文档库 最新最全的文档下载
当前位置:文档库 › 废纳米晶磁片植入环氧树脂复合材料的电磁屏蔽作用

废纳米晶磁片植入环氧树脂复合材料的电磁屏蔽作用

废纳米晶磁片植入环氧树脂复合材料的电磁屏蔽作用
废纳米晶磁片植入环氧树脂复合材料的电磁屏蔽作用

石墨片环氧树脂复合材料的力学性能和热性能

石墨片环氧树脂复合材料的力学性能和热性能 酸酐固化的双酚A二缩水甘油醚(DGEBA)与2.5—5%重量的石墨微片增强已被制造出来。对这些复合材料的结构,力学性能,粘弹性进行了研究和比较,XRD研究表明,对复合材料的处理并没有改变原来的纯石墨d-间距。复合材料的拉伸性能测量表明弹性模量与拉伸强度随着石墨微片的浓度增加而增加,储能模量和玻璃化转变温度(Tg)也随着石墨微片浓度上升而上升,但是线性热膨胀系数却降低了。热稳定性通过热重分析测定。与纯环氧树脂相比,这种复合材料表现出较高的热稳定性和炭浓度。通过扫描电子显微镜对这些复合材料的损伤机理加固效果进行了研究。 关键词: 石墨微片环氧树脂复合材料 一.介绍 对更高性能的复合材料的需求不断在增加,以满足更高的要求或取代现有的材料,高性能的连续纤维(如碳纤维,玻璃纤维)增强聚合物基复合材料是众所周知的。然而,这些复合材料在基体性能方面具有一些不足之处,往往限制他们的广泛应用和创造发展的需要新型的复合材料。在塑胶行业,填料的加入对聚合物材料是一种常见的操作。这不仅提高刚度,韧性,硬度,热变形温度,以及模具收缩率,也显著降低了加工成本。事实上,超过50%的聚合物生产都用无机填料以某种填充方式达到所希望的性能。最常用的粒子有碳酸钙、粘土、云母、氢氧化铝、玻璃珠,和金属磷酸盐。填料的选择往往是基于最终产品所需要的性能。改善复合材料的机械和其他性能在很大程度上依赖于填料粒子的含量、颗粒形状和大小,表面特征和分散性。因此,对其增韧的这些复合材料的机理很多来自于如裂纹尖端应力场,应力表面的衔接,剥离∕微裂纹和裂纹偏转等。 据报道,微米级填料填充的复合材料的性能不如那些充满了纳米粒子级相同的填料。此外,改进后的物理性质,化学性质,如表面平整度和阻隔性能,使用传统微米大小的粒子均不能达到。因此,近年来纳米基础的复合材料已引起相当的重视。这些都是一些很有前景的聚合物/粘土纳米复合材料,聚合物/石墨纳米微片材料,聚合物/碳纳米管复合材料。这些纳米复合材料含有非常低量的填料(10%),相比之下,传统的颗粒复合材料常用的填料含量在40-60%的范围内。此外,这些纳米复合材料是准各向同性,由传统方式相比,可以处理连续纤维增强复合材料。 值得一提的是硅酸盐粘土(蒙脱石)和石墨颗粒显示分层的自然结构并具有很高的长宽比(>1000)。一次插层或剥离的化学过程[7,21]。虽然粘土纳米复合材料显示出较高的强度,弹性模量,热变形温度和阻隔性能,但是石墨烯纳米复合材料显示出优良的导电性能和热导性。碳纳米管也显示出优异的机械性能(模量=1 TPa,强度=10倍的钢)、热、电性能。在此基础上考虑,可以发展这些纳米级粒子提供材料的可修整性。另据报道, 碳纳米管的价格是石墨烯500倍左右,可以用常规方法剥离和复合,而碳纳米管复合材料需要处理技术的发展对于分散,纳米管的波纹和排列。因此,考虑到成本和所需的属性,石墨微片是碳纳米管方面的一个潜在的替代品。然而,在纳米尺度的基本认识强化机制仍是重要和必要的。 众所周知石墨具有高强度和高导热性,它提供了决定真正的多功能复合材料的功能性,并具有成本效益的方式。这种颗粒增强聚合物有许多潜在的应用,例如:阴极射线管和燃料电池,百代唱片,屏蔽电子罩,雷达吸波涂料,热机械增强材料。我们现在的目标是研究制造以环氧树脂为基体,石墨烯微片增强的复合材料,并探讨其力学,热学和粘弹性能以及失效机制作为石墨烯浓度的功能。 2 实验 2.1 原材料 基体材料是三组分环氧系统是由双酚A二缩水甘油醚(DGEBA)通过酸酐固化剂,甲基

环氧树脂复合材料

环氧树脂复合材料 复合材料是由基体材料和增强材料复合而成的多相体系固体材料。它充分发挥了各组分材料的特点和潜在能力,通过各组分的合理匹配和协同作用,呈现出原来单一材料(均质材料、单相材料)所不具有的优异的新性能,从而达到对材料某些性能的综合要求。复合材料的出现在材料发展史上具有划时代的意义。受到国内外的极大重视。其发展之迅猛在历史上是空前的。已在工业、农业、交通、军事、科学技术和人民生活等各个领域广为应用。尤其是在航空、航天等尖端技领域中已成为不可缺少的重要的结构材料。无怪乎有人认为21世纪将进入“复合材料时代”。 热固性树脂基复合材料是目前研究得最多、应用得最广的一种复合材料。它具有质量轻、强度高、模量大、耐腐蚀性好、电性能优异、原料来源广泛,加工成型简便、生产效率高等特点,并具有材料可设计性以及其他一些特殊性能,如减振、消音、透电磁波、隐身、耐烧蚀等特性,已成为国民经济、国防建设和科技发展中无法取代的重要材料。在热固性树脂基复合材料中使用最多的树脂仍然是酚醛树脂、不饱和聚酪树脂和环氧树脂这三大热固性树脂。这三种树脂阶性能各有特点:酚醛树脂的耐热性较高、耐酸性好、固化速度快,但较脆、需高压成型;不饱和聚酪树脂的工艺性好、价格最低,但性能较差;环氧树脂的粘结强度和内聚强度高,耐腐蚀性及介电性能优异,综合性能最好,但价格较贵。因此,在实际工程中环氧树脂复合材料多用于对使用性能要求高的场合,如用作结构材料、耐腐蚀材料、电绝缘材料及透波材料等。 1、环氯树脂复合材料的分类 环氧树脂复合材料(简称环氧复合材料,也有人称为环氧增强塑料)的品种很多,其名称、含义和分类方法也没有完全统一,但大体上讲可按以下方法分类。 (1)按用途可分为环氧结构复合材料、环氧功能复合材料和环氧功能型结构复合材料。结构复合材料是通过组成材料力学性能的复合,使之能用作受力结构材料,并能按受力情况设计和制造材料,以达到材料性能册格比的最佳状态。功能复合材料是通过组成材料其他性能(如光、电、热、耐腐蚀等)的复合,以得到具有某种理想功能的材料。例如环氧树脂覆铜板、环氧树脂电子塑封料、雷

环氧树脂粘土纳米复合材料的制备与表征

环氧树脂/粘土纳米复合材料的制备与表征 王立新张福强王新蹇锡高 摘要首先用已二胺对粘土(Na-基膨润土)通过离子交换反应进行改性,然后将改性后的粘土与双酚A 型环氧树脂在DMF中搅拌混合,脱除溶剂后热模浇铸,制备出环氧树脂/粘土纳米复合材料,利用元素分析、红外光谱、X光衍射、透射电镜等手段表征了材料的结构和性能. 关键词环氧树脂,粘土,离子交换,纳米复合材料 中图法分类号O633.13 O631 Preparation and Characterization of Epoxy/Clay Nanocomposite Wang Lixin Zhang Fuqiang Wang Xin Jian Xigao Abstract Na-montmorillonite was modified by ion-exchanged using hexamethylene-diamine,and the modified clay and epoxy was stirred in DMF,after the solvent was evaporated,the epoxy/clay nanocomposites were prepared by casting in heating.Also the strcture and properties of composites were characterized by elemental microanalysis,infrared spectro scopy,XRD,TEM and so on. Keywords Epoxy, Clay,Ion-exchanged,Nanocomposite 0 引言 粘土与有机化合物的反应早在30年代就有研究[1],人们利用粘土的阳离子交换性质,使粘土与长链季铵盐发生反应,使亲水性的粘土转变为具有亲油性使之可以稳定的分散于油相中,因而可以作为油墨、油漆的流变剂.另外,在高分子领域,它还可以作为一种优良的改性剂,即进行了离子交换的粘土,改善了其与有机物的相容性又由于它的可分散性(即可达到纳米级的微粒),使之能与高聚物复合较充分,从而提高高聚物的多种性能. 纳米材料概念确立于八十年代中期.其中研究较广的是纳米陶瓷材料和纳米金属材料,而对无机/有机体系纳米复合材料的研究较少,最典型的例子是尼龙6/粘土混合体系[2].利用粘土增强环氧树脂性能的文章目前国内刊物上还未见报道.在国际上,也只有最近几年的一些文献上见到[3~4].T.J.Pinnavaia等人从90年开始,已经做了卓有成效的工作[5~6]. 本文选用国产的E-51环氧树脂与河南产的膨润粘土进行复合,提高材料的耐热性和机械强度. 1 实验部分 1.1 主要原料 低分子量双酚A型环氧树脂(E-51),岳阳化工厂产品;膨润粘土,河南信阳产品;已二胺,沈阳市试剂三厂产品;N,N-二甲基甲酰胺(DMF).天津市化学试剂研究所产品;低分子量聚酰胺树脂(203),天津市中河化学有限公司产品. 1.2 主要设备

电磁屏蔽导电复合材料

电磁屏蔽导电复合材料 Ξ 杜仕国 高欣宝 (军械工程学院)摘 要 在介绍电磁屏蔽原理的基础上,论述了近年来电磁屏蔽用表层导电材料和导电复合材料的特性与发展,展望了其研究趋势及应用前景。 关键词 电磁屏蔽 导电材料 复合材料 随着现代电子工业的高速发展和各类电子产品的普遍使用而产生一种新的公害,即电磁波干扰(E M I )。一方面,电磁波辐射对周围的电子电气设备造成干扰,产生错误动作;另一方面,其本身对周围的电磁干扰又十分敏感,从而造成计算机信息泄漏等严重的社会问题。为此,许多发达国家及国际组织近年都制定了相应的法规及标准,如德国的VD E 法规、美国的FCC 法规以及国际无线电抗干扰特别委员会(ISPR )制定的国际标准和试验方法等,以限制电子公害的发展〔1~3〕。然而,出于降低成本和便于大规模工业化生产的考虑,这些电子产品的壳体材料大都是采用工程塑料制成,而塑料本身无导电性,对E M I 丧失了屏蔽能力。为了解决这一问题,采用导电复合材料进行电磁屏蔽是一种行之有效的方法。 1 电磁屏蔽的基本原理 电磁屏蔽主要用来防止高频电磁场的影响,从而有效地控制电磁波从某一区域向另一区域进行辐射传播。其基本原理是:采用低电阻的导体材料,并利用电磁波在屏蔽导体表面的反射和在导体内部的吸收以及传输过程的损耗而产生屏蔽作用,通常用屏蔽效果( S E )表示〔4〕。屏蔽效果为没有屏蔽时入射或发射电磁波与在同一地点经屏蔽后反射或透射电磁波的比值,即为屏蔽材料对电磁信号的衰减值,其单位用分贝(dB )表示,可写成如下的方程式〔5〕: S E =20log (E b E a ) S E =20log (H b H a ) (1) S E =10log (P b P a )式中,E b 、E a 为屏蔽前、后的电场强度,H b 、H a 为屏蔽前、后的磁场强度,P b 、P a 为屏蔽前、后的能量场强度。 衰减值越大,表明屏蔽效果越好。根据Schelkunoff 电磁屏蔽理论,金属材料的屏蔽效果可用下式表示: 第22卷 第6期1999年 11月 兵器材料科学与工程ORDNANCE MA TER I AL SC IENCE AND EN G I N EER I N G V o l .22 N o.6 N ov . 1999 Ξ1998年12月14日收到稿件 杜仕国 军械工程学院 石家庄市 050003

双酚A型环氧树脂的合成及复合材料制备(精)

双酚 A 型环氧树脂的合成及复合材料制备 姓名:贾训祥 学号:0840605115 专业:高分子材料与工程一、实验目的: 1. 了解逐步聚合预聚体的合成方法和环氧树脂的实验室制法。 2. 了解环氧树脂复合材料的制备方法。 3. 掌握复合材料样条的制备与其力学性能的测试过程。 二、实验原理: 环氧树脂是指那些分子中至少含有两个反应性的环氧基团的树脂化合物。环氧树脂经固化后有许多突出的优异性能, 如对各种材料特别是对金属的粘着力很强, 有卓越的耐化学腐蚀性,力学强度很高,电绝缘性好,耐腐蚀,等等。此外,环氧树脂可以在相当宽的温度范围内固化, 而且固化时体积收缩很小。环氧树脂的上述优异特性使它有着许多非常重要的用途。广泛用于粘合剂(万能胶 ,涂料、复合材料等方面。 合成环氧树脂的方法大致可分两类。一类是用含有环氧基团的化合物(如环氧氯丙烷或经化学处理后能生成环氧基的化合物(如 1.3-二氯丙醇和二元以上的酚(醇聚合而得。另一类是使含有双键的聚合物(如聚丁二烯或小分子(如二环戊二烯环氧化而得。双酚 A 型环氧树脂是环氧树脂中产量最大,使用最广的一个品种,它是由双酚 A 和环氧氯丙烷在氢氧化钠存在下反应生成的:

原料配比不同,反应条件不同(如反应介质,温度和加料顺序 ,可制得不同软化点, 不同分子量的环氧树脂。式中 n 一般在 0到 25之间。根据相对分子质量大小,环氧树脂可以分成各种型号。一般低相对分子质量环氧树脂的 n 平均值小于 2、软化点低于 50℃, 也称为软环氧树脂; 中等相对分子质量环氧树脂的 n 值在 2~5之间、软化点在 50℃~95℃之间; 而 n 大于 5的树脂(软化点在 100℃以上称为高分子量树脂。相对分子质量对软化点的影响见图 1。 图 1 在环氧树脂的结构中有羟基(>CH-OH 、醚基(-O -和极为活泼的环氧基存在。羟基、醚基有高度的极性, 使环氧分子与相邻界面产生了较强的分子间作用力, 而环氧基团则与介质表面, 特别是金属表面上的游离键起反应, 形成化学键。因而, 环

环氧树脂优缺点

热固性树脂基复合材料是目前研究得最多、应用得最广的一种复合材料。它具有质量轻、强度高、模量大、耐腐蚀性好、电性能优异、原料来源广泛,加工成型简便、生产效率高等特点,并具有材料可设计性以及其他一些特殊性能,如减振、消音、透电磁波、隐身、耐烧蚀等特性,已成为国民经济、国防建设和科技发展中无法取代的重要材料。在热固性树脂基复合材料中使用最多的树脂仍然是酚醛树脂、不饱和聚酪树脂和环氧树脂这三大热固性树脂。这三种树脂阶性能各有特点:酚醛树脂的耐热性较高、耐酸性好、固化速度快,但较脆、需高压成型;不饱和聚酪树脂的工艺性好、价格最低,但性能较差;环氧树脂的粘结强度和内聚强度高,耐腐蚀性及介电性能优异,综合性能最好,但价格较贵。因此,在实际工程中环氧树脂复合材料多用于对使用性能要求高的场合,如用作结构材料、耐腐蚀材料、电绝缘材料及透波材料等。 1、环氯树脂复合材料的分类 环氧树脂复合材料(简称环氧复合材料,也有人称为环氧增强塑料)的品种很多,其名称、含义和分类方法也没有完全统一,但大体上讲可按以下方法分类。 (1)按用途可分为环氧结构复合材料、环氧功能复合材料和环氧功能型结构复合材料。结构复合材料是通过组成材料力学性能的复合,使之能用作受力结构材料,并能按受力情况设计和制造材料,以达到材料性能册格比的最佳状态。功能复合材料是通过组成材料其他性能(如光、电、热、耐腐蚀等)的复合,以得到具有某种理想功能的材料。例如环氧树脂覆铜板、环氧树脂电子塑封料、雷达罩等。需要指出的是,无论使用的是材料的哪一种功能性,都必须具有必要的力学性能,否则再好的功能材料也没有实用性。已有些功能材料同时还要有很高的强度,如高压绝缘子芯棒,要求绝缘性和强度都很高,是一种绝缘性结构复合材料。 (2)按成型压力可分为高压成型材料(成型压力5—30MPa),如环氧工程塑料及环氧层压塑料;低压成型材料(成型压力<2.5MPa),如环氧玻璃钢和高性能环氧复合材料。玻璃钢和高性能复合材料由于制件尺寸较大(可达几个㎡)、型面通常不是平面,所以不宜用高压成型。否则模具造价太高,压机吨位太大,因而成本太贵。 (3)按环氧复合材料阶性能、成型方法、产品及应用领域的特点,并照顾到习惯上的名称综合考虑可分为:环氧树脂工程塑料、环氧树脂层压塑料、环氧树脂玻璃钢(通用型环氧树脂复合材料)及环氧树脂结构复合材料。 3、环氧树脂复合材料的特性 (1)密度小,比强度和比模量高。高模量碳纤维环氧复合材料的比强度为钢的5倍、铝合金的4倍,钻合金的3.2倍。其比模量是钢、铝合金、钦合金的5.5—6倍。因此,在强度和刚度相同的情况下碳纤维环氧复合材料构件的重量可以大大减轻。这在节省能源、提高构件的使用性能方面,是现有任何金属材料所不能相比的。 (2)疲劳强度高,破损安全特性好。环氧复合材料在静载荷或疲劳载荷作用下,首先在最薄弱处出现损伤,如横向裂纹、界面脱胶、分层、纤维断裂等。然而众多的纤维和界面会阻

环氧树脂纳米复合材料界面及其对 电性能影响分析

2018年8月电工技术学报Vol.33 No. 16 第33卷第16期TRANSACTIONS OF CHINA ELECTROTECHNICAL SOCIETY Aug. 2018 DOI: 10.19595/https://www.wendangku.net/doc/557654846.html,ki.1000-6753.tces.170992 环氧树脂纳米复合材料界面及其对 电性能影响分析 吴子剑1,2王晨2张明艳1,2裴鑫2姜鹏2 (1. 工程电介质及其应用教育部重点实验室(哈尔滨理工大学)哈尔滨 150040 2. 哈尔滨理工大学材料科学与工程学院哈尔滨 150040) 摘要实验分别采用混酸、环氧大分子、硅烷偶联剂(KH560)对多壁碳纳米管(MWCNTs)表面进行改性制得酸化碳纳米管(C-MWCNTs)、环氧功能化碳纳米管(E-MWCNTs)、硅烷偶联 化碳纳米管(Si-MWCNTs),将改性后的MWCNTs和有机化蒙脱土(O-MMT)通过溶液共混的 方式与环氧树脂(EP)制备成环氧树脂纳米复合材料。通过分析试样的冲击实验数据、断面形貌 以及MWCNTs的红外光谱来确定不同功能化方式处理的MWCNTs对纳米复合材料中界面区域的 影响。借鉴界面势垒模型分析界面区域对纳米复合材料电性能的影响。分析结果表明, Si-MWCNTs、E-MWCNTs与环氧树脂的界面结合强度大于C-MWCNTs。当纳米掺杂组分质量分 数相同时,Si-MWCNTs/EP中界面区域大于E-MWCNTs/EP中界面区域。当Si-MWCNTs在基体 中分散均匀时,随Si-MWCNTs的质量分数的增加,Si-MWCNTs/EP中自由体积增加,键合区域 对偶极极化限制性增强,二者共同促进Si-MWCNTs/EP纳米复合材料的介电常数和介质损耗的降 低,过渡区域陷阱密度增大,Si-MWCNTs/EP纳米复合材料的击穿强度得到提高。O-MMT的加 入减弱了MWCNTs在基体中的团聚,使MWCNTs/O-MMT/EP的电导率降低。 关键词:环氧树脂碳纳米管蒙脱土界面区域电性能 中图分类号:TQ323.5 Interface of Epoxy Resin Composites, and Its Influence on Electrical Performance Wu Zijian1,2 Wang Chen2 Zhang Mingyan1,2 Pei Xin2 Jiang Peng2(1. Key Laboratory of Engineering Dielectric and Its Application Technology of Ministry of Education Harbin University of Science and Technology Harbin 150040 China 2. Department of Material Science and Technology Harbin University of Science and Technology Harbin 150040 China) Abstract Carbon nanotubes (MWCNTs) were individually treated with mixed acids, epoxy macromolecules, and silane coupling agents, and the products were marked as C-MWCNTs, E-MWCNTs, Si-MWCNTs. The epoxy resin composites were made by blending MWCNTs, organic montmorillonite (O-MMT) and epoxy resin (EP). The influence of C-MWCNTs, E-MWCNTs, Si-MWCNTs on the interface of composites was investigated by analyzing the impact test data of 黑龙江省博士后面上项目一等资助(LBH-Z16089),中国博士后面上项目一等资助(2017M610212),工程电介质及其应用教育部重点实验室前沿项目预研基金(2018EDAQY05),哈尔滨市科技创新人才项目(2017RAQXJ105)和黑龙江省普通本科高等学校青年创新人才培养计划资助。 收稿日期 2017-07-10 改稿日期 2017-12-29 万方数据

石墨片环氧树脂复合材料的力学性能和热性能

石墨片环氧树脂复合材料的力学性能和热性能

石墨片环氧树脂复合材料的力学性能和热性能 酸酐固化的双酚A二缩水甘油醚(DGEBA)与2.5—5%重量的石墨微片增强已被制造出来。对这些复合材料的结构,力学性能,粘弹性进行了研究和比较,XRD研究表明,对复合材料的处理并没有改变原来的纯石墨d-间距。复合材料的拉伸性能测量表明弹性模量与拉伸强度随着石墨微片的浓度增加而增加,储能模量和玻璃化转变温度(Tg)也随着石墨微片浓度上升而上升,但是线性热膨胀系数却降低了。热稳定性通过热重分析测定。与纯环氧树脂相比,这种复合材料表现出较高的热稳定性和炭浓度。通过扫描电子显微镜对这些复合材料的损伤机理加固效果进行了研究。 关键词: 石墨微片环氧树脂复合材料一.介绍 对更高性能的复合材料的需求不断在增加, 以满足更高的要求或取代现有的材料,高 性 能的连续纤维(如碳纤维,玻璃纤维)增强聚合物基复合材料是众所周知的。然而,这些复合材料在基体性能方面具有一些不足之处,往往限制

他们的广泛应用和创造发展的需要新型的复合材料。在塑胶行业,填料的加入对聚合物材料是一种常见的操作。这不仅提高刚度,韧性,硬度,热变形温度,以及模具收缩率,也显著降低了加工成本。事实上,超过50%的聚合物生产都用无机填料以某种填充方式达到所希望的性能。最常用的粒子有碳酸钙、粘土、云母、氢氧化铝、玻璃珠,和金属磷酸盐。填料的选择往往是基于最终产品所需要的性能。改善复合材料的机械和其他性能在很大程度上依赖于填料粒子的含量、颗粒形状和大小,表面特征和分散性。因此,对其增韧的这些复合材料的机理很多来自于如裂纹尖端应力场,应力表面的衔接,剥离∕微裂纹和裂纹偏转等。 据报道,微米级填料填充的复合材料的性能不如那些充满了纳米粒子级相同的填料。此外,改进后的物理性质,化学性质,如表面平整度和阻隔性能,使用传统微米大小的粒子均不能达到。因此,近年来纳米基础的复合材料已引起相当的重视。这些都是一些很有前景的 聚合物/粘土纳米复合材料,聚合物/石墨纳米微片材料,聚合物/碳纳米管复合材料。这些

碳纳米管纳米复合材料的研究现状及问题(一)

碳纳米管纳米复合材料的研究现状及问题(一) 文章介绍了碳纳米管的结构和性能,综述了碳纳米管/聚合物复合材料的制备方法及其聚合物结构复合材料和聚合物功能复合材料中的应用研究情况,在此基础上,分析了碳纳米管在复合材料制备过程中的纯化、分散、损伤和界面等问题,并展望了今后碳纳米管/聚合物复合材料的发展趋势。 。碳纳米管的这些特性使其在复合材料领域成为理想的填料。聚合物容易加工并可制造成结构复杂的构件,采用传统的加工方法即可将聚合物/碳纳米管复合材料加工及制造成结构复杂的构件,并且在加工过程中不会破坏碳纳米管的结构,从而降低生产成本。因此,聚合物/碳纳米管复合材料被广泛地研究。 根据不同的应用目的,聚合物/碳纳米管复合材料可相应地分为结构复合材料和功能复合材料两大类。近几年,人们已经制备了各种各样的聚合物/碳纳米管复合材料,并对所制备的复合材料的力学性能、电性能、热性能、光性能等其它各种性能进行了广泛地研究,对这些研究结果分析表明:聚合物/碳纳米管复合材料的性能取决于多种因素,如碳纳米管的类型(单壁碳纳米管或多壁碳纳米管),形态和结构(直径、长度和手性)等。文章主要对聚合物/碳纳米管复合材料的研究现状进行综述,并对其所面临的挑战进行讨论。 1聚合物/碳纳米管复合材料的制备 聚合物/碳纳米管复合材料的制备方法主要有三种:液相共混、固相共融和原位聚合方法,其中以共混法较为普遍。 1.1溶液共混复合法 溶液法是利用机械搅拌、磁力搅拌或高能超声将团聚的碳纳米管剥离开来,均匀分散在聚合物溶液中,再将多余的溶剂除去后即可获得聚合物/碳纳米管复合材料。这种方法的优点是操作简单、方便快捷,主要用来制备膜材料。Xuetal8]和Lauetal.9]采用这种方法制备了CNT/环氧树脂复合材料,并报道了复合材料的性能。除了环氧树脂,其它聚合物(如聚苯乙烯、聚乙烯醇和聚氯乙烯等)也可采用这种方法制备复合材料。 1.2熔融共混复合法 熔融共混法是通过转子施加的剪切力将碳纳米管分散在聚合物熔体中。这种方法尤其适用于制备热塑性聚合物/碳纳米管复合材料。该方法的优点主要是可以避免溶剂或表面活性剂对复合材料的污染,复合物没有发现断裂和破损,但仅适用于耐高温、不易分解的聚合物中。Jinetal.10]采用这种方法制备了PMMA/MWNT复合材料,并研究其性能。结果表明碳纳米管均匀分散在聚合物基体中,没有明显的损坏。复合材料的储能模量显著提高。 1.3原位复合法 将碳纳米管分散在聚合物单体,加入引发剂,引发单体原位聚合生成高分子,得到聚合物/碳纳米管复合材料。这种方法被认为是提高碳纳米管分散及加强其与聚合物基体相互作用的最行之有效的方法。Jiaetal.11]采用原位聚合法制备了PMMA/SWNT复合材料。结果表明碳纳米管与聚合物基体间存在强烈代写论文的黏结作用。这主要是因为AIBN在引发过程中打开碳纳米管的π键使之参与到PMMA的聚合反应中。采用经表面修饰的碳纳米管制备PMMA/碳纳米管复合材料,不但可以提高碳纳米管在聚合物基体中的分散比例,复合材料的机械力学性能也可得到巨大的提高。 2聚合物/碳纳米管复合材料的研究现状 2.1聚合物/碳纳米管结构复合材料 碳纳米管因其超乎寻常的强度和刚度而被认为是制备新一代高性能结构复合材料的理想填料。近几年,科研人员针对聚合物/碳纳米管复合材料的机械力学性能展开了多方面的研究,其中,最令人印象深刻的是随着碳纳米管的加入,复合材料的弹性模量、抗张强度及断裂韧性的提高。

环氧树脂的主要应用领域分析

环氧树脂的主要应用领域 环氧树脂优良的物理机械和电绝缘性能、与各种材料的粘接性能、以及其使用工艺的灵活性是其他热固性塑料所不具备的。因此它能制成涂料、复合材料、浇铸料、胶粘剂、模压材料和注射成型材料,在国民经济的各个领域中得到广泛的应用。 ①涂料 环氧树脂在涂料中的应用占较大的比例,它能制成各具特色、用途各异的品种。其共性: (1)耐化学品性优良,尤其是耐碱性。 (2)漆膜附着力强,特别是对金属。 (3)具有较好的耐热性和电绝缘性。 (4)漆膜保色性较好。 但是双酚A型环氧树脂涂料的耐候性差,漆膜在户外易粉化失光又欠丰满,不宜作户外用涂料及高装饰性涂料之用。因此环氧树脂涂料主要用作防腐蚀漆、金属底漆、绝缘漆,但杂环及脂环族环氧树脂制成的涂料可以用于户外。 ②胶粘剂 环氧树脂除了对聚烯烃等非极性塑料粘结性不好之外,对于各种金属材料如铝、钢、铁、铜;非金属材料如玻璃、木材、混凝土等;以及热固性塑料如酚醛、氨基、不饱和聚酯等都有优良的粘接性能,因此有万能胶之称。环氧胶粘剂是结构胶粘剂的重要品种。 环氧树脂胶粘剂的主要用途见表l-1、表l-2及表l-3。 表1-1环氧树脂胶粘剂的主要用途

陶瓷黄 ③电子电器材料 由于环氧树脂的绝缘性能高、结构强度大和密封性能好等许多独特的优点,已在高低压电器、电机和电子元器件的绝缘及封装上得到广泛应用,发展很快。主要用于: (1)电器、电机绝缘封装件的浇注。如电磁铁、接触器线圈、互感器、干式变压器等高低压电器的整体全密封绝缘封装件的制造。在电器工业中得到了快速发展。从常压浇注、真空浇注已发展到自动压力凝胶成型。 表1-2环氧胶粘剂在土木建筑上的主要用途 表1-3环氧胶粘剂在汽车上的主要用途

abaqus复合材料

复合材料不只是几种材料的混合物。它具有普通材料所没有的一些特性。它在潮湿和高温环境,冲击,电化学腐蚀,雷电和电磁屏蔽环境中具有与普通材料不同的特性。 复合材料的结构形式包括层压板,三明治结构,微模型,编织预成型件等。 复合材料的结构和材料具有同一性,并且可以在结构形成时同时确定材料分布。它的性能与制造过程密切相关,但是制造过程很复杂。由于复合结构不同层的材料特性不同,复合结构在复杂载荷作用下的破坏模式和破坏准则是多种多样的。 在ABAQUS中,复合材料的分析方法如下 1,造型 它的结构形式决定了它的建模方法,并且可以使用基于连续体的壳单元和常规壳单元。复合材料被广泛使用,但是复合材料的建模是一个困难。铺设复杂的结构光需要一个月 2,材料

使用薄片类型(层材料)建立材料参数。材料参数可以工程参数的形式给出,或者材料强度数据可以通过子选项给出。这种材料仅使用平面应力问题。 ABAQUS可以通过两种方式定义层压板:复合截面定义和复合层压板定义 复合截面定义对每个区域使用相同的图层属性。这样,我们只需要建立壳体组合即可将截面属性分配给二维(在网格中定义的常规壳体元素)或三维(三维的大小应与壳体中给定的厚度一致)。基于网格中定义的连续体的壳单元) ABAQUS复合材料分析方法介绍 复合叠加定义是由复合布局管理器定义的,它主要用于在模型的不同区域中构造不同的层。因此,应在定义之前对区域进行划分,并且应将不同的层分配给不同的区域。可以根据常规外壳的元素和属性进行定义。 传统的壳单元定义了每个层的厚度,并将其分配给二维模型。应该给基于连续体的壳单元或实体单元提供3D模型(厚度是相对于单元长度的系数,因此厚度方向可以分为一层单元)。

超好的环氧树脂复合材料英文文献

https://www.wendangku.net/doc/557654846.html,/Journal of Reinforced Plastics and Composites https://www.wendangku.net/doc/557654846.html,/content/30/19/1621The online version of this article can be found at: DOI: 10.1177/0731684411426810 2011 30: 1621 originally published online 7 November 2011 Journal of Reinforced Plastics and Composites N. Venkateshwaran, A. ElayaPerumal and M. S. Jagatheeshwaran Effect of fiber length and fiber content on mechanical properties of banana fiber/epoxy composite Published by: https://www.wendangku.net/doc/557654846.html, can be found at: Journal of Reinforced Plastics and Composites Additional services and information for https://www.wendangku.net/doc/557654846.html,/cgi/alerts Email Alerts: https://www.wendangku.net/doc/557654846.html,/subscriptions Subscriptions: https://www.wendangku.net/doc/557654846.html,/journalsReprints.nav Reprints: https://www.wendangku.net/doc/557654846.html,/journalsPermissions.nav Permissions: https://www.wendangku.net/doc/557654846.html,/content/30/19/1621.refs.html Citations: What is This? - Nov 7, 2011 OnlineFirst Version of Record - Dec 16, 2011 Version of Record >>

玻璃纤维增强环氧树脂基复合材料各项性能的研究

玻璃纤维增强环氧树脂基复合材料各项性能的研究 齐齐哈尔大学 摘要:玻璃纤维是一种性能优异的无机非金属材料,种类繁多,优点是绝缘性好、耐热性强、抗腐蚀性好,机械强度高,但缺点是性脆,耐磨性较差,并不适于作为结构用材,但若抽成丝后,则其强度大为增加且具有柔软性,配合树脂赋予其形状以后可以成为优良之结构用材。本文将对玻璃纤维增强环氧树脂基复合材料的的研究现状及研究方向进行分析,为新的研究方向探索道路。 关键词:玻璃纤维环氧树脂复合材料研究现状研究方向 1、前言 玻璃纤维增强树脂基复合材料具有轻质高强,疲劳性能、耐久性能和电绝缘性能好等特点,在各个领域都有着广泛的应用,用玻璃纤维和环氧树脂可以制造层合制品,是一类性能优良的绝缘材料,广泛用于电力、电器、电子等领域,玻璃纤维增强树脂基复合材料由于具有高比强度、比模量,而且耐疲劳、耐腐蚀。最早用于飞机、火箭等,近年来在民用方面发展也很迅猛,在舰船、建筑和体育器械等领域得到应用,并且用量不断增加。其中,环氧树脂是先进复合材料中应用最广泛的树脂体系,它适用于多种成型工艺,可配制成不同配方,调节粘度范围大,以便适应不同的生产工艺。它的贮存寿命长,固化时不释放挥发物,同化收缩率低,固化后的制品具有极佳的尺寸稳定性、良好的耐热、耐湿性能和高的绝缘性,因此,环氧树脂“统治”着高性能复合材料的市场 目前,复合材料输电杆塔已在欧美和日本得到应用,其中以美国的研究开发和应用最为成熟。我国在20世纪50年代对复合材料电杆进行过研究,鉴于当时材料性能和制造工艺的限制,复合材料电杆未能得到推广使用。近年来,随着复合材料技术的飞速发展和传统输电杆塔的缺陷逐步显露,电力行业开始重视复合材料杆塔的应用研究。 随着电网建设的快速发展,出现了全国联网、西电东送、南北互供的建设格局,输电线路工程口益增多,对钢材的需求越来越大,消耗了大量的矿产资源和能源,在一定程度上加剧了生态环境破坏。并且,线路杆塔采用全钢制结构,存在质量大、施工运输和运行维护困难等问题。因此,采用新型环保材料取代钢材建造输电杆塔得到了输电行业的关注。玻璃纤维增强树脂基复合材料,具有高强轻质、耐腐蚀、耐久性能和电绝缘性好、易维护、温度适应性强、性能可设计、环境友好等特点,成为输电杆塔结构理想的材料。日益受到围内外电力行业的关注。目前,纤维增强复合材料输电杆塔由于其优良的综合性能已在日本和欧美地区得到应用,其中美国的研究开发和应用较为成熟,已制定了相关的产业标准,美国土木工程师学会已制定了输电杆塔中FRP产品的应用标准。 在输电杆塔中推广应用复合材料不仅能减少对矿产资源的破坏、保护环境,而且易于解决输电线路的风偏和污闪事故,提高线路安全运行水平;同时减小塔头尺寸,降低线路的维护成本。 2、低温性能研究 2、1单向复合材料板的制作 首先,取一定数量加热的环氧树脂,然后,加入增韧剂和稀释剂,在65℃

碳纳米管纳米复合材料的分析现状及问题

碳纳米管纳米复合材料的分析现状及问题 [摘要]文章介绍了碳纳米管的结构和性能,综述了碳纳米管/聚合物复合材料的制备方法及其聚合物结构复合材料和聚合物功能复合材料中的应用研究情况,在此基础上,分析了碳纳米管在复合材料制备过程中的纯化、分散、损伤和界面等问题,并展望了今后碳纳米管/聚合物复合材料的发展趋势。 [关键词]碳纳米管;复合材料;结构;性能 自从1991 年日本筑波NEC 实验室的物理学家饭岛澄男(Sumio Iijima)[1]首次报道了碳纳米管以来,其独特的原子结构与性能引起了科学工作者的极大兴趣。按石墨层数的不同碳纳米管可以分为单壁碳纳米管(SWNTs) 和多壁碳纳米管(MWNTs)。碳纳米管具有极高的比表面积、力学性能(碳纳米管理论上的轴向弹性模量与抗张强度分别为1~2 TPa 和200Gpa)、卓越的热性能与电性能(碳纳米管在真空下的耐热温度可达2800 ℃,导热率是金刚石的 2 倍,电子载流容量是铜导线的1000 倍)[2-7]。碳纳米管的这些特性使其在复合材料领域成为理想的填料。聚合物容易加工并可制造成结构复杂的构件,采用传统的加工方法即可将聚合物/碳纳米管复合材料加工及制造成结构复杂的构件,并且在加工过程中不会破坏碳纳米管的结构,从而降低生产成本。因此,聚合物/碳纳米管复合材料被广泛地研究。 根据不同的应用目的,聚合物/碳纳米管复合材料可相应地分为结构复合材料和功能复合材料两大类。近几年,人们已经制备了各种各样的聚合物/碳纳米管复合材料,并对所制备的复合材料的力学性能、电性能、热性能、光性能等其它各种性能进行了广泛地研究,对这些研究结果分析表明:聚合物/碳纳米管复合材料的性能取决于多种因素,如碳纳米管的类型(单壁碳纳米管或多壁碳纳米管),形态和结构(直径、长度和手性)等。文章主要对聚合物/碳纳米管复合材料的研究现状进行综述,并对其所面临的挑战进行讨论。 1 聚合物/碳纳米管复合材料的制备 聚合物/碳纳米管复合材料的制备方法主要有三种:液相共混、固相共融和原位聚合方法,其中以共混法较为普遍。

材料电磁干扰屏蔽性能概述

材料的电磁干扰屏蔽性能概述 D.D.L.Chung 纽约州立大学布法罗校区,复合材料研究实验室 摘要 本文对碳材料的电磁干扰屏蔽性能进行概述。这些材料包括,复合材料,石墨乳,柔性石墨。在复合材料中参杂直径为亚微米级的须筋能得到较好屏蔽效果,尤其是镀上镍以后。柔性的石墨是非常有前途的电磁干扰垫圈材料。 关键词;碳复合材料、碳纤维、碳丝、膨胀石墨、电学性能 1.绪论 电磁干扰屏蔽是指材料对电磁波的反射或者吸收,因而这些材料起到防止射线渗入屏蔽层的作用。电磁波,尤其是高频率的电磁波(例如手机发射的电磁波)有干扰电子设备的倾向。世界各国政府对能够同时屏蔽电子源和射线源的电磁干扰屏蔽材料的需求正在日益增长。现代社会对可靠的电子设备要求以及快速增长的无线电频率射线源决定了电磁干扰屏蔽材料变得极其重要。 电磁干扰屏蔽和电磁屏蔽有区别。后者是指,对低频域的磁场(例如60Hz)进行屏蔽。电磁干扰屏蔽材料和电磁屏蔽材料不同。 应用于电磁屏蔽干扰的碳材料,尤其是不连续的碳纤维正在快速增长。本文对碳材料在电磁干扰屏蔽领域的前景进行了概述,包括结构型和非结构型的复合材料、石墨乳、电磁干扰垫片材料。

2.屏蔽的机制 最初的电磁干扰屏蔽机制通常是反射。为了让屏蔽层能够反射电磁波,屏蔽层必须具有移动的能与电磁波所在此磁场相互作用的电子。这就要求是屏蔽层必须具有导电性,尽管不需要很强的导电性能。例如,一个体积电阻率为1Ω.cm的材料就已经足够了。然而电导率并不是科学的屏蔽材料的评定标准。导电需要通路,屏蔽材料却不需要。尽管屏蔽材料不需要通路,导通性却能提高它的性能。到目前为止金属材料是最普遍的电磁干扰屏蔽材料。他们的这种性能主要是由于在它们内部存在的自由电子。金属板体积较大,因此常通过电镀法,化学沉淀法,真空沉淀法形成电镀层以达到屏蔽效果。镀层可以在疏松材料,纤维,微粒上。镀层具有较差的耐磨性和抗划伤的性能。 另一个电磁干扰屏蔽的机制是吸收,为了让屏蔽层大量吸收电磁波,屏蔽材料应该有跟所吸收的电磁波中磁场有关的偶极子,钛酸钡和其他有高介电常数的材料可以提供电偶极子。四氧化三铁和其他有高磁导率的材料可以提供磁偶极子,磁偶极子可以通过使用多层的磁薄膜来减少磁畴壁的数量得到增强。 吸收损失是的公式是,反射损失时的公式为,其中是铜的电导率,是磁导率。银、铜、金、铝等,因为他们良好的导电性是非常好的反射材料。超导磁合金和高导磁合金因为它们的高的磁导率是极好的吸收材料,反射损失随着频率的增加减少,吸收损失随着频率的增加而增加。

环氧树脂基本知识

环氧树脂基本知识 增韧剂与稀释剂是什么? 增韧剂 增韧剂是具有降低复合材料脆性和提高复合材料抗冲击性能的一类助剂。可分为活性增韧剂与非活性增韧剂两类,活性增韧剂是指其分子链上含有能与基体树脂反应的活性基团,它能形成网络结构,增加一部分柔性链,从而提高复合材料的抗冲击性能。非活性增韧剂则是一类与基体树脂很好相溶、但不参与化学反应的增韧剂。 增韧剂可分为橡胶类增韧剂和热塑性弹性体类增韧剂: (1)橡胶类增韧剂该类增韧剂的品种主要有液体聚硫橡胶、液体聚丁二烯橡胶、丁腈橡胶、乙丙橡胶及丁苯橡胶等。 (2)热塑性弹性体热塑性弹性体是一类在常温下显示橡胶弹性、在高温下又能塑化成型的合成材料。因此,这类聚合物兼有橡胶和热塑性塑料的特点,它既可以作为复合材料的增韧剂,又可以作为复合材料的基体材料。这类材料主要包括聚氨酯类、苯乙烯类、聚烯烃类、聚酯类、间规1,2-聚丁二烯类和聚酰胺类等产品,目前作为复合材料的增韧剂用得较多的是苯乙烯类和聚烯烃类。 (3)其它增韧剂适用于复合材料的其它增韧剂还有低分子聚酰胺和低分子的非活性增韧剂,如苯二甲酸酯类。对于非活性的增韧剂也可称为增塑剂,它不参与树脂的固化反应。 稀释剂 稀释剂是一类使液体树脂粘度变稀薄时的液体物质。这不能溶解树脂,但能部分代替溶剂。稀释剂的作用是降低树脂粘度,使树脂具有流动性,改善树脂对增强材料、填料等的浸润性;控制固化时的反应热;延长树脂固化体系的适用期;填料用量增加,降低成本。按不同的树脂需要,所用的稀释剂也不同。 (1)不饱和聚酯树脂用的稀释剂主要是交联剂单体,并能使树脂粘度变稀薄。不饱和聚酯用的稀释剂主要是苯乙烯、α-甲基苯乙烯、甲基丙烯酸单体等。 (2)酚醛树脂用稀释剂主要是酒精、丙酮等溶剂。 (3)环氧树脂用稀释剂有活性稀释剂和非活性稀释剂:①非活性稀释剂这种稀释剂只共混于树脂中,不参与树脂的固化反应,仅仅是降低树脂粘度,如添加邻苯二甲酸二丁酯的双酚A环氧树脂。②活性稀释剂这类稀释剂主要指含有环氧基团的低分子化合物,能与固化剂反应,并参与环氧树脂的固化反应,成为交联树脂结构的一部分。活性稀释剂可分为单环氧基和双环氧基两类。还有不含环氧基的亚磷酸三苯酯、γ-内丁酯两种化合物。 稀释剂的总类 660A 丁基缩水甘油醚无色透明液体 2mPAS 0.65 0.01 0.005 145 10-15 660B 无色透明液体 5mPAS 0.6 0.01 0.005 120 10-15 660C 浅黄色透明液体 7mPAS 0.4 0.01 0.005 >190 10-15 690 苯缩水甘油醚浅黄色透明液体 7mPAS 0.6 0.01 0.005 >130 10-15 691 甲苯基缩水甘油醚浅黄色透明液体 6-7 mPAS 0.50-0.57 0.01 0.005 >130 20-25 692 苄基缩水甘油醚浅黄色透明液体 50s 0.4 0.01 0.005 >130 15-20 680 烯丙基缩水甘油醚浅黄色透明液体 1-2 mPAS 0.78 0.01 0.005 >130 10-15 669 乙二醇二缩水甘油醚浅黄色透明液体 25s 0.65 0.01 0.005 >130 10-30 678 新戊二醇二缩水甘油醚浅黄色透明液体 15s 0.64-0.7 0.01 0.005 >150 15-35 622 丁二醇二缩水甘油醚浅黄色透明液体 15-20mPAS 0.7 0.01 0.005 >150 15-35 662 丙三醇缩水甘油醚无色透明液体 100mPAS 0.55-0.7 0.01 0.005 >150 15-35

相关文档