文档库 最新最全的文档下载
当前位置:文档库 › 质粒的遗传

质粒的遗传

母性遗传与细胞质遗传并非一回事

母性遗传与细胞质遗传并非一回事 摘要细胞质遗传一般表现为具母系遗传的特征。随着DNA分了标记技术的发展和应用,人们己发现在动物及植物中均存在有低频的线粒体DNA单亲父系遗传及双亲遗传的现象。对质体DNA遗传的研究表明,被了植物的质体DNA大多表现为母系遗传,而裸了植物的质体DN A则卞要表现为父系遗传的方式,同时也发现存在其它的遗传规律。 关键词细胞质遗传母系遗传线粒体DNA 质体DNA 本世纪初,在孟德尔定律被重新发现后的1909年,德国学者科伦斯(Co rren s)和鲍尔(B au r)分别在紫茉莉(lVl irabilis jalapa)和天竺葵((Pelargonium zonale)中发现叶色的遗传不符合孟德尔定律,而表现为细胞质遗传现象。这一发现是对孟德尔定律的挑战和补充。研究表明,大多数物种的细胞质性状表现为母系遗传的特征。进而有些学者甚至某些遗传学教科书中也将细胞质遗传与母系遗传这两种现象混为一谈,将这两个概念等同起来,并认为细胞质遗传即为母系遗传。 80年代以来,随着分了生物学技术的发展,将DNA分了标记应用于细胞质遗传研究,从DNA分了水平上研究细胞质遗传物质的变异,使得人们对细胞质遗传现象有了更进一步深入的认识。下面就细胞质遗传的卞要物质基 础线粒体DNA和叶绿体DNA的遗传研究进展作一概述,使我们重新认识细胞质遗传这一现象和概念。 在遗传学教学中,经常会遇到:个体表现型与母木性状一致的现象。其遗传方式是否是细胞质遗传呢?下面就以具体一例进行分析。 1紫茉莉枝条颜色的遗传 紫茉莉花斑植株的杂交结果 分析:从上述杂交实验的结果可以看出,紫茉莉F,植株的颜色,完全取决于种子产生于哪一种枝条,而与花粉来自哪一种枝条无关。也就是说,不论正交还是反交,F,的性状与母木表现型一致,即母系遗传。为什么会出现上述现象呢?研究表明,紫茉莉枝条的正常绿色是因为它们的细胞内含有正常的叶绿体;白色

细胞质遗传

课时9 细胞质遗传(一) 一、书本基础知识整理 1、概念 细胞核遗传: 细胞质遗传: 2、特点 母系遗传 概念: 原因: 子代性状无一定分离比 原因: 3、物质基础: 4、育种原理:雄性不育系: *三系法杂交雄性不育保持系: 雄性不育恢复系: 二、思维拓展 紫茉莉杂交后代一些性状产生的原因 绿色雌株×花斑雄株→绿色植株 绿色雌株所产生的卵细胞中控制质体的物质均为叶绿体的物质,而花斑雄株产生的精子中参与受精的几乎没有细胞质,所以受精卵中的控制质体的物质都是叶绿体的物质,子代叶片颜色都是绿色。 ②花斑雌株×绿色雄株→花斑、绿色、白色植株 花斑雌株的卵原细胞中含控制叶绿体、白色体两种质体的物质。在减数分裂的过程中,该物质的分配是随机的、不均等的。有的卵细胞同时得到两种控制质体的物质,后代为花斑,有的卵细胞就只得其中一种控制质体的物质,后代就只为绿色或白色。(白色植株无法正常光合作用,所以不能长大。) 2、花斑种子萌发后所成植株枝条有白、绿、花斑的原因 同时有叶绿体、白色体两种控制质体的物质受精卵,发育而成的植株有的枝条为绿,有的为白,有的花斑。这种现象产生的原因是在有丝分裂过程中,核基因的分配是均等的,每个子细胞得到完整的一套。但控制质体的物质的分配还是随机、不均等的。后代细胞可能同时有两种控制质体的物质,则发育而成的枝条为花斑,也可能只

得其中一种控制质体的物质,枝条为白或绿色。从而说明,不仅在减数分裂时质基因的分配是随机、不均等的,在有丝分裂中,这种现象仍然存在。 3、细胞核遗传和细胞质遗传的区别与联系 区别:①遗传物质的场所:核遗传物质在细胞核,质遗传物质在细胞质 ②遗传物质所在的配子类型:核遗传在雌雄配子,而质遗传主要在雌配子 ③遗传物质的分配特点:核遗传是精确的、平均分配到子细胞中的,而质遗传 的分配是随机的,不均等的。 ④正反交时,F1的表现型:核遗传是相同的,质遗传是由母本决定的。 (2)联系:①它们的遗传物质都是DNA ②它们遗传的桥梁都是配子 ③它们的性状表达都是通过体细胞进行的 ④生物的遗传性状可以分三种类型: 只受核基因控制的遗传(人的血型) 只受质基因控制的遗传(紫茉莉叶色的遗传) 受核、质基因同时控制的遗传(水稻的雄性不育) 4、如何判断某一遗传方式为细胞质遗传? 看控制生物性状的遗传物质的来源。如果来源于细胞质,即为细胞质遗传。 看杂交后代的比例。如果子一代无一定的分离比,不遵循遗传的三大定律,即为细胞质遗传。 看正交、反交的子代表现型,如果无论正交、反交子代表现型均由母本决定,即可能为细胞质遗传。(植物母本所结的果实除外,因为果皮不是子代) 5、几类生物的细胞质遗传 植物:质体(白色体、有色体、叶绿体),线粒体 动物:线粒体 细菌:质粒 酵母菌:质粒、线粒体

细胞质遗传(一).doc

细胞质遗传(一) (总分:125.50,做题时间:90分钟) 一、填空题(总题数:10,分数:40.50) 1.细胞质遗传特点是 1、 2和 3。 (分数:4.50) 2.植物杂种优势利用中的质核雄性不育“三系”及其基因型符号分别是 1、 2和 3。 (分数:4.50) 3.利用质核雄性不育配制杂交种子,不育系的基因型为 1,保持系的基因型为 2,恢复系的基因型为 3。(分数: 4.50) 4.植物的雄性不育系和保持系杂交得到 1,与恢复系杂交得到 2,而保持系自交得到 3。 (分数:4.50) 5.无论是短暂的和持久的母性影响,它们的遗传基础本质上都在于1基因的作用,其特点是父方的2推迟一代表现与分离。 (分数:3.00) 6.母性影响和细胞质遗传都表现为 1,但前者基因的遗传方式为 2,后者为 3。 (分数:4.50) 7.在正反交情况下,子代某些性状相似于其雌性亲本的现象,有的是由于细胞质1传递的结果,属于2的范畴,但有的却由于母本中核基因的某些产物积累在卯细胞的细胞质中,使子代表型与母本相同,这种现象称为 3。 (分数:4.50) 8.链孢霉的缓慢生产突变型是因为在 1上发生基因突变造成的。 (分数:1.50) 9.在植物雄性不育利用中,要建立两个隔离区,在一个隔离区内繁殖 1,在另一个隔离区内繁殖 2,这种方法称为 3。 (分数:4.50) 10.由突变型恢复为野生型的可能途径有 1、 2、 3和等。 (分数:4.50) 二、判断题(总题数:5,分数:5.00) 11.正反交结果不一样,不一定属于细胞质遗传。 ____ (分数:1.00) A.正确 B.错误 12.所谓“母性影响”即细胞质遗传的一种方式。 ____ (分数:1.00) A.正确 B.错误 13.由核基因决定的雄性不育系,没有相应的保持系。 ____ (分数:1.00) A.正确 B.错误 14.母体效应是母体基因型通过某些中介信使在子代体内的一种滞后表达现象。( ) (分数:1.00) A.正确 B.错误 15.母体效应是母体基因在后代体内直接进行表达的结果。 ____ (分数:1.00)

多种群遗传算法的函数优化算法

多种群遗传算法的函数优化算法 多种群遗传算法的函数优化算法2010年12月15日星期三21:30【注】原帖网址:、案例背景 针对遗传算法所存在的问题,一种多种群遗传算法结构模型(Multiple Population GA,简称MPGA)可以用来取代常规的标准计算模型(SGA)。 MPGA在SGA的基础上主要引入了以下几个概念: (1)突破SGA仅靠单个群体进行遗传进化的框架,引入多个种群同时进行优化搜索;不同的种群赋以不同的控制参数,实现不同的搜索目的。 (2)各个种群之间通过移民算子进行联系,实现多种群的协同进化;最优解的获取是多个种群协同进化的综合结果。 (3)通过人工选择算子保存各种群每个进化代中的最优个体,并作为判断算法收敛的依据。 2、案例目录: 第7章多种群遗传算法的函数优化算法 7.1理论基础 7.1.1遗传算法早熟问题 7.1.2多种群遗传算法概述 7.2案例背景 7.2.1问题描述 7.2.2解决思路及步骤 7.3 MATLAB程序实现

7.3.1移民算子 7.3.2人工选择算子 7.3.3目标函数 7.3.4标准遗传算法主函数 7.3.5多种群遗传算法主函数 7.3.6结果分析 7.4延伸阅读 7.5参考文献 3、主程序: %%多种群遗传算法 clear; clc close all NIND=40;%个体数目 NVAR=2;%变量的维数 PRECI=20;%变量的二进制位数 GGAP=0.9;%代沟 MP=10;%种群数目 FieldD=[rep(PRECI,[1,NVAR]);[-3,4.1;12.1,5.8];rep([1;0;1;1],[1,NVAR])];%译码矩阵 for i=1:MP Chrom{i}=crtbp(NIND,NVAR*PRECI);%创建初始种群

遗传多样性与起源研究

西北农林科技大学 2009级硕博连读研究生学位论文开题报告 黄牛、水牛和牦牛Y染色体分子遗传多样性与起源研究Y-chromosome Molecular Genetic Diversity and Origins in Cattle, Buffalo and Yak 学院:动物科技学院 学科、专业:动物遗传育种与繁殖 研究方向:动物遗传学 研究生:XX 指导教师:雷初朝教授

黄牛、水牛和牦牛Y染色体分子遗传多样性与起源研究 一、选题的目的与意义 黄牛、水牛和牦牛是我国3个重要的牛种,具有对周围环境的高度适应性、耐粗放管理、抗病力强、繁殖力高、肉质好等特点。这些地方牛种本身就是一座天然的基因库,正是进行杂种优势利用和进一步培育高产品种的良好原始材料。在当今世界畜禽品种资源日趋匮乏,品种逐步单一化的情况下,对我国这些牛种遗传资源的保护将对今后的育种工作产生很大的影响,起到难以估量的作用[1]。 中国黄牛的起源进化与遗传多样性一直是国内外动物遗传学家感兴趣的课题之一。一般认为,中国黄牛是多元起源的,并主要受普通牛和瘤牛的影响,但究竟起源于哪几个牛种,观点不一[2, 3]。在黄牛遗传多样性方面,自二十世纪八十年代以来,众多研究者分析了中国地方黄牛的核型,发现不同黄牛品种的Y 染色体形态具有明显的多态性,普通牛为中着丝粒或亚中着丝粒,瘤牛为近端着丝粒[4-6]。常振华等发现中国黄牛Y染色体主要属于Y2(普通牛)和Y3(瘤牛)单倍群[7],但事实上黄牛的每种Y染色体单倍群下都可细分为多种单倍型,而中国黄牛由哪些Y染色体单倍型组成,有无优势单倍型以及单倍型的品种分布有无地理特点,与国外黄牛品种有何不同,这些问题都亟待阐明,以期为黄牛品种资源保护和杂交育种工作提供参考依据。 中国也拥有丰富的水牛资源。水牛的驯化时间,地点尚无定论,国内一些学者在形态学和考古学方面进行了一些研究,给中国水牛的驯化历史提供了一些参考[8, 9],但仅靠形态学和考古学的研究是远远不够的,还需要分子遗传学的更多证据。目前国内外对水牛的起源研究主要是在线粒体DNA的母系起源方面,认为水牛有两个母系起源(A支系和B支系)[10-12],近年来,也有中国学者对水牛的常染色体微卫星多态性进行了研究,其结果都表明中国水牛的遗传多样度丰富,倾向于支持中国水牛的本土起源假说[13, 14]。对Y染色体遗传多样性的研究,将提供更多的分子遗传学信息,会有助于评估水牛的遗传资源状况,也有助于阐明中国水牛的驯化历史。 牦牛主要分布于我国的青藏高原,俗称“万能种”,通常皆为兼用,如乳、肉、毛、皮、役力,是经济价值极高的珍贵畜种[1]。家牦牛是在青藏高原驯化的,藏族自古以来生息于西藏,是驯化牦牛之主,因此牦牛的驯化始终与藏族文化的发展休戚相关,是当地人民不可分离的生产和生活资料[15]。从牦牛生活的特定气候地带的适应性和生态地理、生理特征的表现看,牦牛是地球之巅特有的高寒环境中生存的一个宝贵的特化种,牦牛的驯化与繁衍有着与其他牛种极其不同的种类特点,牦牛对高寒山区的气候和贫瘠的草地所具有的特殊的适应性也是世界

第九章细胞质遗传

第九章细胞质遗传 一、本章概述及学法指导 细胞质中同样存在着一些DNA分子,其同样具有控制生物性状表达的功能。由于其所处位置的特殊性,决定了其传递不再具有像核内基因运动的规律性。因此,多表现出一种随机性。另外,由于在精卵形成过程中,不同种类的生物各具有特点,这就决定了细胞质内遗传因子传递的特殊性。例如,在绝大多数生物的配子形成中,卵细胞具有丰富的细胞质,而精子中则少有,所以使细胞质中的基因多来自于母本,表现为母系遗传的特征。但是也有一些生物的精子中同样含有细胞质成分。其中基因所控制的性状则表现为两性遗传或偏父遗传,例如,Erickson和Kemble在双子叶的甘蓝型油菜中同样发现了线粒体DNA的父系遗传现象,在F1代中10%植株的线粒体DNA来自于父本。对此问题应该全面认识,但在学习中主要以第一种类型进行学习。 研究发现母系遗传是大多数被子植物质体DNA遗传的显著特征。在被子植物中,对近60个物种的质体DNA的遗传研究表明,大多数表现为母系遗传特征,仅有20%的物种存在双亲遗传的现象(Smith,1988).裸子植物中,线粒体DNA多为母系遗传,而质体DNA则表现为父系遗传。 由于细胞质在传递中的特点,决定了细胞质中基因所控制的生物性状的表达具有以下特征:①正反交结果不同②不出现Mendel式分离比③通过连续回交,可进行核置换④具有细胞质的异质性和细胞质的分离与重组现象。 随着研究的深入,已经对细胞质遗传的分子基础进行了深入的研究。例如,叶绿体基因、线粒体基因以及一些共生因子(质粒)等。 但同时需要加以注意的是母系遗传现象的产生并非都是由于细胞质因子所决定的。有些是由于母体核基因所产生的代谢产物积累于卵细胞质中,使后代表现出母系遗传的特征。 二、基本原理与概念 (一)基本原理 1.简述线粒体基因组的半自主性。 参考答案: 线粒体基因组结构特点让我们了解到它具有相对独立性,主要表现在: 第一、mtDNA合成的调节与核DNA合成的调节彼此独立,可能存在多种复制形式,其中D 环复制是线粒体特有的复制形式。 第二、线粒体基因组有自己独立的表达系统,自己编码二种rRNA,22—24种tRNA,在线粒体内合成mtDNA编码的蛋白质。 第三、线粒体中有些密码子的含义与核基因通用密码子不同,发生改变,例如AUA、UUA在人类细胞核基因中分别是异亮氨酸和终止密码子,在线粒体中成为甲硫氨酸和色氨酸密码子。 线粒体基因组的半自主性表现其对核基因组的依赖性。线粒体DNA虽然能够自主复制,但需要核基因组为其编码DNA复制酶;线粒体虽有自己的核糖体、tRNA,并能在线粒体内翻译mtDNA 转录的mRNA,但线粒体的核糖体蛋白质由核基因组为其编码;线粒体膜蛋白除有限的十多种由mtDNA编码外,其余都需要从核基因组中转录,在细胞质里合成后再转运到线粒体中。由此可见,线粒体的自主性是十分有限,无论是其遗传系统,还是构成其结构组份的蛋白质,都离不开核基因组,受到核基因组的影响。 2.简述叶绿体基因组的半自主性

多种群遗传算法的函数优化算法

多种群遗传算法的函数优化算法 1、案例背景 针对遗传算法所存在的问题,一种多种群遗传算法结构模型(Multiple Population GA,简称MPGA)可以用来取代常规的标准计算模型(SGA)。 MPGA在SGA的基础上主要引入了以下几个概念: (1)突破SGA仅靠单个群体进行遗传进化的框架,引入多个种群同时进行优化搜索;不同的种群赋以不同的控制参数,实现不同的搜索目的。 (2)各个种群之间通过移民算子进行联系,实现多种群的协同进化;最优解的获取是多个种群协同进化的综合结果。 (3)通过人工选择算子保存各种群每个进化代中的最优个体,并作为判断算法收敛的依据。 图 7-1 MPGA的算法结构示意图 复杂二元函数求最值:

图 7-2 二元函数图像 2、案例目录: 第7章多种群遗传算法的函数优化算法7.1 理论基础 7.1.1遗传算法早熟问题 7.1.2多种群遗传算法概述 7.2案例背景 7.2.1问题描述 7.2.2解决思路及步骤 7.3 MATLAB程序实现 7.3.1移民算子 7.3.2人工选择算子 7.3.3目标函数 7.3.4标准遗传算法主函数 7.3.5多种群遗传算法主函数 7.3.6结果分析 7.4延伸阅读 7.5 参考文献 3、主程序: %% 多种群遗传算法 clear; clc close all NIND=40; %个体数目

NVAR=2; %变量的维数 PRECI=20; %变量的二进制位数 GGAP=0.9; %代沟 MP=10; %种群数目 FieldD=[rep(PRECI,[1,NVAR]);[-3,4.1;12.1,5.8];rep([1;0;1;1],[1,NVAR])]; %译码矩阵 for i=1:MP Chrom{i}=crtbp(NIND, NVAR*PRECI); %创建初始种群 end pc=0.7+(0.9-0.7)*rand(MP,1); %在【0.7,0.9】范围i内随机产生交叉概率 pm=0.001+(0.05-0.001)*rand(MP,1); %在【0.001,0.05】范围内随机产生变异概率 gen=0; %初始遗传代数 gen0=0; %初始保持代数 MAXGEN=10; %最优个体最少保持代数 maxY=0; %最优值 for i=1:MP ObjV{i}=ObjectFunction(bs2rv(Chrom{i}, FieldD));%计算各初始种群个体的目标函数值 end MaxObjV=zeros(MP,1); %记录精华种群 MaxChrom=zeros(MP,PRECI*NVAR); %记录精华种群的编码 while gen0<=MAXGEN gen=gen+1; %遗传代数加1 for i=1:MP FitnV{i}=ranking(-ObjV{i}); % 各种群的适应度 SelCh{i}=select('sus', Chrom{i}, FitnV{i},GGAP); % 选择操作 SelCh{i}=recombin('xovsp',SelCh{i}, pc(i)); % 交叉操作 SelCh{i}=mut(SelCh{i},pm(i)); % 变异操作 ObjVSel=ObjectFunction(bs2rv(SelCh{i}, FieldD)); % 计算子代目标函数值 [Chrom{i},ObjV{i}]=reins(Chrom{i},SelCh{i},1,1,ObjV{i},ObjVSel); %重插入操作 end [Chrom,ObjV]=immigrant(Chrom,ObjV); % 移民操作 [MaxObjV,MaxChrom]=EliteInduvidual(Chrom,ObjV,MaxObjV,MaxChrom); % 人工选择精华种群YY(gen)=max(MaxObjV); %找出精华种群中最优的个体 if YY(gen)>maxY %判断当前优化值是否与前一次优化值相同 maxY=YY(gen); %更新最优值 gen0=0; else gen0=gen0+1; %最优值保持次数加1 end end %% 进化过程图 plot(1:gen,YY) xlabel('进化代数') ylabel('最优解变化') title('进化过程')

第24讲细胞质遗传

第24讲细胞质遗传 考试要求 1.细胞质遗传的特点。简述细胞质遗传的两大特点,并能与细胞核遗传的特点进行比较;指出细胞质遗传、细胞核遗传的异同点;能利用细胞质遗传的特点解释新的实验或研究现象。 2.细胞质遗传的物质基础。识记细胞质遗传的物质基础,明白生物的遗传是核质共同控制的结果。 知识整理 一、细胞质遗传的概念 真核生物有些性状是通过内的遗传物质控制的,这种遗传方式叫细胞质遗传。 二、细胞质遗传的特点 1.典型实验——紫茉莉花斑植株的杂交实验 紫茉莉花斑植株的杂交结果 2.特点 ⑴母系遗传。不论正交还是反交,F1性状总是与相同。 原因:受精卵中的几乎全部来自卵细胞,细胞质内遗传物质控制的性状实际上是由传给子代。

⑵杂交后代。 原因:原始生殖细胞在减数分裂时,细胞质中的遗传物质、地分配到子细胞中去。 三、细胞质遗传的物质基础 细胞质内含有控制遗传性状的细胞质基因,它位于、内的DNA上,细菌上也有细胞质基因。 命题研究 提分关键 1.线粒体、叶绿体内有DNA(细胞质基因),它能控制蛋白质的合成吗?如能合成场所在哪儿? 答:很多学者研究发现,线粒体和叶绿体中除有DNA外,还有RNA、核糖体、氨基酸活化酶等,这就说明这两种细胞器都具有独立转录和翻译的功能。也就是说,线粒体和叶绿体都具有以自身DNA为模板,转录RNA和翻译蛋白质的体系。但至今为止,人们发现叶绿体仅能合成13种蛋白质,线粒体能够合成的蛋白质也只有60多种,而参与组成线粒体和叶绿体的蛋白质却分别有上千种,这说明,线粒体和叶绿体中自身编码合成的蛋白质并不多,绝大多数蛋白质是由细胞核内基因编码,在细胞质的核糖体上合成的。因线粒体和叶绿体内的DNA能编码线粒体和叶绿体中的部分蛋白质,因此它们都被称为半自主性细胞器。 2.真核生物性状的遗传中,细胞核遗传和细胞质遗传哪个为主? 答:真核生物性状的遗传可分为三种类型,只受核基因控制的性状遗传,只受质基因控制的性状遗传,受核基因、质基因共同控制的性状遗传。生物体大部分性状的遗

中国主要东方蜜蜂种群的遗传多样性分析

中国主要东方蜜蜂种群的遗传多样性分析 任勤1,曹联飞2,赵红霞3,,王瑞生1,程尚1,罗文华1,曹兰1,姬聪慧*1 (1.重庆市畜牧科学院,重庆 402460;2.浙江省农业科学院,浙江杭州 310021;3. 广东 省生物资源应用研究所,广东广州 510260) 摘要:对中国具代表性的东方蜜蜂遗传资源中7个种群的线粒体DNA tRNA leu~ CO Ⅱ基因进行扩增和测序,并进行遗传多样性比较及亲缘关系分析。结果表明,共发现43个单倍型,其中10个单倍型在GenBank数据库对比确认属于新发现单倍型;7个群体中,阿坝中蜂、滇南中蜂和海南中蜂遗传多样性水平较高,长白山中蜂遗传多样性水平较低,其他群体遗传多样性居中;不同种群间遗传距离变化较大,其中海南中蜂与滇南中蜂、阿坝中蜂间的遗传距离最大,长白山中蜂与云贵中蜂、北方中蜂、华南中蜂间的遗传距离最小;聚类分析显示7个种群可聚为4个类群。 关键词:东方蜜蜂;遗传多样性;线粒体DNA 中图分类号:文献标志码:A Analysis of genetic diversity of Apis cerana populations in China REN Qin1, CAO Lianfei2,ZHAO Hongxia3,WANG Ruisheng1,CHENG Shang1,LUO Wenhua1,CAO Lan1, JI Conghui*1 (1.Chong Qing Academy of Animal Science,Chongqing 402460,China;2.Zhejiang Academy of Agricultural Sciences,Zhejiang 310021,China; 3.Guangdong Institute of Applied Biological Resources, Guangdong 510260, China) Abstract:The mitochondrial DNA tRNA leu~CO II genes in 7 populations of Apis cerana Fabricius in China were amplified and sequenced, and their genetic diversity and phylogenetic relationships were analyzed. The results showed that a total of 43 haplotypes were identified, of which 10 haplotypes were identified new haplotypes in the GenBank database, Among 7 populations, Aba bee, Hainan bee and Yunnan bee have higher level of genetic diversity, Changbai Mountain bee has lower level of genetic diversity, other populationswere intermediate; The genetic distances between different populations varied greatly, of which Hainan bee andhave maximum genetic distance with Yunnan bee and Aba bee, The genetic distances between Changbai mountain bee and Yunnan bee, Middle China bee, Northern bee and Southern bee were small.; Cluster analysis showed that the 7 populations could be clustered into 4 taxa. Key words:Apis cerana Fabricius; genetic diversity; mitochondrial DNA 收稿日期: 基金项目:国家蜂产业技术体系基金项目(CARS-45SYZ15);重庆市畜牧科学院基金项目(16421). 作者简介:任勤(1979-), 男, 宁夏固原人,助理研究员, 硕士研究生,主要从事蜜蜂方面的研究。 通信作者:姬聪慧(1980-),女,河南平顶山人,助理研究员,硕士研究生。

8细胞质遗传

细胞质遗传 [习题]1 填空 1、把一个纯合放毒型的草履虫与一个真实遗传的敏感型草履虫进行杂交,但让它们接合时间短,只让它们交换单倍体的小核,而未等交换细胞质就让它们分开。然后经多代自体受精,子代中放毒型的比例是_________。 2、在细胞质遗传中,玉米雄性不育系的遗传是由______所决定的;酵母菌的小菌落是受______所决定的;紫茉莉的花斑遗传是受_____所决定的;草履虫的放毒型是受____所决定。 3、革履虫的放毒型遗传是由________________和_____________共同决定的。 4、在三系二区育种中三系指的是__________ ,____________ 和___________。 5、紫茉莉的花斑遗传是由叶绿体基因所决定的;酵母菌的小菌落是由_____________所决定的;草履虫的放毒型是由__________________________所决定。 名词 1、cytoplasmic Inheritance 2、maternal influence: 3、Plasmon 4、xenia: 5、metaxenia: 问答 1、什么叫细胞质遗传?它有哪些特点?试举例说明之。 2、何谓母性影响?试举例说明它与母性遗传的区别。 3、如果正反交试验获得的F1表现不同,这可能是由于⑴. 性连锁;⑵. 细胞质遗传; ⑶. 母性影响。你如何用试验方法确定它属于哪一种情况? 4、细胞质遗传的物质基础是什么? 5、细胞质基因与核基因所何异同?二者在遗传上的相互关系如何? 6、试比较线粒体DNA、叶绿体DNA和核DNA的异同? 7、植物雄性不育主要有几种类型?其遗传基础如何? 8、一般认为细胞质的雄性不育基因存在于线粒体DNA上,为什么? 9、如果你发现了一株雄性不育植株,你如何确定它究竟是单倍体、远缘杂交F1、生理不育、核不育还是细胞质不育? 10、用某不育系与恢复系杂交,得到F1全部正常可育。将F1的花粉再给不育系亲本

细菌基因转移与重组的方式有哪些

细菌基因转移与重组的方式有哪些? 1.接合作用:当细菌与细菌相互接触时,质粒DNA就可从一个细菌转移到另一个细菌。 2.转化作用:由外源性DNA导入宿主细胞,并引起生物类型改变或使宿主细胞获得 新的遗传表型的过程,称为转化作用。 3.转导作用:当病毒从被感染的细胞释放出来,再次感染另一细胞时,发生在供体 细胞与受体细胞之间的DNA转移及基因重组称为转导作用。 4.转座(转位):转座是指一个或一组基因从一个位置转到基因组的另一个位置。可 分为插入序列转座和转座子转座。 5.基因重组:不同DNA分子间发生的共价连接称基因重组。有两种类型:位点特异 的重组和同源重组. 细菌从外源取得DNA,并与自身染色体DNA进行重组,引起细菌原有基因组的改变,导致细菌遗传性状的改变,称基因的转移与重组。基因转移与重组的四种方式是:(1)转化:受体菌直接摄取供体菌游离的DNA段,从而获得新的遗传性状,称为转化。(2)转导:以温和噬菌体为载体,将供体菌的遗传物质转移到受体菌中去,使受体菌获得新的遗传性状,称为转导。(3)接合:是指细菌通过性菌毛将遗传物质(主要为质粒)从供体菌转移给受体菌,使受体菌获得新的遗传性状。(4)溶原性转换:是由于温和噬菌体的DNA(前噬菌体)整合到宿主菌的染色体DNA后,使细菌的基因型发生改变,从而获得新的遗传性状,称为溶原性转换。5.原生质体融合是分别将两种细菌经处理失去细胞壁悬于高渗培养基中保持原生质体状态,然后将两种细菌的原生质体混合,滴加聚乙二醇促使原生质体融合。医`学教育网搜集整理融合后的双倍体细胞可以短期生存,在此期间染色体之间可以发生基因的交换和重组,获得多种不同表型的重组融合体。融合体经培养重新形成细胞壁,再按其遗传标志选择重组菌。 子座(Stroma):某些高等真菌菌丝体形成的一种组织体,是菌丝分化形成地垫状结构,或是菌丝体与寄主组织或基物结合而成地垫状结构物;

相关分析在水文分析计算中主要用于遗传分析中的相关计算

相关分析在水文分析计算中主要用于遗传分析中的相关计 算 遗传概率的计算也许是许多考生头痛的一个问题,花了很长时间,最后计算出来的概率还是不正确,现在我们一起来探讨遗传中的几种计算概率的题型的解题思路和方法。一、运用分离规律和乘法原则计算自由组合的有关问题 例如上海的高考题:在一个远离大陆且交通不便的海岛上,居民中有66%为甲种遗传病(基因为A、a)致病基因携带者。岛上某家族系谱中,除患甲病外,还患有乙病(基因为B、b),两种病中有一种为血友病,请据图回答问题: (1)____________病为血友病,另一种遗传病的致病基因在 ______染色体上,为______性遗传病。 (2)Ⅲ-13在形成配子时,在相关的基因传递中,遵循的遗传规律是:______。 (3)若Ⅲ-11与该岛一个表现型正常的女子结婚,则其孩子中患甲病的概率为______。

(4)Ⅱ-6的基因型为______,Ⅲ-13的基因型为______。 (5)我国婚姻法禁止近亲结婚,若Ⅲ-11与Ⅲ-13婚配,则其孩子中只患甲病的概率为______,只患乙病的概率为______;只患一种病的概率为______;同时患有两种病的概率为______;生正常孩子的概率为____________。 遇到这种问题,我们首先分析遗传病的遗传方式。由于Ⅱ-7、8都没有患甲病,而生下患两病的孩子(包括甲病的儿子和女儿)可知甲病为“无中生有”且正常的父亲有患病的女儿,则为常染色体隐性遗传病;Ⅱ-5、6也是如此。所以血友病(伴X隐性)为乙病。上述两病也就遵循基因的自由组合规律。 第二步写出相关个体的基因型,则要根据遗传系谱图中的有关个体以及减数分裂和受精作用来推测:Ⅲ-11号,表现型正常,10号患甲病,可知其父母均为Aa,则11号为Aa的可能性为2/3。人群中携带者的可能性亦为2/3,所以其孩子患病的可能性为1/9。在此我们要注意,11号的表现型已知为不患甲病,排除aa的可能后在AA 和Aa中的Aa可能性为2/3。

ntsys-pc遗传多样性分析软件使用说明

NTSYS-PC使用说明 1 数据的录入方法: 1.1 利用Ntedit直接录入数据 0、1二元数据中的数据缺失记为2。其中列标可以写为样品编号,在No.rows 栏中写入0、1数据总数,No.cols 栏中写入样品总数。文件另存为*.nts格式。 1.2 从excel表中直接读入数据 Excel表中输入数据格式如下图。A1必须为1,B1为0、1数据总数,C1为样品总数。 打开Ntedit程序,选择从Excel表输入,结果见上图。文件另存为*.Nts格式 1.3 Ntsys-pc可以直接运行*.phy格式的文件(由phylip和phytool产生) 1.4 DNA序列数据Ntsys-PC也可以分析,但好像用的人较少。建议大家使用phylip或者其他的软件。DNA序列数据在Excel 中输入格式如下:

1.5 其他数据的Excel输入如下: 2 聚类分析 Ntsys-pc2.02界面如下: 以下以图中数据为例介绍聚类过程: 2.1 首先用similarity程序组中的SimQual计算形似系数矩阵。Coefficient通常选用SM 或DICE,结果输出到另一文件

2.2 以上步的结果作为input file利用Clustering程序组中的SHAN或者Njoin进行计算,聚类分法选用UPGMA,ties选用FIND,Maximum no. tied trees至少大于样品数。 Njoin程序组界面如下,rooting method可以选用Outgroup,但需输入外元。 2.3 将SHAN或NJoin方法得到的tree file文件输入到Graphics程序组中的tree plot程序中计算

遗传多样性空间格局分析软件spagedi简介

SPAGeDi1.3 a program for S patial P attern A nalysis of Ge netic Di versity by Olivier J. H ARDY and Xavier V EKEMANS with the contribution of Reed A. C ARTWRIGHT Copyright (c) 2002-2009 Olivier Hardy and Xavier Vekemans User’s manual Address for correspondence: Service Eco-éthologie Evolutive, CP160/12 Université Libre de Bruxelles 50 Av. F. Roosevelt B-1050 Brussels, Belgium e-mail: ohardy@ulb.ac.be Last update: 22 March 2009

Contents 1. Note about SPAGeDi 1.3 and installation 2. What is SPAGeDi ? 2.1. Purpose 2.2. How to use SPAGeDi – short overview 2.3. Data treated by SPAGeDi 2.4. Three ways to specify populations 2.5. Statistics computed 3. Creating a data file 3.1. Structure of the data file 3.2. How to code genotypes? 3.3. Example of data file 3.4. Note about distance intervals 3.5. Note about spatial groups 3.6. Note about microsatellite allele sizes 3.7. Using a matrix to define pairwise spatial distances 3.8. Defining genetic distances between alleles 3.9. Defining reference allele frequencies for relatedness coefficients 3.10. Present data size limitations 4. Running the program 4.1. Launching the program 4.2. Specifying the data / results files 4.3. Selecting the appropriate options 4.4. Information displayed during computations 5. Interpreting the results file 5.1. Basic information 5.2. Allele frequency analysis 5.3. Type of analyses 5.4. Distance intervals 5.5. Computed statistics 5.6. Permutation tests 5.7. Matrices of pairwise coefficients/distances 6. Technical notes 6.1. Statistics for individual level analyses 6.2. Statistics for population level analyses 6.3. Inference of gene dispersal distances 6.4. Estimating the actual variance of pairwise coefficients for marker based heritability and Q ST estimates 6.5. Testing phylogeographic patterns 7. References 8. Bug reports

刘祖洞遗传学第三版答案 第13章 细胞质和遗传

第十三章细胞质和遗传 1.母性影响和细胞质遗传有什么不同? 答: 1)母性影响是亲代核基因的某些产物或者某种因子积累在卵细胞的细胞质中,对子代某些性状的表现产生影响的现象。这种效应只能影响子代的性状,不能遗传。 因此F1代表型受母亲的基因型控制,属于细胞核遗传体系; 细胞质遗传是细胞质中的DNA或基因对遗传性状的决定作用。由于精卵结合时,精子的细胞质往往不进入受精卵中,因此,细胞质遗传性状只能通过母体或 卵细胞传递给子代,子代总是表现为母本性状,属于细胞质遗传体系,2)母性影响符合孟德尔遗传规律;细胞质遗传是非孟德尔式遗传。 3)母性遗传杂交后代有一定的分离比, 只不过是要推迟一个世代而已;细胞质遗传杂交后代一般不出现一定的分离比。 2.细胞质基因和核基因有什么相同的地方,有什么不同的地方? 答: 1)相同:细胞核遗传和细胞质遗传各自都有相对的独立性。这是因为,尽管在细胞质中找不到染色体一样的结构,但质基因与核基因一样,可以自我复制,可以控制蛋白质的合成,也就是说,都具有稳定性、连续性、变异性和独立性。 2)不同: A. 细胞质和细胞核的遗传物质都是DNA分子,但是其分布的位置不同。细胞核遗 传的遗传物质在细胞核中的染色体上;细胞质中的遗传物质在细胞质中的线粒体 和叶绿体中。 B. 细胞质和细胞核的遗传都是通过配子,但是细胞核遗传雌雄配子的核遗传物质相 等,而细胞质遗传物质主要存在于卵细胞中; C. 细胞核和细胞质的性状表达都是通过体细胞进行的。核遗传物质的载体(染色体) 有均分机制,遵循三大遗传定律;细胞质遗传物质(具有DNA的细胞器如线粒 体、叶绿体等)没有均分机制,是随机分配的。 D. 细胞核遗传时,正反交相同,即子一代均表现显性亲本的性状;细胞质遗传时, 正反交不同,子一代性状均与母本相同,即母系遗传。 3.在玉米中,利用细胞质雄性不育和育性恢复基因,制造双交种,有一个方式是这样的:先把雄性不育自交系A【(S)rfrf】与雄性可育自交系B【(N)rfrf】杂交,得单交种AB,把雄性不育自交系C【(S)rfrf】与雄性可育自交系D【(N)RfRf】杂交,得单交种CD。然后再把两个单交种杂交,得双交种ABCD,问双交种的基因型和表型有哪几种,它们的比例怎样? 解: A【(S)rfrf】? B【(N)rfrf】C【(S)rfrf】? D【(N)RfRf】 ↓↓ AB【(S)rfrf】?CD【(S)Rfrf】 ↓ 基因型:1/2【(S)rfrf】1/2【(S)Rfrf】 表型:雄性不育雄性可育 4.“遗传上分离的”小菌落酵母菌在表型上跟我们讲过的“细胞质”小菌落酵母菌相似。 当一个遗传上分离的小菌落酵母菌与一个正常酵母菌杂交,二倍体细胞是正常的,以后形成子囊孢子时,每个子囊中两个孢子是正常的,两个孢子产生小菌落酵母菌。用

遗传多样性分析的方法与步骤

遗传多样性分析的方法与步骤 摘要:本文对生物的遗传多样性进行阐述,并综述了检测遗传多样性的形态学标记、细胞学标记、生物化学标记和分子标记4种遗传标记的发生与发展过程,并比较了各自的优缺点及其应用。 关键词:遗传多样性;形态学标记;细胞学标记;生物化学标记;DNA分子标记Genetic Diversity Analysis Method and Steps Abstract:In this paper, the biological genetic diversity were summarized, and elaborates the detection of genetic diversity morphology mark, cytology mark, biochemical markers and molecular marker and genetic markers of the occurrence and development of the process, and compare their advantages and disadvantages and application. Keywords:genetic diversity; Morphological markers; Cytology mark; Biochemical markers; DNA molecular markers 前言遗传多样性是生态系统多样性和物种多样性的基础,任何物种都有其独特的基因库或遗传组织形式[1]。广义的遗传多样性是指地球上所有生物所携带的遗传信息的总和,但通常所说的遗传多样性是指种内的遗传多样性,即种内不同种群之间或一个种群内不同个体的遗传变异[2]。遗传多样性的表现形式是多层次的,可以从形态特征、细胞学特征、生理特征、基因位点及DNA序列等不同方面来体现,其中DNA多样性是遗传多样性的本质[3]。通常,遗传多样性最直接的表现形式就是遗传变异水平的高低。然而,对任何一个物种来说,个体的生命是短暂的、有限的,而由个体构成的种群或种群系统(宗、亚种、种)在自然界中具有其特定的分布格局,在时间上连续不断,是进化的基本单位。因此,遗传多样性不仅包括变异水平的高低,而且包括变异的分布格局,即种群的遗传结构。种群遗传结构上的差异是遗传多样性的重要体现,一个物种的进化潜力和抵御不良环境的能力既取决于种内遗传变异的大小,也有赖于种群的遗传结构[4]。 1 遗传多样性的意义 根据联合国5生物多样性公约,生物多样性是指所有来源的活的生物体中的变异性, 包括陆地、海洋和其它水生生态系统及其所构成的生态综合体[ 1-7]。遗传多样性作为生物多样性的重要组成部分, 是生态系统多样性和物种多样性的基础方面, 任何物种都有其独特的基因库和遗传组织形式, 物种的多样性也就显示了基因的多样性。因此, 广义的遗传多样性是指地球上所有生物所携带的遗

相关文档