文档库 最新最全的文档下载
当前位置:文档库 › 细菌比较基因组学分析新手指南

细菌比较基因组学分析新手指南

细菌比较基因组学分析新手指南
细菌比较基因组学分析新手指南

新手指南篇:基于二代测序数据的比较基因组分析

摘要

现在高通量测序既快又便宜,足以被视为细菌研究的重要工具,并且在公共领域有数以千计的细菌基因组序列供比较分析。越来越多不同的群体研究,像临床和公共卫生实验室,进行细菌基因组分析,它们感兴趣与细菌遗传学和进化相关的广泛话题。例如疫情分析及致病性和耐药性的研究。在这个初学者的指南中,我们的目标是,为那些生物信息学背景的个人分析细菌基因组数据提供了一个切入点,让他们来回答自己的研究问题。我们假设读者熟悉遗传学和序列数据的基本性质,但不承担任何计算机编程技能。涉及的主要议题是组装,contig排序,注释,基因组比较及提取共有的输入信息。每个部分均使用公开可用的大肠杆菌数据和免费的软件工具,所有这些都可以在台式计算机上被执行。

介绍和目的

现在高通量测序既快又便宜,足以被视为细菌研究的重要工具。越来越多不同的群体研究,像临床和公共卫生实验室,进行细菌基因组分析,它们感兴趣与细菌遗传学和进化相关的广泛话题。例如疫情分析及致病性和耐药性的研究。如今细菌的基因组序列,可以在许多实验室内部产生,仅需要使用台式测序仪数小时或数天,如Illumina的MiSeq,Ion Torrent PGM或者Roche 454 FLX Junior。这些许多数据在公共数据库中可用,允许进行广泛的比较分析;例如截止到2013年2月GenBank数据库包含>6500细菌基因组,其中2/3是处于草图形式(即呈现为一组片段序列,并非单一序列代表全基因组)。

在这个初学者的指南中,我们的目标是,为个人想利用全基因组序列数据进行从头组装基因组回答以在更广泛的研究目标范围内的问题提供一个切入点。该指南并非针对那些希望执行数百个基因在同一时间的自动化处理;在常规的微生物学诊断实验室的使用顺序的一些讨论是在文献中可用的[8]。我们假设读者熟悉遗传学和序列数据的基本性质,但不承担任何计算机编程技能,而我们使用,可以在台式计算机(在Mac,Windows或Linux)上执行的例子。这篇指导并不旨在详尽,而是要介绍一组简单而灵活并且自由的工具,可以用于研究各种常见问题包括:(i)如何用这个基因组比较另一个?(ii)这个基因组是否存在噬菌体或抗体基因?每个部分都包含了到哪儿里去寻找更详细技术资料,替代软件包和更高级的方法的指导。

实例和教程

在整个指南中,我们将使用大肠杆菌O104:H4作为样例。大肠杆菌O104:H4是溶血性致命尿毒综合症(HUS)2011年在德国爆发主要原食源性原因。通过不同的测序平台(包括llumina公司,IonTorrent和454)从大量的致病菌株读取和组装序列,如今可以从欧洲核酸档案库下载。

这个致病菌属于一种肠聚集型大肠杆菌,它已经获得了一种噬菌体编码Shiga毒素(通常与肠出血有关)同时还有多个抗生素抗性基因。在实例中,我们将采用一组O104:H4 TY-2482菌株的Illumina双端测序结果,并且包括一些可用的短序列。长的Pacific Bioscience reads 也是可用的,但是不包含在教程中。

工作流被分为五个逻辑部分:装配,contig排序,注释,比较基因组和归类。使用E. coli O104:H4数据的实例被展现在文字,图表中,更详细的介绍在附录中。本教程包含每个阶段所需要使用到的软件程序的具体步骤,以及预期的输入和输出(用于软件安装的说明由每个软件的开发者提供)。

虽然原始测序数据的质量控制对于得到用于比较分析的最好的组装结果是至关重要的,但是这个版块可能需要的步骤太多也太复杂,并且不同平台之间的差异也很大。然而,我们

建议读者使用与测序平台配套的软件工具检测原始数据的质量,或者使用FastQC评估原始数据。(见教材附件)

基因组组装

从头组装是将重叠序列reads合并成连续的序列(contig),不需要任何参考基因组作为向导。最有效的短read序列组装通常是采用de Bruijn图来产生一个组装。关于de Brujn图如何按顺序组装工作的一个有力解释可以在Compeau的文章中找到。其中的第一个也是最广泛使用的德布鲁因图汇编程序是开源程序Velvet。随着双端测序和和更长的读取进一步发展以提高重复和scaffold的分辨率[20],Velvet仍然是最常用的一个组装细菌基因组,是最适合llumina序列读取的。

Ion Torrent 平台的数据组装最好使用MIRA, 它使用改进的SmithWaterman 算法进行局部比对。对于454 测序平台的数据,Roche公司提供了一个基于de Bruijn图专用的组装软件。

当使用de Brujn图组装时,为了产生最佳的重叠群需要考虑一些变量。这可以使用VelvetOptimiser程序有效的自动化选取。问题的关键是选择合适K-mer长度去构建de Bruijn 曲线图。不同的测序平台产生不同长度和质量的片段,这意味着不同的范围内的K-mer将适用于不同类型的reads。必须找到特异性和灵敏性之间的平衡。其他需要考虑的变量时在运行中基因组预期的覆盖度范围,插入片段的长度,最小深度的临界值等。所有的这些变量都可用VelvetOptimiser自动化选取。如果所获得的平均覆盖率高于20x,错误contig被接受的几率将增加,如组装时不能区分错误与真实变种,如有大量evidence错误。

排序和观察已组装的contig

一旦将测序reads组装成一系列contigs,下一个步骤便是基于一个合适的参照基因组对这些contigs排序。这或许违反了一开始我们声明的从头组装,但是排序contigs对于后续发现和比较的过程必不可少。最好的参考基因组通常使用最相近的细菌的全基因组,但是对于大肠杆菌O104:H4,这其中可能需要反复试验。

可以使用命令行工具来实现排序contigs,如MUMmer,其可以被简化成类似ABACAS 程序包。但是我们建议对于初学者最简单的方法就是使用基于Java的图形界面程序Mauve 进行排序。这个排序算法使用迭代映射方法以找到与参考基因组的每个contig的最佳拟合。Mauve需要输入fasta格式参考基因组以及组装结果,并输出有序的contigs文件。

由于参考基因组和新的基因组之间的进化差异,重复元件的出现,如原噬菌体的存在,加上短read组装的特性,那么几乎肯定会在contigs中存在的装配误差。一个组装的错误率可以通过密切相关的参照基因组来评估。介绍一个很好的选择来评估误差率MauveAssemblyMetrics(见附件1),它可以产生组装质量的报告。

另一种方法去探究排序好的组装结果是通过可视化。Mauve提供了通过比对其他序列组装实现可视化的一种方式(见附件1:教程的说明)。另一个选择是使用ACT工具,一个基于Java的开源应用。使用大肠杆菌O104:H4的例子被示于图2和附件文件1:教程。要使用ACT中查看比较,你需要首先识别并生成您的组装集和参考基因组之间的同源性区域的比较文件。然后将其导入到ACT中。可以使用WebACT或DoubleACT网站,或使用自己的计算机上BLAST+生成比较文件(见附件1)。需要注意的是,需要将组件将被转换成一个单一的FASTA序列,然后才可以产生比较文件。这可以在Artemis(图2),或使用命令行工具来完成,如在EMBOSS包中的命令(见附件1:教程详细信息)。

基因组注释

一旦获得contig的有序集合,那么下一步就是进行基因注释。注释是在基因组中“基因”识别的过程,也包括了核糖体RNA和转运RNA的识别。细菌基因组注释很容易通过上传基因组使用基因Web的在线工具进行自动化注释,如RAST。这儿也有许多命令行注释软件。这些软件包括基于从头预测方法的软件,如Prokka 和DIYA,或者基于相似基因组的软件,如RATT和BG-7。

最后注释的质量很大程度上取决于所使用的基因数据库的质量,我们更倾向于使用在线注释工具RAST来注释细菌基因组。RAST以排序后的contig作为输入文件,识别开放阅读框作为的基因,并且使用一系列子系统技术(即RAST中的‘ST’)与复杂的数据库中基因或RNA序列进行比对从进行质量的注释。通过RAST在线工具可以查看鉴定出的基因,并与其他的基因组比较。注释结果还提供了多种下载格式,如Genebank。

比较基因组分析

对于大多数测序实验,与其他基因组或序列进行比较是一个关键的步骤。有时,一般会被问到,“基因组中哪些基因是共有的,哪些基因是独特的?”。在许多情况下,用户也有兴趣去寻找已知具有重要功能的特异基因,如致病基因或具有药抗性基因。

对于大多数用户来说,可视化这些生成的比较结果对于理解和解释数据都是重要的。因此,我们建议三个软件工具用于数据分析和可视-BRIG,Mauve和ACT(后面两个上文中已经介绍过)。对于有经验的用户,比较的问题也能通过使用命令行搜索工具,如MUMmer 和BLAST。

ACT是一个基于Jave的工具的两两全基因组比较工具。如上面概述,BLAST是用于序列比较(它可以在本地进行,或通过Web服务);两个基因组和BLAST结果,然后加载到ACT的可视化比较(见附件1:教程)。多个成对比较可以同时进行可视化;一个使用到大肠杆菌O104:H4在图2和附件1:教程可以查看。序列同源性的区域是由块,其被标记为红色(相同方向)或蓝色(扭转取向)的联系,与饱和度指示的同源性程度(暗=高度同源性,对光=低同源性)。序列的同源性区域由红色(相同方向)或蓝色(相反方向)的块联系起来,通过饱和度指示同源性程度(暗=高同源性,亮=低同源性)。使用的ACT的优点包括(i)能够灵活地缩小到看全基因组比较情况,(ⅱ)可以放大到检查DNA和/或蛋白质序列的精细比较,以及(iii)也能够对比较后的基因组添加、编辑注释。

Mauve是基于Java用于全基因组的多重比对工具,含有一个内置的浏览器和比较基因组信息各种形式输出的参数选择。如上文所述,其对齐功能也可以用于排序和将contig定向到现有的组装。Mauve需要输入的一组组装的基因组,并产生一个多重全基因组比对结果。它识别序列同源性块,并且分配每个块一个独特的颜色。每个基因组可以被可视化为这些有色序列块组成的序列,便于基因组比较的可视化。一个例子在图3中给出。这很容易识别出整个基因组中的保守区域和特有的基因岛区域。教程(附件1)中有如何利用Mauve通过比较EHEC和EAEC染色体序列识别E. coli O104:H4中的独特区域。因为Mauve生成基因组序列的比对,也可以用于鉴别单核苷酸多态性(SNP或点突变),适合于下游系统发育或进化分析(详见淡Mauve的用户指南)。

BRIG(BLAST的环形图像生成器)是一个基于Java的工具,用于参考序列和一组查询序列进行比较的可视化。结果绘制成一系列的环,每个环代表一个查询序列,它们通过着色显示被参考序列命中(参见图4)。BRIG是灵活的,并且可以被用来回答广泛的比对问题,这取决于参考和比较序列的选择。然后,要记住的一点是,这是一个基于参考系的特定方法,意味着它能告诉你在查询序列中存在或者不存在参考序列中的区域,但它并不显示参考序列中没有的查询序列区域。因此参考序列的选择对于结果的理解是至关重要的。在图4中有个例子,一个肠出血性大肠杆菌的基因组被用作参考序列,其他病原性大肠杆菌基因组作为查询序列。从图中很容易地看到,疫情菌株和肠出血性大肠杆菌(EHEC)在基因含量上显著

同,但共同拥有Stx2噬菌体序列,这段序列在肠聚集性大肠杆菌(EAEC)和肠致病性大肠杆菌股(EPEC)中缺失(图4中突出显示)。教程中包括了一个使用大肠杆菌O104:H4疫情基因组作为比较参考序列的重复例子。

分型和公共健康方面的应用:识别抗性基因,序列类型,噬菌体,质粒和其他特定序列全基因组测序越来越多地被用于代替基于PCR的测序或分型方法。在这里,我们,为这些目的列出一些专业工具。本教程包含检查大肠杆菌O104:H4疫情基因组的有关工具说明。抗生素抗性基因的检测是许多研究人员关心的一个问题,特别是在公共卫生和诊断实验室。ResFinder工具[44],免费提供在线[45]帮助,它允许用户上传序列数据,以寻找针对性的获得性耐药基因数据库。序列搜索是通过BLAST进行的,结果输出以表格形式显示,这个表格中显示了发现的抗性基因,并且标注它们的位置(重叠群名和坐标),以及预期的表型效应。ResFinder使用的最快方式是上传已经组装好的基因组,但是它也能读取原始的Fastq 格式文件,对原始数据进行组装之后再搜索抗性基因。多位点序列分型(MLST)被广泛使用,它是基于序列的方法对细菌菌种和质粒进行分型[46]。在2013年2月,公开版的MLST,可提供超过100种细菌和5质粒的不相容性类型[47]。流行病基因组中心开发了一个公开的基于Web的工具[48],它允许用户上传序列数据,并获得序列类型,为大多数公众提供MLST 服务。像ResFinder,该工具使用BLAST搜索,以确定序列类型,并可以接受基因组组装或原始read,, which are assembled on the fly prior to searching.序列类型也可以是原始read,这可以比组装后的更加敏感,例子见SRST,一个基于read映射[49,50]的命令行工具。

对于许多细菌,噬菌体是基因组中最具活力的部分,因此它也被许多研究人员重点关注。有几个免费的在线工具,用于鉴定原噬菌体序列在细菌基因组中是否存在。一个功能特别丰富的工具是PHAST(噬菌体搜索工具)[51]。基因组能够以fasta或者genebank文件格式上传;输出包括汇总表(显示了噬菌体序列和位置)和用于可视化单个噬菌体注释和它们位置(在一个圆形图上)的交互工具。

在大多数细菌基因组测序实验中,整个基因组DNA从分离株中提取出来,因此该序列数据包括染色体和质粒DNA。许多研究人员有兴趣探索存在于细菌基因组中的质粒,特别是在质粒携带的抗性基因或毒力基因。一种快速检测特定质粒是否存在及其序列类型的方法是进行质粒MLST分析,例如使用SRST。然而只有少数质粒能够使用MLST分析,并且不会告诉你是哪些基因编码的质粒。

确定序列属于质粒还是属于染色体的能力因不同的测序实验而不同。这通常取决于是否有可能将整个质粒组装成单一序列,这取决于很多因素,其中包括读长,pair-end和mate-pair 的数据可用性以及质粒中存在的重复序列。在大多数情况下,如果没有附加实验,不可能完全自信的对每一个contig都分配到它正确的复制子(例如染色体或特定的质粒)。然而,通过比较分析,也能够很好的预测基因组中存在什么质粒。一个好的开始是确定这些contig 一定不在染色体上(通过使用ACT或Mauve,见上文),并把它们与GenBank数据库或特定的质粒数据库进行BLAST比对。PA TRIC网站上有这么一个数据库。在PA TRIC BLAST 网页上,从程序下拉框中选择“blastn”,然后从数据库下拉框中选择“质粒序列”。你可以选择你的结果以图形或者表格形式显示。最相似的序列应该使用Mauve,ACT或者BRIG 进行更详细的可视化和比较。

另一个可用的方法是在NCBI进行BLASTN(核苷酸BLAST)搜索整个数据库,看看哪些已知序列匹配你的的非染色体重叠群(点击“blastn”,然后上传你的重叠群,并确保您正在搜索是“NR”数据库)。如果你发现你有一个很长的重叠群,能够多次匹配到质粒序列,很可能你的重叠群也是一个质粒的一部分。使用NCBI的BLAST搜索页面中的一个优点是,结果可以以一个系统树的形式来观看(点击“Disance tree of results”在结果页面的顶部)。

这可以帮助快速识别最接近于你的contig的质粒序列,然后可将其用于比较分析。如果发现一个重叠群它具有紧密匹配到已知质粒的一部分,那么参考质粒序列的其余部分是否也存在于这个新型的基因组中值得关注。通过使用BRIG你可以很快得到一个主意-用已知的质粒序列作为参考序列,用你组装后的contig作为查询序列,观察已知质粒有多少被contig覆盖。如果有更多的质粒被覆盖,可以使用参考质粒和注释的contig进行ACT比较,为了确定哪些contigs有可能“属于”相同的质粒复制子,并搜寻这个新的质粒可能携带什么其他的基因。

其他分析

还有许多其他的方法来执行比较细菌基因组的分析,这是在此不再赘述。特别是,我们还没有讨论系统发育分析,或如何基因组之间进行详细的基因含量比较。可以说,密切相关的基因组的系统发育分析最好通过已经由read匹配识别出的单核苷酸多态性(SNPs)来完成而不是以组装为基础的方法。许多软件程序可用于这一任务;参见综述和SeqAnswers 网页更新的软件列表。该过程在一定程度上可以利用命令驱动式流水线自动化完成,例如Nesoni 和Galaxy。详细的基因含量的比较一般使用感兴趣细菌菌种的专门数据库。可以通过网络搜索工具PATRIC和PGA T得到。

更深入的生物信息学分析

对于有兴趣了解更多有关生物信息学分析的生物学家,我们建议两件事情。首先,熟悉常用的Unix命令行,它开辟了一个巨大的软件工具阵列做更复杂的分析(见[58]为提供下一代序列分析工具的列表)。其次,学会使用Python脚本语言(在教程和相关模块BioPython,这将帮助你编写自己的代码片段做你想要的分析。

总结

该实验型测序仪的革命导致了测序的“平民化”,意味着大多数研究实验室在需要的时候都有能力测序细菌的全基因组。但是分析数据现在是大多数实验室的一大瓶颈。我们提供了一个起始点让生物学家能够迅速用自己的细菌基因组数据时,无需昂贵的软件或培训课程,投资的钱。这些图片展示了这些工具所呈现的样子,并跟随教程一步一步指示分析。

代谢组学的数据分析技术

代谢组学的数据分析技术 摘要:代谢组学是效仿基因组学和蛋白质组学的研究思想,对生物体内所有代谢物进行定量分析,并寻找代谢物与生理病理变化的相对关系的研究方式,是系统生物学的组成部分。其研究对象大都是相对分子质量1000以内的小分子物质。先进分析检测技术结合模式识别和专家系统等计算分析方法是代谢组学研究的基本方法。文章主要综述了将代谢组学中的图谱、数据信息转换为相应的参数所采用的分析方法。 关键词:代谢组学;数据分析方法 代谢组学是以代谢物分析的整体方法来研究功能蛋白如何产生能量和处理体内物质,评价细胞和体液内源性和外源性代谢物浓度及功能关系的新兴学科,是系统生物学的重要组成部分,其相应的研究能反映基因组、转录组和蛋白组受内外环境影响后相互协调作用的最终结果,更接近反映细胞或生物的表型,因此被越来越广泛地应用。而代谢组学的数据分析包括预处理和统计分析方法,多元统计分析方法主要分为两大类:非监督和监督方法,非监督方法包括主成分分析PCA;聚类分析CA等;监督方法包括显著性分析、偏最小二乘法等,本文就是主要综述代谢组学图谱信息转化为参数信息所采用的数据分析方法。 1预处理 数据的预处理过程包括以下:谱图的处理;生成原始的数据矩阵;数据的归一化以及标准化处理过程。针对实验性质、条件以及样品等因素采用不同的预处理方法。在实际应用过程中,预处理可以通过实验系统自带的软件如XCMS软件。进行,因此一般较容易获得所需的数据形式。 2数据分析方法 2.1 主成分分析PCA是多元统计中最常用的一种方法,它是在最大程度上提取原始信息的同时对数据进行降维处理的过程,其目的是将分散的信息集中到几个综合指标即主成分上,有助于简化分析和多维数据的可视化,进而通过主成分来描述机体代谢变化的情况。PCA 的具体过程是通过一种空间转换,形成新的样本集,按照贡献率的大小进行排序,贡献率最大的称为第一主成分,依次类推。经验指出,当累计贡献率大于85%时所提取的主成分就能代表原始数据的绝大多数信息,可停止提取主成分。在代谢组数据处理中,PCA是最早且广泛使用的多变量模式识别方法之一。,具有不损失样品基本信息、对原始数据进行降维处理的同时避免原始数据的共线性问题等优点,但在实际应用过程中,PCA存在着自身的缺点[1]:离群样本点的存在严重影响其生物标志物的寻找;非保守性的代谢组分扰乱正确的分类以及尺度的差异影响小浓度组分的表现等,其他的问题之前也有讨论[2]。针对PCA 的缺陷采用了不同的改进措施,与此同时,为了简化计算,侯咏佳等[3]。提出了一种主成分分析算法的FPGA实现方案,通过Givens算法和CORD IC算法的矢量旋转,用简单的移位和加法操作来实现协方差矩阵的特征分析,只需计算上三角元素,因此计算复杂度小、迭代收敛速度快。 2.2 聚类分析CA是用多元统计技术进行分类的一种方法。其主要原理是:利用同类样本应彼此相似,相类似的样本在多维空间里的彼此距离应较小,而不同类的样本在多维空间里的

代谢组学的研究方法和研究流程

代谢组学的研究方法和研究流程分子微生物学112300003林兵 随着人类基因组计划等重大科学项目的实施,基因组学、转录组学及蛋白质组学在研究人类生命科学的过程中发挥了重要的作用,与此同时, 代谢组学(metabolomics)在20世纪90年代中期产生并迅速地发展起来,与基因组学、转录组学、蛋白质组学共同组成系统生物学。基因组学、转录组学、蛋白质组学和代谢组学等各种组学0在生命科学领域中发挥了重要的作用,它们分别从调控生命过程的不同层面进行研究, 使人们能够从分子水平研究生命现象, 探讨生命的本质, 逐步系统地认识生命发展的规律.这些组学手段加上生物信息学, 成为系统生物学的重要组成部分。 代谢组学的出现和发展是必要的, 同时也是必须的。对于基因组学和蛋白质组学在生命科学研究中的缺点和不足, 代谢组学正好可以进行弥补。代谢组学研究的是生命个体对外源性物质(药物或毒物)的刺激、环境变化或遗传修饰所做出的所有代谢应答, 并且检测这种应答的全貌及其动态变化。代谢组学方法为生命科学的发展提供了有力的现代化实验技术手段, 同时也为新药临床前安全性评价与实践提供了新的技术支持与保障. 1 代谢组学的概念及发展 代谢组学最初是由英国帝国理工大学Jeremy N icholson教授提出的,他认为代谢组学是将人体作为一个完整的系统,机体的生理病理过程作为一个动态的系统来研究, 并且将代谢组学定义为生物体对病理生理或基因修饰等刺激产生的代谢物质动态应答的定量测定。2000年,德国马普所的Fiehn等提出了代谢组学的概念,但是与N ichols on提出的代谢组学不同, 他是将代谢组学定位为一个静态的过程,也可以称为/代谢物组学, 即对限定条件下的特定生物样品中所有代谢产物的定性定量分析。同时Fiehn还将代谢组学按照研究目的的不同分为4类: 代谢物靶标分析,代谢轮廓(谱)分析, 代谢组学,代谢指纹分析。现在代谢组学在国内外的研究都在迅速地发展, 科学家们对代谢组学这一概念也进行了完善, 作出了科学的定义: 代谢组学是对一个生物系统的细胞在给定时间和条件下所有小分子代谢物质的定性定量分析,从而定量描述生物内源性代谢物质的整体及其对内因和外因变化应答规律的科学。 与基因组学、转录组学、蛋白质组学相同, 代谢组学的主要研究思想是全局观点。与传统的代谢研究相比, 代谢组学融合了物理学、生物学及分析化学等多学科知识, 利用现代化的先进的仪器联用分析技术对机体在特定的条件下整个代谢产物谱的变化进行检测,并通过特殊的多元统计分析方法研究整体的生物学功能状况。由于代谢组学的研究对象是人体或动物体的所有代谢产物, 而这些代谢产物的产生都是由机体的内源性物质发生反应生成的,因此,代谢产物的变化也就揭示了内源性物质或是基因水平的变化,这使研究对象从微观的基因变为宏观的代谢物,宏观代谢表型的研究使得科学研究的对象范围缩小而且更加直观,易于理解, 这点也是代谢组学研究的优势之一. 代谢组学的优势主要包括:对机体损伤小,所得到的信息量大,相对于基因组学和蛋白质组学检测更加容易。由于代谢组学发展的时间较短, 并且由于代谢组学的分析对象是无偏向性的样品中所有的小分子物质,因此对分析手段的要求比较高, 在数据处理和模式识别上也不成熟,存在一些不足之处。同时生物体代谢物组变化快, 稳定性较难控制,当机体的生理和药理效应超敏时,受试物即使没有相关毒性,也可能引起明显的代谢变化,导致假阳性结果。 代谢组学应用领域大致可以分为以下7个方面:

医学微生物学病案分析

微生物各论(病案分析) 病案一: 女性,10岁,咽痛、咳嗽、发热后15天出现全身水肿,尿量减少,血压157/98mmHg,实验室检查:血红蛋白125g/L,白细胞5.7*109/L, 尿蛋白+,红细胞++++,白细胞0个/HP,管型0个/HP. 问题:1)此病人最有可能患何种疾病?2)由何种病原体感染所致?3)应如何做进一步的微生物学检查来确诊?4)如何有效预防此疾病? 分析: 1)诊断为链球菌感染后急性肾小球肾炎。患者在咽痛、咳嗽、发热后15D,出现全身水肿,蛋白尿和高血压,符合链球菌感染后急性肾小球肾炎的发病规律。 2)链球菌感染后急性肾小球肾炎大多数由A群链球菌引起 3)链球菌所致变态反应性疾病取患者血清作抗链球菌溶素O抗体测定,急性肾小球肾炎患者血清中抗O抗体一般超过400U。 4)对患者的急性咽峡炎和扁桃体炎,尤其是儿童,须治疗彻底,以防止急性肾小球肾炎、风湿热以及亚急性细菌性心内膜炎的发生。首选药物为青霉素G,临床上最好作药物敏感试验。 病案二: 男性,7岁。畏寒、发热1天就诊。查体:T 390C,P 95次/分,咽部充血明显,扁桃体II度肿大,表面覆盖有黄白色分泌物,全身皮肤充血潮红,可见有与毛囊分布一致的栗粒疹。疑为猩红热。 问题:1)此病如何引起的?2)如何预防此病的流行?

1)人类猩红热是由A群链球菌产生的致热外毒素引起,该毒素具有损害细胞或组织、使病人产生红疹并具有内毒素样致热作用。多发于10岁以下儿童,细菌经飞沫传播,粘附于咽部粘膜,产生致热外毒素,引起全身中毒症状,故病人有畏寒、发热、咽部充血明显,扁桃体II度肿大、全身皮肤充血潮红,栗粒疹。 2)预防此病的流行:应对病人和带菌者及时治疗;对空气、器械和敷料等消毒;对急性咽峡炎和扁桃体炎患者,尤其是儿童,须治疗彻底,以减少传染源。 病案三: 男性患者,20岁。1周前外出遇雨,不久“感冒”,随后畏寒、发热、咳嗽、胸膜剧烈疼痛,咳铁锈色痰。查体:体温 39.70C,右肺呼吸音稍低。血白细胞17.7*109/L,中性粒细胞89%,胸片见左上肺大片致密影。 问题:1)患者最可能患的疾病是什么?该病原体形态有何特征?2)检查该病原体菌落时应注意什么?如何进行特异性预防? 分析: 1)患者最有可能患的疾病史大叶性肺炎。该病原体形态上的特征:G+,菌体成矛头或瓜子仁状,常以钝端相对、尖端向外成双排列,无鞭毛、无芽孢。在机体内或含血清的培养基上有较厚的荚膜。 2)检查该病原体菌落时应注意与甲型溶血性链球菌鉴别。肺炎链球菌胆汁溶菌试验、菊糖发酵试验均为阳性。多价肺炎链球菌荚膜多糖疫苗对预防肺炎链球菌感染有较好效果。

代谢组学在医药领域的应用与进展

代谢组学在医药领域的应用与进展 一、学习指导 1.学习代谢组学的概念及内涵,掌握代谢组学的研究对象与分析方法。 2.熟悉代谢组学数据分析技术手段 3.了解代谢组学优势特点 4.了解代谢组学在医药领域的应用 5.了解代谢组学发展趋势 二、正文 基因组功能解析是后基因组时代生命科学研究的热点之一,由于基因功能的复杂性和生物系统的完整性,必然要从“整体”层面上来理解构成生物体系的各个模块功能。随着新的测量技术、高通量的分析方法、先进的信息科学和系统科学新理论的发展,加上生物学研究的深入和生物信息的大量积累,使得在系统水平上研究由分子生物学发现的组件所构成的生命体系成为可能[1]。系统生物学家们认为,将生命科学上升为“综合”科学的时机已经成熟,生命科学再次回到整合性研究的新高度,逐步由分子生物学时代进入到系统生物学时代[2]。系统生物学不同以往的实验生物学仅关注个别基因和蛋白质,它要研究所有基因、蛋白质,代谢物等组分间的所有相互关系,通过整合各组成成分的信息,以数学方法建立模型描述系统结构[3,4]。 (一)代谢组学的概念及内涵 代谢组学是继基因组学、转录组学和蛋白质组学之后,系统生物学的重要组成部分,也是目前组学领域研究的热点之一。代谢组学术语在国际上有两个英文名,即metabolomics 和metabonomics。Metabolomics是由德国的植物学家Fiehn等通过对植物代谢物研究提出来的,认为代谢组学(metabolomics)是定性和定量分析单个细胞或单一类型细胞的代谢调控和代谢流中所有低分子量代谢产物,从而监测机体或活细胞中化学变化的一门科学[5]。英国Nicholson研究小组从毒理学角度分析大鼠尿液成份时提出了代谢组学(Metabonomics)的概念,认为代谢组学是通过考察生物体系受扰动或刺激后(如某个特定基因变异或环境变化后),其代谢产物的变化或代谢产物随时间的变化来研究生物体系的代谢途径的一种技术[6]。国内的代谢组学研究小组基本用metabonomics一词来表示“代谢组学”。严格地说,代谢组学所研究的对象应该包括生物系统中所有的代谢产物。但由于实际分析手段的局限性,只对各种代谢路径底物和产物的小分子物质(MW<1Kd)进行测定和分析。 (二)代谢组学优势特点 代谢组学作为系统生物学的一个重要组成部分,代谢组可以更好地反映体系表型生物机体是一个动态的、多因素综合调控的复杂体系,在从基因到性状的生物信息传递链中,机体需通过不断调节自身复杂的代谢网络来维持系统内部以及与外界环境的正常动态平衡[7]。

基因组学重点整理

生物五界:动物、植物、真菌、原生生物和原核生物;生物三界:真细菌、古细菌、真核生物 具有催化活性的RNA分子称为核酶(ribozyme)核酶催化的生化反应有:自我剪接、催化切断其它RNA、合成多肽键、催化核苷酸的合成 新基因的产生:基因与基因组加倍1)整个基因组加倍;2)单条或部分染色体加倍;3)单个或成群基因加倍。DNA水平转移:原核生物中的DNA水平转移可通过接合转移,噬菌体转染,外源DNA的摄取等不同途径发生,水平转移的基因大多为非必须基因。动物中由于种间隔离不易进行种间杂交,但其主要来源于真核细胞与原核细胞的内共生。动物种间基因转移主要集中在逆转录病毒及其转座成分。 外显子洗牌与蛋白质创新:产生全新功能蛋白质的方式有二种:功能域加倍,功能域或外显子洗牌 基因冗余:一条染色体上出现一个基因的很多复份(复本)当人们分离到某一新基因时,为了鉴定其生物学功能,常常使其失活,然后观察它们对表型的影响。许多场合,由于第二个重复的功能基因可取代失活的基因而使突变型表型保持正常。这意味着,基因组中有冗余基因存在。看家基因很少重复,它们之间必需保持剂量平衡,因此重复的拷贝很快被淘汰。与个体发育调控相关的基因表达为转录因子,具有多功能域的结构。这类基因重复拷贝变异可使其获得不同的表达控制模式,促使细胞的分化与多样性的产生,并导致复杂形态的建成,具有许多冗余基因。 非编码序列扩张方式:滑序复制、转座因子 模式生物海胆、果蝇、斑马鱼、线虫、蟾蜍、小鼠、酵母、水稻、拟南芥等。模式生物基因组中G+C%含量高, 同时CpG 岛的比例也高。进化程度越高, G+C 含量和CpG 岛的比例就比较低 如果基因之间不存在重叠顺序,也无基因内基因(gene-within-gene),那么ORF阅读出现差错的可能只会发生在非编码区。细菌基因组中缺少内含子,非编码序列仅占11%, 对阅读框的排查干扰较少。细菌基因组的ORF阅读相对比较简单,错误的机率较少。高等真核生物DNA的ORF阅读比较复杂:基因间存在大量非编码序列(人类占70%);绝大多数基因内含有非编码的内含子。高等真核生物多数外显子的长度少于100个密码子 内含子和外显子序列上的差异:内含子的碱基代换很少受自然选择的压力,保留了较多突变。由于碱基突变趋势大多为C-T,故A/T的含量内含子高于外显子。由于终止密码子为TAA\TAG\TGA,如果以内含子作为编码序列,3种读码框有很高比例的终止密码子。 基因注释程序编写的依据:1)信号指令,包括起始密码子,终止密码子,终止信号,剪接受体位和供体位,多聚嘧啶序列,分支点保守序列2)内容指令,密码子偏好,内含子和外显子长短 基因功能的检测:基因失活、基因过表达、RNAi干涉 双链DNA的测序可从一端开始,亦可从两端进行,前者称单向测序,后者称双向测序。 要获得大于50 kb的DNA限制性片段必需采用稀有切点限制酶。 酵母人工染色体(YAC)1)着丝粒在细胞分裂时负责染色体均等分配。2)端粒位于染色体端部的特异DNA序列,保持人工染色体的稳定性3)自主复制起始点(ARS)在细胞中启动染色体的复制 合格的STS要满足2个条件:它应是一段序列已知的片段,可据此设计PCR反应来检测不同的DNA片段中是否存在这一顺序;STS必需在染色体上有独一无二的位置。如果某一STS在基因组中多个位点出现,那么由此得出的作图数据将是含混不清的。 遗传图绘制主要依据由孟德尔描述的遗传学原理,第一条定律为等位基因随机分离,第二条定律为非等位基因自由组合,显隐性规律/不完全显性、共显性、连锁 衡量遗传图谱的水平覆盖程度饱和程度 基因类型:transcribed, translatable gene (蛋白基因) ;transcribed but non-translatable gene ( RNA基因)Non- transcribed, non-translatablegene ( promoter, operator ) rRNA基因,tRNA基因, scRNA基因, snRNA基因, snoRNA基因, microRNA基因 基因组(genome):生物所具有的携带遗传信息的遗传物质总和。 基因组学(genomic):用于概括涉及基因作图、测序和整个基因功能分析的遗传学分支。 染色体组(chromosome set):不同真核生物核基因组均由一定数目的染色体组成,单倍体细胞所含有的全套染色体。 比较基因组学(comparative genomics):比较基因组学是基因组学与生物信息学的一个重要分支。通过模式生物基因组与人类基因组之间的比较与鉴别,为分离重要的候选基因,预测新的基因功能,研究生物进化提供依据。(目标)

微生物学名词解释(完美整理版)分析

微生物名词解释 A 氨基酸异养型微生物:能利用非氨基酸类简单氮源自行合成自身所需的一切氨基酸的微生物 艾姆氏试验:利用细菌营养缺陷型的回复突变来检测环境或食品中是否存在化学致癌物的方法。 ADCC:抗体依赖的细胞介导的细胞毒作用。是指表达IgGFc受体的NK细胞、巨噬细胞和中性粒细胞等,通过与已结合在病毒感染细胞和肿瘤细胞等靶细胞表面的IgG抗体的Fc段结合,而杀伤这些靶细胞的作用。 氨化作用:是指含氮有机物经微生物的分解而产生氨的作用。 B 伴胞晶体:少数芽孢杆菌在其形成芽孢的同时,在细胞内形成的一种菱形或双椎形碱溶性蛋白晶体。伴胞晶体对昆虫尤其是鳞翅目昆虫的幼虫有毒杀作用。 疵壁菌:嗜盐菌、产甲烷菌等古生菌的细胞壁中不含有典型的肽聚糖成分,被称为疵壁菌。 鞭毛:生长在某些细菌表面的长丝状、波曲的蛋白质。 包涵体:某些病毒感染宿主后,在宿主细胞内形成的一种光镜下可见、形态大小和数量不等的小体。 病毒:是一类只含一种类型核酸、专性活细胞内寄生、在离体条件下能以无生命的化学大分子状态长期存在并保持其活性的超显微非细胞结构的分子生物。 病毒粒子:成熟的、结构完整的、具有感染性的病毒个体。 巴斯德效应:酵母菌酒精发酵时通入氧气,发酵减慢,停止产生乙醇,葡萄糖消耗速率下降。氧对发酵的这种抑制现象称为巴斯德效应。 半合成培养基:是一类主要以化学试剂配制,同时还加有某种或某些天然成份的培养基 半固体培养基:指在液体培养基中加入少量的凝固剂而制成的半固体状态培养基。 表型:是指某一生物体所具有的一切外表特征及内在特性的总和,是遗传型在合适环境下的具体体现。变异:是生物体在某种内因和外因的作用下所起的遗传物质结构和数量的改变。 半抗原:即不完全抗原。指只具备免疫反应性而无免疫原性的抗原。 巴斯德消毒:用于牛奶、啤酒、果酱和酱油等不能进行高温灭菌、而又不影响食品风味的、但能杀死其中的无芽孢病原菌(如:结核杆菌、沙门氏菌等)的一种低温消毒方法。 BOD5:五日生化需氧量。是指在20℃下,1L污水中所含的有机物在进行微生物氧化时,5日内所消耗分子氧的毫克数。反映水体总的有机物污染程度。 补充培养基:凡只能满足相应地营养缺陷型突变株生长需要的组合或半组合培养基称为补充培养基。 B细胞:即B淋巴细胞,一种在细胞膜表面带有自己和合成的免疫球蛋白的淋巴细胞。 被动免疫:从胎盘或初乳中获得的或者注射抗体、细胞免疫制剂后获得的免疫。 补体:是存在于正常人体或动物体血清中的、在抗原抗体反应中有补充抗体作用的一组非特异性血清蛋白。补体是一类酶原,能被任何抗原-抗体复合物所激活。 补体结合试验:是一种有补体参与,并以绵羊红细胞和溶血素是否发生溶血反应作指示的一种高灵敏度的抗原与抗体结合反应。 C 传染:是指寄生物与宿主间发生相互关系的一个过程。即当外源或内源的少量寄生物突破其宿主的“三道防线”后,在宿主的一定部位生长繁殖,并引起一系列病理生理的过程。 出发菌株:用于诱变育种的原始菌株。 沉淀反应:可溶性抗原与其相对应的抗体在合适的条件下反应,并出现肉眼可见的沉淀物现象,称为沉淀反应。 初次应答:指首次用适量抗原注射动物后,须经一段较长的潜伏期即待免疫活性细胞进行增值分化后,才能在血流中检出抗体,这种抗体多为IgM,滴度低,维持时间短,且很快会下降。 转染:噬菌体感染细菌并将其DNA注入细菌体内,并导致宿主细胞遗传性状改变的过程称为转染。 COD:化学需氧量。是使用强氧化剂使1L污水中的有机物质迅速进行化学氧化时所消耗的毫克数。反映水体总的有机物污染程度。 超敏反应:是致敏机体接触相同抗原时产生的一种异常的特异性免疫应答,表现为机体的组织损伤

基因组学的研究内容

基因组学的研究内容 结构基因组学: 基因定位;基因组作图;测定核苷酸序列 功能基因组学:又称后基因组学(postgenomics基因的识别、鉴定、克隆;基因结构、功能及其相互关系;基因表达调控的研究 蛋白质组学: 鉴定蛋白质的产生过程、结构、功能和相互作用方式 遗传图谱 (genetic map)采用遗传分析的方法将基因或其它dNA序列标定在染色体上构建连锁图。 遗传标记: 有可以识别的标记,才能确定目标的方位及彼此之间的相对位置。 构建遗传图谱 就是寻找基因组不同位置上的特征标记。包括: 形态标记; 细胞学标记; 生化标记;DNA 分子标记 所有的标记都必须具有多态性!所有多态性都是基因突变的结果! 形态标记: 形态性状:株高、颜色、白化症等,又称表型标记。 数量少,很多突变是致死的,受环境、生育期等因素的影响 控制性状的其实是基因,所以形态标记实质上就是基因标记。

细胞学标记 明确显示遗传多态性的染色体结构特征和数量特征 :染色体的核型、染色体的带型、染色 体的结构变异、染色体的数目变异。优点:不受环境影响。缺点:数量少、费力、费时、对生物体的生长发育不利 生化标记 又称蛋白质标记 就是利用蛋白质的多态性作为遗传标记。 如:同工酶、贮藏蛋白 优点: 数量较多,受环境影响小 ?

缺点: 受发育时间的影响、有组织特异性、只反映基因编码区的信息 DNA 分子标记: 简称分子标记以 DNA 序列的多态性作为遗传标记 优点: ? 不受时间和环境的限制 ? 遍布整个基因组,数量无限 ?

不影响性状表达 ? 自然存在的变异丰富,多态性好 ? 共显性,能鉴别纯合体和杂合体 限制性片段长度多态性(restriction fragment length polymorphism , RFLP ) DNA 序列能或不能被某一酶酶切,

微生物学检验技术病例分析题

微生物学检验技术(副高、高级)病例分析题 一个23岁男子因尿痛、尿频,尿道有黄绿色脓性排出物或分泌物而入院。脓性分泌物涂片镜检显示有大量多形核白细胞,其内有革兰染色阴性双球菌。 1.病人最可能感染的病原体是: A.脑膜炎球菌 B.杜克嗜血杆菌 C.溶脲脲原体 D.淋病奈瑟菌 E.性病淋巴肉芽肿衣原体 2.治疗首选药物是: A.青霉素 B.头孢曲松与强力霉素联用 C.强力霉素 D.磺胺增效剂-磺胺甲基异噁唑 E.万古霉素 3.该病原体在缺乏特异性抗体的情况下具有抗吞噬作用,这主要是由哪种抗原所致: A.荚膜 B.菌毛 C.外膜蛋白蛋白酶 E.脂多糖 4.如果在患者脓性分泌物中查不到病原菌,你人认为尿道炎最常是由哪种病原体引起的: A.溶脲脲原体 B.梅毒螺旋体 C.单纯疱疹病毒 D.沙眼衣原体血清型D~K E.沙眼衣原体血清型L1、L2或L3

一个1岁女孩因阵发性严重咳嗽而入院。发作时,连续咳嗽5~20次,呼吸困难,口鼻流出大量粘液性带泡分泌物。患者咳嗽终止前,随着空气最后涌入肺部,发出喘鸣音。其它临床症状有:鼻和眼结膜出血,眶膜水肿,淋巴细胞性白细胞增多。病人无发热,咽喉部无假膜。该女孩尚未接受常规计划免疫。 5.引起患者疾病的最可能的病原体是: A.百日咳杆菌 B.流感嗜血杆菌 C.呼吸道合胞病毒 D.流感病毒 E.白喉杆菌 6.已与病孩密切接触的未受免疫儿童和成人,应采取哪种药物进行预防性治疗: A.白喉抗毒素 B.氨苄青霉素+克拉维酸 C.红霉素 D.头孢曲松 D.金刚烷胺 7.病人发病过程中所见的过度分泌是由于: A.灭活延长因子2的毒素 B.激活膜结合Gi蛋白而提高胞内cAMP水平的毒素 C.降解SIgA抗体的IgA蛋白酶 D.切断上皮细胞表面糖蛋白末端神经氨酸与相邻糖基的联结链的一种表面酶 E.病理免疫损伤 8.分离培养该病原体应采用: 巧克力培养基B. 金培养基-鲍A. C.鸡胚接种 D.吕氏血清培养基 E.罗氏培养基 一个患镰状细胞性贫血的5岁男童入院治疗。他母亲诉说儿子发病3天,发热、

高通量测序生物信息学分析(内部极品资料,初学者必看)

基因组测序基础知识 ㈠De Novo测序也叫从头测序,是首次对一个物种的基因组进行测序,用生物信息学的分析方法对测序所得序列进行组装,从而获得该物种的基因组序列图谱。 目前国际上通用的基因组De Novo测序方法有三种: 1. 用Illumina Solexa GA IIx 测序仪直接测序; 2. 用Roche GS FLX Titanium直接完成全基因组测序; 3. 用ABI 3730 或Roche GS FLX Titanium测序,搭建骨架,再用Illumina Solexa GA IIx 进行深度测序,完成基因组拼接。 采用De Novo测序有助于研究者了解未知物种的个体全基因组序列、鉴定新基因组中全部的结构和功能元件,并且将这些信息在基因组水平上进行集成和展示、可以预测新的功能基因及进行比较基因组学研究,为后续的相关研究奠定基础。 实验流程: 公司服务内容 1.基本服务:DNA样品检测;测序文库构建;高通量测序;数据基本分析(Base calling,去接头, 去污染);序列组装达到精细图标准 2.定制服务:基因组注释及功能注释;比较基因组及分子进化分析,数据库搭建;基因组信息展 示平台搭建 1.基因组De Novo测序对DNA样品有什么要求?

(1) 对于细菌真菌,样品来源一定要单一菌落无污染,否则会严重影响测序结果的质量。基因组完整无降解(23 kb以上), OD值在1.8~2.0 之间;样品浓度大于30 ng/μl;每次样品制备需要10 μg样品,如果需要多次制备样品,则需要样品总量=制备样品次数*10 μg。 (2) 对于植物,样品来源要求是黑暗无菌条件下培养的黄化苗或组培样品,最好为纯合或单倍体。基因组完整无降解(23 kb以上),OD值在1.8~2.0 之间;样品浓度大于30 ng/μl;样品总量不小于500 μg,详细要求参见项目合同附件。 (3) 对于动物,样品来源应选用肌肉,血等脂肪含量少的部位,同一个体取样,最好为纯合。基因组完整无降解(23 kb以上),OD值在1.8~2.0 之间;样品浓度大于30 ng/μl;样品总量不小于500 μg,详细要求参见项目合同附件。 (4) 基因组De Novo组装完毕后需要构建BAC或Fosmid文库进行测序验证,用于BAC 或Fosmid文库构建的样品需要保证跟De Novo测序样本同一来源。 2. De Novo有几种测序方式 目前3种测序技术 Roche 454,Solexa和ABI SOLID均有单端测序和双端测序两种方式。在基因组De Novo测序过程中,Roche 454的单端测序读长可以达到400 bp,经常用于基因组骨架的组装,而Solexa和ABI SOLID双端测序可以用于组装scaffolds和填补gap。下面以solexa 为例,对单端测序(Single-read)和双端测序(Paired-end和Mate-pair)进行介绍。Single-read、Paired-end和Mate-pair主要区别在测序文库的构建方法上。 单端测序(Single-read)首先将DNA样本进行片段化处理形成200-500bp的片段,引物序列连接到DNA片段的一端,然后末端加上接头,将片段固定在flow cell上生成DNA簇,上机测序单端读取序列(图1)。 Paired-end方法是指在构建待测DNA文库时在两端的接头上都加上测序引物结合位点,在第一轮测序完成后,去除第一轮测序的模板链,用对读测序模块(Paired-End Module)引导互补链在原位置再生和扩增,以达到第二轮测序所用的模板量,进行第二轮互补链的合成测序(图2)。 图1 Single-read文库构建方法图2 Paired-end文库构建方法

代谢组学技术在烟草研究中的应用进展_王小莉

2016-02,37(1)中国烟草科学 Chinese Tobacco Science 89 代谢组学技术在烟草研究中的应用进展 王小莉,付博,赵铭钦*,贺凡,王鹏泽,刘鹏飞 (河南农业大学烟草学院,国家烟草栽培生理生化研究基地,郑州 450002) 摘要:简述了作为研究植物生理生化和基因功能新方法的代谢组学在烟草研究中的主要技术流程及其应用现状,归纳了不同生态环境和不同组织中烟草代谢物差异及产生原因,总结了生物和非生物胁迫及化学诱导处理等条件下的烟草生理生化变化及相关基因功能。最后提出了目前烟草代谢组学研究所面临的问题,并指出与其他组学整合应用是代谢组学在烟草研究领域的发展趋势。 关键词:烟草;代谢组学;胁迫;化学诱导;基因功能 中图分类号:S572.01 文章编号:1007-5119(2016)01-0089-08 DOI:10.13496/j.issn.1007-5119.2016.01.016 Research of Metabolomics in Tobacco WANG Xiaoli, FU Bo, ZHAO Mingqin*, HE Fan, WANG Pengze, LIU Pengfei (College of Tobacco Science, Henan Agricultural University, National Tobacco Physiology and Biochemistry Research Center, Zhengzhou 450002, China) Abstract: Metabolomics has been considered one of the most effective means of investigating physiological and biochemical processes and gene function of plants. Here we review the main process of metabolomics and its application status in tobacco research, the regulation mechanisms of physiological and biochemical reactions when tobacco responds to different environmental, biotic and abiotic stresses, chemically induced processes and genetic modifications. Finally, issues of critical significance to current tobacco metabolomics research are discussed and it is noted that integration with other omics is the trend of metabolomics research in tobacco. Keywords: tobacco; metabolomics; stress; chemical induction; gene function 代谢组学与基因组学、转录组学和蛋白质组学分别从不同层面研究生物体对环境或基因改变的响应,它们都是系统生物学的重要组成部分。植物代谢组学是21世纪初产生的一门新学科,主要通过研究植物的次生代谢物受环境或基因扰动前后差异来研究植物代谢网络和基因功能[1-2]。与微生物和动物相比,植物的独特性在于它拥有复杂的代谢途径,目前发现的次生代谢产物达20万种以上[3]。代谢物差异是植物对基因或环境改变的最终响应[4],因此,对代谢物进行全面解析,探索相关代谢网络和基因调控机制,是从分子层面深入认识植物生命活动规律的一个重要环节[5-7]。 烟草不仅是重要的经济作物,同时还是一种重要的模式植物,作为生物反应器在研究植物遗传、发育、防御反应和转基因等领域中具有重要意义[8-10]。烟草代谢物非常丰富,目前从烟叶中已鉴定出3000多种[11],且代谢物理化性质和含量差异较大,给烟草化学及代谢规律研究带来挑战。传统的烟草化学主要集中于研究某一类化学成分或某几种重要物质,如萜类[12]、生物碱类[13]、多酚类等[14],这很难全面地系统地阐述烟草代谢网络。随着系统生物学的发展,烟草越来越广泛地被用于基因组学、转录组学、蛋白质组学和代谢组学的研究中,例如采用系统生物学的方法找出 基金项目:中国烟草总公司浓香型特色优质烟叶开发(110201101001 TS-01);上海烟草集团责任有限公司“浓香型特色优质烟叶风格定位研究及样品检测”(szbcw201201150) 作者简介:王小莉(1983-),女,博士研究生,主要从事烟草生理生化研究。E-mail:xiaoliwang325@https://www.wendangku.net/doc/598394747.html, *通信作者,E-mail:zhaomingqin@https://www.wendangku.net/doc/598394747.html, 收稿日期:2015-09-09 修回日期:2015-11-19

基因组学(结构基因组学和功能基因组学).

问:基因组学、转录组学、蛋白质组学、结构基因组学、功能基因组学、比较基因组学研究有哪些特点? 答:人类基因组计划完成后生物科学进入了人类后基因组时代,即大规模开展基因组生物学功能研究和应用研究的时代。在这个时代,生命科学的主要研究对象是功能基因组学,包括结构基因组研究和蛋白质组研究等。以功能基因组学为代表的后基因组时代主要为利用基因组学提供的信息。 基因组研究应该包括两方面的内容:以全基因组测序为目标的结构基因组学(struc tural genomics和以基因功能鉴定为目标的功能基因组学(functional genomics。结构基因组学代表基因组分析的早期阶段,以建立生物体高分辨率遗传、物理和转录图谱为主。功能基因组学代表基因分析的新阶段,是利用结构基因组学提供的信息系统地研究基因功能,它以高通量、大规模实验方法以及统计与计算机分析为特征。 功能基因组学(functional genomics又往往被称为后基因组学(postgenomics,它利用结构基因组所提供的信息和产物,发展和应用新的实验手段,通过在基因组或系统水平上全面分析基因的功能,使得生物学研究从对单一基因或蛋白质的研究转向多个基因或蛋白质同时进行系统的研究。这是在基因组静态的碱基序列弄清楚之后转入基因组动态的生物学功能学研究。研究内容包括基因功能发现、基因表达分析及突变检测。 基因的功能包括:生物学功能,如作为蛋白质激酶对特异蛋白质进行磷酸化修饰;细胞学功能,如参与细胞间和细胞内信号传递途径;发育上功能,如参与形态建成等采用的手段包括经典的减法杂交,差示筛选,cDNA代表差异分析以及mRNA差异显示等,但这些技术不能对基因进行全面系统的分析。新的技术应运而生,包括基因表达的系统分析,cDNA微阵列,DNA芯片等。鉴定基因功能最有效的方法是观察基因表达被阻断或增加后在细胞和整体水平所产生的表型变异,因此需要建立模式生物体。 功能基因组学

关于考研微生物学专业就业前景解析

关于2017年考研微生物学专业就业前景解析 考研专业的选择很重要,这关系到日后的就业和发展。学前教育专业是最受欢迎的考研专业之一,那么具体来说本专业的就业前景如何以及未来的职业规划怎么样呢,下面考研就为大家综合分析一下这个微生物学专业。 【微生物学】 一、专业介绍 微生物学专业是生物学下设的一个二级学科,微生物学是研究微生物及其生命活动基本规律和应用的科学。是一门在细胞、分子或群体水平上研究微生物的形态构造、生理代谢、遗传变异、生态分布和分类进化等生命活动基本规律,并将其应用于工业发酵、医药卫生、生物工程和环境保护等实践领域的科学。 1、研究方向 01海洋微生物学 02微生物生理生化 03微生物遗传与分子生物学 04微生物资源与生态 05应用微生物与发酵技术 06资源和环境微生物学 07海洋微生物学 08微生物生理生化

(注:各大院校的研究方向略有不同,以山东大学为例) 2、培养目标 硕士毕业生业务素质上,掌握本学科坚实的基础理论,系统的专门知识和熟练的实验操作技术。具有较强的社会实践能力,以及分析和解决问题的能力,了解所从事研究方向的国内外发展动态,有较强的独立从事教学、科研、技术推广和管理工作的能力,能用外语较熟练地参阅专业外文资料,具有初步的听、说、写能力,能通过论文的发表阐明研究工作的进展及成果。 3、研究生入学考试科目: (1)101思想政治理论 (2)201英语一 (3)629细胞生物学 (4)839生物化学(生) (注:以上以山东大学为例,各院校在考试科目中也有所不同) 4、相关专业 与微生物学相关的二级学科有:植物学、动物学、生理学、水生生物学、神经生物学、遗传学、发育生物学、细胞生物学、生物化学与分子生物学、生物物理学、生态学。 二、推荐院校 微生物学专业硕士全国较强的招生单位有: 山东大学、华中农业大学、南开大学、武汉大学、中国农业大学、浙江大学、南京农业大学、云南大学、广西大学、北京大学、中

代谢组学分析系统技术指标

代谢组学分析系统 1.工作条件: 1.1 电压:220V(±10%)单相,50Hz(±1)。 1.2 环境温度:19-22o C 1.3 相对湿度:<70% * 2.设备用途和基本组成 2.1 仪器用途:所提供仪器为高分辨率,高灵敏度、高通量的分析系统,配以 专业的数据分析处理软件构成代谢组学专用分析系统,从而快速 寻找标记物。 2.2 仪器组成 2.2.1 仪器由超效液相色谱-四极杆/二级碰撞室/飞行时间质谱组成的系统,和 专用代谢组学分析软件以及代谢物分析软件构成,具有先进的中医药代 谢组学研究分析功能。 * 2.2.2 质谱主机要求配置同一厂家生产的液相色谱仪,具有良好的兼容性。 * 2.2.3 具备准确质量测定功能 准确质量测定的内标必须有独立于实测样品的通道进入离子源,内标不得 干扰实际样品的数据结果,并且质量准度<2ppm。 2.2.4 真空系统 要求完全被保护的多级真空系统,具有自动断电保护功能,采用分子涡轮 泵。离子源和质谱间有隔断阀。便于源清洗和日常维护。 * 2.2.5 碰撞室具有两级碰撞功能。分为以下部分: 捕获富集单元:具有离子传输富集、碰撞室两种功能 传输单元:具有离子传输、碰撞室两种功能 * 2.2.6 检测器 检测器由单个微通道板离子计数检测,可检测正负离子和采集MS和 MS/MS的数据, TDC转换速率>4.0 GHz。 * 2.2.7 数据采集和处理系统 工作站用于仪器控制和采集, 1024MB RAM, 200GB硬盘,DVD-ROM,

刻录光盘驱动器,1.44MB 3.5英寸软驱。 软件基于Windows XP 操作系统的应用软件包括集成化的仪器控制、数据处理等软件,代谢组学分析软件以及代谢物分析软件等。 3 仪器的详细技术指标 3.1 液相色谱仪 * 液相色谱仪必须是能够耐超高压(1000bar)的超高效液相色谱仪(UPLC)。3.1.1 可编程二元梯度泵。 溶剂数量:4 流速范围:0.010 - 2mL/min,步进0.001mL/min, 流速精度:< 0.075% RSD,流速准确度:±1%, 泵耐压:0 - 15000psi(1000bar) 梯度设定范围:0 - 100% *系统延迟体积:< 120uL 3.1.2 二极管阵列检测器 波长范围:190-700nm. *测量范围:0.0001~4.0000AUFS *采样速率:40点/秒 流通池:500nl低扩散 3.1.3 自动进样器系统 样品数量:96孔板、384孔板、24x4ml瓶、48x2ml瓶 进样范围:0.1- 50 μL, “针内针”样品探针。 温度范围:4-40摄氏度 3.1.4 在线脱气系统 真空脱气:六通道在线脱气机 3.1.5 柱加热系统 控温范围:室温+5---65摄氏度 3.1.6 专用色谱柱; * 1.7μ, 2.1 mm x 50 mm Column

全基因组重测序数据分析

全基因组重测序数据分析 1. 简介(Introduction) 通过高通量测序识别发现de novo的somatic和germ line 突变,结构变异-SNV,包括重排 突变(deletioin, duplication 以及copy number variation)以及SNP的座位;针对重排突变和SNP的功能性进行综合分析;我们将分析基因功能(包括miRNA),重组率(Recombination)情况,杂合性缺失(LOH)以及进化选择与mutation之间的关系;以及这些关系将怎样使 得在disease(cancer)genome中的mutation产生对应的易感机制和功能。我们将在基因组 学以及比较基因组学,群体遗传学综合层面上深入探索疾病基因组和癌症基因组。 实验设计与样本 (1)Case-Control 对照组设计; (2)家庭成员组设计:父母-子女组(4人、3人组或多人); 初级数据分析 1.数据量产出:总碱基数量、Total Mapping Reads、Uniquely Mapping Reads统计,测序深度分析。 2.一致性序列组装:与参考基因组序列(Reference genome sequence)的比对分析,利用贝叶斯统计模型检测出每个碱基位点的最大可能性基因型,并组装出该个体基因组的一致序列。3.SNP检测及在基因组中的分布:提取全基因组中所有多态性位点,结合质量值、测序深度、重复性等因素作进一步的过滤筛选,最终得到可信度高的SNP数据集。并根据参考基 因组信息对检测到的变异进行注释。 4.InDel检测及在基因组的分布: 在进行mapping的过程中,进行容gap的比对并检测可信的short InDel。在检测过程中,gap的长度为1~5个碱基。对于每个InDel的检测,至少需 要3个Paired-End序列的支持。 5.Structure Variation检测及在基因组中的分布: 能够检测到的结构变异类型主要有:插入、缺失、复制、倒位、易位等。根据测序个体序列与参考基因组序列比对分析结果,检测全基因组水平的结构变异并对检测到的变异进行注释。

浅谈最常用的代谢组学分析方法

代谢组学是一门对某一生物或细胞所有低分子质量代谢产物(以相对分子质量<1000的有机和无机的代谢物为研究核心区)进行分析的新兴学科。生物样本通过NMR、GC-MS、LC-MS等高通量仪器分析检测后,能产生大量的数据,这些数据具有高维,少样本、高噪声等复杂特征,同时代谢物多且代谢物之间联系密切,因此从复杂的代谢组学数据中确定与所研究的现象有关的代谢物,筛选出候选生物标记物成为代谢物组学研究的热点和难点。 代谢组学分析数据用于统计分析时,数据集通常为一个N ×K 的矩阵(X矩阵),N表示N个样本数,每一行代表一个样品,K表示K个变量,每一列代表一个变量,在代谢组学中变量通常是指代谢物含量。常用的分析方法如图1所示: 数据分析方法 单变量分析 多变量分析差异倍数分析 显著性检验 无监督分析 有监督分析 PLS-DA PCA OPLS-DA 图1 代谢组学常用的数据分析方法 单变量分析 单变量分析方法仅分别分析单个变量,不考虑多个变量的相互作用与内在联系。具有简单性、易应用性和可解释性。但是无法基于整

体数据对所测样品的优劣、差异进行综合评价和分析。 (1)差异倍数分析 差异倍数变化大小(Fold Change,FC)表示实验组与对照组的含量比值,可以快速考察各个代谢物在不同组别之间的含量变化大小。(2)显著性检验 p值即概率,反映某一事件发生的可能性大小,用于区分该变量是否具有统计显著性,通常认为p<0.05具有统计显著性。常用的检验方法有t-test、方差分析(Analysis of Variance,ANOVA),但是由于代谢组学的变量较多,必要时需要进行多重假设检验,对p值进行校正,减少Ⅰ类错误,降低假阳性。 多变量分析 多变量分析方法能同时处理数百或数千个变量,并且能处理变量之间的相互关系。利用变量之间的协方差或相关性,使原始数据在较低维空间上的投影能尽可能地捕获数据中的信息。但是如果存在大量无信息变量可能会妨碍多变量分析的能力,无信息变量的数量越多,减少真阳性数量的效果就越显著。 多变量分析分为无监督分析方法和有监督分析方法。在代谢组学分析中无监督学习有主成分分析(Principal Component Analysis,PCA),只需要数据集X,而有监督分析方法主要是偏小二乘判别分析(Partial Least Squares Discrimination Analysis, PLS-DA)和正交偏小二乘判别分析(Orthogonal Partial Least Squares

相关文档
相关文档 最新文档