系统的功能。但由于时间关系,扩展部分就只有用其他时间加以改善,实现更强大的功能。

使系统结构简单,可靠性高,成本低,实用效果良好。在本次设计中,首先是加强了我对红外接收和红外发射的掌握,这方面是目前比较热门的话题,通过这次的课程设计也增加了我对学习红外部分的兴趣。其次,也加深了对单片机知识的学习,把以前没有搞懂的知识理解了,使单片机学习不在是停留在书本知识的学习,而是将其应用与实践中,使其成为一个系统的体系。还有就是通过设计我也认识到软件的编程工作不光可以用汇编语言来完成,还可以用高级语言来实现,如C51等,这样可以使编程更简单、容易。但我在这方面还懂得不多,因此我将在以后的时间中加强这方面的学习,使自己在软件设计方面有更大的进步和发展。最后,我认为自己的设计还是不够完美,其中还有一些地方应该得到改进,,我相信再以后的学习中我会更加努力希望在单片机设计方面有所发展。

首先感谢靳斌老师的指导。在设计和论文写作过程中,我始终得到老师的悉心教导和认真指点,使得我的理论知识和动手操作能力都有了提高。同时,也得到了同学的帮助,我们一起学习和研究,使我受益匪浅。

最后,感谢所有给予我关心和支持的老师和同学!

参考文献

[1] 康华光.电子技术基础:模拟部分(第四版)[M].北京:高等教育出版社,2003

[2] 康华光.电子技术基础:数字部分(第四版)[M].北京:高等教育出版社,2001

[3] 门宏.精选电子制作图解66例[M].北京:人民邮电出版社,2001

[4] 谢自美.电子线路设计·实验·测试(第二版)[M].武汉:华中科技大学出版社,2000

[5] 陆坤.电子设计技术[M].成都:电子科技大学出版社,1997

[6] 沙占友.新型数字电压表原理及应用[M].北京:机械工业出版社,2006

[7] 现代集成电路实用手册. 北京:科学技术文献出版社.2002,2

[8] 韩国庆等.《单片机与微机长距离通信系统中的设计》.微计算机信息.2001

[9] 谢自美电子线路设计●实验●测试北京:电子工业出版社, 2002,1

[10] 红外探测与控制电路北京:人民邮电出版社,2004,6

[11] 现代集成电路实用手册. 北京:科学技术文献出版社.2002,2

[12] 郭兆正.《单片机遥控防盗报警系统》.锦州师范学院学报(自然科学版).2001

全球红外热像仪品牌排名

全球红外热像仪品牌排名 红外热像仪是利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外热像图,这种热像图与物体表面的热分布场相对应。通俗地讲红外热像仪就是将物体发出的不可见红外能量转变为可见的热图像。热图像的上面的不同颜色代表被测物体的不同温度。 作为世界最先进的高科技产品,红外热像仪的知名品牌主要集中在美国。近年来,我国在红外热像仪领域也取得了巨大进步,但是在技术上相对美国还有一定差距,相信国内品牌再经过几年的发展,一定能够和美国品牌抗衡。 2012年4月,美国知名的Thermal infrared imager TIMES,发布了2011年全球红外热像仪品牌排名,排名情况如下: 一.美国RNO RNO公司于1940年成立于美国芝加哥,是全球历史最为悠久的热像仪生产企业,在二战中,RNO 热像仪曾广泛应用美国军方。经过70年的发展,RNO下设了美国RNO红外热像仪公司,美俄合资RNO夜视仪公司。RNO是全球最为专业的热像仪公司,其下属的RNO夜视仪,在3,4代高端夜视仪领域拥有极大的知名度。 70年来,RNO一直专门致力于热像技术的开发,RNO热像仪工厂分别设在美国、英国、日本和中国。RNO夜视仪则将工厂设立在俄罗斯。 页脚内容1

目前RNO 在全球拥有近5000名雇员,其授权分销商及服务分公司遍布全球100多个国家。 美国RNO一直是全球热像仪技术的领导者。引领全球热像技术的发展。 RNO以生产中高端热像仪为主,2011年,美国RNO以高达50%的市场份额位居全球红外热像仪首位,其传奇产品PC-160以高达30%的市场份额连续5年位居全球红外热像仪销售宝座。这款售价不到5000美元的产品,以高达60HZ的帧频,-20-600度两温区选择,以及移动点移动区高温自动捕捉等功能,让其成为最具性价比产品,成为红外热像仪的一代神话。 二.美国FLIR FLIR Systems Inc, (NASDAQ: FLIR) 作为创新成像系统制造领域的领军企业,其产品范围涉及红外热像仪、航空摄像机和机械检测系统等。FLIR产品已在全球60余个国家内的工商业及政府领域中发挥了重要作用。 50多年来,FLIR公司一直致力于为科研、工业、执法机关及军工领域提供红外热像仪和夜视仪设备,堪称商用红外热像仪领域中无可辩驳的领导者。FLIR 产品系列应用极为广泛,涵盖预防性维护、状态监控,无损测试、研发、医疗科学、温度测量、热测试、执法机关、监视、安保及生产过程控制等各 页脚内容2

基于单片机的红外遥控小车设计

单片机系统设计实例 红外遥控小车 专业:信息对抗技术 姓名:吴志飞 学号:1411050121 指导教师:张东阳

目录 1 绪论 (1) 2 系统分析 (2) 2.1系统框架 (2) 2.2电机驱动模块 (3) 2.3 LCD显示模块 (4) 3 系统硬件设计 (5) 3.1主控模块的电路设计 (6) 3.1.1AT89C51单片机的简介 (8) 3.1.2AT89C51管脚功能 (8) 3.2红外遥控模块的电路设计 (9) 3.2.1红外遥控的实现原理 (10) 3.2.2红外发射器 (11) 3.2.3红外接收器 (12) 3.3电机驱动模块的电路设计 (12) 3.4显示模块的电路设计 (13) 4 系统软件设计 (14) 4.1程序代码 (14) 4.2软件流程图 (17) 5 调试与仿真 (18) 5.1在keil中进行调试 (18) 5.2在Proteus中进行仿真 (19) 6 总结 (21) 参考文献 (22) I

沈阳理工大学课程设计说明书 1 绪论 随着计算机、微电子、信息技术的快速进步,智能化技术的开发速度越来越快,,智能化程度越来越高,应用范围也越来越广,包括海洋开发、宇宙探测、工农业生产、军事、社会服务、娱乐等各个领域。智能电动小车系统以迅猛发展的汽车电子为背景,涵盖了控制、模式识别、传感技术、电子、电气、计算机、机械等多个学科。主要由路径识别、角度控制及车速控制等功能模块组成。同时,当今机器人技术发展的如火如荼,其在国防等众多领域的应用广泛开展。神五、神六升天、无人飞船等等无不得益于机器人技术的迅速发展。一些发达国家已把机器人制作比赛作为创新教育的战略性手段,参加者多数为学生,目的在于通过大赛全面培养学生的动手能力、创造能力、合作能力和进取精神,同时也普及智能机器人的知识。从某种意义上来说,机器人技术反映了一个国家综合技术实力的高低,而智能电动小车是机器人的雏形,它的控制系统的研制将有助于推动智能机器人控制系统的发展,同时为智能机器人的研制提供更有利的手段。 本次课设设计的红外遥控智能小车可以分为四大组成部分:红外遥控部分、显示部分、执行部分、控制部分。智能小车可以实现按遥控指示前行,后退,左转和右转。该设计主要通过对系统硬件电路的设计,软件设计和程序的编写,然后通过后期软硬件调试达到设计初衷。 1

传感器设计

泡沫液位传感器课程设计 摘要:泡沫是一种特殊的两相流形态,其力学、热学、光学等多种性能均与单相气体或液体有很大区别,由于泡沫的形成机理多样、性质变化复杂,至今尚无完善的研究理论体系,泡沫的液位测量在国内外也是一个空白,本文主要设计了一种液位控制器,它以8051作为控制器,通过8051单片机和模数转换器等硬件系统和软件设计方法,实现具有液位检测报警和控制双重功能,并对液位值进行显示,一种基于传热原理的测量泡沫液位的传感器,介绍了传感器的构造和原理,以及测量误差和动态响应的计算分析。 关键词:泡沫;液位检测;传感器;两相流; Abstract:The foam is a special phase com pared w ith liqu id and gas.It ha s m any dif f erent cha r acters in m ech anics,therm oties,photology and soon,For different methods to generate fo amsand its special mechanism,even today there have not created a perfect theory system to deal with foam mediums.Foam level meas urement is also nearly to be all unreachable field by now.A kind of foam level sensor based on thermoties theory has be endeveloped,Introduces its structure 、principle 、analyses error and dynam icresponse of sensor. Key Words : Foam ;Level Detecting ;Sensor;8051Single chip microcomputer;

单片机的红外遥控器解码设计

第1章红外解码系统分析 第1节设计要求 整个控制系统的设计要求:被控设备的控制实时反应,从接收信号到信号处理及对设备控制反映时间应小于1s;整个系统的抗干扰能力强,防止误动作;整个系统的安装、操作简单,维护方便;成本低。 红外载波、编码电路设计要求:单片机定时器精确产生38KHz红外载波;根据控制系统要求能对红外控制指令信号精确编码并迅速发送。 红外解码电路设计要求:精确接收红外信号,并对所接收信号进行解码、放大、整形、解调等处理,最后输出TTL电平信号;对非红外光及边缘红外光抗干扰能力强。 设备扩展模块设计要求:直流控制交流;抗干扰能力强;反应迅速不产生误动作;能承受大电流冲击。 第2节总体设计方案 2.1方案论证 驱动与开关 方案一:采用晶闸管直接驱动。 其优点是体积小,电路简单,外围元件少。但控制电流小,大电流晶闸管成本高,并且隔离性能差。 方案二:采用三极管驱动继电器。 其体积大,外围元件多。优点是控制电流大,隔离性能好。 根据实际情况,拟采用方案二。 2.2总体设计框图 经过上述方案的分析选择,得出系统硬件由以下几部分组成:电视红外遥控器,51单片机最小系统,接收放大于一体集成红外接收头,1602液晶显示驱动电路。 整体设计思路为:根据扫描到不同的按键值转至相对应的ROM表读取数据。确认设备及菜单选择键后AT89S2将从ROM读取出来的值,按照数据处理要求从P2.5输出控制脉冲与T0产生的38KHz的载波(周期是26.3μs)进行调制,经NPN三极管对信号放大驱动红外发光管将控制信号发送出去。红外数据接收则是采用HS0038一体化红外接收头,内部集成红外接收、数据采集、解码的功能,只要在接收端INT0检测头信号低电平的到来,就可完成对整个串行的信号进行分析得出当前控制指令的功能。然后根据所得的指令去操作相应的用电器件工作,如图1-1所示。

使用红外热像仪应注意的问题

100 温度检测与校准技术计测技术!2010年第30卷增刊使用红外热像仪应注意的问题 乐逢宁,蔡静,马兰,张学聪 (中航工业北京长城计量测试技术研究所,北京 100095) 摘 要:热像仪作为一种红外成像仪器,以其非接触、快速、可对运动目标和微小目标测温等优势在军事和民用方面得到了广泛的应用。本文就红外热像仪的使用及在使用中需要注意的问题进行阐述。 关键词:热像仪;红外辐射;非接触;发射率 中图分类号:TH744 41 文献标识码:B 文章编号:1674-5795(2010)S0-0100-02 0 引言 红外热像仪作为一种红外成像仪器,在军事应用和民用领域发挥着重要的作用。红外热像仪既有一般红外测温仪器的优点,同时还有测温迅速、可对运动目标和微小目标测温、携带和使用方便等独特优势,除此之外还有以下特点: 1)可直观显示被测物体表面的温度场。同一般的红外测温仪只能显示个点或个别区域的温度值相比,热像仪可以同时显示被测物体表面各点温度的高低,并可以以图像形式反映。 2)可以对测温结果的图像进行多种处理。由于热像仪输出的信号中包含了被测物体的大量信息,可以采用多种处理方法以不同的方式显示:既可以对图像进行伪彩色处理,使不同颜色表示不同的温度;又可以对图像进行模数转换,以数字形式显示被测物体不同点的温度值。 3)温度分辨力高。一般的红外测温仪只能分辨0 1?的温差,对于热像仪,由于是同时显示被测物体表面两点间的温度值,温差最高可以达到0 01?。 1 红外热像仪的工作原理 红外热像仪是利用红外探测器、光学成像物镜和光机扫描系统(目前先进的焦平面技术则省去了光机扫描系统)接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,在光学系统和红外探测器之间,有一个光机扫描机构对被测物体的红外热像进行扫描,并聚焦在单元或分光探测器上,由探测器将红外辐射能转换成电信号,经放大处理、转换或标准视频信号通过电视屏或监测器显示红外热像图。 这种热像图与物体表面的热分布场相对应,实质上是被测物体各部分红外辐射的热像分布图。实际上为了增加图像的层次感和立体感,也为了更好判断被测物体的整体温度分布,常常采用增加图像亮度、对比度等手段来提高图像的质量和实用性。 2 红外热像仪的使用及注意问题 红外热像仪的测温范围通常在-20~2000?,响应波段为8~14 m。为了尽可能减少环境因素的影响,环境温度通常在(23#5)?,湿度要求为小于85% RH。 红外热像仪在实际使用中,需要经过参数设置、对焦、设置温度水平和跨度、设置混合水平条等步骤后才能进行测温。 红外热像仪在使用过程中,需要注意以下问题: 1)焦距的调整。为了保证第一时间操作的正确性,尽量避免被测物体本身或周围背景的过热或过冷的反射影响到目标测量的准确性,应该在红外图像存储前调整焦距或测量方位。 2)发射率的设定。在测温之前务必设定发射率的值,一般发射率的值都设定在0 95以上。 3)选择正确的测温范围。在测温时,务必设置正确的测温范围,这时对热像仪的温度跨度进行微调将得到最佳的图像质量,否则将会影响温度曲线的质量和测温精度。 4)确定最大的测量距离。测量时务必知道精确测温读数的最大测量距离。因为通过热像仪光学系统的目标图像必须占到9个像素,或者更多。如果热像仪距离测温目标过远,测温结果将无法正确反映被测物体的真

红外热像仪市场分析要点

红外热像仪的市场应用和前景分析 新产品开发部 2013年3月 红外热像仪是一种用来探测目标物体的红外辐射,并通过光电转换、电信号处理等手段,将目标物体的温度分布图像转换成视频图像的高科技产品。红外热像仪具有很高的军事应用价值和民用价值。在军事上,红外热像仪可应用于军事夜视侦查、武器瞄具、夜视导引、红外搜索和跟踪、卫星遥感等多个领域。在民用方面,红外热像仪可以用于材料缺陷的检测与评价、建筑节能评价、设备状态热诊断、生产过程监控、自动测试、减灾防灾等诸多方面。 一、红外热像仪在各行业的应用 红外热像仪行业是一个发展前景非常广阔的新兴高科技产业,被广泛应用于军民两个领域。在现代战争条件下,该技术已在卫星、导弹、飞机等军事武器上获得了广泛的应用。同时,随着非制冷红外热成像技术的发展,尤其是随着产业化过程中生产成本的大幅度降低,红外热像仪已在电力、消防、工业、医疗、安防等国民经济的各个部门得到了非常广泛的应用。 1、电力设备检测 电力、电信设备过热故障预知检测,在电力系统和设备维修检查中,红外线热像仪被证明是节约资金的诊断和预防工具。测量电气设备,非接触红外热像仪可以从安全的距离测量一个物体的表面温度,使其成为电气设备维修操作中不可缺少的工具。红外热像仪可以有效防止设备故障和计划外的断电事故的发生。 ①输电设备:接头、绝缘子、夹板、跳线、高压线、压接套管、瓷瓶引线; ②变电系统:互感器、隔离开关、空气断线器、油断路器、少油量断路器、避雷

器、电容器、电抗器、变压器、总线、套管、整流器、绝缘子、线夹、阻波器; ③配电系统:配电盘、开关箱、变压器、断电器、接触器、保险丝、电缆; ④发电厂:发电机碳刷绕组装备、发电机、变压器、油枕、发电机馈电线、电压调节器、发电机马达控制中心电盘、UPS; 下面是需要采用红外热像仪进行检查的部分设施: A:电气装置:可发现接头松动或接触不良,不平衡负荷,过载、过热等隐患。这些隐患可能造成的潜在影响是产生电弧、短路、烧毁、起火。 B:变压器:可以发现的隐患有接头松动、套管过热、接触不良(抽头变换器)、过载、三相负载不平衡、冷却管堵塞不畅。空冷器件的绕组可直接用红外热像仪测量以查验过高的温度,任何热点都表明变压器绕组的损坏。其影响为产生电弧、短路、烧毁、起火。 C:电动机、发电机:可以发现的隐患是轴承温度过高、不平衡负载、绕组短路或开路、碳刷、滑环和急流环发热、过载过热、冷却管路堵塞。其影响为有问题的轴承可以引起铁心或绕组线圈的损坏;有毛病的碳刷可以损坏滑环和集流环,今儿损坏绕组线圈。检查发热点,在出现的问题导致设备故障之前定期维修或更换。 电动机线圈绝缘层:通过测量电动机线圈绝缘层的温度、延长它的寿命。还可能引起驱动目标的损坏。为了保持电动机的寿命期,检查供电连接线和电路断路器(或者保险丝)温度是否一致。 D:连接器:电连接部位会逐渐放松连接器,由于反复地加热(膨胀)和冷却(收缩)产生热量、或表面赃物、碳沉积和腐蚀。非接触红外热像仪可以迅速确定表明有严重问题的温升。 电动机轴承: E:各相之间的测量:检查感应电动机、大型计算机和其它设备的电线和连接器各相之间的温度是否相同。 F:不间断电源:确定UPS输出滤波器上连接线的发热点。一个温度低的点表明可能直流滤波线路是开路。 备用电池:检查低压电池以确保连接正确。与电池接头接触不良可能会加热到足以烧毁电池芯棒。

液位传感器课程设计

目录 摘要 (2) 1绪论 (3) 引言 (3) 电容式液位测量技术的发展 (4) 电容式液位测量现状 (4) 电容式液位测量存在的问题 (5) 电容式液位传感器的发展趋势 (5) 2本设计的电容式液位测量方法 (6) 测量原理及实现思路 (6) 液体的物理参数对液位测量的影响 (8) 极板设计 (9) 液位测量系统的基本构成 (11) 3硬件设计 (12) 电源电路设计 (12) 电容测量电路设计 (13)

放大调零电路设计 (14) A/D转换电路设计 (16) 4误差分析 (17) 电容测量误差对精度的影响 (17) 影响液位测量的主要因素 (18) 5总结 (19) 参考文献 (20) 摘要 在工业自动化生产过程中,为了实现安全快速有效优质的生产,经常需要对液位进行精确测量,继而进行自动调节、智能控制使生产结果更趋完善。 通常进行液位测量的方法有二十多种,分为直接法和间接法。直接液位测量法是以直观的方法检测液位的变化情况,如玻璃管或玻璃板法。然而随着工业自动化规模的不断扩大,因其方法原始、就地指示、精度低等逐渐被间接测量方法取代。目前国内外工业生产中普遍采用间接的液位测量方法,如浮子式、液压式、电容法、超声波法、磁致伸缩式、光纤等。其中电容式液位测量价格低廉、结构简单,是间接测量方法中最常用的方法之一。

本设计采用一种与介质无关的电容式液位测量方法,解决了传统电容测量与被测介质有关的技术难题。它可以应用于动态液位测量,尤其是在被测液体本身介质常数和液位,随时间和环境等因素容易发生变化的场合,如车用燃油油位的计量,从而向当今高精度、数字化、集成化、智能化的科学技术全面发展更迈进了一步,对满足石油化工等液位检测领域的迫切需求具有重大的理论和应用价值,前景十分广阔。 消除电容式液位测量方法中介质介电常数的因素是关键,设计符合测量方法的电容极板,通过电容电压转换电路处理为直流电压信号,由数据采集卡采集后送入单片机或计算机,最终实现算法的设计。其中电容极板设计时需注意消除和减小边缘效应和寄生电容的影响,同时要保证平板电容良好的绝缘性能和抗外界干扰性。 最后在整体设计和理论分析的基础之上,从硬件各部分进行具体的设计,包括硬件电路和各环节的信号量匹配等。通过理论计算和数据分析,验证了此液位仪具有良好的性能,达到了要求的技术指标,同时指出了需要改进和完善的地方。 1绪论

基于单片机的红外遥控系统设计

课程设计 基于单片机的红外遥控系统设计 学院:计算机与通信工程学院 专业:通信工程 班级:通信11-3班 姓名: 学号:

天津理工大学 摘要 本设计采用51单片机作为遥控发射接收芯片,HS003B作为红外一体化接收发射管,在此基础上设计了一个简易的智能红外遥控系统。系统包括接收和发射两大部分,发射部分有16个按键,接收部分含有8盏彩色LED灯、一片二位数码管和蜂鸣器系统。发射部分通过键盘扫描判断哪个键被按下,经过单片机编码程序进行编码,控制红外发射电路发送信号。接收部分解码信号,实现相应的输出。本设计方案结合红外遥控设计简单、作方便、成本低廉等特点。 关键字:红外遥控信号调制编码解码

天津理工大学 目录 摘要................................................................................................................................................... I I 1.绪论 (1) 1.1课题目的和意义 (1) 1.2红外线简介 (1) 1.3红外遥控系统简介 (1) 2 课题方案和设计思路 (2) 2.1总体方案 (2) 2.2红外发射器设计 (3) 2.2.1红外发射器原理 (3) 2.2.2红外编码 (3) 2.3红外接收端设计 (4) 3硬件结构设计与介绍 (5) 3.1AT89C51系列单片机功能特点 (5) 3.1.1主要特性 (5) 3.1.2管脚说明 (5) 3.1.3基本电路 (7) 3.2红外发射电路 (8) 3.3红外接收电路设计 (9) 3.3.1红外接收模块 (9) 3.3.2数码管 (9) 3.3.3彩灯系统 (10) 3.3.4蜂鸣器系统 (11) 3.3.5红外接收端电路图 (12) 4 软件设计 (12) 4.1定时/计数器功能简介 (12) 4.2遥控码的发射 (13) 4.3红外接收 (14) 5.课程设计总结和心得 (15) 参考文献 (16) 附录 (17) 附录1P ROTEUS仿真图 (17) 附录2发射程序 (17) 附录3接收程序 (20)

基于ARM9的红外热像仪设计与实现

万方数据

万方数据

并通过网络发送到上位机程序,上位机程序收到热像数据后通过伪彩或灰度编码后成像并显示,也可对热像数据进行定标处理后测目标温度。串口命令收发线程主要作用是通过网1:1接收上位机对红外探测器的控制命令,并且把该命令再通过串口l发送到探测器机芯,探测器响应命令的回复同样通过串口1返回到命令收发线程,最后命令收发线程把串口收 到的回复通过网口返回给上位机程序。这里要注意的是,FLIR公司针对PHOTON机芯专门定义了一个PHOTONSDK接口命令协议,这里串口接收的命令和返回的响应都是遵守该协议的。 这种多线程的处理方式,充分利用了ARM9的高效处理能力以及Linux系统的多任务机制16J,能在保证红外热像网络传输不受干扰的情况,同时能对机芯进行有效的命令配置。并且即使在有多个PC的上位机程序同时通过网络连接热像仪的时候,只是需要额外的启动对应的热像传输线程就可以。5实验结果分析 热像仪的工作可靠性和网络传输的速度是非常重要的。因为FLIR公司的PHOTONl60机芯的热像数据输出速度为9帧/s,每帧分辨率为160x120,每点14bit,这里为了方便处理,在SRAM和FPGA的处理中用16bit存储每点的数据,这样在网络中传输的带宽需要为2.7Mb/s,对于DM9000网卡芯片来说理论上是能够满足要求的。为了验证设计,把热像仪连接到局域网中,上位机通过网络连接上热像仪。上位机把接收的数据通过灰度编码成像,成像的结果见图5。同时上位机测试得到的网络热像传输速度介于&f/s-9f/s之间。这充分表明了本文设计的热像仪能正确的采集和传输热像数据,并且能保证传输的速度满足要求。 (上接第233页) 圈5上位机接收的红外图像 6结束语 基于ARM9的嵌入式系统设计由于其软硬件的灵活剪裁,并且能充分利用Linux的多任务机制,适合各种终端的设计。本文设计的红外热像仪可以作为独立的手持设备,也可以方便地通过网络集成到现有的系统,目前已作为产品批量的生产应用在消防、医疗和边防监控中,并在最近的甲型HINl防疫工作中起到了关键的作用。 ,参考文献 【l】彭焕良.红外焦平面热成像技术的发展【J】.激光与红外,2006,36(121:776—780. 【2】梁丁,熊建.ARM微处理器与应用开发【M】.北京:电子工业出版社,2007. [31JonathanC,GregKH,AlessandroR.LinuxDeviceDrivers[M1.3rded.IS.1.】:O’Reilly,2005. [4】刘暾东,谢维盛,余齐齐.通信处理器的BootLoader及I/O接口驱动程序【J|计算机t程,2008,34(3):280—282. 【51邢向磊,周余,都思丹.基于嵌入式Linux系统的电源管理软件【J】计算机工程,2010,36(1):253—255. 【61孙琼.嵌入式Linux应用程序开发详解【M1。北京:人民邮电出版社,2007. 编辑金胡考 圈5丢包恢复率对比 系统已部署到沈阳地铁一号线PIS系统中,其中有22个车站、200多台显示终端。如果每个播放器每天从中心下载200MB视频,中心服务器每天需要承受20GB的下载流量,这对地铁PIS骨干网无疑是一个巨大的挑战。分析PIS系统的特点可以发现,200多个显示终端播放的核心内容视频文件基本一致,显示终端视频文件分发时间也大致相同,这恰好与组播特征相吻合。当本系统部署到PIS系统后,中心服务器仅需要维持必要的组播控制信息,同时为22个车站服务器仅发送一份数据报文和少量丢失重传报文,中,bll艮务器端负载减轻近83%,骨干网网络带宽减少近78%,极大地改轻了网络压力,提高了系统性能。 5结束语 本文针对IP组播的特点,结合沈阳地铁PIS系统对可靠性的具体要求,提出了在端系统间保障IP组播可靠性的解决方案。重点介绍了本系统实现的具体逻辑和相关技术细节。测试分析表明,本系统在损失部分性能的前提下,可以很好地保证数据的可靠传输,在沈阳地铁一号线的应用中取得了较好的系统性能。在下一步的工作中,需要在沈阳地铁整个系统及其他更大、更复杂的网络环境中对该系统进行实验和测试。 参考文献 【1】吴文峻,聂树宣.可靠组播综述【J】.计算机科学,2001,28(2):58—62. 【2】PapadopoulosC,ParulkarGVargheseGLight-weightMulticast Services(LMS):ARouter-assistedSchemeforReliableMulticast[J].正E剧ACMTransactionsonNetworking,2004,12(3):456—468. 【3】3LacherMS,NonnenmacherJ,BiersackE WPerformanceComparisonofCentralizedVersusDistributedErrorRecoveryforReliableMulticast[J].IEEE/ACMTransactionsonNetworking,2000.8(2):224—238. 【4】XieFeng,FengGang,SiewPK.TheImpactofLossRecoveryOilCongestionControlforReliableMuticast[J].IEEE/ACMTransactionsOilNetworking,2006,14(6):1323—1335. 【5】MitzenmacherM.DigitalFountain:ASurveyandLookForwardlCl//Proc.of2004IEEEInformationTheoryWorkshop.SanAntonio.USA:IEEEPress,2004:271—276. 编辑张正兴 万方数据

泡沫液位传感器设计

摘要:泡沫是一种特殊的两相流形态,其力学、热学、光学等多种性能均与单相气体或液体有很大区别,由于泡沫的形成机理多样、性质变化复杂,至今尚无完善的研究理论体系,泡沫的液位测量在国内外也是一个空白开发了一种基于传热原理的测量泡沫液位的传感器,介绍了传感器的构造和原理,以及测量误差和动态响应的计算分析: 1引言 泡沫是气一液联合构造的特殊形态,也是一种具有重要研究价值的边界形态。在自然界和工业生产过程中,普遍存在着大量的泡沫和泡沫性物质。在有些领域它们对人类的生产和生活起着积极的推动作用,比如泡沫浮选、啤酒制造和消防;然而有时候泡沫的形成却起着相反的作用,比如造纸过程和放射性废水浓缩过程,能否有效地监测和控制泡沫,直接关系着产品质量和生产效率。目前,生产和科研领域急需用于泡沫测量的仪表。 通过对泡沫的深入调研,开发r一种基于传热原理的测量泡沫液位的传感器ll J,介绍其构造和原理,并进行了测量误差和动态特性的计算分析。 2泡沫概述 2.1泡沫的定义 随着现代科学技术的发展,对于泡沫的研究越来越受到各行业的重视,然而“泡沫”至今仍无统一的定义,人们也经常将它与其他状态的物质相混淆。英语中“泡沫”称为“foam”,常用的“bubble"是指“气泡”,而不是“泡沫”。现在比较通用的一种泡沫界定方法如下(如图1): 图 1 泡沫与气泡、气泡分散体示意图 (1)气泡:浮于气体中的单个液膜包裹气体物,如娱乐中吹的肥皂泡; (2)泡沫:气多液少的“气/液”粗分散体,如污水处理产生的泡沫; (3)气泡分散体:液多气少的“气/液”粗分散体,如液体中的气泡。 2.2 泡沫的形成和稳定条件 泡沫形成的基本要素为:气液接触,含助泡剂,并且发泡速度高于破泡速度。 液体表面形成的泡沫如果不能够保持稳定,不会对外界产生明显的影响,影响泡沫稳定的主要因素是Marangoni效应,又叫作“自我痊愈效应”;表面粘度;液膜表面电荷;以及熵性双层互斥作用。 2.2泡沫的研究 目前泡沫的研究主要在两个方面:一是对于泡沫稳定性的研究,其重点在于增加泡沫流体的稳定性和消泡;二是对液体中气泡的动力学性质研究,主要研究方向有:在界面上气泡的生成理论、生长速率、动力学、脱离理论和数值模拟以及气泡传热传质的研究。泡沫的研究手段主要有: (1)声学技术:主要包括声学共振、脉冲探测,声纳复合频率反射方法,声学方法在海洋泡沫研究中使用较多;

红外遥控发射和接收系统课程设计

红外遥控发射和接收系统设计 摘要 本设计是以红外技术为基础,可以实现无线遥控,摆脱了信息传递需要导线的限制,而且红外实现方式灵活,得到了广泛的应用。特别是随着芯片技术的发展,红外集成芯片价格的降低,更加扩展了红外的应用范围。现在在我们的日常生活中都能感受到红外的应用,以及它给我们带来的便利。本设计充分利用能够很容易买到的普通电视机遥控器,通过编码发射红外线,然后由通用红外接收芯片sw0038实现对红外的接收,但是因为考虑到题目的要求仅仅是实现对一个开关的简单开管控制,所以舍弃了依靠单片机来对遥控器发出的红外进行解码实现多种控制的方案。本方案简洁可行,充分利用现有的资源进行开发,取得比较好的效果,并且具有良好的移植性,可以通过简单的修改就应用到其他领域。 关键字:红外遥控红外解码双稳态 Abstract This design is take the infrared technology as a foundation, realizing the wireless remote control, getting rid of the the limit of wire information transmission. Beacause infrared technology is easy to be realized,it is widely used in many fields. Specially ,with the chip technology development, infrared integrated chip price reducing, even more expanded the infrared application scope . Now in our daily life ,we can feel the application of the infrared, and the convenience it has brought us.In this design,I take ordinary television remote control device to realize coding and Infrared Emission,then it is received by the general infrared receive chip sw0038 .what the topic requests is merely the realization of a simple switch control,so I give up the program on the MCU. The program is simple and feasible, making full use of the existing resources for development, and achieve fairly good results.It has a good portability,so only after a little change,it can be transplanted to other fields. Key word: infrared remote control infrared decode bistability

FLIRA315红外热像仪中文说明书

FLIRA315红外热像仪使用说明书 代理商:武汉筑梦科技有限公司 2014-1-6

第一章设备简介 1 FLIR红外热像仪原理 1.1红外热像仪 从原理上讲,热像仪包括两部分:光学部件和探测器。光学部件使目标的红外辐射集中到探测器上,探测器对之成像。 1.1.1光学材料 红外辐射和可见光的性质一样能折射和反射。因而,红外热像仪的光学部件设计方法和普通相机的相似。用于普通相机的玻璃对红外线的透射程度不够好,因而不能用于红外热像仪。所以必须寻找别的材料。对红外线透明的材料一般对可见光不透明。象硅和锗就通常对可见光不透明。 从图中可以看出,这两种材料可以作为SW和LW光学材料。通常,硅用于SW系统而锗用于LW热像仪。硅和锗有好的机械性能,即不易破裂,它们不吸水,可以用现代车削法加工成镜头。 1.1.2探测器 对红外辐射敏感的元件称为探测器。这些年来,热像仪采用过许多不同类型的探测器。这些探测器不分类型都有一些典型特点。探测器对入射辐射的探测结果以电信号输出。这信号取决于入射红外辐射的强度与波长。大部分探测器都存在截止波长,这也很典型。如果入射辐射的波长长于探测器的截止波长,探测器将没有信号输出。在1997 年以前,所有的探测器都是制冷型的,根据不同型号,低的至少制冷到–70oC,更有甚者需制冷到–196oC。 1997 年,AGEMA 公司在世界上首先生产出了新一代非制冷微量热型探测器热像仪:Thermovision? 570,现在叫做AGEMA 570。500 系列的另一种热像仪叫做AGEMA 550,它使用制冷型探测器。

AGEMA 550 的探测器由斯特林制冷机制冷。这种PtSi探测器需制冷到–196oC。它需要两分钟来制冷。作为“单一”探测器的换代品,在1995年FPA 探测器被运用于所有的热像仪(AGEMA)上。AGEMA 550的探测器有320 x 240 = 76,800 探测器单元。 2 FLIR红外热像仪组成及接口 2.1、红外热像仪组成 红外热像仪组成:抗反射膜、光学滤片、探测器 2.2 使用说明 2.2.1 红外测温方法 红外热像仪是通过非接触探测红外能量(热量),并将其转换为电信号,进而在显示器上生

红外热像仪使用说明书

红外热像仪使用说明书 在红外热像仪的使用说明书中,以下的指标值得关注: 除了从典型应用的角度之外,还可以快速地从回答3个简单问题,来进行红外热像仪关键指标的选择: 问题一:红外热像仪到底能测多远? 红外热像仪的检测距离= 被测目标尺寸÷IFOV,所以空间分辨率(IFOV)越小,可以测得越远。例如:输电线路的线夹尺寸一般为50mm,若使用Fluke Ti25 热像仪,其IFOV为2.5mRad ,则最远检测距离为50÷2.5=20m 问题二:红外热像仪能测多小的目标? 最小检测目标尺寸= IFOV×最小聚焦距离。所以IFOV越小,最小聚焦距离越小,则可检测到越小的目标。举例: 某品牌热像仪Fluke Ti25 热像仪 空间分辨率(IFOV):2.6mRad 空间分辨率(IFOV):2.5mRad 像素:320×240 像素:160×120 最小聚焦距离:0.5m 最小聚焦距离:0.15m 最小检测尺寸:1.3 mm 最小检测尺寸:0.38 mm 从对比图看,右侧Fluke Ti25,虽像素稍低,但凭借更小的IFOV 及最小聚焦距离优势,实际可以拍摄到0.38mm微小目标,而另一品牌则只能测到1.3mm 的目标。 问题三:热像仪能看得多清晰? 因素一:热灵敏度决定热像仪区分细微温差的能力。同样状况下,右图所用热像仪的热灵敏度更低,画面清晰显示花蕊细节的温度分布,而左图同区域只能看到一片红色。

因素二:最小检测尺寸决定了热像仪捕捉细小尺寸的能力。尺寸越小,相同面积的检测目标画面由更多像素组成,画面更清晰。 由右图可见,像素(马赛克)越小越清晰 什么是空间分辨率(IFOV)? 在单位测试距离下,红外热像仪每个像素能够检测的最小目标( 面积),以mRad 为单位,是一个主要由像素和所选镜头角度所决定的综合性能参数,是热像仪处理空间细节能力的技术指标。 为什么空间分辨率(IFOV)越小越好? 单位距离相同时,IFOV 越小,单个像素所能检测的面积越小,单位测量面积上由更多的像素所组成,图像呈现的细节越多,成像越清晰。

基于单片机的红外遥控系统设计

单片机红外遥控系统设计 随着社会的发展、科技的进步以及人们生活水平的逐步提高,各种方便于生活的遥控系统开始进入了人们的生活。传统的遥控器采用专用的遥控编码及解码集成电路,这种方法虽然制作简单、容易,但由于功能键数及功能受到特定的限制,只实用于某一专用电器产品的应用,应用范围受到限制。而采用单片机进行遥控系统的应用设计,具有编程灵活多样、操作码个数可随便设定等优点。 本设计主要应用了AT89C51单片机作为核心,综合应用了单片机中断系统、定时器、计数器等知识,应用红外光的优点,设计了一个红外线遥控系统。本系统包含发射和接收两大部分,利用编码/解码芯片来进行控制操作。发射部分包括键盘矩阵、编码调制、LED 红外线发射器;接收部分包括红外线接收芯片、光电转换器、调解电路。其优点硬件电路 简单,软件功能完善,性价比较高等特点,具有一定的使用和参考价值。 关键词:单片机AT89C51;LED红外线发射器

目录 目录 (2) 1 绪论 (2) 1.1研究背景 (2) 1.2国内外研究现状 (3) 1.3研究目的与意义 (3) 2系统方案设计论证 (5) 2.1单片机红外遥控发射器设计原理 (5) 2.2单片机红外遥控接收器设计原理 (5) 2.3方案选择和论证 (6) 3红外解码硬件电路设计 (8) 3.1红外解码系统设计 (8) 3.2单片机及其硬件电路设计 (8) 3.3红外发射电路设计 (10) 3.4红外接收电路设计 (11) 3.5本章小结 (13) 4红外解码程序设计 (14) 4.1红外接收电路主程序流程图 (14) 4.2红外接收电路子程序流程图 (14) 4.3本章小结 (15) 5 联机与调试 (16) 结论和展望 (23) 附录A:系统原理图 (24) 附录B:系统PCB图 (25) 附录C:系统仿真图 (26) 附录D:系统源程序 (27) 1 绪论 1.1研究背景 目前市场上采用的一般是遥控编码及解码集成的电路。此方案的特点是制作简单、容

20-红外热像仪的研究和使用实验

实验二十 红外热像仪的研究和使用 红外热像仪是一种利用红外线辐射而拍摄的摄像仪,热成像显示系统是一种处理热信息的微机处理系统。红外热像技术与X 射线,B 超,CT ,磁共振和核显像原理不同,它不主动发射任何射线,而只接受物体辐射出的“热”线——红外线,从而形成物体的“热”影象,是物体的三维“热”(温度)分布图象。热像处理技术在军事上运用很广,而且即有相当重要的地位,如,夜间跟踪目标,武器瞄准器等。但在民用上的运用是这几年的事,比如,医学上通过热拍摄来分析人体各部分的热分布,从而找出病变的部分;电学中对电路板上各元器件的热分布的合理性的研究,从而改善各元器件的分布结构等等。 【实验目的】 1. 熟悉热像仪的基本结构原理。 2. 学会使用热颜色处理热源的软件包。 3. 观察和分析电路板的热分布特性。 4. 描绘电路板的热分布图。 【实验原理】 自然界存在着一种不为人们所注意的客观现象,这就是任何物体都具有一定的温度,它们都是“热”的,所不同的只是热的程度有差异而已。在物理学中,热是用绝对温度来表示的(即用K 表示)。因此,上述现象又可表示为:自然界不存在绝对温度为零的物体。 绝对温度=摄氏温度+273 热与光,电,磁一样,具有辐射特性(热辐射),只是辐射波长有长短。将热,光,电,磁等的辐射,按其辐射波长的长短依次排列,便是人们熟知的波谱(图1)所示。 10-5 0.2 0.4 0.75 1.00 波长(μm ) 图1 红外线在波谱中的位置 热辐射又称红外辐射,这是因为其辐射波长的位置与可见的红光相临并在其外。红外辐射为英国科学家赫胥尔于1800年所发现。 物体的红外辐射波长与其自身温度有关,服从维恩定律: C T m =λ (1) 式中:λm-----物体红外辐射的峰值波长(um ) T ------物体的绝对温度(K ) C ------常数2898。 从式(1)中可看出,物体绝对温度越高,其辐射波长越短;反之亦然。 物体的绝对温度不仅决定了物体辐射的波长,而且也确定了物体的辐射出射度(单位

电容式导电液体液位传感器

传感器课程设计说明书 电容式导电液体液位传感器Capacitive conductive liquid level sensor 学院名称:机械工程学院 专业班级: 学生: 学生学号: 指导教师: 指导教师职称:教授 2012年 1 月

电容式导电液体液位传感器 专业班级:**** 学生:**** 指导老师:**** 职称:**** 摘要在工业自动化生产过程中,为了实现安全快速有效优质的生产,经常需要对液位进行测量,继而进行自动调节、智能控制使生产结果更趋完善。 通常进行液位测量的方法有二十多种,分为直接法和间接法。直接液位测量法是以直观的方法检测液位的变化情况,如玻璃管或玻璃板法。然而随着工业自动化规模的不断扩大,因其方法原始、就地指示、精度低等逐渐被间接测量方法取代。目前国外工业生产中普遍采用间接的液位测量方法,如浮子式、液压式、电容法、超声波法、磁致伸缩式、光纤等。其中电容式液位测量价格低廉、结构简单,是间接测量方法中最常用的方法之一。 本设计采用一种简单方便的电容式液位测量方法,电容式传感器是将被测非电量的变化转化为电容变化量的一种传感器,它具有结构简单、分辨力高、可实现非接触测量,并能在高温、辐射和强烈震动等恶劣条件下工作等优点,是很有发展前途的一种传感器。 本电容式液位测量设计方式是用等径的长直圆筒容器,液位的高低正比于导电液体与测杆中导电金属铜之间电容的大小,通过测量电路的转换,就可以很方便地测量出液面的位置。 此课程设计的目的是为了熟练掌握电容传感器的基本知识和各种测量电路的原理运用;基本掌握测量液位方法的基本思路和方法;能够利用所学的基本知识和技能,解决简单的传感器测量问题;培养综合利用传感器进行测量设计的能力。 关键词:液位测量电容式传感器测量电路电容传感器测量

红外遥控课程设计

单片机与接口技术课程设计 题目: 基于单片机红外线遥控控制 LED灯显示系统设计与制作班级:电子科学与技术1101 姓名:李婷 学号:110803025 2013年12月11日

目录 第一章设计要求 (3) 第二章硬件系统设计 (3) 2.1基于单片机红外线遥控控制LED灯显示系统框架图 (3) 2.2单片机控制系统及其基本电路 (4) 2. 2.1 单片机最小系统 (4) 2.2.2时钟电路 (5) 2.2.3复位电路 (5) 2.3基于单片机红外遥控控制LED系统的设计原理 (6) 2.3.1单片机红外遥控控制LED显示系统原理 (6) 2.3.2单片机红外遥控控制LED系统码分制原理 (7) 2.4红外遥控发射系统电路设计 (8) 2.4.1指令按键电路 (8) 2.4.2 发射电路 (9) 2.4.3 显示模块 (9) 2.5红外遥控接收系统电路设计 (11) 2.5.1接收电路 (11) 2.5.2 LED灯显示电路 (11) 2.6硬件原理图 (12) 第三章软件系统设计 (12) 3.1 红外线发射电路程序流程图设计 (13) 3.2 红外线接收电路程序流程图设计 (13) 第四章系统测试与分析 (14) 4.1 利用Proteus和keil进行仿真调试 (14) 4.2 仿真图 (16) 第五章总结 (18) 附录1 (18) 附录2 (22) 参考文献 (25)

赣南师范学院 2013 — 2014 学年第_1_学期课程论文行政班级:电子科学与技术1101 学号:110803025 姓名:李婷

图2-1 系统的设计总框图 2.2单片机控制系统及其基本电路 2.2.1单片机最小系统 单片机晶振电路:对于MSC-51一般的晶振频率可以在1.2MHz—12MHz 之间选择,这是电容C可以对应的选择10pF—30pF。当使用89C55时晶振频率可以提高到24MHZ。对于本设计的电容C用30pF,晶振选用11.0592MHz。晶振电路如下图3-1所示,一条引脚接在XTAL1,另一条接在XTAL2。单片机的复位电路:为了防止程序执行过程中失步或运行紊乱,此处采用了上电复位及手动复位电路,电路图如下图2-1所示: 图2-2-1 单片机最小系统图

相关文档
相关文档 最新文档