文档库 最新最全的文档下载
当前位置:文档库 › 原生质体的制备

原生质体的制备

原生质体的制备
原生质体的制备

原生质体的制备

稳渗剂:0.6 mol/L甘露醇,121 ℃高温高压灭菌20 min后备用。

2%溶壁酶:在无菌操作台中称取溶壁酶(广东省微生物研究所生产),加入灭菌过的稳渗剂(甘露醇0.6 mol/L),最终使酶液浓度达到2%,再用0.22 μm 滤膜过滤除菌待用。

(观察锁状联合)乳酸石炭酸棉蓝染色液:石炭酸10 g,棉蓝0.02 g,甘油20 mL,乳酸10 mL,蒸馏水10 mL,将石炭酸加入蒸馏水中加热融化,之后加入乳酸和甘油,最后加入棉蓝,溶解备用。

原生质体制备

(1)将杏鲍菇菌丝接种于固体PDA培养基中,25℃培养5-7 d。

(2)活化后的菌丝接入液体PDA培养基中,25℃,120 rmp摇床培养5-6 d。

(3)将菌丝球倒入50 mL离心管中,10000 rpm 离心10 min,倒去上清液,再用无菌水、甘露醇各离心清洗一次。

(4)用灭菌滤纸吸干菌丝水分,称取0.2 g 菌丝放入10 ml 离心管中,再加入2 mL 2%浓度的溶壁酶,30℃水浴2-2.5 h,每隔1 h镜检破壁情况。

(5) 加入6mL甘露醇混匀,终止酶解。800 rpm离心5 min,用移液枪小心转移上清酶液至新的10毫升离心管,再用0.6 mol/L甘露醇离心离心清洗一次(4000 rpm,15 min),液体再生培养基离心清洗一次(4000 rpm,15 min)。

植物原生质体的分离及融合

植物原生质体的分离及融合 生93沈睿2009012372同组:古梦婷 实验日期:2011年11月2日 一.实验原理 1.原生质体分离 原生质体指包被在植物细胞壁内的生活物质。细胞壁的主要成分是纤维素和果胶质,它们分别经纤维素酶和果胶酶处理即可分解,从而脱去细胞壁,得到原生质体。 2.原生质体融和 诱导原生质体融合的方法有多种,譬如物理法(电场刺激,激光,显微操作等)、化学法(聚乙二醇结合高钙高pH法)和生物法(仙台病毒法等)。本实验用PEG诱导原生质体融和。 PEG是聚乙二醇的英文缩写,相对分子质量在200-6000之间的均可用作细胞融合剂,20-50%的浓度能对原生质体产生瞬间冲击效应,原生质体很快发生收缩与粘连。PEG诱导融合的机理可能是由于其含有醚键而具负极性,与水、蛋白质、碳水化合物等一些正极化基团能形成氢键。当PEG分子足够长时,可作为相邻原生质体表面之间的分子桥而使之粘连。PEG也能连接Ca2+等阳离子。Ca2+可在一些负极化基团和PEG之间形成桥,因而促进粘连。在洗涤过程中,连接在原生质体膜上的PEG分子可被洗脱,这将引起电荷的紊乱和再分布,从而引起原生质体融合。高钙、高pH洗液清洗则增加了质膜的流动性,因而大大提高了融合频率,洗涤时的渗透冲击对融合也可能起作用。普遍认为PEG分子能改变各类细胞细胞膜的结构,由于两细胞相接处质膜的相互亲和以及彼此的表面张力作用,两细胞接触点处细胞膜的脂类分子发生疏散和重组。 PEG法诱导的优点是取材方便、操作简易、效率高且效果稳定,缺点是对细胞有毒性。二.实验步骤 1.原生质体的制备 (1)将新鲜的剑兰(唐菖蒲)花瓣洗干净,用吸水纸吸干表面水分;将小平皿洗净,用蒸馏水冲洗后晾干或擦干。 (2)向小平皿中加入适量酶液,用尖头镊剥取剑兰花瓣的上、下表皮,27o C恒温振荡1h 左右。 (3)镜检细胞的酶解情况,若酶解效果不佳,可延长酶解时间,并用吸管吹吸。 (4)将酶解好的原生质体混合液经300目尼龙网过滤到10ml离心管,去除未被酶解的大块组织,用洗涤液冲洗平皿若干次,收集冲洗的液体。 (5)配平后,在700rpm下离心5min,弃去上清液;加洗涤液约3ml,吹打均匀,700rpm、5min重复离心一次,彻底去除酶液。 (6)加200μl洗涤液,悬浮原生质体。 (7)镜检原生质形态和浓度,看看是否有碎片;如碎片较多,利用蔗糖溶液漂浮1-2次。(8)蔗糖漂浮方法: 取部分原生质体悬浮液,加入洗涤液定容至1ml。用注射器吸取20%蔗糖溶液,装上长针头后小心插入盛有原生质体悬浊液的离心管底部,缓缓、轻柔地将蔗糖溶液挤出。由于比重不同,蔗糖溶液与原生质体悬液中间有一明显界面。配平后在700rpm下离心5min。用装有长针头的注射器小心吹吸底部沉淀,连同底部碎片一起将底层蔗糖溶液吸出,再小心除去上清液,得到纯净完整的原生质体。 2.PEG融和

拟南芥原生质体制备转化方法整理

溶液配制 1、纤维素酶解液:

2、PEG4000溶液(一次配置可以保存五天,但是最好现用现配,每个样品需100μl PEG4000溶液,可根据实验样品量调整溶液配置总量)

3、W5 溶液 4、MM G溶液

5、WI溶液 拟南芥原生质体制备转化方法整理 一、土培室播种种植的拟南芥。 二、生长良好情况下在未开花前用于取材叶片制备原生质体。 三、剪取中部生长良好的叶片用刀片切成0.5 -1 mm宽的叶条。 四、将切好叶条掷入预先配置好的酶解液中(每5-10 ml酶解液大约需10-20片叶子)。并用镊子帮助使叶子完全浸入酶解液。

五、用真空泵于黑暗中抽30分钟。(此时可配制PEG4000溶液,200和1000 ul 枪头去尖使操作时吸打缓和。) 六、在室温中无须摇动继续黑暗条件下酶解至少3个小时。当酶解液变绿时轻轻摇晃培养皿促使原生质体释放出来。(此时预冷一定量W5溶液) 七、显微镜下检查溶液中的原生质体,拟南芥叶肉原生质体大小大约30-50 um。 八、在过滤除去未溶解的叶片前用等量的W5溶液稀释含有原生质体的酶液。 九、先用W5溶液润湿35-75 um的尼龙膜或60-100目筛子,然后用它过滤含有原生质体的酶解液。 十、用30毫升的圆底离心管100g,1-2分钟离心沉淀原生质体。尽量去除上清然后用10ml 冰上预冷的W5溶液轻柔重悬原生质体。 十一、在冰上静至原生质体30分钟。 以下操作在室温23℃下进行

十二、100g离心八至十分钟使原生质体沉淀在管底。在不碰触原生质体沉淀的情况下尽量去除W5溶液。然后用适量MMG溶液(1m)重悬原生质体,使之最终浓度在2X105个/ml。 十三、加入10 ul DNA(10-20微克约5-10kb的质粒DNA)至2ml离心管中。 十四、加入100 ul原生质体(2x104个),轻柔混合。 十五、加入110 ul PEG溶液,轻柔拍打离心管完全混合(每次大约可以转化6-10个样品)。 十六、诱导转化混合物5-15分钟(转化时间视实验情况而定,要表达量更高也许需要更高转化时间)。 十七、室温下用400-440 ul W5溶液稀释转化混合液,然后轻柔颠倒摇动离心管使之混合完好以终止转化反应。 十八、室温下用台式离心机100g离心2分钟然后去除上清。再加入1ml W5溶液悬浮清洗一次,100g离心两分钟去上清。

微生物原生质体融合技术研究进展_王春平

动物医学进展,2008,29(5):64267 Progress in Veterinary Medicine 微生物原生质体融合技术研究进展3 王春平1,2,韦 强1,鲍国连13,刘 燕1,邵泽香1,2,季权安1 (1.浙江省农业科学院畜牧兽医研究所,浙江杭州310021;2.山东农业大学动物科技学院,山东泰安271018) 摘 要:原生质体融合技术在遗传学、动植物远缘杂交育种、生物学、免疫学、兽医学以及医药、食品、农业等方面都有广泛的应用价值,文章就原生质体制备、再生及其融合过程中的影响因素做了综述,另外还对原生质体融合方法和融合子的筛选方法进行了比较,为选择适宜有效的诱导融合方法和筛选方法提供依据。 关键词:原生质体融合;影响因素;融合方法;筛选方法 中图分类号:Q813.2文献标识码:A文章编号:100725038(2008)0520064204 原生质体融合也称细胞杂交、细胞融合或体细胞杂交,是指细胞通过介导和培养,在离体条件下用人工方法将不同种的细胞通过无性方式融合成一个核或多核的杂合细胞的过程[1]。原生质体融合技术起源于20世纪60年代。1960年法国的Karski研究小组在两种不同类型的动物细胞混合培养中发现了自发融合现象。1974年匈牙利的Ferenczy L 等[2]采用离心力诱导的方法,报道了白地霉营养缺陷型突变株的原生质体融合,从而使原生质体融合技术成为微生物育种的一项新技术,并从微生物种内融合扩展到界间的融合。路玲玲等[3]采用融合技术成功构建耐高温高产酒精酵母,至此,原生质体融合技术成为工业菌株改良的重要手段之一。原生质体融合技术已在农业、医药、环保等领域取得了开创性的研究成果,而且应用领域不断扩大[4]。 1 原生质体融合技术 微生物原生质体融合技术的整个过程包括:原生质体的制备,原生质体融合,原生质体再生[5]。1.1 原生质体制备与再生过程中的影响因素 制备原生质体的最大障碍就是细胞壁,现在去除细胞壁的主要方法是使用酶法,使用的酶主要为蜗牛酶或溶菌酶,具体根据所用微生物的种类而定。影响原生质体制备的因素很多,不同的微生物有其较为适当的形成条件。在菌龄选择上,多采用对数生长中后期的细菌,这主要是由于对数生长期细菌的细胞壁中肽聚糖含量最低,细胞壁对酶的作用最敏感。王燕[6]对双亲灭活米曲霉进行原生质体制备的过程中,用纤维素酶、溶壁酶、蜗牛酶混合浓度比为5∶3∶1的酶液混合使用能提高去壁效果。使用微生物产生的酶复合物或商品酶的混合液比单独使用一种酶的效果好,在一定范围内,酶作用的时间和酶作用的浓度都与原生质体的形成率成正相关,而与再生率成反相关。另外,ED TA作为螯合剂,可以避免金属离子对酶的抑制作用而提高酶脱壁效果,从而提高原生质体的形成率。据报道,对大肠埃希菌来说,用ED TA洗涤后,可以除去对酶解不利的金属离子[7]。另一方面,在原生质体制备前,用适量的青霉素对菌体进行预处理,可以抑制肽聚糖合成过程中的转肽作用,有利于原生质体的形成。根据酶反应动力学原理,酶解温度直接影响酶促反应的速度,如放线菌的最适酶解温度为28℃~37℃,真菌的最适酶解温度为30℃~35℃[8]。在高渗Tris 溶液中添加15mL/L聚乙烯吡咯烷酮(PV P)等原生质体扩张剂,有利于溶液中细菌的分散,有助于制备原生质体,添加0.02mol/L镁离子,有利于原生质体的稳定。关于原生质体的再生,吴孔兴等[9]报道在原生质体高渗再生培养基中加入0.3mol/L的蔗糖和0.2mol/L的丁二酸钠是合适的,王玉华等[10]报道在高渗再生培养基中加入0.5mol/L的蔗糖是适宜的,这可能要根据不同的微生物种类而定。 1.2 原生质体融合过程中的影响因素 1974年,匈牙利的Ferenczy报道了离心力诱导法对白地霉营养缺陷型突变株的原生质体融合。随后人们相继用NaCl、KCl和Ca(NO3)2等作为诱变剂进行融合,但融合频率都很低。聚乙二醇在适量 3收稿日期:2008202203 基金项目:浙江省重点科技攻关项目(2005C12021,2005E60014) 作者简介:王春平(1982-),男,山东淄博人,硕士研究生,主要从事动物传染病研究。3通讯作者

细胞原生质体的制备

细胞原生质体的制备 —植物原生质体分离和活性鉴定 一、实验目的 1.学习植物细胞原生质体分离纯化的方法。 2.了解原生质体活性鉴定的原理。 3.了解植物原生质体分离、融合和培养的基本原理及其过程 二、实验原理 去掉植物细胞壁的方法可以是机械的人工操作,也可以利用酶解法。较早利用机械法制备原生质体的 酶解法分离原生质体是一个常用的技术,其原理是植物细胞壁主要由纤维素、半纤维素和果胶质组成,因而使用纤维素酶、半纤维素酶和果胶酶能降解细胞壁成分,除去细胞壁,即可得到原生质体。由于原生质体内部与外界环境之间仅隔一层薄薄的细胞膜,必须保持在渗透压平衡的溶液中才能保持其完整性。其次,还应当考虑取材、酶的种类和纯度、酶液的渗透压、酶解时间及温度等因素对分离原生质体的影响。 测定原生质体的活性有多种方法。荧光素双醋酸酯(FDA)染色是常用的一种方法,FAD 本身无荧光,无极性,可透过完整的原生质膜。一旦进入原生质体后,由于受到酯酶分解而产生具有荧光的极性物质荧光素。它不能自由出入原生质膜,因此有活力的细胞能产生荧光,无活力的原生质体不能分解FAD无荧光产生。 PEG作为一种高分子化合物,20~50%的浓度能对原生质体产生瞬间

冲击效应,原生质体很快发生收缩与粘连,随后用高Ca高pH法进行清洗.使原生质体融合得以完成。 PEG诱导融合的机理:PEG由于含有醚键而具负极性,与水、蛋白质和碳水化合物等一些正极化基团能形成氢键,当PEG分子足够长时,可阼为邻近原生质表面之间的分子桥而使之粘连。PEG也能连接Ca2+等阳离子,Ca2+可在一些负极化基团和PEG之间形成桥,因而促进粘连。在洗涤过程中,连接在原生质体膜上的PEG分子可被洗脱.这样将引起电荷的紊乱和再分布.从而引起原生质体融合:高Ca高pH由于增加了质膜的流动性,因而也大大提高了融合频率,洗涤时的渗透压冲击对融合也可能起作用。 原生质体分离纯化或融合后,在适当的培养基上应用合适的培养方法,能够再生细胞壁,并启动细胞持续分裂,直至形成细胞团,长成愈伤组织或胚状体,再分化发育成苗。其中,选择合适的培养基及培养方法是原生质体培养中最基础也是最关键的环节。 三、实验用品 1.材料:绿豆,烟草幼苗叶片,油菜或菠菜或烟草等。 2.试剂: 酶解液(绿豆):1%(W/V) 纤维素酶,1% (W/V)果胶酶,0.7mol/L 甘露醇;10mmol/L CaCl,2.2H2O,0.7mmol/L KH2PO4,pH 6.8~ 7.0。 13%CPW洗涤液(绿豆):27.2mg/L KH2PO4,101.0 mg/L KNO3,

原生质体制备

1.影响原生质体数量和活力的因素 (1)细胞壁降解酶的种类和组合 不同植物种类或同一植物种的不同器官以及它们的培养细胞,由于它们的细胞壁结构组成不同,分解细胞壁所需的酶类也不同。例如,叶片及其培养细胞用纤维素酶和果胶酶,根尖细胞以果胶酶为主附加纤维素酶或粗制纤维素酶(Driselase酶),花粉母细胞和四分体期小孢子用蜗牛酶和胼胝质酶,成熟花粉用果胶酶和纤维素醇。 (2)渗造压稳定剂 用酶法降解细胞壁前,为防止原生质体的破坏,一般需先用高渗液处理细胞,使细胞处于微弱的质壁分离状态,有利于完整原生质体的释放。这种高渗液称为渗透压稳定剂。常用的滲透压稳定剂有甘露醇、山梨醇、蔗糖、葡萄糖、盐类(KCI、MgSO4.7H2O)等。在降解细胞壁时,渗透压稳定剂往往和酶制剂混合使用。滲透压稳定剂中,用得最多的是甘露醇,常用于烟草、胡萝ト、柑橘、蚕豆原生质体制备;蔗糖常用于烟草、月季等;山梨醇常用于油菜原生质体制备。滲透压稳定剂种类及浓度的选择应根据植物种类而异,例如胡萝ト用0.56mol /L甘露醇,月季用14%蔗糖,柑橘用0.8mol/L甘露醇,蚕豆用0.7mol/L甘露醇,烟草的四分体用7%熊糖,烟草的成熟花粉用13%甘露醇。 (3)质膜稳定剂 质膜稳定剂可以增加完整原生质体数量、防止质膜破坏,促进原生质体胞壁再生和细胞分裂形成细胞团。如在分离烟草原生质体时,在酶液中加人入葡聚糖硫酸钾,一旦洗净确液进行培养,原生质体很快长壁并持续细胞分裂形成细胞团。而未加葡聚糖硫酸钾的对照,原生质体经一周培养即解体。常用的原生质膜稳定剂有葡聚糖硫酸钾、MES、氯化钙、磷酸二氢钾等。 (4)pH的影响 分离原生质体时,酶液的pH是值得注意的问题。因为降解酶的活力和细胞活力最适pH是不一致的低pH时(<4.5),酶的活力强,原生质体分离速度快,但细胞活力差,破坏的细胞较多;pH偏高时,酶活力差,原生质体分离速度慢,完整的原生质体数目较多。分离原生质体时,酶液的pH因植物种类不同而有差异,如胡萝ト为5.5、月季为5.5~6.0、烟草为5.4~5.8、柑橘为5.6、蚕豆为5.6~5.7。 (5)温度影响 制备生质体时,一般在26土1℃条件下酶解。 (6)植物材料的生理状态 一般应选择植物体细胞分裂旺盛的部分进行取材。采用那些颗粒细小、疏松易碎的胚性愈伤组织和由其建立的胚性悬浮细胞系,更容易获得高质量的原生质体。要得到良好的供体材料,必要时应对材料进行预处理及预培养。 2.植物原生质体的纯化 材料经过一段时间的酶解后,需要将酶解混合物中破碎的原生质体、未去壁的细胞、细胞器及其他碎片去除出去。纯化原生质体的常用方法有过滤、离心、飘浮法,在实际操作中一般联合运用这三种方法。 1)过滤法用滤网过滤酶解混合物,滤去未被酶解的细胞、细胞团及组织块 2)离心法利用比重原理,在具有一定渗透压的溶液中,先进行过滤然后低速离心,使纯净完整的原生质体沉积于离心管底部。 3)飘浮法采用比原生质体比重大的高渗溶液(如蔗糖、Ficoll溶液),使原生质体漂浮在溶液表面。

原生质体融合技术文献综述

XXXX学校XXXXXX学院毕业设计(论文)文献综述 学生姓名:学号: 专业:生物工程 班级: 设计(论文)题目: 指导教师: 二级学院: 2010年月日

题目 学生:学号:班级: 导师: 摘要:原生质体融合技术是细菌遗传育种的有效方法之一,发展迅速,应用广泛.文中综述了亲本菌株选择性遗传标记方法、影响原生质体制备与再生因素、原生质体融合方法和条件。介绍了原生质体融合技术在微生物遗传育种中的应用,并展望了原生质体融合技术的发展前景。 关键词: 引言:原生质体融合也称细胞杂交、细胞融合或体细胞杂交,是指细胞通过介导和培养,在离体条件下用人工方法将不同种的细胞通过无性方式融合成一个核或多核的杂合细胞的过程[1]。原生质体融合技术起源于20世纪60年代。1960年法国的Karski研究小组在两种不同类型的动物细胞混合培养中发现了自发融合现象。1974年匈牙利的Ferenczy L等[2]采用离心力诱导的方法,报道了白地霉营养缺陷型突变株的原生质体融合,从而使原生质体融合技术成为微生物育种的一项新技术,并从微生物种内融合扩展到界间的融合。路玲玲等[3]采用融合技术成功构建耐高温高产酒精酵母,至此,原生质体融合技术成为工业菌株改良的重要手段之一。原生质体融合技术已在农业、医药、环保等领域取得了开创性的研究成果,而且应用领域不断扩大[4]。 1 原生质体融合技术 微生物原生质体融合技术的整个过程包括:原生质体的制备、原生质体融合、原生质体再生[5]。 1.1 原生质体制备与再生过程中的影响因素 制备原生质体的最大障碍就是细胞壁,现在去除细胞壁的主要方法是使用酶法,使用的酶主要为蜗牛酶或溶菌酶,具体根据所用微生物的种类而定。影响原生质体制备的因素很多,不同的微生物有其较为适当的形成条件。在菌龄选择上,多采用对数生长中后期的细菌,这主要是由于对数生长期细菌的细胞壁中肽

植物原生质体相关材料

植物原生质体相关材料 2013-9-2 From HZB 一、植物材料 研究表明,几乎从植物的所有部位都能得到原生质体,其中以叶片为多。根尖组织也是植物原生质体的重要来源,它可由各种植物的种子萌发后取得。花粉经特异酶处理也能得到原生质体,在单倍体遗传育种中有特殊的用途。 但是,要获得高质量的原生质体,则须选用生长旺盛、生命力强的组织作材料。材料的生理状况是原生质体质量的决定性因素之一。 1. 细胞悬浮培养物 在建立细胞悬浮培养物之前,需提前培养愈伤组织: 取用成熟种子胚、未成熟胚、幼穗、花药、胚芽鞘或幼叶,经无菌消毒后,在26℃黑暗条件下,在含2,4-D 2-4mg/L的MS固体培养基上,诱导愈伤组织,每隔2-4d转接一次。从中选出增殖较快而且呈颗粒状的愈伤组织,或经继代培养一次后,转移到液体培养基的100ml三角瓶中进行悬浮培养。具体方法是用旋转式振荡器,速度控制在80-120r/min,在25±1℃下暗培养。通常经悬浮培养3~4月后,悬浮培养细胞的大小变得较为一致,且细胞质变得较浓时,可用作分离原生质体。 2. 叶肉细胞 叶肉细胞是分离原生质体的最好的细胞材料,用叶片的薄壁组织作为材料来源,既要考虑植株的生长环境,又要考虑叶片的年龄及其生理状态对原生质体分离的影响。取生理状态适宜的叶片,有利于原生质体的细胞再生和细胞分裂。要获得良好的培养材料,下列外界因素是需要着重考虑的: (1)光强为3000-6000lx。 (2)温度为20-25℃培养。 (3)相对湿度在60%-80%左右。 植物的其他器官也可用于分离原生质体,如用花粉四分体和花粉壁细胞。 3. 植物材料的预处理 对原生质体材料进行预处理能提高原生质体的分裂频率;也可以逐步提高植物材料的渗透压,以适应培养基中的高渗环境。这些处理包括:暗处理、预培养、低温处理等。 例如,把豌豆的枝条取下后,在分离原生质体前,先让材料在黑暗中的一定湿度条件下放1~2d,这样得到的原生质体存活率高,并能继续分裂。在羽衣甘蓝叶肉组织原生质体分离和培养中,先去掉叶片的下表皮,再在诱导愈伤组织的培养基中预培养7d,然后再去壁;经预培养的叶片分离的原生质体高度液泡化,叶绿体也解体。龙胆试管苗的叶片只有用4CC低温处理后分离得到的原生质体才能分裂。但在很多情况下材料不必经过专门的预处理。 二、酶 1. 酶的种类 构成植物细胞壁的三个主要成分是:①纤维素,占细胞壁干重的25%至50%不等;②半纤维素,平均约占细胞壁干重的53%左右;③果胶质,一般占细胞壁的5%。分离原生质体最常用的酶有纤维素酶、半纤维素酶和果胶酶。 ZA3-867纤维酶是上海植物生理研究所从野生型绿色木霉同各菌种中提取制成的,粗制品是多种酶的复合物,含有纤维素酶(包括C1、CX、B一葡萄糖苷酶等)、果胶质、半纤维素酶等,分离细胞壁的效果较好。这种复合酶使用时不需加半纤维素酶和果胶酶等,就可以分离出植物原生质体。 日本产的Onozuka纤维素酶常和果胶酶结合使用,可先用果胶酶降解果胶,使分开细胞,再用纤维素酶处理降解细胞壁。即二步法降解。 2. 渗透稳定剂

水稻原生质体制备及转化方法

原生质体制备及转化 1.去皮的日本晴种子在75%的酒精中消毒1 min。然后用 2.5%的次氯酸钠消毒20 min。用无菌水洗至少5次,然后在1/2 MS培养基上,12 h光照(大约150umol m-1 s-1)十二小时黑暗,26 ℃培养7-10天,提前一天烧好去尖的黄蓝枪头备用。 2.取40-60棵水稻幼苗的茎和叶鞘的绿色组织。 3.将一捆水稻植株(大概10棵幼苗)用剃刀一起切成大约0.5 mm的小段。 4.将小片段立刻放进0.6 M的甘露醇中,黑暗中放置10 min。 5.用100目钢制滤网去掉甘露醇,将小片段放在加入15mL酶液的25mL锥形瓶中, (1.5% Cellulase RS,0.75% Macerozyme R-10,0.6 M甘露醇,pH5.7的10mM MES,10mM CaCl2,0.1% BSA),28℃摇床中轻轻摇晃(50rpm),黑暗孵育4-6 h。 6.此时配置40%的PEG4000,酶消化后,分三次加入等体积15mL的W5溶液(154 mM NaCl,125mM CaCl2,5 mM KCl,pH 5.7的2mM MES)。用手充分摇晃10s。 7.用400目钢制滤网过滤得到原生质体在圆底管中。 8.80g离心(升降速度设为1档)5min,缓慢吸走上清液。 9.沿壁缓慢加入4mL W5溶液,轻轻悬浮,再离心80g,5min,弃上清 10.沿壁缓慢加入4mL Mmg溶液,离心80g,5min,弃上清 11.再加Mmg溶液,补至每个样品100μl原生质体 12.分装2mL离心管,每100μl原生质体,加入20μl质粒和120μl新鲜制备的 40%的PEG4000,混匀 13.28℃避光静置转化20--25min 14.加1.5 mL W5溶液混匀,80g离心3min,弃上清。 15.重复步骤14 16.加2mL W5溶液重悬,轻轻混匀,移到细胞培养板,锡箔纸包裹避光28℃避 光静置培养15-20小时 17.培养完成后,将培养板中沉淀的原生质体轻轻混匀,吸到2 mL离心管中,80g 离心3min,弃上清,保留100μl上清液 18.共聚焦显微镜观察拍照 配制溶液方法:

原生质体融合技术

原生质体融合技术的局限性 植物原生质体是指用特殊方法去细胞壁的、裸露的、有生活力的原生团。这种裸露细胞在适当的外界条件下,还可形成细胞壁,进行有丝分裂,形成愈伤组织和诱发再生植株,因而仍然具有细胞的全能性。 植物原生质体融合技术是借鉴于动物细胞融合的研究成果,在原生质体分离培养的基础上建立起来的,以植物的原生质体为材料,通过物理、化学等因素的诱导,使两个原生质体融合在一起以致形成融合细胞的技术。它不是雌雄孢子之间的结合,而是具有完整遗传物质的体细胞之间的融合,是2种原生质体间的杂交。通过原生质体融合可以把带有不同的基因组的两个细胞结合在一起,与有性杂交相比,无疑可以使“杂交”亲本组合的范围扩大,不但可以利用细胞核内基因资源,还可以利用包含在细胞质中的诸如叶绿体和线粒体DNA的遗传资源。 原生质体培养是细胞杂交的基础,但是直到目前为止,也只有360多个种的原生质体培养再生了完整的植株,大多数重要的植物尤其是木本植物如葡萄、棕榈、橡胶、茶、香蕉、椰子和芒果等的原生质体再生仍然很困难,或者还未进行深入研究。在原生质体再生的物种中,茄科占了将近1/4,并且用于育种目的的大多数体细胞杂种和细胞质杂种也比较集中于茄属、烟草属、苜蓿属、柑橘属、芸薹属和番茄属等6个属中。因此,为了有效地进行植物遗传改良,不但要使杂种细胞再生成完整植物,而且还必须提高植株再生的频率,以便有足够的群体进行有效的选择。但目前存在的一个普遍的问题使许多原生质体再生的程序似乎较低,重复性较差,并且还具有基因型的依赖性。为了将体细胞杂交技术应用于更多的植物中,还需要更加深入地研究植物细胞的分化、脱分化和再分化等发育机制。 1.技术局限性 植物细胞杂交的本质是将两种不同来源的原生质体,在人为的条件下进行诱导融合。由于植物细胞的全能性,因此融合之后的杂种细胞,可以再生出具有双亲性状的杂种植株。因此,细胞融合也叫原生质体融合或细胞杂交。其包括三个主要环节:诱导融合;选择融合体或杂种细胞;杂种植株的再生和鉴定。 1.1诱导原生质体融合 诱导原生质体融合是体细胞杂交的最基本的技术环节。融合方法的选择受到很多实验条件的限制。常用的化学方法有化学方法与电融合方法。化学方法中用的最多的是聚已二醇(PEG)融合技术。但是这种方法中PEG与高PH强加于原生质体的非常生理条件,PEG 的相对分子质量、纯度、浓度、处理时间、原生质体的状况和密度等都会影响PEG融合技术,而且其融合过程繁琐,PEG可能对细胞有毒害作用;而影响电融合的因素有电融合技术中交流电的强弱、处理时间的长短、电脉冲的大小电极的材料和间距、直流脉冲的强度、宽幅以及次数等。 而且对于不同的植物材料需要经过多次实验,才能找出这些参数的适当值。这就制约了原生质体融合技术成为常规育种方法。 1.2杂种细胞的选择 为了将杂种细胞与未融合的、同源融合的亲本细胞区分开,一般有以下选择方法: 1.2.1利用或诱导各种缺陷型或抗性细胞系,用选择培养基将互补的杂种细胞选择出来; 互补选择一般要求有相应的突变体。在体细胞杂交的研究中,虽然人们已经建立和利用了各种各样的突变体,但是在植物中要建立突变细胞系比较困难,如果要使突变细胞系保持再生能力就更难了,因此在实际应用中受到很大的限制。 1.2.2机械选择法 利用荧光素标记分离杂种细胞取得了一定的成效,但是显微镜操作费工费时,选择出异

植物组织培养 第十章 原生质体培养

第十章原生质体培养 ?教学目的与要求: ?深入了解植物细胞结构功能与细胞全能性表达的关系,掌握原生质体的分离以 及培养过程中渗透压和激素的调控原理与技术。 第一节、原生质体研究概况 一、原生质体的概念 ?原生质体(p r o t o p l a s t):指除去细胞壁的细胞或是说一个被质膜所包围的裸露 细胞。 二、原生质体研究进展 ?据统计,目前已有49个科,146个属的320多种植物经原生质体培养得到了再 生植株(1993)。其趋势仍以农作物和经济作物为主,但从一年生向多年生、草本向木本、高等植物向低等植物扩展。 三、原生质体研究的意义 ?1、除去了细胞壁为植物细胞之间的融合扫平了障碍,同时叶为制造新杂种开辟 了道路。2、原生质体可摄入外源D N A,细胞器、细菌或病毒颗粒,这些特性与植物全能性相结合为高等植物的遗传饰变打下基础。3、获得细胞无性系和选育突变体的优良起始材料。 第二节、原生质体的制备 1、用于分离原生质体的材料准备 ?无菌试管苗叶片 ?上胚轴和子叶 ?培养细胞 2、酶处理 ?原生质体分离常用的商品酶 ?纤维素酶类 ?果胶酶类 ?半纤维素酶 酶溶剂及其渗透压 ?酶溶剂:原生质体培养基或特殊配制。 ?渗透压调节剂:葡萄糖、甘露醇、山梨醇等。 ?酶浓度及酶解时间 ?酶解时间 ?酶浓度酶解温度 3、原生质体的收集和纯化 ?飘浮法:常用的飘浮剂有蔗糖、P e r c o l l、F i c o l l。 ?P e r c o l l是一种包有乙烯吡咯烷酮的硅胶颗粒。渗透压很低(<20m o s m/k g H2O), 粘度也很小,可形成高达1.3g/m l密度,采用预先形成的密度梯度时可在低离心力(200~1000g)于数分至数十分钟内达到满意的细胞分离结果。由于P e r c o l l 扩散常数低,所形成的梯度十分稳定。此外,P e r c o l l不穿透生物膜,对细胞无毒害,因此广泛用于分离细胞、亚细胞成分、细菌及病毒,还可将受损细胞及其碎片与完好的活细胞分离。

拟南芥原生质体的制备及转化

拟南芥原生质体制备转化操作流程 主要试剂 1. 纤维素酶解液: 试剂 15ml酶液体系 1.1-1.5﹪Cellulase R10 (YaKult Honsha)0.225g干粉 2.0.2-0.4﹪Mecerozyme R10 (YaKult Honsha)0.045g干粉 3.0.4M mannitol1.09g干粉 4.20mM KCl1 ml 0.3 M KCl母液 5.20mM MES,pH5.7,1 ml 0.3 M MES,pH5.7母液 6.加入10ml 水 7.55℃水浴加热10分钟(钝化酶,提高酶的可溶性),冷却至室温后加入以下试剂8.10mM CaCl,1 ml 0.15M CaCl2 9.5 mM β-Mercaptoethanol(可选用)1ml 75mM β-Mercaptoethanol母液(Sigma A-6793) 10.0.1﹪BSA,1 ml 1.5﹪BSA(4℃保存) 11.用0.45μm滤膜过滤后使用,酶液是淡棕色的澄清溶液。 2. PEG溶液(40%, v/v)(一次配置可以保存五天,但是最好现用现配,每个样品需100ul PEG4000溶液,可根据实验样品量调整溶液配置总量) PEG4000( Fluka, #81240)……………1g………………………………….4g 水…………………………………………………0.75ml…………………………..3g 0.8 M Mannitol…………………………..0.625ml…………………………2.5ml 1 M CaCl2或Ca(NO3)2………………..0.25ml………………………….1ml 约1.2ml 3. W5 溶液(1000ml) 154mM NaCl, NaCl9g 125mM CaCl2, CaCl2.H2O18.4g 5mM KCl, KCl0.37g 2mM MES(PH 5.7),MES0.39g pH to 5.8 with KOH,高温高压灭菌20分钟,室温保存。 4. MMG溶液 MaMg溶液(500ml) 15mM MgCl2,MgCl0.71g 4 mM MES(PH5.7)MES0.39g 0.4 M mannitol,Mannitol36.5g 用KOH调pH 5.7,高温高压灭菌20分钟,室温保存。 5. WI溶液 WI(200ml) 0.5M mannitol,mannitol18.217g 4mM MES,pH5.7,MES0.156g

植物原生质体培养方法

植物原生质体培养方法 1 植物原生质体培养的简史 植物细胞原生质体, 在植物学上指植物细胞通过质壁分离后, 可以和细胞壁分开的那部分细胞物质。原生质体分离纯化后, 须在适当的培养基上应用适当的培养方法, 才能再生细胞壁, 并启动细胞持续分裂, 直至形成细胞团、长成愈伤组织或胚状体、分化和发育成苗, 最终再生完整植株。其中, 选择合适的培养方法始终是原生质体培养中最基础也是最关键的一环。 植物原生质体培养方法起源于植物单细胞培养方法。早在1902 年,Haberlant 通过实验就预言: 体外培养单个细胞可通过其分裂得到培养组织。直到1954 年, 植物单细胞培养才获得成功。M uir 将培养的万寿菊及烟草悬浮细胞植入到长有愈伤组织的培养基上而得到了它们的单细胞克隆, 并建立了看护培养的方法。悬滴培养由De Ropp1954 年开创, 1960 年Jones 等完善了这一技术, 并建立了微室培养的方法。同年, Cock ing 应用酶法分离原生质获得了成功, 从而在实验条件下很容易获得大量的原生质体。随着多种适用于原生质体分离的商品酶的出现, 原生质体的培养方法也得到了不断的改进, 现在常用的液体浅层培养、双层培养法、琼脂糖包埋法、琼脂岛培养法以及使用条件培养基或饲喂培养等技术, 使原生质体培养获得了极大的成功。 2 原生质体培养方法 2. 1 液体培养法 2. 1. 1 液体浅层培养(L iquid th in culture) 这是目前较常用的原生质体培养方法, 一般适用于容易分裂的原生质体, 将含有原生质体的培养液在培养皿底部铺一薄层, 封口进行培养。这种方法操作简单, 对原生质体损伤较小, 且易于添加新鲜培养物。用这种方法, J.T rmeouillaax 等成功地培养长春花冠瘿组织的激素自养型的原生质体单细胞克隆; H isato Kunitake 等也在改良的M S 培养基上培育了Eustom a g rend if lorum (龙胆科, 原产美国) 原生质体再生植株。但这种方法也常使原生质体分布不均匀, 发育的原生质体之间产生粘连而影响其进一步的生长和发育, 尤其是难以定点观察单个原生质体的命运。王吉吉之等认为液体浅层培养在培养过程中, 应经常轻轻晃动培养基, 以增强通气, 促进愈伤组织形成。 2. 1. 2 微滴培养(D rop let culture) 微滴培养是由液体浅层培养发展起来的一种方法, 它克服了后者局部密度过高和原生质体粘聚的缺点。此方法是将0. 1m l 或更少的原生质体悬浮液用滴管滴于培养皿底部, 封口后进行培养。为避免微滴蒸发, 可将培养器皿置于湿润的环境中, 或在微滴上覆盖矿物油。此法适用于融合体及单个原生质体培养, 尤其适用于较多组合的实验。为了比较黄瓜两个品系在不同的植板密度以及在不同的激素水平下原生质体生长情况, Z. K. Punja 等选用了此方法获得很好的效果; 同样, S. V essabutr 等培养百脉根时也比较了不同预处理、不同酶液组合对原生质体培养的影响。 2. 2 固体培养—— 琼脂糖平板法(A grose beadmethed) 固体培养作为凝固剂的物质可以是琼脂、琼脂糖或Gellan gum , 近来很多实验证明, 琼脂糖尤其是低熔点的琼脂糖是一种良好的培养基凝固剂, 并且具有促进原生质体细胞分裂的作用。琼脂糖平板法是将原生质体纯化后悬浮在液体培养基中, 然后与热融并冷却到45℃的琼脂糖按一定比例混合, 轻轻摇动使原生质体均匀分布, 凝固后封口培养。由于原生质体彼此分开并固定了位置, 就避免了细胞间有害代谢产物的影响, 既便于定点观察, 又有利于追踪原生质体再生细胞的发育过程。Z. K. Punja 等证明琼脂平板法比微滴培养及液体浅层培养具有更高的植板率; 甘霖等也得出同样结论。但此种方法对操作技术要求比较严格, 尤其是温度一定要适宜; 添加低渗透压的培养基和转移再生愈伤组织也比较繁琐, 而且培养的原生质体极易褐变死亡。 2. 3 液体2固体结合培养 2. 3. 1 双层培养法(A grose2liquid doublelayer) 这种方法即在培养皿的底部先铺一薄层含或不含原生质体或细胞的固体培养基,

原生质体制备

原生质体的制备: 1、选取3-4周长势良好的植株的展开叶片(通常选取第5~7片真叶)。 2、用新的锋利的刀子从叶片的中部切0.5-1 mm叶条,比较理想的情况下,每克新鲜叶片中大约含有107个原生质体(大约100-150个叶条在5-10 ml酶溶液中消化)。对于常规实验,10-20个叶条消化在5-10 ml酶溶液中将得到0.5-1×106个原生质体,足够25-100个样品使用。 3、快速而温柔的转移叶条到准备好的酶溶液中(10-20叶条在5-10 ml酶液中),用平头镊子将叶条完全淹没。 4、用真空泵将叶条在黑暗中真空30 min。 5、室温下在黑暗中至少消化3 h(继续消化,不要摇晃)。经过轻微转动后酶溶液应该变成绿色,这表明原生质体已经被释放。 6、用显微镜检查原生质体的释放(拟南芥叶肉的原生质体的大小大约为30-50μm)。 7、用等体积的W5溶液稀释酶溶液,通过过滤去除没有消化的叶片组织。 8、用水洗去75 μm尼龙过滤器中的酒精(通常浸泡在95%乙醇中)并去除过量的水,用W5溶液润洗过滤器后过滤原生质体。 9、将原生质体溶液转移到30 mL圆底离心管中,100×g离心5 min,尽可能的去除上清液。 10、用计数板进行细胞计数,每2×105个原生质体加入1 mL W5溶液,在冰,上静置30 min。 11、室温下沉降原生质体15 min,去除W5溶液,每2×105个原生质体加入1 mL MMG溶液重悬浮。 12、在2 mL离心管中分别加入10 mL DNA(5-10 kb的质粒DNA 10-20 mg)和100 mL原生质体(2×104个原生质体细胞),轻轻混匀。 13、加入110 mL PEG溶液,轻弹试管完全混匀。 14、室温下孵育转染混合物15 min(反应5 min足够)。 15、室温下,用400-440 mL W5溶液稀释转染混合物,轻轻摇动或倒置离心管混匀来停止转染过程。 16、室温下,100×g离心2 min,去除上清液。 17、在六孔板中,每孔用1 mL WI溶液重悬浮原生质体。 18、室温下(20-25℃)孵育原生质体一段时间。 19、重悬浮,通过100×g离心2 min收获原生质体。 20、去除上清液并观察GFP成像。

原生质体细胞融合技术

食品生物技术课程论文原生质体细胞融合技术

原生质体细胞融合技术 摘要:细胞融合技术作为细胞工程的一项核心基础技术己在农业、医药、环保等领域得到了迅速发展和应用。综述了细胞融合技术中的常用方法:细胞融合仙台病毒诱导法、细胞融合PEG(聚乙二醇)诱导法、细胞融合电场诱导法、细胞融合激光诱导法;以及最新研究进展:基于微流控芯片的细胞融合技术、高通量细胞融合芯片、空间细胞融合技术、离子束细胞融合技术、非对称细胞融合技术等,并对它们的优缺进行简要的评述。 关键词:原生质体细胞融合技术影响因素融合方法发展 正文: 原生质体融合也称细胞杂交、细胞融合或体细胞杂交,是指细胞通过介导和培养,在离体条件下用人工方法将不同种的细胞通过无性方式融合成一个核或多核的杂合细胞的过程。利用现代科学技术,把来自于不同种生物的单个细胞融合成一个细胞,这个新细胞得到了来自两个细胞的遗传物质,具有新的遗传或生物特性。原生质体融合技术起源于20世纪60年代。1960年法国的Karski研究小组在两种不同类型的动物细胞混合培养中发现了自发融合现象。1974年匈牙利的Ferenczy 等采用离心力诱导的方法,报道了白地霉营养缺陷型突变株的原生质体融合,从而使原生质体融合技术成为微生物育种的一项新技术,并从微生物种内融合扩展到界间的融合。目前,通过原生质体融合进行体细胞杂交已成为细胞工程研究的重要内容之一。细胞融合核技术不仅为核质相互关系、基因调控、遗传互补、肿瘤发生、基因定位、衰老控制等理念领域的研究提供了有力的手段,而且在遗传学、动植物远缘杂交育种、发生生物学、免疫医学以及医药、食品、农业等方而都有广泛的应用价值。特别是在单克隆抗体的制备、哺乳动物的克隆以及抗癌疫苗的研发等技术中细胞融合技术已成为关键技术。 1 原生质体融合技术 微生物原生质体融合技术的整个过程包括:原生质体的制备,原生质体融合,原生质体再生。 1. 1 原生质体制备与再生过程中的影响因素 制备原生质体的最大障碍就是细胞壁,现在去除细胞壁的主要方法是使用酶法,使用的酶主要为蜗牛酶或溶菌酶,具体根据所用微生物的种类而定。影响原生质体制备的因素很多,不同的微生物有其较为适当的形成条件。在菌龄选择上,多采用对数生长中后期的细菌,这主要是由于对数生长期细菌的细胞壁中肤聚糖含量最低,细胞壁对酶的作用最敏感。对双亲灭活米曲霉进行原生质体制备的过程中,用纤维素酶、溶壁酶、蜗牛酶混合浓度比为5:3: 1的酶液混合使用能提高去壁效果。使用微生物产生的酶复合物或商品酶的混合液比单独使用

微生物原生质体融合育种技术及其应用

微生物原生质体融合育种技术及其应用 摘要: 工业微生物菌种选育在发酵工业中占有重要地位。微生物原生质体融合(microbialprotoplast fusion)技术具有重组频率高、受结合型或致育型限制小以及遗传物质传递完整等优点,是微生物育种最常用的方法之一。结合相关研究进展,分析了原生质体融合技术的组成,包括制备、再生、融合的影响因素以及融合子的筛选方法,重点评述了原生质体融合技术应用在微生物育种中的最新进展,以及微生物原生质体融合技术的发展前景。 关键词:微生物原生质体融合遗传育种基因组重组 引言: 微生物菌种是发酵工业中的一个关键因素,它决定了发酵过程的成败及某一发酵产品是否具有工业化价值。自然界中的原始菌株大多不具有很高的工业化价值,因此需要对菌株进行选育和改良,以提高产品的质量,降低成本。原生质体融合技术是起源于20世纪60年代的一项重要的菌种改良技术,是将亲株细胞分别去除细胞壁后进行融合,经基因组间的交换重组,获得融合子的过程。与其他育种技术相比,原生质体融合技术具有重组频率高、受结合型或致育型限制小以及遗传物质传递完整且不需要完全了解作用机制等优点,因而被国内外微生物育种学者广泛应用。 1974年,匈牙利的Ferenczy成功将白地霉(Geotrichum candidum)营养缺陷型突变株的原生质体进行融合,使原生质体融合技术首次应用于微生物中。接下来的几十年,该技术的基本实验方法逐步完善,现已作为一项十分有用的技术广泛应用于工业微生物菌种选育中。本文就原生质体融合技术的过程及其应用于微生物育种方面的最新进展做了简要综述,并分析了目前存在的问题及未来的发展方向。 1 资料和方法: 1.1 资料来源 由第一作者在CNKI进行检索。网址:https://www.wendangku.net/doc/567534096.html,/。英文资料的检索时间范围为2007/2012;中文资料的检索时间范围为2007/2012。英文检索词为“protoplast fusion、research、progressions”;中文检索词为“原生质体融合、应用、研究进展”。 1.2 入选标准 纳入标准:①原生质体融合技术过程及其影响因素。②原生质体在微生物工程中的应用③原生质体技术应用的工业实例。

植物原生质体的融合技术探析

植物原生质体的融合技术探析 原生质体是组成细胞的一个形态结构单位, 原生质体是指被去掉了细胞壁后的被细胞膜包围的“裸露细胞”, 是开展基础研究的主要材料。1960年英国科学家Cocking第一次用酶法大量制备原生质体, Cocking采用的方法是在番茄幼苗的根组织中加入可降解细胞壁的等渗酶液, 在一定条件下培养一段时间后, 发现大部分细胞的细 胞壁被降解, 从而制备出大量有活力的原生质体。 原生质体融合技术可克服不同原生质体间的排斥力, 使两种不同种属的原生质体间发生膜融合、胞质融合和核融合, 进而形成具有含两种遗传物质的杂交细胞, 克服远缘杂交的不亲和性和子代不育 等障碍。另外, 可转移优良的生物性状, 实现基因重组, 而改良现有品种。目前原生质体融合所改良的目标性状包括抗冻、抗干旱、抗病毒、抗虫、耐高盐等, 还可按照人们预先的期望创造出新物种。 2.1、自发融合 在酶解细胞壁形成原生质体的过程中, 相邻的原生质体会因细胞间胞间连丝的扩展和粘连而彼此融合形成同核体 (homokaryon) 。每个同核体内可包含两个或多个核, 这种类型原生质体的融合被称 作为自发融合。多核融合体常出现在植物幼嫩叶片或分裂旺盛的培养

细胞制备的原生质体中。如在玉米胚乳愈伤组织细胞和玉米胚悬浮细胞原生质体中, 大约有50%是多核融合体。 2.2、高p H-高Ca2+法 通常情况下, Ca2+影响细胞融合的效率比Na+和K+要低, 但是在高p H环境下, 高浓度的Ca2+影响细胞融合的效率大大升高。该法以钙盐作诱导剂, 在高Ca2+高p H的条件下, 使原生质体发生融合。该种方法在1973年是由Keller和Melchers进行诱导烟草原生质体融合时创造的。具体是将两个原生质体的混合物放于含有7.35 g/L Ca Cl2·2H2O和72.87 g/L甘露醇的溶液中, p H值为10.5, 在200 rpm/min低速下离心3 min, 然后将离心管保持在37℃水浴锅中40~50 min。但这种方法仅适合叶肉原生质体的融合, 并且要注意高p H环境对某些细胞生理活性产生的影响。 2.3、聚乙二醇 (PEG) 法 PEG是一种大分子量的水溶性多聚化合物。采用PEG法, 需将两种不同的原生质体以合适比例混合后, 加入28%~58%的PEG溶液处理15~30 min, 然后用培养基进行清洗后即可培养。后来有学者对PEG 法进行了改进, 即逐步降低PEG的浓度, 提高溶液中Ca2+的浓度和p

相关文档
相关文档 最新文档