文档库 最新最全的文档下载
当前位置:文档库 › 抛物线的概念、性质、几何意义

抛物线的概念、性质、几何意义

抛物线的概念、性质、几何意义
抛物线的概念、性质、几何意义

抛物线的概念、性质、几何意义

【教学内容】

抛物线的概念、性质、几何意义及其直线与抛物线的位置关系、抛物线的应用等。

【教学目标】

1、掌握抛物线的定义,动点到定点的距离等于动点到定直线的距离,则动点的轨迹是抛物线。熟练掌握顶点在原点,对称轴为坐标轴的抛物线的四种标准形式:y 2=2px 、y 2=-2px 、x 2=2py 、x 2=-2py (p >0)及其它们的焦点坐标、对称轴方程。

2、焦参数p (p >0)的几何意义为抛物线的焦点到其准线的距离。若已知了抛物线顶点在顶点,焦点在x 轴上,则可设抛物线的方程为y 2=2ax (a ≠0);若抛物线的顶点在原点,焦点在y 轴上,则可设抛物线的方程为x 2=2ay (a ≠0),再由另外一个条件就可以求出抛物线标准方程了。若顶点在原点,焦点在坐标上,则就要分焦点在x 轴上和焦点在y 轴上两种情况来设抛物线的方程。

3、抛物线标准方程中,判别焦点在哪个轴上的方法是看方程的一次项,若一次项的变量为x ,则焦点在x 轴上;若一次项的变量为y ,则焦点在y 轴上。另外,对于抛物线

y 2=2ax (a ≠0),焦点坐标为(

2a ,0),准线方程为2

a x -=;对于抛物线x 2=2ay (a ≠0)焦点坐标为(0,2a ),准线方程为2

a

y -=。这一结论对a >0及a <0均成立。

4、在抛物线中,抛物线上的动点到焦点的距离我们常常转化为动点到准线的距离来

处理,这一思想方法在抛物线中有着广泛的应用。我们在学习时要引起重视。

【知识讲解】

例1、求经过定点A (-3,2)的抛物线的坐标准方程。 解:抛物线过第二象限内的点A (-3,2),应考虑开口向上及向左两种情形。 (1)若开口向左,设抛物线方程为y 2=-2px ,因为抛物线过点A (-3,2),∴22=-2p(-3)即342=

p ,则抛物线方程为x y 3

42

-=。 (2)若开口向上,设其方程为x 2=2py ,因为抛物线过点A (-3,2),∴22)3(2

?=-p ,

即292=

p ,故得抛物线方程为y x 2

92

=。 综上所述,抛物线的方程为x y 342-=或x 2

种类型来求解。

例2、如图,动圆M 与定直线y=2相

1)3(:22=++y x C 相外切,求动圆圆心M 的轨迹方程。

解:设动圆圆心M (x ,y )动圆半径为r ,过点M 作MN 垂直于直线y=2,N 为垂足,则有

1||1||+=+=MN r MC ,动点M 到定点C 的距离等于它到直线y=2的距离加上1,∴

动点M 到定点C (0,-3)的距离等于它到定直线y=3的距离,由抛物线的定义可知,动点M 的轨迹方程是以C (0,-3)为焦点,直线y=3为准线的抛物线方程,即x 2=-12y 。 例3、 解:设△OAB F 上,∴OF ⊥AB 对称性可知,∴1-=?BF

AO k k 即圆心在x A (

25p ,p 52

9

22=-+px y x 例4圆的方程。

解:因为圆心到定点A (2,0)的距离等于它到直线x=-2的距离,由抛物线的定义可知,圆心必在抛物线y 2=8x 上,又已知圆心在直线4x -5y -12=0上,解方程组

125482=--=y x x y 得 2

1

=x 或 18=x

2-=y 12=y 设圆的半径为r ,

当2 ,21-==

y x 时,2

5221=+=r

当12 ,18==y x 时,20218=+=r ,所以,所求圆的方程为4

25

)2()21(22=++-

y x 2

||2a 说明:若已知了圆锥曲线的准线方程、离心率及圆锥曲线上的一点的坐标,要求与准线对应的焦点或顶点的轨迹方程时,我们通常是先假设出与准线对应的焦点的坐标,然后由圆锥曲线的第二定义求出该焦点的轨迹方程。若还要求对应顶点的轨迹时,我们仍可以把顶点看成是圆锥曲线上的点,再由第二定义可以找出顶点的坐标与焦点的坐标间的关系,然后再把焦点的坐标代入焦点轨迹方程即可,如椭圆中:求经过点M (1,2),以y 轴为准线,离心率等于

2

1

的椭圆的左顶点的轨迹方程。该题就可以用上述方法,先方程为:(4)3

2(92

-+-

y x 例6、抛物线y 2=8x 物线上找一点M ,使|MA|+ 解:如图所示,A (4准线的垂线,E

标为(

2

1

,-2),现在证明|MA|+|MF|为最小,在抛物线y 2=8x 上取一点M ',作M 'E '⊥准线于E ',根据抛物线定义,|MF|=|ME|,|M 'F|=|M 'E '|,|MA|+|MF|=|AE|,|M 'A|+|M 'F|=|M 'A|+|M 'E '|而|AE|<|M 'F|+|M 'E '|∴|MA|+|MF|最少。

注意:在与抛物线有关的计算或证明中,我们要不失时机地运用其定义,这样可以使计算或证明来得简捷方便。 现由①②消去k ,由①×②得,,2所以x 于A 又△

解:(1)显然,l 与x 轴不垂直,令)1(6:+=+x k y l ,(k ≠0)则16

-+=

k

y x ,∴042442=+--k y ky ,(*)△=16+16k(6-k)>0即k 2-6k -1<0,而方程k 2-6k -1=0的两k 为103±=k ∴)103 ,0()0 , 103(+?-∈k 。

(2)设A(x 1,y 1)、B (x 2,y 2),AB 中点Q (x 0,y 0),由方程(*)得:k

y y 4

21=

+, 212

421216162212121-+=-++=-++-+=

+k

k k y y k y k y x x ∴)2 ,162(2k

k k Q -+,∵PQ ⊥AB ,∴12

11620

22-=-+-?k k k k ,∴041272=--k k ,

k=2或72

-=k (舍去),所以k=2。

例9、已知直线)( 0:N n ny x l ∈=-,圆1)1()1(:22=+++y x M ,抛物线T :

2

)1(4k k x +=①

k y 4=

②由②得y

k 4

=代入①得)14(4162+=y y x ,244y y x +=即: )1(4)2(2+=+x y ,又在方程(*)中016)12(1622>-++=?k k k ,∴2

1

-

>k ,又

k ≠0∴) ,0()0 ,21(∞+?-

∈k ,∴) ,0()2 ,(1∞+?--∞∈k

,∴ ,(4

--∞∈k

,(--∞∈y 例11两点B 和C 关系式

PC BP = 分析:Q 直线l 解:设P 线(:=x k y l

=k 2-8k -8>0,∴624+>k 或624-

1

||||y y C C B B =

'' ∴

=-++-=-+--?+-=++=+?+=

'4)()(22)2()2()2()2(1212121211221212212

12

2

1

11x x x x x x x k x k x k k x k x y y y x y x y y x y y x x

)2(4

12

2442≠'-+=-+x k k k ,∴44)2(+'=-'x x k 又)2(-'='x k y ,∴44+'='x y ,这就是P 点的轨迹方程。∵)44

1(12412)2(-+=-=

-'='k k k x k y 且2≠'x ,又624+>k 或624-

∵ 32x x '

+=

∴ 23-='x x 3

y y '

= y y 3='

代入44+'='x y 中,得04312=--y x 其中)63

44 , 6344(+-

∈y 且4≠y ∴轨迹为直线04312=--y x 介于3

6

446344+

<<-y 间的一段,且除去点(34,4)。

抛物线定义及性质的简单应用(讲义及配套练习)

抛物线定义及性质的简单应用(讲义2013.4.2) 复习回顾 1.点在直线 的抛物线的标准方程是________________. 2.抛物线y 2=4x ,经过点P (3,m ),则点P 到抛物线焦点的距离等于 ( ) A.9 4 B .4 C.13 4 D .3 3.与直线2x-y+4=0平行的抛物线y=x 2的切线方程是( ) (A) 2x-y+3=0 (B) 2x-y-3=0 (C) 2x-y+1=0 (D) 2x-y-1=0 4.若点P 到直线1x =-的距离比它到点(20), 的距离小1,则点P 的轨迹方程是 5.已知过抛物线2 4y x =的焦点F 的弦长为36,求弦所在直线方程。 简单应用 6. 如果128,,,P P P 是抛物线2 4y x =上的点,它们的横坐标依次为128,,,x x x ,F 是抛物 线的焦点,若12810x x x +++= ,则1 28PF P F P F +++= 7.已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,|AF|+|BF|=3,则线段AB 的中点到y 轴的距离为( ) A . B . 1 C . D . 例1:抛物线y 2=8x 的焦点为F ,A (4,-2)为一定点,在抛物线上找一点M ,使|MA|+|MF|

为最小,求M 点的坐标。 练习:抛物线y 2=4x 的焦点为F ,A (2,3)为一定点,M 为抛物线上的动,M 到准线的距离为d ,则d +|MF|的最小值为 例2:抛物线y x 4 1 2= 上的点到直线54-=x y 的距离最短,则该点的坐标 ( ) A .(0,0) B .)4,1( C .)1,2 1 ( D .)1,5( 练习:抛物线24y x =上的点到直线45y x =-的最近距离是 . 例3:一抛物线形拱桥,当水面离桥顶2m 时,水面宽4m ,若水面下降1m ,求水面的宽.

与绝对值有关的运算

与绝对值有关的运算 教学目标: 1、明确掌握绝对值定义,灵活应用绝对值性质 2、体会数形结合思想在绝对值内容中的作用 3、体验绝对值与各知识点的融合,明了概念本源的重要性 教学重点: 1、绝对值的本源定义和性质 2、绝对值性质在各种知识点中的灵活应用 教学难点: 绝对值的定义和性质在各种知识点中的融合体现出来的灵活性 一、知识复习 1、绝对值定义 数轴上表示数a的点与原点的距离叫做数a的绝对值,记作a——七上课本P? 分析: ⑴绝对值的定义是用数轴来定义的,本身就体现了数形结合,所以数形结合思想在应用绝对值定义时 要充分重视 ⑵绝对值是距离,所以绝对值是一个非负数 2、绝对值性质 一个正数的绝对值是它本身 一个负数的绝对值是它的相反数 0的绝对值是0 分析: ⑴确定“它”。谁是“它”?这绝对值符号里面的所有式子,可能是单项式也可能是多项式还可能是 分式; ⑵判断“它”的正负。大—小=正,小—大=负。 ⑶根据性质去掉绝对值符号。当它为负时出来=它的相反数,书写时就是让“它”中的每一项都反。 二、呈现与绝对值有关的题型 1、在具体数据中化简绝对值 -= ⑴化简:5_______ ⑵计算:+- ⑶计算:12

2、与数轴结合化简绝对值 ⑴ ⑵ 3、解含绝对值的方程 ⑴2x = ⑵15x -= ⑶若20x +=,求2018()x y 的算术平方根. ⑷如果21250x y x y -++--=,求x y +的值. ⑸已知x =y 是3的平方根,且y x x y -=-,求x y +的值.

4、解含绝对值的不等式 ⑴2x < ⑵3x > 总结:x a <情况和x a > (0)a ≥ ⑶解关于x 的不等式11ax ax ->- 三、练习: 1ππ- 2、实数a 、b 在数轴上所对应的点的位置如图所示: 化简:__________b a --=; 化简:2__________a a b -+= 3____________________ 4、解方程:23x += 5、若实数x 、y 满足21(2017)0x y ++-=,求y x -的值 6、解不等式:213x -≤

抛物线的简单几何性质教案 (1)

抛物线的简单几何性质; ●教学目标 1.掌握抛物线的几何性质; 2.能根据几何性质确定抛物线的标准方程; 3.能利用工具作出抛物线的图形. ●教学重点 抛物线的几何性质 ●教学难点 几何性质的应用 ●教学方法 学导式 ●教具准备 三角板 ●教学过程 Ⅰ.复习回顾 简要回顾抛物线定义及标准方程的四种形式(要求学生回答) 师:这一节,我们根据抛物线的标准方程)0(22 p px y = ①来研究它的几何性质 Ⅱ.讲授新课 1. 范围 当x 的值增大时,y 也增大,这说明抛物线向右上方和右下方无限延伸.(但应让学生注意与双曲线一支 的区别,无渐近线). 2.对称性 抛物线关于x 轴对称. 我们把抛物线的对称轴叫抛物线的轴. 3.顶点 抛物线和它的轴的交点叫抛物线的顶点.即坐标原点. 4.离心率 抛物线上的点M 与焦点的距离和它到准线的距离的比,叫抛物线的离心率,用e 表示.由抛物线定义可知,e =1. 说明:对于其余三种形式的抛物线方程,要求自己得出它们的几何性质,这样,有助于学生掌握抛物线四种标准方程. 师:下面,大家通过问题来进一步熟悉抛物线的几何性质. 例1.已知抛物线关于x 轴对称,它的顶点在原点,并且经过点M (2,-22),求它的标准方程,并用描点法画出图形. 师:由已知条件求抛物线的标准方程时,首先要根据已知条件确定抛物线标准方程的类型,再求出方程中的参数P . 解:因为抛物线关于x 轴对称,它的顶点在原点,并且经过点M (2,-22),所以可设它的标准方程为: )0(22 p px y =

因为点M 在抛物线上,所以22)22(2?=-p ,即2=p 因此所求方程是.42x y = 下面列表、描点、作图: 说明:①利用抛物线的对称性可以简化作图步骤; ②抛物线没有渐近线; ③抛物线的标准方程)0(22 p px y =中p 2的几何意义:抛物线的通 径,即连结通过焦点而垂直于x 轴直线与抛物线两交点的线段. 师:下面我们通过练习进一步熟悉并掌握抛物线的标准方程. Ⅲ.课堂练习 课本P 122练习1,2. ●课堂小结 师:通过本节学习,要求大家掌握抛物线的几何性质,并在具体应用时注意区分抛物线标准方程的四种形式. ●课后作业 习题8.6 1,2,5. ●板书设计 ●教学后记

(整理)抛物线的概念性质几何意义

抛物线的概念、性质、几何意义 【教学内容】 抛物线的概念、性质、几何意义及其直线与抛物线的位置关系、抛物线的应用等。 【教学目标】 1、掌握抛物线的定义,动点到定点的距离等于动点到定直线的距离,则动点的轨迹是抛物线。熟练掌握顶点在原点,对称轴为坐标轴的抛物线的四种标准形式:y 2=2px 、y 2=-2px 、x 2=2py 、x 2=-2py (p >0)及其它们的焦点坐标、对称轴方程。 2、焦参数p (p >0)的几何意义为抛物线的焦点到其准线的距离。若已知了抛物线顶点在顶点,焦点在x 轴上,则可设抛物线的方程为y 2=2ax (a ≠0);若抛物线的顶点在原点,焦点在y 轴上,则可设抛物线的方程为x 2=2ay (a ≠0),再由另外一个条件就可以求出抛物线标准方程了。若顶点在原点,焦点在坐标上,则就要分焦点在x 轴上和焦点在y 轴上两种情况来设抛物线的方程。 3、抛物线标准方程中,判别焦点在哪个轴上的方法是看方程的一次项,若一次项的变量为x ,则焦点在x 轴上;若一次项的变量为y ,则焦点在y 轴 上。另外,对于抛物线y 2=2ax (a ≠0),焦点坐标为(2a ,0),准线方程为2a x -=; 对于抛物线x 2=2ay (a ≠0)焦点坐标为(0,2a ),准线方程为2 a y -=。这一 结论对a >0及a <0均成立。 4、在抛物线中,抛物线上的动点到焦点的距离我们常常转化为动点到准线的距离来处理,这一思想方法在抛物线中有着广泛的应用。我们在学习时要引起重视。 【知识讲解】 例1、求经过定点A (-3,2)的抛物线的坐标准方程。 解:抛物线过第二象限内的点A (-3,2),应考虑开口向上及向左两种情形。 (1)若开口向左,设抛物线方程为y 2=-2px ,因为抛物线过点A (-3, 2),∴22=-2p(-3)即342=p ,则抛物线方程为x y 3 4 2-=。 (2)若开口向上,设其方程为x 2=2py ,因为抛物线过点A (-3,2), ∴22)3(2?=-p ,即292=p 综上所述,抛物线的方程为x y 342-=

有理数的概念和性质

学生姓名杨其明年级初一授课时间2012-9-8 教师姓名许晶课时 2 教学目标: 1.通过具体情境的观察、思考、探索,理解有理数的概念,了解分类讨论思想; 2.借助数轴理解数形结合思想,学会用数轴比较数的大小,解决一些数学问题; 3.理解互为相反数的意义、绝对值的意义,会进行与之有关的计算; 重点: 1、负数的概念,并会应用负数概念解决一些实际问题。 2、有理数概念的理解,有理数的分类和识别,。 3、绝对值和相反数的概念,用数轴比较数的大小,解决一些实际问题。 4、有理数的加减法法则 难点:有理数的概念、分类和识别 说明:本次课主要是正对课本1.1正数和负数、1.2有理数进行复习巩固。 第一部分:正负数、有理数定义,有理数分类 【知识回顾】 (1)正数:像3,2,+0.5这样大于0的数叫做。 (2)负数:像-3,-2,-155这样在正数前面加上负号“-”的数叫做。 (3)0既不是也不是,0是正数与负数的。0的意义已不仅是表示“没有”,如0℃是一个确定的温度,海拔0表示海平面的平均高度。 (4)在同一问题中,分别用正数和负数表示的量具有的意义。 (5)对于正数与负数,不能简单理解为带“+”就是正数,带“-”的就是负数,如-a,当a=0时,-a=,当a表示负数时-a是,只有当a是正数时-a才是。 2、有理数的定义 、、统称为整数。如:-2,101,0,-10.正分数和负分数统称为, 如:1.2,0.3, 2 5 -, 22 7 ,-3.1。如:-1,0.003,0, 6 7 -, 1 3 ,-7.9,32。整数和 分数统称有理数。有理数也可以分为正数、零、负数,正数又分为、。 3、有理数分类

高中数学抛物线的简单几何性质教案

《抛物线的简单几何性质》教案 《抛物线的简单几何性质》教案及教材分析 教材:《全日制高级中学课本(必修)数学》第二册(上) 一. 教学理念 “数学教师不能充当数学知识的施舍者,没有人能教会学生,数学素质是学生在数学活动中自己获得的。”因此,教师的责任关键在于在教学过程中创设一个”数学活动”环境,让学生通过这个环境的相互作用,利用自身的知识和经验构建自己的理解,获得知识,从而培养自己的数学素质,培养自己的能力。 数学源于生活,高于生活,学习数学的最终目的是应用于生活(回归生活),通过平时教学,注意这方面的渗透,培养学生解决实际问题的能力。 二. 教材分析 1、本节教材的地位 本节通过类比椭圆、双曲线的几何性质,结合抛物线的标准方程讨论研究抛物线的几 何性质,让学生再一次体会用曲线的方程研究曲线性质的方法,学生不难掌握抛物线的范围、对称性、顶点、离心率等性质,对于抛物线几何性质的应用是学生学习的难点,教学中应强调几何模型与数学问题的转换。例1的设计,在于让学生通过作图感知p 的大小对抛物线开口的影响,引出通径的定义。例2的设计旨在利用抛物线的几何性质数学地解决实际问题即作抛物线的草图。 本节是第一课时,在数学思想和方法上可与椭圆、双曲线的性质对比进行,着重指出它 们的联系和区别,从而培养学生分析、归纳、推理等能力。 2、教学目标 (1) 知识目标: ⅰ 抛物线的几何性质、范围、对称性、定点、离心率。. ⅱ 抛物线的通径及画法。 (2) 能力目标:. ⅰ 使学生掌握抛物线的几何性质,根据给出条件求抛物线的标准方程。 ⅱ 掌握抛物线的画法。 (3) 情感目标: ⅰ 培养学生数形结合及方程的思想。 ) 0(22>=p px y

抛物线知识点与性质大全

抛物线与方程 【知识讲解】 1、定义 平面,到定点的距离与到定直线距离相等的点的轨迹(定点不在定直线上).其中定点称为抛物线的焦点,定直线称为抛物线的准线. 【注】若定点在直线上,则轨迹为过该点垂直于直线的一条直线. 2、抛物线的方程及其简单性质 3、通径 过抛物线的焦点F 作直线⊥l x 轴,交抛物线22y px =于,A B 两点,弦长2=AB p ,此时的弦长称为通径,此为所有的焦点弦中最短的弦. 4、焦点弦的性质 (1)过抛物线()220y px p =>的焦点F 的直线交抛物线于()()1122,,,A x y B x y 两点,则 ①12p AF x =+,22p BF x =+;②12x x ?=定值2 4 p ,12y y ?=定值2 p -; ③ 11||||FA FB +=定值2p ;④()1221122 p x y x y y y +=-+. (2)过抛物线()220y px p =>的焦点F 作倾斜角为θ(斜率为k )的直线交抛物线于,A B (A 在B 上方)两点,则 ①1cos p A F θ= -上;②1cos p B F θ=+下;③22 22s 1i 1n p k AB p θ? ?+ =??? =. (3)过抛物线()220y px p =>的焦点F 作直线1l 交抛物线于,A B 两点,分别过,A B 作准线 l 的垂线,垂足分别为,P Q ,设AB 中点为M ,过M 作准线的垂线,垂足为N ,则

①AN BN ⊥;②PF QF ⊥;③NF AB ⊥; ④PF AN ⊥;⑤QF BN ⊥; ⑥以AB 为直径的圆与准线相切,切点即为N ; ⑦以()AF BF 为直径的圆与y 轴相切; ⑧2 4PQ AF BF =; 2 4PQF APF BQF S S S ???=?; ⑨2 32sin ABQP p S θ =四边形. (4)过抛物线()220y px p =>的焦点F 作直线1l 交抛物线于,A B 两点,分别过,A B 作准线 l 的垂线,垂足分别为,P Q ,准线l 与x 轴交于H 点,O ①AHF BHF ∠=∠; ②,,A O Q 三点共线; ③,,B O P 三点共线; (5)过抛物线()220y px p =>的焦点F 作直线1l 交抛物 线于,A B 两点,线段AB 的垂直平分线交x 轴于E 点,则 1 2 EF AB = . (6)过抛物线()220y px p =>的焦点F 作直线1l 交抛物线于,A B 两点,G 为准线上的一动点,且直线GA 、GF 、GB 的斜率均存在,则直线GA 、GF 、GB 的斜率成等差数列,即2GA GB GF k k k +=. 5、过点()(),00M m m >的直线交抛物线()220y px p =>于()()1122,,,A x y B x y 两点,则 ①12x x ?=定值2m ;②12y y ?=定值2pm -; ③2OA OB m p ⊥?=;④m p =时, 2211||||MA MB += 定值2 1 p . 6、设点是抛物线()220y px p =>的焦点,12,,,n P P P 是抛物线上的n 个不同的点,若 120n FP FP FP ++ +=,则12n FP FP FP np ++ +=.

实数的有关概念和性质

实数的有关概念和性质 一、选择题 1.(2018四川泸州,1题,3分) 在-2,0,12 ,2四个数中,最小的是( ) A.-2 B.0 C. 12 D.2 【答案】A 【解析】有理数比较大小,负数小于0,0小于正数,因为-2<0< 21<2,故选A 【知识点】有理数比较大小 2. (2018四川内江,1,3)-3的绝对值为( ) A .-3 B .3 C .-13 D .13 【答案】B 【解析】解:因为负数的绝对值等于它的相反数,所以-3的绝对值为3.故选择B . 【知识点】绝对值;相反数 3. (2018浙江衢州,第1题,3分)-3的相反数是( ) A .3 B .-3 C . 13 D .13- 【答案】A. 【解析】本题考查了相反数的定义,解题的关键掌握相反数的概念.∵-3的相反数是3,故选A. 【知识点】相反数; 4. (2018浙江金华丽水,1,3分)在0,1,12- ,-1四个数中,最小的数是( ). A . 0 B .1 C . 12- D . -1 【答案】D . 【解析】∵-1<1 2 -<0<1,∴最小的数是-1,故选D . 【知识点】有理数的大小比较 5. (2018山东滨州,2,3分)若数轴上点A 、B 分别表示数2、-2,则A 、B 两点之间的距离可表示为( )

A .2+(-2) B .2-(-2) C .(-2)+2 D .(-2)-2 【答案】B 【解析】在数轴上,两点之间的距离等于对应两数之差的绝对值,故A 、B 两点之间的距离可以表示为) ()(2--22--2= 【知识点】距离的含义、绝对值的性质 6.(2018安徽省,1,4分)8-的绝对值是( ) A.8- B.8 C.8± D.18 - 【答案】B 【解析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.根据负数的绝对值等于它的相反数可得答案. ∵-8<0,∴|-8|=8.故选:B . 【知识点】绝对值 7. (2018甘肃白银,1,3) -2018的相反数是( ) A.-2018 B.2018 C. 12018- D. 12018 【答案】B. 【解析】:-2018的相反数为2018. 即求一个实数的相反数就在它前面添一个“—”号。 故选B 【知识点】相反数 8. (2018湖南岳阳,1,3分)2018的倒数是 A.2018 B. 20181 C.20181- D.-2018 【答案】D. 【解析】解:0)2018(-=1. 故选D. 【知识点】零指数幂 9.(20182重庆B 卷,1,4)下列四个数中,是正整数的是 ( ) A .-1 B .0 C . 12 D .1 【答案】D . 【解析】易知-1是负整数,12 是分数,1是正整数,而整数包括正整数、0和负整数,故选D . 【知识点】实数的概念 整数 正整数. 10. (2018浙江绍兴,1,3分)如果向东走2m 记为+2m 则向西走3m 可记为( )

【学案】 绝对值的定义和性质

绝对值 学习目标: 1、理解、掌握绝对值概念.体会绝对值的作用与意义 2、掌握求一个已知数的绝对值和有理数大小比较的方法. 3、体验运用直观知识解决数学问题的成功. 学习重点:绝对值的概念 学习难点:绝对值的概念与两个负数的大小比较 教学方法:学生自主探索 教学过程 一、学前准备 问题:如下图 小红和小明从同一处O出发,分别向东、西方向行走10米,他们行走的路线(填相同或不相同),他们行走的距离(即路程远近) 二、合作探究、归纳 1、由上问题可以知道,10到原点的距离是,—10到原点的距离也是 到原点的距离等于10的数有个,它们的关系是一对 . 定义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作∣a∣ 2、练习 (1)式子∣-5.7∣表示的意义是 . (2)—2的绝对值表示它离开原点的距离是个单位,记作 . (3)∣24∣= . ∣—3.1∣= ,∣—1 3 ∣= ,∣0∣= . 3、思考、交流、归纳 由绝对值的定义可知:一个正数的绝对值是;一个负数的绝对值是它的;0的绝对值是 . 用式子表示就是: 当a是正数(即a>0)时,∣a∣= ; 当a是负数(即a<0)时,∣a∣= ; 当a=0时,∣a∣= . 4、随堂练习 P11第1、2、3大题

5、阅读思考,发现新知 阅读P12,你有什么发现吗? 在数轴上表示的两个数,右边的数总要 左边的数 也就是:(1)正数 0,负数 0,正数大于负数. (2)两个负数,绝对值大的 . 三、巩固新知,灵活应用 1、例题 P13 2、比较下列各对数的大小:—3和—5; —2.5和—∣—2.25∣ 四、小结: 本节课的收获: 你还有什么疑惑? 五、当堂清 1.______7.3=-;______0=;______75.0=+-. 2.______31=+;______45=--;______3 2=-+. 3.______510=-+-;______5.55.6=---. 4.______的相反数是它本身,_____的绝对值是它本身,_______的绝对值是它的相反数.

3.3.2 抛物线的简单几何性质

3.3.2抛物线的简单几何性质 基础过关练 题组一抛物线的几何性质及其运用 1.已知抛物线x2=2py(p>0)的准线经过点(-1,-1),则抛物线的焦点坐标为() A.(-1,0) B.(0,-1) C.(1,0) D.(0,1) 2.已知点P(6,y)在抛物线y2=2px(p>0)上,若点P到抛物线焦点F的距离等于8,则焦点F到抛物线准线的距离等于() A.2 B.1 C.4 D.8 3.已知抛物线y2=2px(p>0)的准线与圆(x-3)2+y2=16相切,则p的值为() B.1 C.2 D.4 A.1 2 4.已知点A是抛物线y2=2px(p>0)上一点,F为抛物线的焦点,O为坐标原点,当 |AF|=4时,∠OFA=120°,则抛物线的准线方程是() A.x=-1 B.y=-1 C.x=-2 D.y=-2 5.抛物线y2=4x的焦点为F,点P为抛物线上的动点,点M为其准线上的动点,当 △FPM为等边三角形时,其面积为() A.2√3 B.4 C.6 D.4√3 6.一条光线从抛物线y2=2px(p>0)的焦点F射出,经抛物线上一点B反射后,反射光线经过点A(5,4),若|AB|+|FB|=6,则抛物线的标准方程为.

题组二直线与抛物线的位置关系 7.已知直线l:y=x-1与抛物线C:y2=4x相交于A、B两点,则|AB|为() A.5 B.6 C.7 D.8 8.已知直线y=kx-k及抛物线y2=2px(p>0),则() A.直线与抛物线有一个公共点 B.直线与抛物线有两个公共点 C.直线与抛物线有一个或两个公共点 D.直线与抛物线可能没有公共点 9.过点(0,1)且与抛物线y2=4x只有一个公共点的直线有() A.1条 B.2条 C.3条 D.0条 10.(2020山东菏泽高二上期末)已知斜率为k的直线l与抛物线C:y2=4x交于A、B 两点,线段AB的中点为M(2,1),则直线l的方程为() A.2x-y-3=0 B.2x-y-5=0 C.x-2y=0 D.x-y-1=0 11.已知抛物线C:y2=4x的焦点为F,直线l:y=x-2与抛物线C交于A,B两点. (1)求弦AB的长; (2)求△FAB的面积.

绝对值的意义及应用

绝对值的意义及应用 绝对值是初中代数中的一个重要概念,应用较为广泛.在解与绝对值有关的问题时,首先必须弄清绝对值的意义和性质。对于数x而言,它的绝对值表示为:|x|. 一. 绝对值的实质: 正实数与零的绝对值是其自身,负实数的绝对值是它的相反数,即 也就是说,|x|表示数轴上坐标为x的点与原点的距离。 总之,任何实数的绝对值是一个非负数,即|x|≥0,请牢牢记住这一点。 二. 绝对值的几何意义: 一个数的绝对值就是数轴上表示这个数的点到原点的距离。 例1. 有理数a、b、c在数轴上的位置如图所示,则式子|a|+|b|+|a+b|+|b-c|化简结果为( ) A.2a+3b-c B.3b-c C.b+c D.c-b (第二届“希望杯”数学邀请赛初一试题) 解:由图形可知a<0,c>b>0,且|c|>|b|>|a|,则a+b>0,b-c<0. 所以原式=-a+b+a+b-b+c=b+c,故应选(C). 三. 绝对值的性质: 1. 有理数的绝对值是一个非负数,即|x|≥0,绝对值最小的数是零。 2. 任何有理数都有唯一的绝对值,并且任何一个有理数都不大于它的绝对值,即x≤|x|。 3. 已知一个数的绝对值,那么它所对应的是两个互为相反数的数。 4. 若两个数的绝对值相等,则这两个数不一定相等(显然如|6|=|-6|,但6≠-6),只有这两个数同号,且这两个数的绝对值相等时,这两个数才相等。 四. 含绝对值问题的有效处理方法 1. 运用绝对值概念。即根据题设条件或隐含条件,确定绝对值里代数式的正负,再利用绝对值定义去掉绝对值的符号进行运算。

例2. 已知:|x-2|+x-2=0, 求:(1)x+2的最大值;(2)6-x的最小值。 解:∵|x-2|+x-2=0,∴|x-2|=-(x-2) 根据绝对值的概念,一个数的绝对值等于它的相反数时,这个数为负数或零, ∴x-2≤0,即x≤2,这表示x的最大值为2 (1)当x=2时,x+2得最大值2+2=4; (2)当x=2时,6-x得最小值6-2=4 2. 用绝对值为零时的值分段讨论.即对于含绝对值代数式的字母没有条件限制或限制不确切的,就需先求零点,再分区间定性质,最后去掉绝对值符号。 例3. 已知|x-2|+x与x-2+|x|互为相反数,求x的最大值. 解:由题意得(|x-2|+x)+(x-2+|x|)=0,整理得|x-2|+|x|+2x-2=0 令|x-2|=0,得x=2,令|x|=0,得x=0 以0,2为分界点,分为三段讨论: (1)x≥2时,原方程化为x-2+x+2x-2=0,解得x=1,因不在x≥2的范围内,舍去。 (2)0≤x<2时,原方程化为2-x+x+2x-2=0,解得x=0 (3)x<0时,原方程化为2-x-x+2x-2=0,从而得x<0 综合(1)、(2)、(3)知x≤0,所以x的最大值为0 3. 整体参与运算过程.即整体配凑,借用已知条件确定绝对值里代数式的正负,再用绝对值定义去掉绝对值符号进行运算。 例4. 若|a-2|=2-a,求a的取值范围。 解:根据已知条件等式的结构特征,我们把a-2看作一个整体,那么原式变形为|a-2|=-(a-2),又由绝对值概念知a-2≤0,故a的取值范围是a≤2 4. 运用绝对值的几何意义.即通过观察图形确定绝对值里代数式的正负,再用绝对值定义去掉绝对值的符号进行运算. 例5. 求满足关系式|x-3|-|x+1|=4的x的取值范围. 解:原式可化为|x-3|-|x-(-1)|=4 它表示在数轴上点x到点3的距离与到点-1的距离的差为4 由图可知,小于等于-1的范围内的x的所有值都满足这一要求。

抛物线的简单几何性质练习题

课时作业(十三) [学业水平层次] 一、选择题 1.已知点P (6,y )在抛物线y 2=2px (p >0)上,若点P 到抛物线焦点F 的距离等于8,则焦点F 到抛物线准线的距离等于( ) A .2 B .1 C .4 D .8 【解析】 抛物线y 2=2px (p >0)的准线为x =-p 2,因为P (6,y ) 为抛物线上的点,所以点P 到焦点F 的距离等于它到准线的距离,所 以6+p 2=8,所以p =4,即焦点F 到抛物线的距离等于4,故选C. 【答案】 C 2.(2014·成都高二检测)抛物线y 2=4x 的焦点为F ,点P 为抛物线上的动点,点M 为其准线上的动点,当△FPM 为等边三角形时,其面积为( ) A .2 3 B .4 C .6 D .43 【解析】 据题意知,△FPM 为等边三角形,|PF |=|PM |=|FM |, ∴PM ⊥抛物线的准线.设P ? ?? ??m 24,m ,则M (-1,m ),等边三角形边长为1+m 24,又由F (1,0),|PM |=|FM |,得1+m 24=1+12+m 2,得m =23,∴等边三角形的边长为4,其面积为43,故选D. 【答案】 D 3.已知抛物线y 2=2px (p >0),过其焦点且斜率为1的直线交抛物线于A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准

线方程为( ) A .x =1 B .x =-1 C .x =2 D .x =-2 【解析】 设A (x 1,y 1),B (x 2,y 2),代入抛物线方程得:????? y 21=2px 1, ①y 22=2px 2, ② ①-②得, (y 1+y 2)(y 1-y 2)=2p (x 1-x 2). 又∵y 1+y 2=4,∴y 1-y 2x 1-x 2=2p 4=p 2 =k =1,∴p =2. ∴所求抛物线的准线方程为x =-1. 【答案】 B 4.(2014·课标Ⅱ)设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,则|AB |=( ) B .6 C .12 D .73 【解析】 焦点F 的坐标为? ?? ??34,0,直线AB 的斜率为33,所以直线AB 的方程为y =33? ?? ??x -34, 即y =33x -34,代入y 2=3x , 得13x 2-72x +316=0,

高中数学抛物线经典性质的总结

抛物线

焦点弦长 AB 12()x x p ++ 12()x x p -++ 12()y y p ++ 12()y y p -++ 焦点弦 AB 的几条性质 11(,) A x y 22(,) B x y 以AB 为直径的圆必与准线l 相切 若AB 的倾斜角为α,则22sin p AB α= 若AB 的倾斜角为α ,则22cos p AB α = 2 124 p x x = 212y y p =- 112AF BF AB AF BF AF BF AF BF p ++===?? 切线 方程 00()y y p x x =+ 00()y y p x x =-+ 00()x x p y y =+ 00()x x p y y =-+ 直线 ,抛物线 , ,消y 得: (1)当k=0时,直线l 与抛物线的对称轴平行,有一个交点; (2)当k ≠0时, Δ>0,直线l 与抛物线相交,两个不同交点; Δ=0, 直线l 与抛物线相切,一个切点; Δ<0,直线l 与抛物线相离,无公共点。 (3)若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定) (4) 2. 关于直线与抛物线的位置关系问题常用处理方法 直线l :b kx y += 抛物线 ,)0(φp ① 联立方程法: o x ()22,B x y F y ()11,A x y

???=+=px y b kx y 22 ?0)(2222=+-+b x p kb x k 设交点坐标为),(11y x A ,),(22y x B ,则有0φ?,以及2121,x x x x +,还可进一步求出 b x x k b kx b kx y y 2)(212121++=+++=+, 2212122121)())((b x x kb x x k b kx b kx y y +++=++= 在涉及弦长,中点,对称,面积等问题时,常用此法,比如 a. 相交弦AB 的弦长 2122122124)(11x x x x k x x k AB -++=-+=a k ?+=2 1 或 2122122124)(1111y y y y k y y k AB -++=-+ =a k ?+=2 1 b. 中点),(00y x M , 2210x x x += , 2 2 10y y y += ② 点差法: 设交点坐标为),(11y x A ,),(22y x B ,代入抛物线方程,得 12 12px y = 22 22px y = 将两式相减,可得 )(2))((212121x x p y y y y -=+- 2 121212y y p x x y y += -- a. 在涉及斜率问题时,2 12y y p k AB += b. 在涉及中点轨迹问题时,设线段AB 的中点为),(00y x M , 021*******y p y p y y p x x y y ==+=--, 即0 y p k AB = , 同理,对于抛物线)0(22≠=p py x ,若直线l 与抛物线相交于B A 、两点,点

高三数学第一轮复习:抛物线的定义、性质及

高三数学第一轮复习:抛物线的定义、性质及标准方程 【本讲主要内容】 抛物线的定义及相关概念、抛物线的标准方程、抛物线的几何性质 【知识掌握】 【知识点精析】 1. 抛物线定义: 平面内与一个定点和一条直线的距离相等的点的轨迹叫做抛物线,点叫做抛物线的焦点,直线叫做抛物线的准线,定点不在定直线上。它与椭圆、双曲线的第二定义相仿,仅比值(离心率e)不同,当e=1时为抛物线,当01时为双曲线。 2. 抛物线的标准方程有四种形式,参数的几何意义,是焦点到准线的距离,掌握不同形式方程的几何性质(如下表): 其中为抛物线上任一点。 3. 对于抛物线上的点的坐标可设为,以简化运算。 4. 抛物线的焦点弦:设过抛物线的焦点的直线与抛物线交于,直线与的斜率分别为,直线的倾斜角为,则有,,,,,, 。 说明: 1. 求抛物线方程时,若由已知条件可知曲线是抛物线一般用待定系数法;若由已知条件可知曲线的动点的规律一般用轨迹法。 2. 凡涉及抛物线的弦长、弦的中点、弦的斜率问题时要注意利用韦达定理,能避免求交点坐标的复杂运算。 3. 解决焦点弦问题时,抛物线的定义有广泛的应用,而且还应注意焦点弦的几何性质。 【解题方法指导】 例1. 已知抛物线的顶点在坐标原点,对称轴为轴,且与圆相交的公共弦长等于,求此抛物线的方程。 解析:设所求抛物线的方程为或 设交点(y1>0) 则,∴,代入得

∴点在上,在上 ∴或,∴ 故所求抛物线方程为或。 例2. 设抛物线的焦点为,经过的直线交抛物线于两点,点在抛物线的准线上,且∥轴,证明直线 经过原点。 解析:证法一:由题意知抛物线的焦点 故可设过焦点的直线的方程为 由,消去得 设,则 ∵∥轴,且在准线上 ∴点坐标为 于是直线的方程为 要证明经过原点,只需证明,即证 注意到知上式成立,故直线经过原点。 证法二:同上得。又∵∥轴,且在准线上,∴点坐标为。于是 ,知三点共线,从而直线经过原点。 证法三:如图, 设轴与抛物线准线交于点,过作,是垂足 则∥∥,连结交于点,则

函数的概念及性质

函数的概念及性质 概览:概念,表示方法,图象和性质 1. 概念 函数的定义:传统定义(初中的),近代定义。自变量,对应法则,定义域,值域〖两域都是集合,回答时要正确表示。〗 对应法则f 是函数的核心,是对自变量的“操作”,如)(x f 是对x 进行“操作”,而)(2x f 是对2x 进行“操作”,)2(f 是对2进行“操作” 函数的三要素,或两要素:定义域、对应法则 判定两个函数是否相同。〖定义域和值域分别相同的两个函数不一定是同一函数,例x y x y 2,==;又如])1,0[(,2∈==x x y x y 定义域都取〗 区间 定义,名称,符号,几何(数轴)表示 映射 定义,符号,与函数的异同 2. 函数的表示方法 列表法,图象法,解析法 分段函数 定义域、值域、最值 求函数解析式的常用方法:配凑,换元,待定系数,函数方程(消去法) 3. 函数的图象 作图的步骤:定义域,列表,描点,连线〖注意抓住特征点,如边界点,与两轴的交点等;边界点注意空心/实心〗 带有绝对值符号的函数 定义域,分段脱去绝对值,作图 4. 函数的性质 求定义域 分式,偶次根式,对数的真数和底数,复合函数,实际问题中的实际意义。 求值域 由定义域和对应法则决定,故应先考虑定义域。方法:观察分析,例 函数211)(x x f +=;配方;换元;判别式;单调性;数形结合(图象);基本不等式;反求法(反函数法)等。 单调性 对于定义域内的某个区间而言。 单调区间若不含端点,则必须写成开区间,若含端点,则写成闭区间,通常写成开区间也可。 一个函数可能有多个独立的单调区间,应用逗号相隔回答,不用并集,而函数的两域都是整体性的集合,若有必要则要用并集回答。 图象特征:从左到右升/降。 证明步骤:设值,作差,定号,作答。 判断函数单调性的有关规律。 如增加增得增,减加减得减;注意:增乘增未必增,减乘减未必减(还要看各自的函数值是否同正或同负) 奇偶性

(完整版)抛物线及其性质知识点大全

抛物线及其性质 1.抛物线定义:平面内到一定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线. 2.抛物线四种标准方程的几何性质: 图形 参数p 几何意义 参数p 表示焦点到准线的距离,p 越大,开口越阔. 开口方向 右 左 上 下 标 准方 程 22(0)y px p => 22(0)y px p =-> 22(0)x py p => 22(0)x py p =-> 焦 点位 置 X 正 X 负 Y 正 Y 负 焦 点坐 标 (,0)2 p (,0)2p - (0,)2p (0,)2p - 准 线方 程 2 p x =- 2p x = 2 p y =- 2 p y = 范 围 0,x y R ≥∈ 0,x y R ≤∈ 0,y x R ≥∈ 0,y x R ≤∈ 对 称轴 X 轴 X 轴 Y 轴 Y 轴 顶 点坐 标 (0,0) 离心率 1e = 通 径 2p 焦半径11(,)A x y 12 p AF x =+ 12 p AF x =-+ 12 p AF y =+ 12 p AF y =-+ 焦点弦长AB 12()x x p ++ 12()x x p -++ 12()y y p ++ 12()y y p -++ 焦点弦长AB 的补充 11(,)A x y 22(,)B x y 以AB 为直径的圆必与准线l 相切 若AB 的倾斜角为α,2 2sin p AB α = 若AB 的倾斜角为α,则22cos p AB α = 2 124 p x x = 212y y p =- 112AF BF AB AF BF AF BF AF BF p ++===?? 3.抛物线)0(22>=p px y 的几何性质: (1)范围:因为p>0,由方程可知x ≥0,所以抛物线在y 轴的右侧, 当x 的值增大时,|y |也增大,说明抛物线向右上方和右下方无限延伸.

第1讲有理数的概念和性质和答案

新苏教版七升八数学第一讲有理数的概念和性质 一、【概念和性质】 1、正数和负数 正数:比0大的数。如+3、+1.5、+1 2、+584(正号可以省略) 负数:比0小的数。如-3、-1.5、-1 2、-584(负号不可以省略) 零:既不是正数,也不是负数。零是正数和负数的分界。 【实际意义】如“零上”和“零下”“高出”和“低于” “上升”和“下降”“超出”和“不足” “盈利”和“亏损”“收入”和“支出” ▲如正数表示某种意义,那么负数表示它的相反的意义。 例:用正数表示向南,那么向北3km可以用负数表示为-3km, 向南-5km表示向北5km 填空(1)若汽车向东行驶2.5千米记作+2.5千米,则向西行驶1.5千米记作; 汽车原地不动记作。 (2)某人转动转盘,如果+2圈表示沿顺时针转2圈,那么圈-3表示。 2、整数和分数统称为有理数。 ▲有理数可以写成 m n( m、n是整数,n≠0)。 ▲有理数的两种分类: ①按定义分: ②按符号分(常用): 整数 分数 正整数 负整数 正分数 负分数 有理数 正有理数 正整数 正分数 有限小数 无限小数 分数(分子是1时,这个分数就是正数) 无限循环小数 无限不循环小数(无理数) 小数 自然数

几个重要概念 (1)非负数:正数和零 (2)非正数:负数和零 (3)非负整数:正整数和零 (4)非正整数:负整数和零 3、规定了原点、正方向和单位长度的直线叫做数轴。 所有有理数都可以用数轴上的点表示,但不是数轴上所有点都是有理数。 左边的数 〈 右边的数 ▲ 正数大于0,0大于负数,正数大于负数。 两个负数,绝对值大的反而小。 4、绝对值的意义与性质: ① 数轴上表示a 的点与原点的距离叫做a 的绝对值,记作||a 。 一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0。 ② ③ 非负性 2(||0,0)a a ≥≥ ④ 非负数的性质: i )非负数的和仍为非负数。 ii )几个非负数的和为0,则他们都为0。 5、绝对值相同,符号相反的两个数叫做互为相反数。0的相反数是0。 ▲ 几何特征:关于原点对称(到原点的距离相等) 6、乘积是1的两个数是互为倒数(0没有倒数) 乘积是-1的两个数是互为负倒数 ▲ 正数的倒数是正数,负数的倒数仍是负数 ▲ 除以一个不为0的数,等于乘以这个数的倒数。 【思考】 已知a 为有理数,判断下列语句是否正确: ① (a+12 )2是正数; ② -(a -12 )2 是负数; 111 -2 -1 0 1 2 大 小

抛物线地性质归纳及证明

抛物线的常见性质及证明 概念 焦半径:抛物线上一点与其焦点的连线段; 焦点弦:两端点在抛物线上且经过抛物线的焦点线段称为焦点弦. 性质及证明 过抛物线y 2 =2px (p >0)焦点F 的弦两端点为),(11y x A ,),(22y x B ,倾斜角为α,中点为 C(x 0,y 0), 分别过A 、B 、C 作抛物线准线的垂线,垂足为A ’、B ’、C ’. 1.求证:①焦半径αcos 12||1-= + =p p x AF ;②焦半径α cos 12||2+=+=p p x BF ; ③ 1| AF | + 1| BF | =2 p ; ④弦长| AB |=x 1+ x 2+p = α 2 sin 2p ;特别地,当x 1=x 2(α=90)时,弦长|AB|最短,称为通径,长为2p ;⑤△AOB 的面积S △OAB = α sin 22 p . 证明:根据抛物线的定义,| AF |=| AD |=x 1+p 2,| BF |=| BC |=x 2+p 2 , | AB |=| AF |+| BF |=x 1+x 2+p 如图2,过A 、B 引x 轴的垂线AA 1、BB 1,垂足为 A 1、 B 1,那么| RF |=| AD |-| FA 1 |=| AF |-| AF |cos , ∴| AF |=| RF |1-cos =p 1-cos 同理,| BF |=| RF |1+cos =p 1+cos ∴| AB |=| AF |+| BF |=p 1-cos +p 1+cos =2p sin 2 . C D B (x 2,y 2) R A (x 1,y 1) x y O A 1 B 1 F 图2

抛物线的简单几何性质教学设计

第 二 章圆锥曲线与方程 第 2.4.2 抛物线的简单几何性质(4课时) 主备教师 陈本川 一、内容及其解析 学的内容是抛物线的一些基本性质,其核心内容是抛物线的离心率及准线,理解它关键是先让学生认识抛物线的图形,从中概括出抛物线的性质。 学生已经学过抛物线线概念和标准形式,本节课的内容抛物线的基本性质就是在其基础上的发展。由于它还与椭圆、双曲线等圆锥曲线有密切的联系,并有参照对比的作用。是抛物线的核心内容。教学重点是抛物线的性质及范围,解决重点的关键是引导学生动手、动脑,从图形的直观得到抛物线性质的准确刻画。 二、目标及其解析 1、目标定位 (1)了解抛物线的基本性质及基本线段的概念。 (2)能够根据抛物线的标准方程及性质进行简单的运算。 2、目标解析 (1)是指:抛物线的基本线段范围及概念,对称性,离心率,准线表示。 (2)是指:能够根据抛物线中准线与焦点之间的关系能求出抛物线的标准方程。 三、问题诊断分析 在本节抛物线性质的教学中,学生可能遇到的问题是抛物线的一些基本概念会与其它圆锥曲线的概念产生混淆,产生这一问题的原因是学生对各种曲线的概念把握不清。要解决这一问题,就要类比着其它圆锥曲线的概念及性质学习,其中关键是借助图形直观类比。 四、教学支持条件分析 在本节课双曲线的性质教学中,准备使用多媒体辅助教学。因为使用多媒体辅助教学有利于学生对抛物线性质从直观到具体的把握。 五、教学设计过程 问题一:抛物线性质有哪些?观察抛物线的标准方程)0(22>=p px y 的形状, 设计意图:推导、识记抛物线的性质,并能够熟练的应用 问题1你能从图中看出它的范围吗? 问题2它具有怎样的对称性?

相关文档
相关文档 最新文档