文档库 最新最全的文档下载
当前位置:文档库 › 实验1 分治法的应用

实验1 分治法的应用

实验1 分治法的应用
实验1 分治法的应用

实验1 分治法的应用

1.实验目的

(1)理解分治法的思想。

(2)掌握用分治法解决问题

2.实验类型

设计型

3.预习要求

熟悉Visual C++ 6.0上机编程调试的基本方法。掌握教材上分治法的思想。

4.实验基本要求

(1)仔细阅读实验的题目,选择其中的两个题目完成,设计的程序要满足正确性,代码中有关键的注释,书写格式清晰,简洁易懂,效率较高,适合各种合理输入,并能对不合理输入做出正确的提示。

(2)实验题目:

a)最大值次大值

★问题描述

输出n个数中的最大值和次大值(注意:不能用排序)

★编程任务

利用分治法策略设计一个算法对任意输入的n个数可以输出最大值和次大值★数据输入

第一行输入数的个数n,第二行输入n个数

★结果输出

输出最大值和次大值。

输入示例输出示例

3 3 2

2 1 3

★实现提示

最大数是两组中的最大值中较大的值,次大值是从两组中较小的最大值和另一组的次大值选取。

b)查找第K小元素

★问题描述

在n个数当中找第K小元素问题。

★编程任务

利用分治策略试设计一个算法对任意的n个数构查找第K小元素,不能用排序。

★数据输入

第一行输入n的值,第二行输入n个数,第三行输入K的值。

★结果输出

程序运行结束时,输出第K小元素的值。

输入示例输出示例

6

5

8 1 3 6 9

3

★实现提示

使用快速排序中所采用的分划方法。

c)中位数问题

★问题描述

设X[ 0 : n - 1]和Y[ 0 : n– 1 ]为两个数组,每个数组中含有n个已排好序的数。找出X和Y的2n个数的中位数。

★编程任务

利用分治策略试设计一个算法求出这2n个数的中位数。

★数据输入

第1行中有1个正整数n(n<=200),表示每个数组有n个数。接下来的两行分别是X,Y数组的元素。

★结果输出

程序运行结束时,将计算出的中位数输出。

输入示例输出示例

14

3

5 15 18

3 1

4 21

★实现提示

比较两个序列的中位数大小,如果两个数相等,则该数为整个2n个数据的中位数,否则通过比较,分别减少两个序列的查找范围,确定查找的起止位置,继续查找。

按照指定的格式书写实验报告,实验报告清晰,但不赘述,字体最大为四号。在实验结束一周内上交实验报告。

5.实验基本步骤

(1)选定实验题目,仔细阅读实验要求,设计好输入输出,按照分治法的思想构思算法,选取合适的存储结构实现应用的操作。

(2)设计的结果应在Visual C++ 实验环境下实现并进行调试。

(3)请完成实验报告的编写,实验报告中要有详细的测试记录,包括各种可能的测试数

据。

三轮DES差分分析实验报告-刘杰

DES 差分分析实验报告 四大队四队五班 刘杰 一、实验目的 差分密码分析是一种选择明文攻击,是现代分组密码分析的重要方法之一,也是理论分析密码算法和算法抗攻击测试的重要依据之一。本实验通过3轮DES 简化算法的差分分析来达到加深学员对差分分析方法原理的理解和利用该原理分析实际问题的操作能力。 二、实验内容 (1)3轮DES 简化算法的差分分析; (2)通过三组明密文对(每组两个相关明文和相应密文),利用差分原理提取密钥。 明 文 密 文 748502CD38451097 03C70306D8A09F10 3874756438451097 78560A0960E6D4CB 486911026ACDFF31 45FA285BE5ADC730 375BD31F6ACDFF31 134F7915AC253457 357418DA013FEC86 D8A31B2F28BBC5CF 12549847013FEC86 0F317AC2B23CB944 三、实验原理 设DES 两个明密文对:=00m L R ***=00m L R =33c L R *** =33c L R 计算过程: (,)(,)(,)(,)=⊕=⊕=⊕⊕322312300123R L f R k R f R k L f R k f R k

(,)(,)****=⊕⊕300123R L f R k f R k 令:*'=⊕000L L L (,)(,)(,)(* **''=⊕=⊕⊕⊕⊕333001012323R R R L f R k f R k f R k f R k 观察得:在本次实验原始数据中,明文对*=00R R ,即* '=⊕=00000000000R R R 则(,)(,)** ''=⊕=⊕⊕33302323R R R L f R k f R k 同时有:=00m L R ***=00m L R =23R L ** =23R L 则可计算出:*'=⊕000L L L *'=⊕333R R R (,)(,)* ''⊕=⊕232330f R k f R k R L 则可得出: S 盒输入差:(())(())()()* *⊕⊕⊕=⊕232333E R k E R k E L E L S 盒输出差:()*-''⊕=⊕13 0D D P R L 分析过程: 令:()()*⊕=3312345678E L E L B B B B B B B B ()-''⊕=13 012345678P R L C C C C C C C C ()=312345678E L A A A A A A A A =312345678 k J J J J J J J J ()⊕=3312345678E L k X X X X X X X X *()⊕=3312345678E L k Y Y Y Y Y Y Y Y 基本思路:(分别计算12345678J J J J J J J J ) {|,()()∈=⊕⊕=⊕=i i i i i i i J T e s t x A x y B S x S y C ,,,,,,,=12345678i 对于本次实验的3个具有明文差(*,0)的明密文对,则可构造上面的3个 Test 集合,显然 ()()( )∈12 i i i i J Test Test Test t ,,,,,,,=12345678i 一种确定Ji 的直接方法: 1.建立26=64长度的数组J[64]={0}; 2.对Testi(r),r = 1,2,…,t ,若a ∈Testi(r),则 J[a] = J[a] + 1。 3.若J[b] =3,则6比特串b 就是可能的密钥比特 Ji 。 四、实验环境 Microsoft visual c++ 五、实验步骤 (1)计算简化算法第3轮S 盒输入差

Poisson方程九点差分格式_米瑞琪

数值实验报告I 实验名称Poisson方程九点差分格式实验时间2016年 4 月 15 日姓名米瑞琪班级信息1303学号04成绩 一、实验目的,内容 1、理解Poisson方程九点差分格式的构造原理; 2、理解因为网格点的不同排序方式造成的系数矩阵格式的差异; 3、学会利用matlab的spdiags(),kron()函数生成系数矩阵; 二、算法描述 针对一个Poisson方程问题: 在Poisson方程五点差分格式的基础上,采用Taylor展开分析五点差分算子的截断误差,可以得到: 为了提高算子截断误差的精度,在(1)式中配凑出了差分算子的形式,将原Poisson方程代入(1)式有: 考虑,有:

将(3)代回(2)可得 得到Poisson方程的九点差分格式: 在计算机上实现(4)式,需要在五点差分格式 的基础上在等式两端分别增加一部分,将等式左侧新增的部分写成紧凑格式,有: 对于该矩阵,可以看成是两个矩阵的组合:

以及 则生成这两个矩阵可以采用Kroncker生成,方法类似于五点差分格式。 对于右端添加的关于f(x,y)的二阶导数,可以采用中心差分格式进行近似代替,即: 写成相应的紧凑格式有:

该式中的矩阵又可以分解为两个矩阵的和:

%计算误差 u_real=@(x,y)exp(pi*(x+y))*sin(pi*x).*sin(pi*y); for i=1:N1-1 u_m((i-1)*(N2-1)+1:i*(N2-1))=u_real(x(i),y); end u_v=u_m'; err_d=max(abs(u_d-u_v)); sol=reshape(u_d,N2-1,N1-1); mesh(X,Y,sol) 四. 数值结果 针对课本P93给出的问题,分别采用步长,将计算出的误差列表如下: 步长五点差分格式误差九点差分格式误差 可见采用九点差分格式可以进一步缩小误差,达到更高阶的精度。 五. 计算中出现的问题,解决方法及体会 在生成九点差分格式的时候,等号右端涉及到了对f的二阶偏导,我最初利用符号函数定义了f,随后求出其二阶偏导(仍然是符号函数)之后带入网格点,求f二阶偏导的精确解,但是代入过程相当繁琐,运行速度非常慢,最终我改变策略,选用f关于x,y的二阶中心差分格式替代精确值,最终得到了相对满意的结果。 教 师 评 语 指导教师:年月日

实验报告 分治与递归

实验报告分治与递归 中国矿业大学计算机科学与技术学院孟靖宇 一、实验目的与要求 1、熟悉C/C++语言的集成开发环境; 2、通过本实验加深对递归过程的理解 二、实验内容: 掌握递归算法的概念和基本思想,分析并掌握“整数划分”问题的递归算法。 三、实验题 任意输入一个整数,输出结果能够用递归方法实现整数的划分。 四、算法思想 对于数据n,递归计算最大加数等于x 的划分个数+最大加数不大于x-1的划分个数。最大加数x 从n 开始,逐步变小为n-1, (1) 考虑增加一个自变量:对于数据n,最大加数n1不大于m 的划分个数记作),(m n q 。则有: ???????>>=<==-+--+=1 1,1),()1,()1,(1),(1),(m n m n m n m n m m n q m n q n n q n n q m n q 五、代码实现 #include "stdafx.h" #include #include #include using namespace std; int q(intn,int m); int main(){ int n; cout<<"请输入要划分的整数:"<>n; int p=q(n,n); cout<<"正整数"<

return 0; } int q(intn,int m){ if((n<1)||(m<1)) return 0; if((n==1)||(m==1)) return 1; if(n

有限差分法实验报告

工程电磁场 实验报告 ——有限差分法

用超松弛迭代法求解 接地金属槽内电位的分布 一、实验要求 按对称场差分格式求解电位的分布 已知: 给定边值:如图1-7示 图1-7接地金属槽内半场域的网格 给定初值)()(.1j 40 100 1j p 1 2j i -= --= ??? 误范围差: 510-=ε 计算:迭代次数N ,j i ,?,将计算结果保存到文件中 二、实验思想 有限差分法 有限差分法(Finite Differential Method )是基于差分原理的一种数值计算法。其基本思想:将场域离散为许多小网格,应用差分原理,将求解连续函数?的泊松方程的问题转换为求解网格节点上? =?= V 100 ? 0 =?0 =?

的差分方程组的问题。 泊松方程的五点差分格式 )(4 1 4243210204321Fh Fh -+++=?=-+++?????????? 当场域中,0=ρ得到拉普拉斯方程的五点差分格式 )(4 1 044321004321??????????+++=?=-+++ 差分方程组的求解方法(1) 高斯——赛德尔迭代法 ][)(,)(,)(,)(,)(,2 k 1j i k j 1i 1k 1j i 1k j 1i 1k j i Fh 4 1 -+++=+++-+-+????? (1-14) 式中:??????=??????=,2,1,0,2,1,k j i , ? 迭代顺序可按先行后列,或先列后行进行。 ? 迭代过程遇到边界节点时,代入边界值或边界差分 格式,直到所有节点电位满足ε??<-+)(,)(,k j i l k j i 为止。 (2)超松弛迭代法 ][) (,)(,)(,)(,)(,)(,)(,k j i 2k 1j i k j 1i 1k 1j i 1k j 1i k j i 1k j i 4Fh 4 ?????α??--++++=+++-+-+ (1-15) 式中:α——加速收敛因子)21(<<α 可见:迭代收敛的速度与α有明显关系 三、程序源代码 #include #include #include double A[5][5]; void main(void) { double BJ[5][5];//数组B 用于比较电势 int s[100];//用于储存迭代次数 图1-4 高斯——赛德尔迭代法

_实验1分治法

实验一分治法 一、实验目的 1.理解分治法的方法; 2. 掌握使用分治法解决一般问题的步骤; 3. 掌握分治算法求解数组的最大值和最小值的方法。 二、实验原理 在一个给定数组中查找最大值和最小值是一类常见的问题,也是解决其他一些算法的基础。 假设给定数组为a,数组中含有n个元素,一般的算法是在数组中进行直接查找,算法伪代码如下: 1. x←a[0]; y←a[0] 2. for i←2 to n 3. if a[i]y then y←a[i] 5. end for 6. return (x,y) 上述代码在第3行和第4行涉及到元素的比较,每次循环进行2次比较,而循环的次数在算法第2行给出,为(n-2)+1=n-1次,因此,算法元素比较总次数为2(n-1)次。 现在采用分治的思想,假设数组的长度为2的整数幂,将数组分割成两半,分别为a[0…(n/2)-1]和a[n/2…n-1],在每一半中分别查找最大值和最小值,并返回这两个最小值中的最小值以及两个最大值中的最大值。 假设给定数组为a,数组的下标上界和下界分别为low和high,则其算法伪代码如下: minmax(a,low,high) 1. if high-low=1 then 2. if a[low]

差分法求解偏微分方程MAAB

南京理工大学 课程考核论文 课程名称:高等数值分析 论文题目:有限差分法求解偏微分方程 姓名:罗晨 学号: 成绩: 有限差分法求解偏微分方程 一、主要内容 1.有限差分法求解偏微分方程,偏微分方程如一般形式的一维抛物线型方程:具体求解的偏微分方程如下: 2.推导五种差分格式、截断误差并分析其稳定性; 3.编写MATLAB程序实现五种差分格式对偏微分方程的求解及误差分析;

4.结论及完成本次实验报告的感想。 二、推导几种差分格式的过程: 有限差分法(finite-differencemethods )是一种数值方法通过有限个微分方程近似求导从而寻求微分方程的近似解。有限差分法的基本思想是把连续的定解区域用有限个离散点构成的网格来代替;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。 推导差分方程的过程中需要用到的泰勒展开公式如下: ()2100000000()()()()()()()......()(()) 1!2!! n n n f x f x f x f x f x x x x x x x o x x n +'''=+-+-++-+-(2-1) 求解区域的网格划分步长参数如下: 11k k k k t t x x h τ ++-=?? -=?(2-2) 2.1古典显格式 2.1.1古典显格式的推导 由泰勒展开公式将(,)u x t 对时间展开得 2,(,)(,)( )()(())i i k i k k k u u x t u x t t t o t t t ?=+-+-?(2-3) 当1k t t +=时有 21,112,(,)(,)( )()(())(,)()() i k i k i k k k k k i k i k u u x t u x t t t o t t t u u x t o t ττ+++?=+-+-??=+?+?(2-4) 得到对时间的一阶偏导数 1,(,)(,)()=()i k i k i k u x t u x t u o t ττ+-?+?(2-5) 由泰勒展开公式将(,)u x t 对位置展开得 223,,21(,)(,)()()()()(())2!k i k i k i i k i i u u u x t u x t x x x x o x x x x ??=+-+-+-??(2-6) 当11i i x x x x +-==和时,代入式(2-6)得

差分编译码实验报告

实验十三差分编译码实验 一、实验目的 掌握差分编码/译码原理 二、实验内容 1、学习差分编译码原理 2、用示波器观察差分编码结果和译码结果 三、基本原理 差分码是一种把符号‘0’和‘1’反映在相邻码元的相对变化上的波形。比如,若以相邻码元的电位改变表示符号‘1’,而以电位不改变表示符号‘0’,如图13-1所示。当然,上述规定也可以反过来。由图可见,这种码波形在形式上与单极性或双极性码波形相同,但它代表的信息符号与码元本身电位或极性无关,而仅与相邻码元的电位变化有关。差分波形也称相对码波形,而相应地称单极性或双极性波形为绝对码波形。差分码波形常在相位调制系统的码变换器中使用。 图13-1差分码波形 组成模块如下图所示: cclk d_out 端口说明: CCLK:编码时钟输入端 DIN:编码数据输入端 Diff-OUT:差分编码结果输出端 DCLK:译码时钟输入端

Diff-IN:差分译码数据输入端 DOUT:译码结果输出端 四、实验步骤 1、实验所用模块:数字编解码模块、数字时钟信号源模块。 实验连线: CCLK:从数字时钟信号源模块引入一高频时钟,如512K。 DIN:从数字时钟信号源模块引入一低频时钟,如16K。 DIFF-OUT与DIFF-IN短接。 DCLK与CCLK短接。 2、用示波器两探头同时观测DIN与DIFF-OUT端,分析差分编码规则。 3、用示波器两探头同时观测DIN与DOUT端,分析差分译码结果。 五、实验报告要求 设信息代码为1001101,码速率为128K,差分码的编码时钟为码速率的四倍,根据实验观察得到的规律,画出差分码波形。

算法分析实验报告--分治策略

《算法设计与分析》实验报告 分治策略 姓名:XXX 专业班级:XXX 学号:XXX 指导教师:XXX 完成日期:XXX

一、试验名称:分治策略 (1)写出源程序,并编译运行 (2)详细记录程序调试及运行结果 二、实验目的 (1)了解分治策略算法思想 (2)掌握快速排序、归并排序算法 (3)了解其他分治问题典型算法 三、实验内容 (1)编写一个简单的程序,实现归并排序。 (2)编写一段程序,实现快速排序。 (3)编写程序实现循环赛日程表。设有n=2k个运动员要进行网球循环赛。现 要设计一个满足以下要求的比赛日程表:(1)每个选手必须与其它n-1个选手各赛一次(2)每个选手一天只能赛一场(3)循环赛进行n-1天 四、算法思想分析 (1)编写一个简单的程序,实现归并排序。 将待排序元素分成大小大致相同的2个子集合,分别对2个子集合进行 排序,最终将排好序的子集合合并成为所要求的排好序的集合。 (2)编写一段程序,实现快速排序。 通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有 数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数 据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据 变成有序序列。 (3)编写程序实现循环日赛表。 按分治策略,将所有的选手分为两组,n个选手的比赛日程表就可以通

过为n/2个选手设计的比赛日程表来决定。递归地用对选手进行分割, 直到只剩下2个选手时,比赛日程表的制定就变得很简单。这时只要让 这2个选手进行比赛就可以了。 五、算法源代码及用户程序 (1)编写一个简单的程序,实现归并排序。 #include #include #define MAX 10 using namespace std; void merge(int array[],int p,int q,int r) { int i,k; int begin1,end1,begin2,end2; int* temp = new int[r-p+1]; begin1 = p; end1 = q; begin2 = q+1; end2 = r; k = 0; while((begin1 <= end1)&&(begin2 <= end2)) { if(array[begin1] < array[begin2]) { temp[k] = array[begin1]; begin1++; } else { temp[k] = array[begin2]; begin2++; } k++; } while(begin1 <= end1) {

差分方法实验报告

实验报告 课程名称:计算方法 院系:数学科学系 专业班级:数应1001 学号:1031110139 学生姓名:姚海保 指导教师:沈林 开课时间:2012至2013学年第一学期

一、学生撰写要求 按照实验课程培养方案的要求,每门实验课程中的每一个实验项目完成后,每位参加实验的学生均须在实验教师规定的时间内独立完成一份实验报告,不得抄袭,不得缺交。 学生撰写实验报告时应严格按照本实验报告规定的内容和要求填写。字迹工整,文字简练,数据齐全,图表规范,计算正确,分析充分、具体、定量。 二、教师评阅与装订要求 1.实验报告批改要深入细致,批改过程中要发现和纠正学生实验报告中的问题,给出评语和实验报告成绩,签名并注明批改日期。实验报告批改完成后,应采用适当的形式将学生实验报告中存在的问题及时反馈给学生。 2.实验报告成绩用百分制评定,并给出成绩评定的依据或评分标准(附于实验报告成绩登记表后)。对迟交实验报告的学生要酌情扣分,对缺交和抄袭实验报告的学生应及时批评教育,并对该次实验报告的分数以零分处理。对单独设课的实验课程,如学生抄袭或缺交实验报告达该课程全学期实验报告总次数三分之一以上,不得同意其参加本课程的考核。 3.各实验项目的实验报告成绩登记在实验报告成绩登记表中。本学期实验项目全部完成后,给定实验报告综合成绩。 4.实验报告综合成绩应按课程教学大纲规定比例(一般为10-15%)计入实验课总评成绩;实验总评成绩原则上应包括考勤、实验报告、考核(操作、理论)等多方面成绩; 5.实验教师每学期负责对拟存档的学生实验报告按课程、学生收齐并装订,按如下顺序装订成册:实验报告封面、实验报告成绩登记表、实验报告成绩评定依据、实验报告(按教学进度表规定的实验项目顺序排序)。装订时统一靠左侧按“两钉三等分”原则装订。

算法设计与分析:递归与分治法-实验报告

应用数学学院信息安全专业班学号姓名 实验题目递归与分治法 综合实验评分表

实验报告 一、实验目的与要求 1.掌握递归算法的设计思想 2.掌握分治法设计算法的一般过程 3.理解并掌握算法渐近时间复杂度的分析方法 二、实验内容 1、折半查找的递归算法 (1)源程序代码 #include #include using namespace std; int bin_search(int key[],int low, int high,int k) { int mid; if(low>high) return -1; else{ mid = (low+high) / 2; if(key[mid]==k) return mid; if(k>key[mid]) return bin_search(key,mid+1,high,k); else return bin_search(key,low,mid-1,k); } } int main() { int n , i , addr; int A[10] = {2,3,5,7,8,10,12,15,19,21}; cout << "在下面的10个整数中进行查找" << endl; for(i=0;i<10;i++){ cout << A[i] << " " ; } cout << endl << endl << "请输入一个要查找的整数" << endl; cin >> n; addr = bin_search(A,0,9,n);

if(-1 != addr) cout << endl << n << "是上述整数中的第" << addr << "个数" << endl; else cout << endl << n << "不在上述的整数中" << endl << endl; getchar(); return 0; } (2)运行界面 ①查找成功 ②查找失败

分治法实验报告一

宁波工程学院电信学院计算机系 实验报告 课程名称:算法设计与分析实验项目:用分治法算法解 最接近点对问题 指导教师:崔迪 实验位置:软件工程实验室姓名: 班级: 学号: 日期: 2016/10/12 一、实验目的 通过上机实验,要求掌握分治法算法的问题描述、算法设计思想、程序设 计和算法复杂性分析等。 二、实验环境: Eclipse 三、实验内容:用分治法解最接近点对问题 (1)问题描述 给定平面S上n个点,找其中的一对点,使得在n(n-1)/2 个点对中,该 点对的距离最小。 (2)算法设计思想 1. n较小时直接求 (n=2). 2.将S上的n个点分成大致相等的2个子集S1和S2 3.分别求S1和S2中的最接近点对 4.求一点在S1、另一点在S2中的最近点对 5.从上述三对点中找距离最近的一对.

(3)程序设计(程序清单及说明) package closestpair; import java.util.Arrays; import https://www.wendangku.net/doc/5711047321.html,parator; import java.util.Random; import java.util.Scanner; //定义坐标点 class Point { double x; double y; public Point(double x, double y) { this.x = x; this.y = y; } } // 根据x坐标排序 class MyComparatorX implements Comparator { @Override public int compare(Point p1, Point p2) { if (p1.x < p2.x) { return -1; } else if (p1.x > p2.x) { return 1; } else { return 0; } } } // 根据Y坐标排序 class MyComparatorY implements Comparator { @Override public int compare(Point p1, Point p2) { if (p1.y < p2.y) { return -1; } else if (p1.y > p2.y) { return 1; } else {

算法实验报告

实验一分治与递归算法的应用 一、实验目的 1.掌握分治算法的基本思想(分-治-合)、技巧和效率分析方法。 2.熟练掌握用递归设计分治算法的基本步骤(基准与递归方程)。 3.学会利用分治算法解决实际问题。 二 . 实验内容 金块问题 老板有一袋金块(共n块,n是2的幂(n≥2)),最优秀的雇员得到其中最重的一块,最差的雇员得到其中最轻的一块。假设有一台比较重量的仪器,希望用最少的比较次数找出最重和最轻的金块。并对自己的程序进行复杂性分析。 三.问题分析: 一般思路:假设袋中有n 个金块。可以用函数M a x(程序 1 - 3 1)通过n-1次比较找到最重的金块。找到最重的金块后, 可以从余下的n-1个金块中用类似法通过n-2次比较找出最轻的金块。这样,比较的总次数为2n-3。

分治法:当n很小时,比如说,n≤2,识别出最重和最轻的金块,一次比较就足够了。当n 较大时(n>2),第一步,把这袋金块平分成两个小袋A和B。第二步,分别找出在A和B中最重和最轻的金块。设A中最重和最轻的金块分别为HA 与LA,以此类推,B中最重和最轻的金块分别为HB 和LB。第三步,通过比较HA 和HB,可以找到所有金块中最重的;通过比较LA 和LB,可以找到所有金块中最轻的。在第二步中,若n>2,则递归地应用分而治之方法 程序设计 据上述步骤,可以得出程序1 4 - 1的非递归代码。该程序用于寻找到数组w [ 0 : n - 1 ]中的最小数和最大数,若n < 1,则程序返回f a l s e,否则返回t r u e。 当n≥1时,程序1 4 - 1给M i n和M a x置初值以使w [ M i n ]是最小的重量,w [ M a x ]为最大的重量。 首先处理n≤1的情况。若n>1且为奇数,第一个重量w [ 0 ]将成为最小值和最大值的候选值,因此将有偶,数个重量值w [ 1 : n - 1 ]参与f o r循环。当n 是偶数时,首先将两个重量值放在for 循环外进行比较,较小和较大的重量值分别置为Min和Max,因此也有偶数个重量值w[2:n-1]参与for循环。 在for 循环中,外层if 通过比较确定( w [ i ] , w [ i + 1 ] )中的较大和较小者。此工作与前面提到的分而治之算法步骤中的2) 相对应,而内层的i f负责找出较小重量值和较大重量值中的最小值和最大值,

一维波动方程的有限差分法

学生实验报告实验课程名称偏微分方程数值解 开课实验室数统学院 学院数统年级2013 专业班信计02班 学生姓名______________ 学号 开课时间2015 至2016 学年第 2 学期

数学与统计学院制 开课学院、实验室:数统学院实验时间:2016年6月20日

1、三层显格式建立 由于题中h 0.1, 0.1h,x 0,1 ,t 0,2,取N 10, M 200,故令网比r 0.1,h X j j h, j 0,1,2,L 10,t k k ,k O,1L ,200 ,在内网个点处,利用二阶中心差商得到如下格式: k 1 k U J 2U J 2- k 1 U j k k U j 1 2U j h2 k U j 1 o h2 略去误差项得到: k 1 U j 其中j 1,2丄9,k 对于初始条件 2 k r U J1 1,2,L ,199,局部截断误差为 U x,0 sin U J k U j k r U j 2 o k 1 U J h2。 (3) 对于初始条件-u x,0 t x,建立差分格式为: sin x j sin Jh , J 利用中心差商,建立差分格式为: 0,1,2,L 10 (4) 对于边界条件将差分格式延拓使综上(3 )、 (4 )、 k 1 u j 其中r山o.1 1 U J 2 1 U j 0,即U1二U j1, J 0,1,2,L 10 (5) 0,t 0,2 ,建立差分格式为: U N 0,k 0,1,L ,200 k 0为内点,代入(3)得到的式子再与(5)联立消去 1 1 2 0 ’ 2 0 1 5 r U, 1 1 r U, r J 2 J J 2 (7 )得到三层显格式如下: U 0,t U 1,t k U0 (6 ) 、 2 k r U j 1 2 1 r2k 2 k U J r U J 1 k 1? U j , J U j (6) 1后整理得到: U j 1 (7) (局部截断误差为 1,2,L 9,k 1,2,L ,199 h2) 1 U j U J sin 1 2 0 2r U J 1 k U o X j k U N sin 2 0 r U j 0,k 0,1,2,L 10 Jh ,J 1 2r2u01, J 1,2,L 9 0,1L ,200 (8) 四?实验环境(所用软件、硬件等)及实验数据文件Matlab

分治算法实验(用分治法实现快速排序算法)

算法分析与设计实验报告第四次附加实验

while (a[--j]>x); if (i>=j) { break; } Swap(a[i],a[j]); } a[p] = a[j]; //将基准元素放在合适的位置 a[j] = x; return j; } //通过RandomizedPartition函数来产生随机的划分 template vclass Type> int RandomizedPartition(Type a[], int p, int r) { int i = Random(p,r); Swap(a[i],a[p]); return Partition(a,p,r); } 较小个数排序序列的结果: 测试结果 较大个数排序序列的结果:

实验心得 快速排序在之前的数据结构中也是学过的,在几大排序算法中,快速排序和归并排序尤其是 重中之重,之前的快速排序都是给定确定的轴值,所以存在一些极端的情况使得时间复杂度 很高,排序的效果并不是很好,现在学习的一种利用随机化的快速排序算法,通过随机的确 定轴值,从而可以期望划分是较对称 的,减少了出现极端情况的次数,使得排序的效率挺高了很多, 化算法想呼应,而且关键的是对于随机生成函数,通过这一次的 学习终于弄明白是怎么回事了,不错。 与后面的随机实 验和自己的 实验得分助教签名 附录: 完整代码(分治法) //随机后标记元素后的快速排序 #i nclude #in elude #inelude #include using namespacestd; template < class Type> void S &x,Type &y); // 声明swap函数 inline int Random(int x, int y); // 声明内联函数 template < class Type> int Partition(Type a[], int p, int r); // 声明 Partition 函数template int RandomizedPartition(Type a[], int p, int r); // 声明 RandomizedPartition 函数 int a[1000000]; //定义全局变量用来存放要查找的数组 更大个数排序序列的结果:

递归与分治实验报告

递归与分治实验报告 班级:计科1102 姓名:赵春晓学号:2011310200631 实验目的:进一步掌握递归与分治算法的设计思想,通过实际问题来应用递归与分治设计算法。 实际问题:1集合划分问题,2输油管道问题,3邮局选址问题,4整数因子分解问题,5众数问题。 问题1:集合划分 算法思想:对于n个元素的集合,可以划分为由m个子集构成的集合,例如{{1,2}{3,4}}就是由2个子集构成的非空子集。假设f(n,m)表示将n个元素划分成由m个子集构成的集合的个数。那么1)若m == 1 ,则f(n,m)= 1 ;2)若n == m ,则f(n,m)= 1 ;3)若不是上面两种情况则有下面两种情况构成:3.1)向n-1个元素划分成的m个集合里面添加一个新的元素,则有m*f(n-1,m)种方法;3.2)向n-1个元素划分成的m-1个集合里添加一个由一个元素形成的独立的集合,则有f(n-1,m-1)种方法。 实验代码: #include #include using namespace std ; int jihehuafen( int n , int m ) { if( m == 1 || n == m ) return 1 ; else return jihehuafen( n - 1 , m - 1 ) + m*jihehuafen( n - 1 , m ) ; } int main() { ifstream fin("C:/input.txt") ; ofstream fout("C:/output.txt") ; int N , M , num ; fin >> N >> M ; num = jihehuafen( N , M) ; fout << num << endl ; return 0 ; } 问题2:输油管道 算法思想:由于主管道由东向西铺设。故主管道的铺设位置只和各油井的y坐标有关。要使主管道的y坐标最小,主管道的位置y坐标应是各个油井y坐标的中位数。先用快速排序法把各个油井的y坐标排序,然后取其中位数再计算各个油

(完整word版)差分放大器设计的实验报告

设计课题 设计一个具有恒流偏置的单端输入-单端输出差分放大器。 学校:延安大学

一: 已知条件 正负电源电压V V V V EE cc 12,12-=-+=+;负载Ω=k R L 20;输入差 模信号mV V id 20=。 二:性能指标要求 差模输入电阻Ω>k R id 10;差模电压增益15≥vd A ;共模抑制 比dB K CMR 50>。 三:方案设计及论证 方案一:

方案二

方案论证: 在放大电路中,任何元件参数的变化,都将产生输出电压的漂移,由温度变化所引起的半导体参数的变化是产生零点漂移的主要原因。采用特性相同的管子使它们产生的温漂相互抵消,故构成差分放大电路。差分放大电路的基本性能是放大差模信号,抑制共模信号好,采用恒流源代替稳流电阻,从而尽可能的提高共模抑制比。 论证方案一:用电阻R6来抑制温漂 ?优点:R6 越大抑制温漂的能力越强; ?缺点:<1>在集成电路中难以制作大电阻; <2> R6的增大也会导致Vee的增大(实际中Vee不

可能随意变化) 论证方案二 优点:(1)引入恒流源来代替R6,理想的恒流源内阻趋于无穷,直流压降不会太高,符合实际情况; (2)电路中恒流源部分增加了两个电位器,其中47R的用来调整电路对称性,10K的用来控制Ic的大小,从而调节静态工作点。 通过分析最终选择方案二。 四:实验工作原理及元器件参数确定 ?静态分析:当输入信号为0时, ?I EQ≈(Vee-U BEQ)/2Re ?I BQ= I EQ /(1+β) ?U CEQ=U CQ-U EQ≈Vcc-I CQ Rc+U BEQ 动态分析 ?已知:R1=R4,R2=R3

-实验1分治法

一、实验目的 1.理解分治法的方法; 2. 掌握使用分治法解决一般问题的步骤; 3. 掌握分治算法求解数组的最大值和最小值的方法。 二、实验原理 在一个给定数组中查找最大值和最小值是一类常见的问题,也是解决其他一些算法的基础。 假设给定数组为a,数组中含有n个元素,一般的算法是在数组中进行直接 循环的次数在算法第2行给出,为(n-2)+1=n-1次,因此,算法元素比较总次数为2(n-1)次。 现在采用分治的思想,假设数组的长度为2的整数幂,将数组分割成两半,分别为a[0…(n/2)-1]和a[n/2…n-1],在每一半中分别查找最大值和最小值,并返回这两个最小值中的最小值以及两个最大值中的最大值。 假设给定数组为a,数组的下标上界和下界分别为low和high,则其算法伪 接比较数组的两个元素,选出最大值和最小值,此为函数的递归终止条件;代码第7行和第8行是两个递归调用,分别在数组的下标范围[low,mid]和 [mid+1,high]查找最小值和最大值,第9行比较两个最大值取其中较大者,第10行比较两个最小值取较大者。

代码的第2、9和10行涉及到元素的比较,第7、8行由于递归也产生元素比较,因此令算法总的元素比较次数为C(n),则有 ???>+==2 2)2/(221)(n n C n n C 若若 对递推式进行求解 2 2/3 2 2)2/( 2)2(2 2 2...22)2/(2 ... 2 48)8/(824)2)8/(2(4 2 4)4/(42)2)4/(2(22)2/(2)(1 1122111-=-+=+=+++++==+++=+++=++=++=+=∑-=-----n n C n C n C n C n C n C n C n C k k j j k k k k k 得到minmax 算法的元素比较总次数为3n/2-2,优于直接比较的性能。 三、实验内容及要求 1. 编写程序使用分治算法MINMAX 求解数组的最小值和最大值,并用实际数组对算法进行测试。 2. 要求算法中元素比较的次数为3n/2-2,在程序中元素比较的地方进行记录,并在程序末尾输出数组最大值和最小值以及元素比较次数。 四、实验步骤 1. 定义结构体类型或类,用以在函数的返回值同时返回数组的最大值和最小值。

实验八_差分放大器实验报告

差分放大电路 实验报告 姓名:黄宝玲 班级:计科1403 学号:201408010320 实验摘要(关键信息) 实验目的:由于差分放大器是运算放大器的输入级,清楚差分放大电路的工作原理,有助于理解运放的工作原理和方式。通过实验弄清差分放大器的工作方式和参数指标。这些概念有:差模输入和共模输入;差模电压增益Avd和共模电压增益Avc;共模抑制比Kcmr。 实验内容与规划: 1、选用实验箱上差分放大电路;输入信号为Vs=300mV,f=3KHz正弦波。 2、发射极先接有源负载,利用调零电位器使得输出端电压Vo=0。(Vo=Vc1-Vc2) 3、在双端输入和单端输入差模信号情况下,分别测量双端输出的输入输出波形,计算各自的差模放大倍数Avd。 4、在双端输入共模信号情况下,分别测量双端输出的输入输出波形,计算双端输出共模放大倍数Avc。 5、计算共模抑制比Kcm R 。 最好作好记录表格,因为要记录的数据较多。电路中两个三极管都为9013。 实验环境(仪器用品等) 1.仪器:示波器(DPO 2012B 100MHZ 1GS/s) 直流电源(IT6302 0~30V,3Ax2CH/0~5V,3A) 台式万用表(UT805A) 模拟电路实验箱(LTE-AC-03B)。 2、所用功能区:单管、多管、负反馈放大电路。 实验原理和实验电路 1、实验原理: 差分电路是具有这样一种功能的电路。该电路的输入端是两个信号的输入,这两个信号的差值,为电路有效输入信号,电路的输出是对这两个输入信号之差的放大。 概念梳理:

差模和共模是对于差动放大电路的两个输入端而言的。 A )差模输入:差动放大电路的两管基极输入的信号幅度相等、极性相反,这样的信号称为差模信号,这样的输入称为差模输入。 差模信号Vid :即差模输入的两个输入信号之差。 B )共模输入:差动放大电路的两管基极输入的信号幅度相等、极性相同,这样的信号称为共模信号,这样的输入称为共模输入。 共模信号Vic :即共模输入的两个输入信号的算数平均值。 C )差模电压增益Avd :指差动放大电路对差模输入信号的放大倍数。差模电压增益越大,放大电路的性能越好。 = D )共模电压增益Avc :指差动放大电路对共模输入信号的放大倍数。共模电压增益越小,放大电路的性能越好。 = E )共模抑制比Kcmr :指差模电压放大倍数与共模电压放大倍数之比,它表明差动放大电路对共模信号的抑制能力。 =20lg| |(dB ) =| | 2、实验电路: SW1 SW-SPDT Q1 NPN Q2 NPN Q3 NPN R1 510 R2 510 R3 10k R4 10k R5 10k R6 10k R7 10k R8 5.1K R9 68K R10 36K RV1 100 R9(1) R10(2) A B C D AM FM + -

相关文档
相关文档 最新文档