文档库 最新最全的文档下载
当前位置:文档库 › Effective gap at microwave frequencies in MgB2 thin films with strong interband scattering

Effective gap at microwave frequencies in MgB2 thin films with strong interband scattering

Effective gap at microwave frequencies in MgB2 thin films with strong interband scattering
Effective gap at microwave frequencies in MgB2 thin films with strong interband scattering

Effective gap at microwave frequencies in MgB2 thin films with

strong interband scattering

G. Ghigo, D. Botta, A. Chiodoni, L. Gozzelino, R. Gerbaldo, F. Laviano, and E. Mezzetti Department of Physics, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino,

Italy,

Istituto Nazionale di Fisica Nucleare, Sez. Torino, via P. Giuria 1, 10125 Torino, Italy

and

Istituto Nazionale per la Fisica della Materia, U.d.R. Torino-Politecnico, C.so Duca Degli

Abruzzi 24, 10129 Torino, Italy.

E. Monticone and C. Portesi

Istituto Elettrotecnico Nazionale G.Ferraris, strada delle Cacce 91, 10135 Torino, Italy

The microwave properties of polycrystalline MgB2 thin films prepared by the so-called

in-situ method are investigated. The characterization of the films at microwave frequencies was obtained by a coplanar resonator technique. The analysis of the experimental data results in the determination of penetration depth, surface impedance and complex conductivity. The aim of this work is to set the experimental results in a consistent framework, involving the two-band model in the presence of impurity scattering. The energy gaps are calculated and the contribution of intra- and inter-band scattering is considered. From the comparison between the calculated gap values and the experimental data it turns out that the temperature dependence of the penetration depth

can be accounted for by an effective mean energy gap, in agreement with the predictions of Kogan et al. [Phys. Rev. B 69, 132506 (2004)]. On the other hand, the temperature dependence of the real part of the microwave conductivity and of the surface resistance is accounted for by the single smaller gap, in agreement with the work of Jin et al. [Phys. Rev. Lett. 91, 127006 (2003)]. Since these findings rely on the same calculated gap structure, the required consistency is fulfilled.

74.70.Ad, 74.78.-w, 74.25.Nf

Introduction

Since the discovery of its superconducting properties, magnesium diboride (MgB2) has generated a great deal of interest because of its simple structure, relatively high critical temperature and two-gap nature. The Fermi surface of MgB2 consists of two three-dimensional sheets, from the π bonding and antibonding bands, and two nearly cilindrical sheets from the two-dimensional σ bands.1 Many physical properties of MgB2 are reasonably described within a model with two separated energy gaps, ?π and ?σ.2,3 Nevertheless, the role of interband and intraband scattering has to be considered:2,3 it is still not completely clear, also due to the wide spread quality of samples used in different experiments. In fact, a significant scattering between the different Fermi sheets may reduce the effective gap structure to a single isotropic gap. Recently, the expected

observation of single-gap superconductivity at high impurity level has been observed in C-substituted MgB2 single crystals by point-contact spectroscopy.4 When the level of impurities is high enough, the two gaps merge into a single gap with a ratio 2?/k B T c close to the standard BCS value.

The role of the two bands in determining the microwave conductivity in MgB2 thin films is controversial as well. The temperature dependence of the microwave conductivity in c-axis oriented films was interpreted by Jin et al. 5 in terms of a dominant contribution of the π band. They deduced this argument from the observation of a single anomalous peak around t=T/T c=0.6. The presence of such a peak can be explained in the framework of the BCS theory. When the superconducting state is entered and the gap opens, a singularity appears in the density of states at the gap edges, increasing the microwave conductivity.6 When the gap becomes larger than k B T, upon lowering the temperature, quasiparticles condense and microwave conductivity is suppressed. The peak at t=0.6 is consistent with a small gap. On the other hand, a clear statement in favor of the contribution of both the bands in determining the microwave conductivity in their high quality polycrystalline films (T c=39K) comes from Lee et al.7 They observed two distinct peaks in the conductivity, at t=0.5 and t=0.9, consistent with the expected ?π and ?σ values.

It is worth mentioning that the properties connected to superconductivity and to electric transport do not necessarily rely on the same band, in accordance with the arguments reported in ref.8. As a consequence, a comparison between different properties measured on the same sample, such as penetration length, surface resistance or complex microwave conductivity, and the supposed band structure is needed to shed light on the issue. This is in fact the aim of this work, where the microwave properties of MgB2 thin films prepared

by the so-called in-situ method are investigated. The characterization of the films at microwave frequencies, obtained by a coplanar resonator technique, is presented. From the analysis of the experimental data we determine the penetration depth, the surface impedance and the complex conductivity. The relatively low T c value (about 30K) suggests the presence of a relatively high level of impurities, which enhance the interband scattering. It is worthwhile to note that also the ion milling process, needed to obtain the resonators, increases the disorder in the pristine film. Accordingly, we consider the contribution of intra- and inter-band scattering, in the framework of the model proposed by Kogan et al., in order to obtain a reliable description of the temperature dependence of the measured penetration depth. The resulting gap structure is also compared to the results concerning the complex microwave conductivity and is discussed in detail.

Preparation and microwave measurements

We fabricated 1cm×1cm×110nm MgB2 thin films on (0001) sapphire substrates by a co-evaporation technique followed by in-situ annealing. B was evaporated by e-gun and Mg was evaporated by a resistive heater. During deposition, the substrate was held at a temperature of 280 oC. The thermal treatment was carried out at 500 oC for 5 minutes. Using this method, we obtained MgB2 thin films with rather good electrical properties and smooth and homogeneous surfaces. The analysis of the morphological and structural properties has been performed by means of AFM and XRD, respectively. The roughness

of the samples ranges between 10 and 20 nm (if evaluated on 5 μm2 areas), and depends on the film thickness. The films are polycrystalline and in the best samples we observe a partial orientation along the c-axis.

Linear coplanar resonators have been obtained by a standard photolithographic process followed by dry etching in an ion milling system: we obtained well-defined structures with very sharp edges. The length of the central conductor is l=8mm, its width is

w=300μm and the distance between the ground planes is a=700μm.

The microwave device was cooled in an Oxford He-flow cryostat equipped with an ITC503 temperature controller and with a custom-made dc magnet with high field uniformity. By means of Rohde-Schwarz ZVK vector network analyzer we measured the complex transmission coefficient, S21 (ratio of the voltage transmitted to the incident voltage 9), as a function of the driving frequency, f. Fig.1 shows the resonance curves S21(f) at increasing temperatures (inset) and at T=4.52K (main panel). The model of the resonator as a RLC circuit, needed to extract by means of a fit of the experimental data the relevant parameters (resonant frequency f0, loaded quality factor Q L and unloaded quality factor Q0) has been reported elsewhere.10 The best fit for the resonant curve at T=4.52K is shown in fig.1 (solid line).

The resonator results to be quite sensitive to rf and dc magnetic fields, both directed perpendicularly to the film surface. Fig.2 shows the decrement of the loaded quality factor, Q L, as a function of external dc field and input power, P in, at T=5K. This high sensitivity can be attributed to the high aspect ratio (thin film in a transverse field), which causes magnetic field line focusing at the edges, and to the coplanar layout, which induces rf current peaks at the edges, and finally to the intrinsic properties of MgB2. In

the following sections we analyze only microwave data measured in zero dc magnetic field and P in =–20dBm, since the upper limit of the linearity zone is about –10 dBm. Fig.3 shows the resonant frequency and the unloaded quality factor as a function of

temperature. These parameters represent the final output of the measurement procedure and are the base for the following analysis, aimed at determining all the physical quantities.

Determination of penetration depth, surface resistance and microwave complex conductivity

The analysis of the microwave data, aimed at the evaluation of the penetration depth and the surface resistance, has to suitably account also for the substrate properties.11 In the standard theory of distributed element transmission lines for a half-wavelength resonator,12 the resonant frequency is given by

l

l C L l f 210= (1) where l is the length of the resonator, L l and C l are the inductance and the capacitance per unit length, respectively. The ratio

()()()()()()()())()(00000T C T C T L L T L L T f T f r

l r l k l g l k l g l εελλ++=,

where L l g and L l k are the geometrical and kinetic inductances respectively, depends on temperature through the penetration depth λ(T ) and the permittivity of the substrate εr (T ). T 0 is a reference temperature, usually the lowest in the measured range. We fit the f 0(T )/f 0(T 0) experimental data with suitable parametric expressions for the temperature dependence of λ and εr , and with standard formulas for coplanar waveguides,11,13 as shown in fig.4. The temperature dependence of the London penetration depth here assumed in the fitting procedure is

γλλ)/(1)

0()(c L L T T T ?= (2)

with γ = 3-T/T c , describing the weak coupling regime.14 Attempts to use γ = 4 (strong coupling regime and two fluid approximation) or γ = 2 (d-wave superconductivity) 15 did not lead to any reasonable result. It has to be noted that (2) applies only to homogeneous superconductors with a single isotropic gap. The fact that this expression fits very well the experimental data is a first indication that our polycrystalline MgB 2 films have

significant scattering between the different Fermi sheets, which may reduce the effective gap structure to a single isotropic gap. Significant deviations from (2) are expected close to T c , where the microwave penetration depth λ deviates from the London penetration depth λL in order to meet the normal skin depth. Therefore the fit was performed in a suitable temperature range, where we estimate that the measured penetration depth λ ≈ λL (i.e. where λL -2>>ωμ0σ1, being σ1 the real part of the conductivity). This procedure allows obtaining a reliable evaluation of C l (T ), that we can extrapolate to the whole measured temperature range. Than we can recalculate L l (T ) from (1) by means of C l (T ) and of the experimental data f 0(T ). From these new L l (T ) values, extended to the whole

temperature range, we extract the final λ(T ) values by means of the formulas for coplanar lines.11,13 This procedure assures a model-independent determination of λ (inset of fig.4). The value λ(0)≈260nm deduced from the data fitting seems to be quite large if compared with other estimates in literature. It can be attributed to the fact that the film contains a certain level of impurities, as the relatively low critical temperature shows: impurities and interaction effects drastically enhance the penetration depth. In fact this value is in

between the estimates =105.7nm and =316.5nm given by Golubov et al. A

similar result is reported in ref.15 (film I) where data show T dirty ab L ,λdirty c L ,λc =29K, λ(0)=300nm and are fitted by (2) with γ = 3-T/T c as well.

The surface resistance, R s , is deduced as

00)

()(2Q w L f R eff s λλπ=

where w eff is the effective width of the line and . The dependence of the surface resistance on temperature is shown in fig.5. Despite the relatively low T )2/coth(L L d λλλ=c , the film shows a quite low R res , comparable with values in high-quality films:16,17 R res =10 μ? if the low temperature points are extrapolated to T =0K, as shown in fig.5, or R res =32 μ? as deduced by the fit shown below (fig.9).

The real and imaginary parts of the complex microwave conductivity, related to the complex surface impedance through )/(210σσωμi i iX R Z s s s ?=+=, can be obtained as 18

222201)()2(2s s s s s s X R X R X R ?+=ωμσ ; 22222

202)()2()(s s s s s s X R X R R X ?+?=ωμσ

where , and are shown in fig.6.

2002λμπf X s =

Effective gap

The physical parameters obtained above should somehow mirror the gap structure of the material. In this section we determine the gap functions underlying the experimental data from the comparison between measurements and calculations based on two-gap models. In order to proceed, we preliminarily examine the temperature dependence of the penetration depth. For a clean system, a kink or at least an inflection point in the temperature dependence of the penetration depth is predicted in the range of T /T c from 0.3 to 0.5.1,19 Interband scattering is expected to smooth out this feature 1,19 and its

absence in our data supports the hypothesis that interband effects are rather strong. Also the relatively low critical temperature is a further indication of the importance of

interband impurity scattering. Accordingly, we consider the following expression for the London penetration depth in the case of strong interband and intraband scattering, as given by Kogan et al.:

()∑

??∝?αααατνλk i B ik v v T k 2*

tanh *1

2, (3)

where α=π,σ, να are relative densities of states, v α are the Fermi velocities, τα are suitable combinations of scattering times and ?* is an effective mean energy gap σσππσπσπζζζζ?+???+=

?)(* ;

ππσσπτνζ?=2 ; σσππστνζ?=2 (4).

ζπ and ζσ are proportional to the interband scattering level (ζπ,ζσ>>1 for strong interband scattering ). If the terms in the sum in (3) are temperature independent in the investigated range, the following expression holds:

T

k T T B 2*tanh )0(*)(*)()0(22???=λλ (5) A comparison between the measured λ(T ) and calculations based on (5) are shown in fig.7, where different theoretical curves are reported and main parameters are listed. The calculation of the two gaps ?π and ?σ, needed to obtain ?* through (4), is performed in the framework of the two-band Eliashberg theory and proceeds as follows.20 The critical temperature of an ideal impurity-free MgB 2 film, T c *, is fixed by a suitable μ value (prefactor of the Coulomb pseudopotential). The effect of impurities is then added by setting the interband scattering rate Γπσ, see Ref.20, to a value adjusted to get the experimental T c , starting from T c *. We assume the spectral functions and the electron-phonon coupling constants calculated by Golubov et al.21,22 (λππ=0.448, λσσ=1.017, λσπ=0.213, λπσ=0.155), the Coulomb pseudopotential as in Ref.20, with a cutoff energy of 700 meV and the solution calculated until a maximum energy of 800 meV. The

considered densities of states at the Fermi level in the σ and π band are 0.3 and 0.4 states/ (eV unit cell), respectively. Once obtained ?π (T ) and ?σ (T ), the penetration depth is deduced through (4) and (5), with νπ =0.43, νσ =0.57 and scattering times τπσ = τσπ =1/ Γπσ, and compared to experimental data. All the curves reported in fig.7 are calculated by using μ and Γπσ values that give the same T c , the experimental one. The best agreement between theoretical and experimental curves is found in the case

μ=0.0475 and Γπσ =0.8meV (curve #1; the corresponding gap functions are reported in fig.8.). The resulting value of Γπσ corresponds to the case of intermediate-to-strong interband scattering, but fulfill the condition Γππ>Γσσ>>Γπσ suggested in ref.8. In this case it should be noted that if the superconducting band with the smaller gap is overdamped due to impurities, then the penetration depth is expected to be dominated by the other band. In fact, we notice that the λ(T) dependence in our films is much closer to the curve expected for pure σ contribution than to the curve expected for pure πcontribution (fig.7, curves #4 and #5, respectively).

An opposite behavior, i.e. a dominant role of the smaller gap, is expected when the properties connected to dissipation and electric transport are concerned, in agreement with the arguments of ref.8. We now discuss the temperature dependence of the real part of the microwave conductivity, σ1, and of the surface resistance, R s, by comparing data to the gap structure we obtained above (fig.8). The aim is twofold. First of all, we look for further support to the derivation of the gaps from the penetration depth. Moreover, we want to check if the prevailing influence of the smaller gap, claimed for σ1 and R s, holds. The dotted line in fig.8 represents the condition ?(T)=k B T. This line crosses the gap curves in correspondence of reduced temperatures that could be relevant to discuss the dependence on temperature of σ1. As already mentioned in the Introduction, the peak shown by σ1(T) is connected to the value of the gap. In our case, the σ1 peak occurs at

t≈0.62 (fig.6), exactly at the same temperature where the ?(T)=k B T line crosses the ?π(T) curve in fig.8. This result represents a remarkable agreement between independent physical parameters framed into a consistent two-gap model. It turns out that σ1 cannot

decrease until quasiparticles start to condensate also in the π band, in accordance with the findings of Jin et al. No clear features in the σ1(T ) curve emerge at reduced temperatures corresponding to the intersections of the ?(T )=k B T line with either ?σ(T ) or ?*(T ) functions.

Since the behavior of σ1(T ) is ruled by the smaller gap and λ(T ) results from a mean effective gap, the question arises about the prevailing effect on R s . In fact, in a two-fluid

model, ()

2/13202σλμω?s R . Low temperature R s data can be used to estimate the gap value according to the fitting expression 23

res t s R e t t A t R +??

????=?/4ln )(δνδ (6) where t=T/T c , ν=h f /?, δ = ?(0)/k T c and R res is the residual resistance. Fig.9 shows that the experimental data can be nicely fitted by (6), with ?(0) fixed to ?π(0) and with only three free parameters left (solid line). Attempts to get a good fit by setting ?(0) to ?σ(0) or to ?*(0) did not lead to reasonable results (dashed and dotted lines, respectively). This result rules out the contribution of the σ band to R s , in the investigated temperature range. Its validity has to be checked for T>T c /2, since the cubic dependence of R s on λ is expected to prevail.

Conclusions

The microwave properties of polycrystalline MgB2 thin films prepared by the in-situ method have been investigated by a coplanar resonator technique. Penetration depth, surface resistance and microwave conductivity were extracted by the analysis of the resonance curves at different temperatures. Data were interpreted by considering the contribution of intra- and inter-band scattering, in the framework of the two-gap model proposed by Kogan et al. It allows obtaining an effective energy gap from the two gap functions, which have been calculated from the two-gap Eliashberg theory. From the comparison between the calculated gap values and the experimental data it turns out that the temperature dependence of the penetration depth can be accounted for by the effective mean energy gap. On the other hand, the temperature dependence of the real part of the microwave conductivity and of the surface resistance is accounted for by the single small π gap, in agreement with other literature findings. These results are fully consistent since they rely on the same calculated gap structure. The main microwave properties of the investigated films make them promising for applications such as kinetic inductance photon detectors.

Acknowledgments

The authors whish to thank G. A. Ummarino (Politecnico di Torino, I) for the solution of the two-band Eliashberg equations and F. Roesthuis (University of Twente, NL) for his help in the ion milling process. This work has been partially supported by INFN and ASI

under the project CAME200310 and by the Italian MIUR under the FIRB-RBAU01PEMR project.

Figure 1. Resonance curve at T=4.52K. The solid line represents the best fit of the experimental data (see text). Inset: resonance curves at increasing temperatures.

Figure 2. Percent decrement of the loaded quality factor, Q L, as a function of the input power, P in, at zero dc field (solid symbols) and as a function of the external dc field at P in=-20dBm (open symbols).

Figure 3. Resonant frequency (right) and unloaded quality factor (left) as a function of temperature.

Figure 4. Normalized resonant frequency as a function of temperature. The solid line is the best fit of the experimental data (symbols) obtained by the procedure described in the text. The inset shows the penetration depth as deduced from the fit (London penetration depth, solid line) and as recalculated from (1) (microwave penetration depth, symbols, see ref.11).

Figure 5. Surface resistance as a function of temperature. The dotted line is the extrapolation of low temperature data to T=0K. Inset: the same data, in a linear scale.

Figure 6. Real part, σ1, and imaginary part, σ2, of the microwave complex conductivity as a function of temperature. Note the different scales concerning the real (right) and imaginary parts (left).

Figure 7. Temperature dependence of the penetration depth: experimental (symbols) and theoretical curves (lines). The theoretical curves are calculated following the procedure described in the text, with the reported parameters.

Figure 8. Gap structure, as determined by the comparison between experimental data and theoretical curves in fig.7 (see also the text). The arrow marks the reduced temperature at which ?π=k B T.

Figure 9. Low temperature surface resistance data, fitted by (6) with the parameter ?(0) set to ?π(0), ?σ(0) and ?*(0), respectively. The residual resistance, R res, resulting from the different fits is also reported.

0.0

0.1

0.20.30.40.5S 21

f (GHz)

Figure 1

-60-50-40

-30-20-100?Q L /Q L (%)μ0H dc (mT)-50-40-30-20-10010

?Q

L

/

Q L

(%

)

P in (dBm)

Figure 2

100002000030000400005000060000

70000

Q 0T (K)

7.0

7.2

7.47.67.8

8.0

f

(

G

H

z

)

Figure 3

0.975

0.9800.9850.990

0.9951.000f 0(T )

/

f 0(T 0)T (K)

Figure 4

0510********

10-5

10-4

10-310-210-1

T (K)

R s

(

?)

Figure 5

01x1072x1073x1074x1075x107σ2 (?-1

m -1)t = T / T c

1x105

2x1053x1054x105

5x105

σ1

(

?

-1

m

-1

)

Figure 6

51015202531

23456

54

321 experimental data

curve #1 λ from ?* (μ=0.04750, Γ

πσ=0.8meV)curve #2

λ from ?* (μ=0.03820, Γπσ=6.55meV)curve #3 λ from ?* (μ=0.03305, Γπσ=20meV)

curve #4 λ from ?σ (μ=0.05044, Γπσ=0)

curve #5 λ from ?π (μ=0.05044, Γπσ=0)

λ

(T

)

/

λ

(0)

T (K)

Figure 7

0.00.20.40.60.8 1.0

0.0

0.5

1.0

1.5

2.0? / k B

T c

t = T/T c

Figure 8

中药材购销合同范本

中药材购销合同范本 甲方(买方): 身份证号码: 电话: 乙方(卖方): 身份证号码: 电话: 甲乙双方本着自愿、平等、互惠互利、诚实信用的原则,经充分友好协商,订立如下合同条款,以资共同恪守履行。 第一条买卖标的 1.名称: 2.品种: 3.数量: 4.计量单位和方法: 5.质量等级:按国家标准执行(见附件),确定标准后封存样品,应由甲乙双方共同封存,妥善保管,作为验收的依据。 第二条包装 1.包装材料及规格: 2.不同品种等级应分别包装; 3.包装要牢固,适宜装卸运输;

4.每包品种等级标签清楚; 5.包装费用由(甲/乙)方负担。 6.包装物由(甲/乙)方供应,包装物的回收办法由双方另行商定。 第三条价款 产品的价格按下列第项执行: 1.在合同执行期内遇有价格调整时,按新价格执行。 2.价格由当事人协商议定。 第四条货款结算 1.货款的支付方式,按照以下项规定办理。 (1)合同生效后三日内甲方一次性付清货款。 (2)甲方自提,现款现货,货款两清。 (3)预付货款总额的%,余款在货到后以一次付清。 2.实际支付的运杂费,按照以下项规定办理。 (1)运杂费由乙方承担。 (2)运杂费由甲方承担。 3.货款的结算方式按照以下项规定办理。 (1)现金或现金支票结算。 (2)银行电汇或银行票汇结算。 (3)银行转帐结算。 4.开具发票类型:开具发票类型按照以下项规定办理。

(1)税率为17%的增值税发票。 (2)税率为4%的普通商业发票。 (3)售货收款凭证。 第五条交货方式 1.交货方式:按下列第项执行: (1)实行送货的,乙方应按合同规定的时间送往(接收地点),交货日期以发运时运输部门的戳记为准; (2)实行代运的,乙方应按甲方的要求,选择合理的运输路线和运输工具,向运输部门提报运输计划,办理托运手续,并派人押运(如果需要)。交货日期以发运时运输部门的戳记为准; (3)实行提货的,乙方应按合同规定的时间通知甲方提货,以发出通知之日作为通知提货时间; (4)实行义运的,对超过国家规定的义运里程的运输费用负担,按国家有关规定执行;国家没有规定的,由甲乙双方协商。 2.保险:(按情况约定由谁负责投保并具体规定投保金额和投保险种)。 3.与买卖相关的单证的转移: 第六条产品验收 1.验收时间:甲方应在收到产品之日起日内组织有关人员会同乙方人员进行验收。 2.验收标准:以双方约定的质量为准,允许产品颜色有一定误差,重量允许有% 误差,允许含水分为%。 3.异议: (1)甲方在验收中,如果发现产品质量不合规定,应妥为保管,并在日内向乙方提出书面异议;在托收承付期内,甲方有权拒付不符合合同规定部分的货款。

IELTS作文——Generation gap

Generation gap There always has been generation gap since the dawn of civilization. Old people act like a frog in the well. They are fully convinced with their ideas as ultimate and ideal. They ignore certain vital factors that are no longer valid in modern days. There is a great hue and cry raised by the elders and the young both that the communication between them has broken down and they accuse each other for and bemoan this state of affairs. They attribute it to generation gap. Majority in the society carries along with this moroseness and never pauses to think the why and how of the problem. 为什么?? The elders are more critical of the younger generation with a big inventory of complaints against the young and the young mostly tend to ignore the grumbling, mumbling and occasional loud protestations of the older generation. But now and then they do protest. They resent the petting attitude of the elders. It is generally observed that the old behave like a frog in the well. They are fully convinced that the ideas they have had throughout their lives are the ultimate and ideal. They ignore certain vital factors that are no longer valid in the case of the modernity. There always has been generation gap since the dawn of civilization. The young have always deviated from the older standards and it was well that they did or there wouldn’t have been any progress today. The younger generation naturally differs in dress, food, habits etc, as all these were not available to the older generation. These changes are indicative of progress. With the passage of time when the society, right from the basic unit of the family through society and the entire humanity, is changing, how can the new generation be asked to stagnate or move bac kward to the ancestors’ way of life? In the olden days, in the Indian society the arranged marriage took place first and love between husband and the wife were thought to be a natural development. The moral standards differed in consonance with the contemporary situation, as human society is essentially a utilitarian one. The elders couldn’t have visualized what was to come in their lifetime i.e. live-in relationship, one night stand, car key pooling and fishing and things that are yet to come out in the open. It will be generally agreed that most fathers want their offspring to adopt the same profession that they themselves followed without giving due weight to the aptitude of the offspring. This causes tension between the elders and the children. The younger generation is more intellectually evolved than the preceding one. But the ego of the older people does not permit them to accept

中药材购销合同范文(完整版)

合同编号:YT-FS-5580-72 中药材购销合同范文(完 整版) Clarify Each Clause Under The Cooperation Framework, And Formulate It According To The Agreement Reached By The Parties Through Consensus, Which Is Legally Binding On The Parties. 互惠互利共同繁荣 Mutual Benefit And Common Prosperity

中药材购销合同范文(完整版) 备注:该合同书文本主要阐明合作框架下每个条款,并根据当事人一致协商达成协议,同时也明确各方的权利和义务,对当事人具有法律约束力而制定。文档可根据实际情况进行修改和使用。 种养方(甲方):____ 收购方(乙方):____ 根据《中华人民共和国合同法》及其他有关法律规定的规定,甲乙双方在平等、自愿、公平、诚实信用的基础上,就种养产品收购的有关事宜达成如下协议。 第一条产品基本要求: 产品名称:____, 品种规格:____, 交货时间及数量____ 价格: ____。 第二条质量要求:______。 第三条收购保证金:乙方在____年_____月___日前向甲方支付收购保证金元。交货时保证金应抵作收购款。保证金支付后,因乙方违约解除合同的,保证

金不予退还;因甲方违约解除合同的,甲方应双倍返还保证金。 第四条结算方式及期限:货到一次性付清全部药材款,由乙方直接打至甲方指定账户。 第五条违约责任 1.甲方延迟交货或乙方支付收购款的,应当每日按照迟延部分价款____%的标准向对方支付违约金。 2.甲方交付的产品不符合约定要求的,乙方有权要求补足、换货或退货,由此发生的费用由甲方承担;但乙方应在____日内书面通知甲方,否则甲方有权拒绝乙方的要求。 3.甲方将产品或乙方提供的种苗擅自转让或变卖的,应按照该部分产品或种苗市场价格____%向乙方支付违约金。 第六条本合同自双方签字盖章之日起生效。 本合同一式两份,甲乙双方各执一份,具有同等法律效力。 种养方(签章):____

中药材GAP基地选址标准

基地选址标准 一、界权:基地选址应有明确的界定范围、应避免选择争议地。 1.基地选择时,应尽量选择村内地、避开村界地,条件不允许的,应在村 界各村协调一致界定界权后选择基地范围。 2.基地选择时,应尽量选择林场等已固定经营的、历史界权明晰的土地作 为基地。 3.选址确定后,应获取电子及纸质版界权图,条件允许的、标注利用经纬 度进行精确定位。为日后地权界线做准备。 4.租用(承包)合同、界权证明、界权地图等界权材料应统一归档保留直 至合同到期结束。 二、土地利用率 1.根据种植规划,选择适宜植物生长条件的阳坡或阴坡,根据植物习性尽 量选择阴坡多或者阳坡多的地块。 2.根据地形图及实地勘察,对过于陡峭不能开挖的土地、山石地及林木地 等进行估算,确定其土地开垦率及土地利用率。 3.基地选择时,应尽量选择采伐迹地和火烧迹地。避免人工毁林。 三、交通条件 1.选择基地时应选择交通条件良好的,道路交通一般应距离生活聚集区 20-40公里左右,有公交设施的道路,并且在1000米内、具有硬化路面,500米内有已成型、质量能够通行所需挖掘设备通行的道路。 2.选择基地时,也应当避免在交通要道两旁。 四、环境要求: 1、基地附近应无工矿企业,无大型养殖场和水质污染加工厂 2、选址基地附近应有足够水源,条件允许的,水源应当位于基地中心, 方便等距辐射整个基地。 3、基地选址确定之前必须请拥有相关资质单位对各各备选基地进行土 壤、水源和进行采样检测。其中, 1)大气:大气污染应符合国家大气环境质量二级标准。

2)土壤:土壤中重金属污染物及农药残留等应符合国家土壤质量二级标 准。 3)水源:水源污染物等应符合国家农田灌溉水标准。

-----农业合作协议书范本

农业合作协议书范本 甲方:住址:联系电话: 乙方:住址:联系电话:风险提示:合作的方式多种多样,如合作设立公司、合作开发软件、合作购销产品等等,不同合作方式涉及到不同的项目内容,相应的协议条款可能大不相同。 本协议的条款设置建立在特定项目的基础上,仅供参考。实践中,需要根据双方实际的合作方式、项目内容、权利义务等,修改或重新拟定条款。 为促进地方经济的发展,加快社会主义新农村建设,经过乙方实际考察和双方的充分磋商,本 着互惠互利、共同发展的原则,现就乙方在_________ 的中药材和经果林种植基地的有关事宜达 成一致,特签订如下合同: 一、项目名称及地址 1项目名称:中药材和经果林种植基地建设。 2、项目地址:___________________ 。 二、项目开发内容基地规划用地为_________ 亩,其中种植中药材 ____ 亩,种植经果林 _____ 亩,___ 年规划种植中药材______ 亩,种植经果林____ 亩。 三、经营期限:经营期限为_____ 年。 四、土地租赁的方式和期限 1甲方协调 ________ 村村委会采用流转的方式将土地租赁给乙方。 2、租期为______ 年自_____ 年_____ 月____ 日始至_____ 年_____ 月____ 日止。 风险提示: 应明确约定合作各方的权利义务,以免在项目实际经营中出现扯皮的情形。 再次温馨提示:因合作方式、项目内容不一致,各方的权利义务条款也不一致,应根据实际情况进行拟定。 五、甲方的权利及义务 1、负责监督协调土地流转和租金的分配工作;做好乙方的建设生产过程中的矛盾纠纷调处工 作。 2、做好项目的宣传工作,并协助乙方申报争取国家有关项目方面的优惠政策及上级资金的支持。 3、甲方应依法保障乙方员工人身、财产安全,保障乙方的合法权益,提供良好的投资环境和服务,落实好国家、省、市以及县规定的各项优惠政策。 4、协助乙方按合同行使土地的经营权,不得干预乙方的正常的生产经营活动。 5、在乙方扩大经营时,继续协调做好土地流转工作。 6、甲方在乙方土地租赁合同签订后,乙方盖生活住房时提供前期生活用水及照明用电设施 , 甲方积极协调电力、水利、国土等部门为乙方提供快捷、优质的服务。 六、乙方的权利及义务 1、乙方享有合同开发范围内指定的土地使用权,并按时支付土地的租赁费。 2、项目建设用工和项目区的用工在同等条件下优先考虑流转出土地的农户。 3、做好示范带动作用,积极引导农户可自愿发展同一项目的种植,乙方并免费进行技术指导。 4、乙方须依法建设,依法经营,企业建设和生产须符合国家产业政策,造成的一切后果概由乙方负责。

中草药购销合同范本(完整版)

合同编号:YT-FS-2820-86 中草药购销合同范本(完 整版) Clarify Each Clause Under The Cooperation Framework, And Formulate It According To The Agreement Reached By The Parties Through Consensus, Which Is Legally Binding On The Parties. 互惠互利共同繁荣 Mutual Benefit And Common Prosperity

中草药购销合同范本(完整版) 备注:该合同书文本主要阐明合作框架下每个条款,并根据当事人一致协商达成协议,同时也明确各方的权利和义务,对当事人具有法律约束力而制定。文档可根据实际情况进行修改和使用。 甲方:乙方: 双方经过平等协商,在真实、充分地表达各自意愿的基础上,根据《中华人民共和国合同法》的规定,本着平等自愿、互惠互利的原则,达成如下协议,并由双方共同恪守。 第一条产品名称、规格、单位、数量、金额 第二条产品的验收 符合《中国药典》20xx版一部标准; 封存样品为准。第三条交货地点:第四条第五条 第六条第七条回款方式:汇款或转账。 第八条违约责任解决方式:由于出现质量问题,退回费用由供方承担。 第九条纠纷解决方式:若发生争议,则由滨海县人民法院管辖。

第十条本合同一式两份。供需双方各执一份。 第十一条本合同有效期限自年月日到年月日止。 第十二条其他约定事项:本协议传真件有效。 甲方(公章):_____ 乙方(公章):_____ 法定代表人(签字):_____ 法定代表人(签字):_____ _____年____月____日_____年____月____日 这里填写您企业或者单位的信息 Fill In The Information Of Your Enterprise Or Unit Here

Generation_gap_中英对照

Generation gap 父母比我们年龄大,所以无论是生理上还是心理上,都要比我们成熟。 父母的经历和经验也比我们丰富,做事也比我们谨慎、周密。所以他们有能力采取适当的措施同子女进行沟通。如果父母没有做到这些而使自己与子女之间产生“代沟”,那么主要的责任在于父母。 从思想上讲 从现代教育上讲 子女所要接受的教育很多,而家庭教育则是子女接受教育中最为重要的教育内容之 一。"在谈及家庭教育必然要谈到父母与子女的关系问题。我们知道,一个良好的家庭环境必然会形成一个和睦而又温暖的家庭。如果家庭中各成员之间产生隔阂,必然会对子女的成长造成一定的影响。父母的言行和品德对子女有很大的影响。从子女一出生,父母就成了子女的启蒙老师,从此他们就担负着培养和教育子女的责任和义务,同时也是他们承担的社会责任。而父母的失职就可能给家庭蒙上一层阴影,造成家庭冷漠不和,以及子女的悲观、消极思想。 Intermsoffamilyeducation,parentsplayanimportantpartintherelationship between parents and children. We know that a good familyenvironmentisboundtoformaharmoniousandwarmfamily.Whatparents say and behave has a great influence on their children Negligenceoftheparentscancausechildren'spessimisticandnegativevalues.This is also one of the factors causing the generation gap. From the above arguments,we can draw a conclution thatthe generationgap is largely due to parents. 1/ 1

中药材种植基地合作协议

中药材种植收购协议 甲方: 乙方:住址 身份证号 为了充分发挥甲、乙双方各自优势,。经双方充分协商自愿达成如下合同,共同遵守。 第一部分甲乙双方合作关系: 1、甲乙双方合作的基础: 1.1 甲方寻求建立稳定的中药材种植供应源; 1.2 乙方希望在中药材行情变动较大的市场情况下,能建立较为稳定的价格及销售渠道; 2、甲乙双方合作方式: 2.1乙方将拥有土地使用权/土地承包经营权的土地(以土地使用权证或承包经营合同为 准),种植甲方所需的中药材; 2.2甲方同意以不低于保护价的价格收购乙方种植的中药材; 3 、甲方对乙方种植中药材有优先购买权,除下列情况外,乙方不得将种植的中药材擅自卖 给其他单位/个人; 3.4.1 甲方购买价明显低于市场价的; 3.4.2 甲方拖欠乙方货款的; 3.4.3 甲方拒绝收购乙方种植的的中药材的: 第二部分合作相关内容的确定 4、甲乙双方合作期限为年月日至年月日。 5、乙方种植的中药材品种为:乙方所在地的现有品种。 6、甲方收购乙方种植中药材的最低保护价为。 6.1 该保护价为甲方收购乙方种植中药材的最低收购价。

6.2 甲乙双方同意,当中药材市场价格高于约定保护价时,甲方以市场价格收购乙方种植的中药材; 6.3 最低保护价按上年度该中药材最低市场价确定,也可由甲乙双方协商确定; 7 、甲方不得拒绝收购乙方种植的中药材,但有下列情况之一除外: 7.1 乙方在销售中药材中参杂、使假的; 7.2 乙方销售的中药材存在霉烂、变质或其他不符合人体食用标准的情况的: 7.3 乙方不适当的使用农药/化肥或其他化学物质,造成中药材残留物超标的: 7.4 乙方违反采摘/ 收获期要求,提前或推后采摘/收获,造成中药材药性不达标的; 7.5 乙方未按中药材加工工艺要求进行操作,造成药材成品不合格的: 7.6 乙方销售的中药材不符合《药典要求》的: 8、对上述不合格中药材不予收购的: 8.1属7.4 及7.5 条所列的情况的,应由甲方在收购中药材后 3 日内出具相关检验证书,乙方对检验证书不服的,有权要求到有检验资质的机构申请重新检验;如重新检验后认定为 中药材合格,检验费用由甲方承担,反之由乙方承担。 8.2属7.4 及7.5 所列情况之外的,甲方应在收购/验收现场当场指出中药材不合格并说 明拒绝收购的理由,乙方对甲方理由不服的,有权向采购部申请重新认定或由甲方检验机构 检验,也可申请有检验资质的机构进行检验,检验费用按8.1 条款处理。 第三部分甲乙双方的权利和义务 9 、甲方的权利和义务 9.1 甲方的权利 9.1.1 甲方对乙方种植的中药材有优先购买权; 9.1.2 甲方对乙方种植中药材有种植品种建议权、种植过程监督权、农药/化肥使用监督权、采摘/ 收获时间的建议权、加工方式的建议权等。 9.2 甲方的义务 9.2.1 甲方有及时按约定收购乙方种植中药材(属第七条所列不合格除外),并及时支付收购款项的义务;

中药材购销合同协议书

中药材购销合同协议书文件编号TT-00-PPS-GGB-USP-UYY-0089

中药材购销合同范本 甲方(买方): 身份证号码: 电话: 乙方(卖方): 身份证号码: 电话: 甲乙双方本着自愿、平等、互惠互利、诚实信用的原则,经充分友好协商,订立如下合同条款,以资共同恪守履行。 第一条买卖标的 1.名称: 2.品种: 3.数量: 4.计量单位和方法:

5.质量等级:按国家标准执行(见附件),确定标准后封存样品,应由甲乙双方共同封存,妥善保管,作为验收的依据。 第二条包装 1.包装材料及规格: 2.不同品种等级应分别包装; 3.包装要牢固,适宜装卸运输; 4.每包品种等级标签清楚; 5.包装费用由 (甲/乙)方负担。 6.包装物由 (甲/乙)方供应,包装物的回收办法由双方另行商定。 第三条价款 产品的价格按下列第项执行: 1.在合同执行期内遇有价格调整时,按新价格执行。 2.价格由当事人协商议定。

第四条货款结算 1.货款的支付方式,按照以下项规定办理。 (1)合同生效后三日内甲方一次性付清货款。 (2)甲方自提,现款现货,货款两清。 (3)预付货款总额的 %,余款在货到后以一次付清。 2.实际支付的运杂费,按照以下项规定办理。 (1)运杂费由乙方承担。 (2)运杂费由甲方承担。 3.货款的结算方式按照以下项规定办理。 (1)现金或现金支票结算。 (2)银行电汇或银行票汇结算。 (3)银行转帐结算。 4.开具发票类型:开具发票类型按照以下项规定办理。 (1)税率为17%的增值税发票。

(2)税率为4%的普通商业发票。 (3)售货收款凭证。 第五条交货方式 1.交货方式:按下列第项执行: (1)实行送货的,乙方应按合同规定的时间送往 (接收地点),交货日期以发运时运输部门的戳记为准; (2)实行代运的,乙方应按甲方的要求,选择合理的运输路线和运输工具,向运输部门提报运输计划,办理托运手续,并派人押运(如果需要)。交货日期以发运时运输部门的戳记为准; (3)实行提货的,乙方应按合同规定的时间通知甲方提货,以发出通知之日作为通知提货时间; (4)实行义运的,对超过国家规定的义运里程的运输费用负担,按国家有关规定执行;国家没有规定的,由甲乙双方协商。 2.保险: (按情况约定由谁负责投保并具体规定投保金额和投保险种)。

中药材种植合作协议

临汾市晋冀农业开发有限公司 中药材种植合作协议 甲方: 乙方: 一、合作宗旨 以示范种植高品质中药材基地为基础,以加速我县农业产业转型为目的,以形成品质效应,打造我县中药材订单种植为目标。本着互惠、互利、风险共担、利益共享的原则,特签订本合同。 二、合作方式及条件 1、甲方希望高品质中药材示范种植基地,乙方希望在中药材行情变动较大的市场情况下,能建立较为稳定的价格及销售渠道; 2、乙方提供位于的亩可种植药材的土地,供甲乙双方合作种植中药材使用。 3、甲方提供种苗有偿服务和各种技术及种植方案的无偿服务,乙方负责按甲方要求进行种植管理。 4、甲方负责对乙方种植的合格药材全部收购。 5、乙方在中药材种植管理过程中,最好施用农家肥,生物杀虫剂,不得滥用化肥和化

学杀虫剂。 6、乙方销售给甲方的中药材,一是必须是签订本协议后由甲方提供种苗乙方所种植的药材,二是乙方交付的药材要保证干、净、无杂。 7、乙方在种植管理中药材过程中,甲方有权进行监督核查,并提出指导意见,乙方应按甲方所提要求进行种植管理。 8、乙方应将种植收获的中药材,必须全部售予给甲方,不得卖予他人;甲方应保证全部收购乙方种植的中药材,价格随行就市。并且甲方保证乙方每亩地纯收益在1000元以上,不足1000元的部分,甲方一次补足差额(注:所有种植户有5%达到即为达到)。 9、乙方在种植管理中药材过程中,如有违反本协议规定的种植管理条件的不当行为,甲方有权提出警告,乙方应更正不当行为,如甲方经评估认为乙方的不当行为可能影响中药材质量,则有权拒绝收购。 三、货款支付方式 1、甲方按照元/株,每亩种植5000株,种植面积 亩,合计:元。 2、种苗款乙方提前预付甲方货款全部的30%作为定金,甲方在收到定金后立即组织货源,不得耽误乙方的种植,收到定金后由于种苗到货不及时造成的损失由甲方承担。 3、种苗全部到位后,乙方应再支付甲方货款全部的50%,如因货款不到位造成的全部损失,由乙方承担。

中药材购销合同新编实用版

YF-ED-J4609 可按资料类型定义编号 中药材购销合同新编实用 版 An Agreement Between Civil Subjects To Establish, Change And Terminate Civil Legal Relations. Please Sign After Consensus, So As To Solve And Prevent Disputes And Realize Common Interests. (示范文稿) 二零XX年XX月XX日

中药材购销合同新编实用版 提示:该合同文档适合使用于民事主体之间建立、变更和终止民事法律关系的协议。请经过一致协商再签订,从而达到解决和预防纠纷实现共同利益的效果。下载后可以对文件进行定制修改,请根据实际需要调整使用。 甲方(买方): 身份证号码: 电话: 乙方(卖方): 身份证号码: 电话: 甲乙双方本着自愿、平等、互惠互利、诚 实信用的原则,经友好协商,订立如下合同条 款,以资共同恪守履行。 第一条、买卖标的 1、名称:

2、品种: 3、数量: 4、计量单位: 5、质量等级:按国家标准执行,确定标准后封存样品,应由甲乙双方共同封存,妥善保管,作为验收的依据。 第二条、包装 1、包装材料: 2、规格: 3、包装要点: (1)不同品种等级应分别包装。 (2)包装要牢固,适宜装卸运输。 (3)每包品种等级标签清楚。 (4)包装费用由乙方负担。 (5)包装物由乙方供应,包装物的回收办

法由双方另行商定。 第三条、价款 产品的价格按下列第__________项执行: 1、在合同执行期内遇有价格调整时,按新价格执行。 2、价格由当事人协商议定。 第四条、货款结算 1、货款的支付方式,按照以下第 _________项规定办理。 (1)合同生效后三日内甲方一次性付清货款。 (2)甲方自提,现款现货,货款两清。 (3)预付货款总额的_________%,余款在货到后以一次付清。 2、实际支付的运杂费,按照以下第

最新中药材种植基地合作协议

中药材种植收购协议 甲方:________________________________ 乙方:________________________________ 住址________________________ 身份证号________________________ 为了充分发挥甲、乙双方各自优势,。经双方充分协商自愿达成如下合同,共同遵守。 第一部分甲乙双方合作关系: 1、甲乙双方合作的基础: 1.1甲方寻求建立稳定的中药材种植供应源; 1.2乙方希望在中药材行情变动较大的市场情况下,能建立较为稳定的价格及销售渠道; 2、甲乙双方合作方式: 2.1 乙方将拥有土地使用权/土地承包经营权的土地(以土地使用权证或承包经营合同为 准),种植甲方所需的中药材; 2.2 甲方同意以不低于保护价的价格收购乙方种植的中药材; 3、甲方对乙方种植中药材有优先购买权,除下列情况外,乙方不得将种植的中药材擅自卖给 其他单位/个人; 3.4.1 甲方购买价明显低于市场价的; 3.4.2 甲方拖欠乙方货款的; 3.4.3 甲方拒绝收购乙方种植的的中药材的: 第二部分合作相关内容的确定 4、甲乙双方合作期限为_________ 年___ __月 ___ __日至_________年___ __月 ___ 日。 5、乙方种植的中药材品种为:乙方所在地的现有品种________________________________。 6、甲方收购乙方种植中药材的最低保护价为__________________。 6.1 该保护价为甲方收购乙方种植中药材的最低收购价。

6.2 甲乙双方同意,当中药材市场价格高于约定保护价时,甲方以市场价格收购乙方种植的中药材; 6.3 最低保护价按上年度该中药材最低市场价确定,也可由甲乙双方协商确定; 7、甲方不得拒绝收购乙方种植的中药材,但有下列情况之一除外: 7.1乙方在销售中药材中参杂、使假的; 7.2 乙方销售的中药材存在霉烂、变质或其他不符合人体食用标准的情况的: 7.3 乙方不适当的使用农药/化肥或其他化学物质,造成中药材残留物超标的: 7.4 乙方违反采摘/收获期要求,提前或推后采摘/收获,造成中药材药性不达标的; 7.5乙方未按中药材加工工艺要求进行操作,造成药材成品不合格的: 7.6 乙方销售的中药材不符合《药典要求》的: 8、对上述不合格中药材不予收购的: 8.1属7.4及7.5条所列的情况的,应由甲方在收购中药材后3日内出具相关检验证书,乙方对检验证书不服的,有权要求到有检验资质的机构申请重新检验;如重新检验后认定为中药材合格,检验费用由甲方承担,反之由乙方承担。 8.2 属7.4及7.5所列情况之外的,甲方应在收购/验收现场当场指出中药材不合格并说明拒绝收购的理由,乙方对甲方理由不服的,有权向采购部申请重新认定或由甲方检验机构检验,也可申请有检验资质的机构进行检验,检验费用按8.1条款处理。 第三部分甲乙双方的权利和义务 9、甲方的权利和义务 9.1 甲方的权利 9.1.1 甲方对乙方种植的中药材有优先购买权; 9.1.2 甲方对乙方种植中药材有种植品种建议权、种植过程监督权、农药/化肥使用监督权、采摘/收获时间的建议权、加工方式的建议权等。 9.2 甲方的义务 9.2.1 甲方有及时按约定收购乙方种植中药材(属第七条所列不合格除外),并及时支付收购款项的义务;

形成代沟的原因(The Causes of the Generation Gap)

形成代沟的原因(The Causes of the Generation Gap) Parents say that children do not show them proper respect and obedience, while children complain that their parents do not understand them. This phenomenon is often referred to as the generation gap. What then are the causes of the generation gap?One important cause of the generation gap is the chance that young people have to choose their way of life. In more traditional societies, when children grow up, they are expected to live in the same area as their parents, to marry people that their parents know and agree to, and to continue the family occupation. In modern society, young people often travel a great distance for their education, move out of the family at an early age, marry or live with people whom their parents have never met, and choose occupations different from those of their parents.in the easily changing society, parents often expect their children to do better than they did: to find better jobs, to make more money; and to do all the things that they were unable to do. Often, however, the strong desire that parents have for their children are another cause of the disagreement between them. Often, they discover that they have very little in common with each other. Finally, the speed at which changes take place in modern society is another cause of the gap between the generations. In a traditional culture, elderly people are valued for their wisdom, but in modern society, the knowledge of a lifetime may become out of date overnight. The young and the old seem to live in two very different worlds, separated by different skills and abilities. No doubt, the generation gap will continue to be a future of our life for some time to come. Its causes are rooted in the changes of our society, and in the rapid speed at which society changes.

农业合作协议书范本

农业合作协议书范本 甲方: 住址: 联系电话: 乙方: 住址: 联系电话: 为促进地方经济的发展,加快社会主义新农村建设,经过乙方实际考察和双方的充分磋商,本着互惠互利、共同发展的原则,现就乙方在_______的中药材和经果林种植基地的有关事宜达成一致,特签订如下合同: 一、项目名称及地址 1、项目名称:中药材和经果林种植基地建设。 2、项目地址:___________________。 二、项目开发内容基地规划用地为_______亩,其中种植中药材_____亩,种植经果林______亩,______年规划种植中药材_____亩,种植经果林______亩。 三、经营期限:经营期限为______年。 四、土地租赁的方式和期限

1、甲方协调_______村村委会采用流转的方式将土地租赁给乙方。 2、租期为______年,自_____年_____月____日始至_____年_____月____日止。 五、甲方的权利及义务 1、负责监督协调土地流转和租金的分配工作;做好乙方的建设生产过程中的矛盾纠纷调处工作。 2、做好项目的宣传工作,并协助乙方申报争取国家有关项目方面的优惠政策及上级资金的支持。 3、甲方应依法保障乙方员工人身、财产安全,保障乙方的合法权益,提供良好的投资环境和服务,落实好国家、省、市以及县规定的各项优惠政策。 4、协助乙方按合同行使土地的经营权,不得干预乙方的正常的生产经营活动。 5、在乙方扩大经营时,继续协调做好土地流转工作。 6、甲方在乙方土地租赁合同签订后,乙方盖生活住房时提供前期生活用水及照明用电设施,甲方积极协调电力、水利、国土等部门为乙方提供快捷、优质的服务。 六、乙方的权利及义务 1、乙方享有合同开发范围内指定的土地使用权,并按时支付土地的租赁费。 2、项目建设用工和项目区的用工在同等条件下优先考虑流转出土

中药饮片购销合同

**市**药业有限公司中药饮片购销合同 甲方: 乙方: 签约日期:签约地点: 根据《中华人民共和国合同法》及有关法律法规的规定,双方本着平等互利、诚实守信的原则签订本合同,以供共同遵守。 一、甲方生产销售的中药饮片应是符合《中国药典》及《贵州省中 药饮片炮制规范》的中药饮片。 二、乙方应是独立法人或自然人,具有民事行为能力和一定的专业 技术或背景。 三、乙方预计年销售中药饮片元。 (大写:) 四、供货方式、期限及地点: 。 仓库地址联系电话联系人 五、付款方式及期限:乙方购货按月实行现金或转账结算,拖欠货 款每日按1%计息。 六、甲方到乙方的货物运费由甲方承担。 七、首次供货甲方须提供生产许可证、营业执照、税务登记证、法 人代表委托书、质量保证协议等复印件各壹份。并加盖公司鲜章。 八、质量标准、包装标准、验收办法及提出异议的期限:如不合格, 在七日内作退货处理,符合各产品规定标准的,由乙方当场验收。如产品出现非正常损耗由甲方负责处理。产品非因乙方在运输、仓储及其它环节出现的质量问题,乙方均可及时向甲方提出质量异议,经甲方核实后应作退换货处理。 九、合同争议由双方协商解决。 十、其它约定事 项:。

**市**药业有限公司 中药饮片质量保证协议 甲方: 乙方: 为了贯彻落实《药品管理法》、《产品质量法》、《药品经营质量管理规范》和贵州省?年中药饮片炮制规范以及国家有关规定,以保证质量和确保人民群众用药安全,经双方协商,同意如下保证。 1、甲方所供应的药品(中药饮片)质量符合现行法定质量标准和有关质量要求,整件药品附产品合格证。 2、药品包装牢固,标识清楚,符合有关规定和货物运输要求。 3、甲方所销售的药品若出现有关药品质量问题(不包括乙方储存不当)均由甲方负责,对不符合国家有关规定的药品在七日内包退、包换。 4、甲乙双方除标准合同外的所有其它要货形式均遵从此协议。 5、本协议一式两份,甲乙双方各执一份,本协议经双方代表签字并盖公章方能生效。协议有效期为年月日至年月日。

农业合作协议书范本

专业优质的法律服务平台|法律咨询就上中顾法律网农业合作协议书范本甲方:住址:联系电话:乙方:住址:联系电话:为促进地方经济的发展,加快社会主义新农村建设,经过乙方实际考察和双方的充分磋商,本着互惠互利、共同发展的原则,现就乙方在_______的中药材和经果林种植基地的有关事宜达成一致,特签订如下合同:一、项目名称及地址1、项目名称:中药材和经果林种植基地建设。 2、项目地址:___________________。二、项目开发内容基地规划用地为_______亩,其中种植中药材_____亩,种植经果林______亩,______年规划种植中药材_____亩,种植经果林______亩。三、经营期限:经营期限为______年。四、土地租赁的方式和期限 1专业优质的法律服务平台|法律咨询就上中顾法律网1、甲方协调_______村村委会采用流转的方式将土地租赁给乙方。2、租期为______年,自_____年_____月____日始至_____年_____月____日止。五、甲方的权利及义务1、负责监督协调土地流转和租金的分配工作;做好乙方的建设生产过程中的矛盾纠纷调处工作。2、做好项目的宣传工作,并协助乙方申报争取国家有关项目方面的优惠政策及上级资金的支持。3、甲方应依法保障乙方员工人身、财产安全,保障乙方的合法权益,提供良好的投资环境和服务,落实好国家、省、市以及县规定的各项优惠政策。4、协助乙方按合同行使土地的经营权,不得干预乙方的正常的生产经营活动。 5、在乙方扩大经营时,继续协调做好土地流转工作。 6、甲方在乙方土地租赁合同签订后,乙方盖生活住房时提供前期生活用水及照明用电设施,甲方积极协调电力、水利、国土等部门为乙方提供快捷、优质的服务。 六、乙方的权利及义务1、乙方享有合同开发范围内指定的土地使用权,并按时支付土地的租赁费。2、项目建设用工和项目区的用工在同等条件下优先考虑流转出土 2 1/ 1

中药材购销合同通用版

中药材购销合同通用版 购销合同,是指一方将货物的所有权或经营管理权转移给对方,对方支付价款的协议。购销合同包括供应、采购、预购、购销结合及协作、调剂等形式。下面是小编搜集的中药材购销合同范本五篇,希望对你有所帮助。 中药材购销合同范本 (一) 甲方(买方):身份证号码:乙方(卖方):身份证号码: 甲乙双方本着自愿、平等、互惠互利、诚实信用的原则,经充分友好协商,订立如下合同条款,以资共同恪守履行。 第一条买卖标的 1.名称: 2.品种: 3.数量: 4.计量单位和方法:

5.质量等级:,确定标准后封存样品,应由甲乙双方共同封存,妥善保管,作为验收的依据。 第二条包装 1.包装材料及规格: 2.不同品种等级应分别包装; 3.包装要牢固,适宜装卸运输; 4.每包品种等级标签清楚; 5.包装费用由方负担。 6.包装物由方供应,包装物不回收,由甲方自行处理。 第三条价款 产品的价格按下列第项执行: 1.在合同执行期内遇有政策性调整时,按新价格执行。

2.价格遇到XX场价格波动超过%(含),由当事人协商议定。 3.价格确定后,无论发生何种情况均不予调整。 第四条货款结算 1.货款的支付方式,按照以下项规定办理。 (1)合同生效后____日内甲方一次性付清货款。 (2)甲方自提,现款现货,货款两清。 (3)预付货款总额的%,余款在货到后以一次付清。 (4)其他: 2.实际支付的运杂费,按照以下项规定办理。 (1)运杂费由乙方承担。 (2)运杂费由甲方承担。

3.货款的结算方式按照以下项规定办理。 (1)现金或现金支票结算。 (2)银行电汇或银行票汇结算。 (3)银行转帐结算。 4.开具发票类型:开具发票类型按照以下项规定办理。 (1)税率为17%的增值税发票。 (2)税率为4%的普通商业发票。 (3)售货收款凭证。 第五条交货方式 1.交货方式:按下列第项执行: (1)实行送货的,乙方应按合同规定的时间送往(接收地点),交货日期以发运时运输部门的戳记为准;

相关文档