文档库 最新最全的文档下载
当前位置:文档库 › 二次函数中的存在性问题(相似三角形的存在性问题)

二次函数中的存在性问题(相似三角形的存在性问题)

二次函数中的存在性问题(相似三角形的存在性问题)
二次函数中的存在性问题(相似三角形的存在性问题)

二次函数的存在性问题(相似三角形)

1、已知抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一交点为B 。

(1)求抛物线的解析式;

(2)若点C 在抛物线的对称轴上,点D 在抛物线上,且以O 、C 、D 、B 四点为顶点的四边形为平行四边形,求D 点的坐标;

(3)连接OA 、AB ,如图②,在x 轴下方的抛物线上是否存在点P ,使得△OBP 与△OAB 相似?若存在,求出P 点的坐标;若不存在,说明理由。

A A

B B O

O x x y y

x

y

F - 2 -4

-6

A

C

E P

D

B

5 2 1 2

4 6 G 2、设抛物线2

2y ax bx =+-与x 轴交于两个不同的点A(一1,0)、B(m ,0),与y 轴交于点C .且∠ACB=90°. (1)求m 的值和抛物线的解析式;(2)已知点D(1,n )在抛物线上,过点A 的直线1y x =+交抛物线于另一点E .若点P 在x 轴上,以点P 、B 、D 为顶点的三角形与△AEB 相似,求点P 的坐标.(3)在(2)的条件下,△BDP 的外接圆半径等于________________.

解:(1)令x=0,得y=-2 ∴C(0,一2).∵ACB=90°,CO ⊥AB,.∴ △AOC ∽△COB,.

∴OA ·OB=OC 2;∴OB=

22

241

OC OA == ∴m=4.

3、已知抛物线2y ax bx c =++经过点A (5,0)、B (6,-6)和原点.(1)求抛物线的函数关系式; (2)若过点B 的直线y kx b '=+与抛物线相交于点C (2,m ),请求出?OBC 的面积S 的值.

(3)过点C 作平行于x 轴的直线交y 轴于点D ,在抛物线对称轴右侧位于直线DC 下方的抛物线上,任取一点P ,过点P 作直线PF 平行于y 轴交x 轴于点F ,交直线DC 于点E . 直线PF 与直线DC 及两坐标轴围成矩形OFED (如图),是否存在点P ,使得?OCD 与?CPE 相似?若存在,求出点P 的坐标;若不存在,请说明理由.

解:(1)由题意得:255036600a b c a b c c ++=??++=??=? 解得150a b c =-??=??=?

故抛物线的函数关系式为2

5y x x =-+

(2)C Q 在抛物线上,2

252,6m m ∴-+?=∴= C ∴点坐标为(2,6),B Q 、C 在直线y kx b '=+上

∴6266k b k b '

=+??'

-=+? 解得3,12k b '=-=∴直线BC 的解析式为312y x =-+ 设BC 与x 轴交于点G ,则G 的坐标为(4,0)11

46462422

OBC S ∴=

??+??-=V (3)存在P ,使得OCD V ∽CPE V 设P (,)m n ,90ODC E ∠=∠=?Q 故2,6CE m EP n =-=-

若要OCD V ∽CPE V ,则要

OD DC CE EP =或OD DC EP CE = 即6226m n =--或62

62

n m =

-- 解得203m n =-或123n m =- 又(,)m n Q 在抛物线上,22035m n n m m =-??

=-+?或2

1235n m

n m m

=-??=-+? 解得12211023,,6

509m m n n ?=?=????=??=??

或121226

,66m m n n ==????

==-?? 故P 点坐标为1050()39,和(6,6)- 4、如图,抛物线(1)(5)y a x x =+-与x 轴的交点为M N ,.直线y kx b =+与x 轴交于(20)P -,,与y 轴交于C .若A B ,两点在直线y kx b =+

上,且AO BO ==

,AO BO ⊥.D 为线段MN 的中点,OH 为

Rt OPC △斜边上的高.

(1)OH 的长度等于 ;k = ,b = .

(2)是否存在实数a ,使得抛物线(1)(5)y a x x =+-以D N E ,,为顶点的三角形与AOB △是否还有符合条件的E 点(简要说明理由)每一个E 点,直线NE 与直线AB 的交点G 是否总满足

PB PG

;k =

b =(2)设存在实数a D N E ,,为顶点的三角形与等腰直角AOB △相似.

∴以D N E ,,为顶点的三角形为等腰直角三角形,且这样的三角形最多只有两类,

一类是以DN 为直角边的等腰直角三角形,另一类是以DN 为斜边的等腰直角三角形.

①若DN 为等腰直角三角形的直角边,则ED DN ⊥.由抛物线(1)(5)y a x x =+-得:(10)M -,,

(50)N ,.(20)D ∴,,3ED DN ∴==.E ∴的坐标为(23),.把(23)E ,代入抛物线解析式,得1

3a =-.

∴抛物线解析式为1(1)(5)3y x x =-+-.即2145

333

y x x =-++.

②若DN 为等腰直角三角形的斜边,则DE EN ⊥,DE EN =.

E ∴的坐标为(3.51.5)

,.把(3.51.5)E ,代入抛物线解析式,得29

a =-. ∴抛物线解析式为2(1)(5)9y x x =-+-,即22810

999

y x x =-++

当1

3a =-时,在抛物线2

145

3

33

y x x =-+

+上存在一点(23)E ,

满足条件,如果此抛物线上还有满足条件的E 点,不妨设为E '点,那么只有可能DE N '△是以DN 为斜边的等腰直角三角形,由此得(3.51.5)E ',, 显然E '不在抛物线2145333y x x =-

++上,故抛物线2145

333

y x x =-++上没有符合条件的其他的E 点. 当29a =-

时,同理可得抛物线22810

999

y x x =-++上没有符合条件的其他的E 点. 当E 的坐标为(23),,

对应的抛物线解析式为2145

333

y x x =-++时,EDN Q △和ABO △都是等腰直角三角形,45GNP PBO ∴∠=∠=o 又NPG BPO ∠=∠Q ,NPG BPO

∴△∽△.PG PN

PO PB

=,

2714PB PG PO PN ∴==?=g g ,∴

总满足PB PG

,,对应的抛物线解析式为22810

999

y x x =-

++时,同理可证得:2714PB PG PO PN ==?=g g ,∴

总满足PB PG

物线上求点M ,使△MOB 的面积是△AOB 面积的3倍;(3)连结OA ,AB ,在x 轴下方的抛物线上是否存在点N ,使△OBN 与△OAB 相似?若存在,求出N 点的坐标;若不存在,说明理由. 解:(1)由题意可设抛物线的解析式为1)2(2+-=x a y

∵抛物线过原点 ∴01)20(2

=+-a ∴4

1-=a ∴抛物线的解析式为1)2(412+--=x y 即x x y +-=24

1

. (2)∵△AOB 与△MOB 同底不等高 又∵S △MOB =3 S △AOB ∴△MOB 的高是△

∴x x +-=-2

413 ∴01242=--x x 解得 61=x ,22-=x ∴)36(1-,

M )32(2--,M

y C

N

P

(3)由抛物线的对称性可知:AO =AB ABO AOB ∠=∠

若△OBN 与△OAB 相似, 必须有BNO BOA BON ∠=∠=∠, 显然 )12('-,A ∴直线ON 的解析式为x y 21-

=, 由x x x +-=24

1

21,得01=x ,62=x ∴)36(-,

N 过N 作NE ⊥x 轴,垂足为E . 在Rt △BEN 中,BE =2,NE =3,∴133222=+=NB 又OB =4 ∴NB ≠OB ∴∠BON ≠∠BNO ∴△OBN 与△OAB 不相似,同理说明在对称轴左边的抛物线上也不存在符合条件的N 点.

故在抛物线上不存在N 点,使得△OBN 与△OAB 相似

6、如图所示,将矩形OABC 沿AE 折叠,使点O 恰好落在BC 上F 处,以CF 为边作正方形CFGH ,延长BC 至M , 使CM =|CE —EO |,再以CM 、CO 为边作矩形CMNO. (1)试比较EO 、EC 的大小,并说明理由;(2)令CMNO

CFGH S S m 四边形四边形=

,请问m 是否为定值?

若是,请求出m 的值;若不是,请说明理由;(3)在(2)的条件下,若CO =1,CE =3

1,

Q 为AE 上一点且QF =

3

2

,抛物线y =mx 2+bx+c 经过C 、Q 两点,请求出此抛物线的解析式. (4)在(3)的条件下,若抛物线y =mx 2+bx+c 与线段AB 交于点P ,试问在直线BC 上是否存在

点K ,使得以P 、B 、K 为顶点的三角形与△AEF 相似?若存在,请求直线KP 与y 轴的交点T 的坐标?若不存在,请说

明理由。

解(1)EO >EC ,理由如下:由折叠知,EO=EF ,在Rt △EFC 中,EF 为斜边,∴EF >EC , 故EO >EC (2)m 为定值。∵S 四边形CFGH =CF 2=EF 2-EC 2=EO 2-EC 2=(EO+EC)(EO ―EC)=CO ·(EO ―EC) S 四边形CMNO =CM ·CO=|CE ―EO|·CO=(EO ―EC) ·CO ∴1

==

CMNO

CFGH S S m

四边形四边形

(3)∵CO=1,323

1=

=QF CE ∴EF=EO=QF ==-32

311 ∴cos ∠FEC=21

∴∠FEC=60°, ∴?=∠∠=?=?-?=

∠3060260180EAO OEA FEA , ∴△EFQ 为等边三角形,32

=EQ

作QI ⊥EO 于I ,EI=

3121=EQ ,IQ=3323=EQ ∴IO=31

3132=-

∴Q 点坐标为)31,33( ∵抛物线y=mx 2+bx+c 过点C(0,1), Q 31

,33(

,m=1,∴可求得3-=b ,c=1 ∴抛物线解析式为132

+-=x x y

(4)由(3),3323=

=EO AO 当332=x 时,3

1

13323)332(2=+?-=y <AB

∴P 点坐标为)31,332(

∴BP=3

2

311=-AO 方法1:若△PBK 与△AEF 相似,而△AEF ≌△AEO ,则分情况如下:

图2

①3

3

232

32=BK 时,932=BK ∴K 点坐标为)1,934(

或)1,93

8(; ②32

323

32=BK 时,332=

BK ,∴K 点坐标为)1,33

4(

或)1,0(

故直线KP 与y 轴交点T 的坐标为)

1,0()3

1,0()37,0()35

,0(或或或--

方法2:若△BPK 与△AEF 相似,由(3)得:∠BPK=30°或60°,过P 作PR ⊥y 轴于R ,则∠RTP=60°或30°①当∠RTP=30°时,233

3

2=?=

RT ②当∠RTP=60°时,32

3332=÷=

RT

∴)

1,0()3

1,0()35,0()37

,0(4321T T T T ,,,--

7、如图,二次函数2

y ax bx c =++(0a ≠)的图象与x 轴交于A B 、两点,与y 轴相交于点C .连结

AC BC A C 、,、两点的坐标分别为(30)A -,

、(0C ,且当4x =-和2x =时二次函数的函数值y 相等.(1)求实数a b c ,,的值;(2)若点M N 、同时从B 点出发,均以每秒1个单位长度的速度分别沿BA BC

、边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t 秒时,连结MN ,将BMN △沿MN 翻折,B 点恰好落在AC 边上的P 处,求t 的值及点P 的坐标;(3)在(2)的条件下,二次函数图象的对称轴上是否存在点Q ,使得以B N Q ,,为项点的三角形与ABC △相似?如果存在,请求出点Q 的坐标;如果不存在,请说明理由.

8、已知:在平面直角坐标系中,抛物线32

+-=x ax y (0≠a )交x 轴于A 、B 两点,交y 轴于点C , 且对称轴为直线2x =-.(1)求该抛物线的解析式及顶点D 的坐标;(2)若点P (0,t )是y 轴上的一个动点, 请进行如下探究:

探究一:如图1,设△P AD 的面积为S ,令W =t ·S ,当0<t <4时,W 是否有最大值?如果有,求出W 的最大值和此

时t 的值;如果没有,说明理由;

探究二:如图2,是否存在以P 、A 、D 为顶点的三角形与Rt △AOC 相似?如果存在,求点P 的坐标;如果不存在,

请说明理由.

解:(1)∵抛物线2

3y ax x =-+(0a ≠)的对称轴为直线2x =-.∴122a --

=-,∴1

4

a =-, ∴2

134

y x x =-

-+.∴(24)D -,

. (2)探究一:当04t <<时,W 有最大值.

∵抛物线2

134

y x x =-

-+交x 轴于A B 、两点,交y 轴于点C ,∴(60)A -,,(20)B ,,(03)C ,, ∴63OA OC ==,.当04t <<时,作DM y ⊥轴于M ,则24DM OM ==,. ∵(0)P t ,,∴4OP t MP OM OP t ==-=-,. ∵PAD AOP DMP OADM S S S S =--△△△梯形 111()222

DM OA OM OA OP DM MP =

+--g g g 111

(26)462(4)222

t t =

+?-??-??-122t =- ∴2

(122)2(3)18W t t t =-=--+ ∴当3t =时,W 有最大值,18W =最大值.

探究二:存在.分三种情况:

①当1

90PDA ∠=°时,作DE x ⊥轴于E ,则2490OE DE DEA ==∠=,,°, ∴624AE OA OE DE =-=-==.∴45DAE ADE ∠=∠=°

,AD =

=,

∴11

904545PDE PDA ADE ∠=∠-∠=-=°°°.∵DM y ⊥轴,OA y ⊥轴, ∴DM OA ∥,∴90MDE DEA ∠=∠=°,∴11904545MDP MDE PDE ∠=∠-∠=-=°°°. ∴12PM DM ==

,1

PD ==

.此时1

OC OA PD AD ==,又因为1

90AOC PDA ∠=∠=°, ∴1Rt Rt ADP AOC △∽△,∴11422OP OM PM =-=-=,∴1(02)P ,

. ∴当190PDA ∠=°时,存在点1P ,使1Rt Rt ADP AOC △∽△,此时1P 点的坐标为(0,2)

. ②当290P AD ∠=°时,则245P AO ∠=°

,∴2cos 45OA

P A =

,∴2P A OA =

=.

3AD OC =,∴2P A

AD OC OA

≠.∴2P AD △与AOC △不相似,此时点2P 不存在. ③当390AP D ∠=°时,以AD 为直径作1O ⊙,则1O ⊙

的半径2

AD

r =

=, 圆心1O 到y 轴的距离4d =.∵d r >,∴1O ⊙与y 轴相离.不存在点3P ,使390AP D ∠=°.

∴综上所述,只存在一点(02)P ,

使Rt ADP △与Rt AOC △相似.

9、矩形OABC 在平面直角坐标系中位置如图13所示,A C 、两点的坐标分别为(60)A ,,(03)C -,,

直线3

4

y x =-

与BC 边相交于D 点. (1)求点D 的坐标; (2)若抛物线2

9

4

y ax x =-

经过点A ,试确定此抛物线的表达式; (3)设(2)中的抛物线的对称轴与直线OD 交于点M ,点P 以P O M 、、为顶点的三角形与OCD △相似,求符合条件的点P 的坐标. 解:(1)点D 的坐标为(43)-,. (2)抛物线的表达式为239

84

y x x =

-. (3)抛物线的对称轴与x 轴的交点1P 符合条件.

∵OA CB ∥, ∴1POM CDO ∠=∠.∵1

90OPM DCO ∠=∠=°, ∴1Rt Rt POM CDO △∽△.∵抛物线的对称轴3x =,∴点1P 的坐标为1(3

0)P ,. 过点O 作OD 的垂线交抛物线的对称轴于点2P .∵对称轴平行于y 轴,∴2P MO DOC ∠=∠. ∵290P OM DCO ∠=∠=°,∴21Rt Rt P M O DOC △∽△.

∴点2P 也符合条件,2OP M ODC ∠=∠.∴121

390PO CO P PO DCO ==∠=∠=,°, ∴21Rt Rt P PO DCO △≌△.∴124PP CD ==.∵点2P 在第一象限,∴点2P 的坐标为2P (3

4),, ∴符合条件的点P 有两个,分别是1(3

0)P ,,2P (34),.

二次函数-平行四边形存在性问题

专题:二次函数中的平行四边形存在性问题 类型一:已知三个定点,再找一个定点构成平行四边形(平面内有三个点满足) 1.已知抛物线b ax ax y ++-=22与x 轴的一个交点为A (-1,0),与y 轴的正半轴交于点C. ⑴直接写出抛物线的对称轴,及抛物线与x 轴的另一个交点B 的坐标; ⑵当点C 在以AB 为直径的⊙P 上时,求抛物线的解析式; ⑶坐标平面内是否存在点M ,使得以点M 和⑵中抛物线上的三点A、B、C 为顶点的四边形是平行四边形?若存在,请求出点M 的坐标;若不存在,请说明理由. 类型:已知两个定点,再找两个点构成平行四边形 1.已知,如图抛物线2 3(0)y ax ax c a =++>与y 轴交于C 点,与x 轴交于A、B 两点,A 点在B 点左侧。点B 的坐标为(1,0),OC=30B. (1)求抛物线的解析式; (2)若点D 是线段AC 下方抛物线上的动点,求四边形ABCD 面积的最大值: (3)若点E 在x 轴上,点P 在抛物线上。是否存在以A、C、E、P 为顶点且以AC 为一边的平行四边形?若存在,求点P 的坐标;若不存在,请说明理由.

2、练习如图,抛物线:c bx x y ++=22 1与x 轴交于A、B(A 在B 左侧),顶点为C(1,﹣2)。(1)求此抛物线的关系式;并直接写出点A、B 的坐标; (2)求过A、B、C 三点的圆的半径; (3)在抛物线上找点P,在y 轴上找点E,使以A、B、P、E 为顶点的四边形是平行四边形,求点P、E 的坐标。 1.如图,抛物线2 23y x x =--与x 轴交A、B 两点(A 点在B 点左侧),直线l 与抛物线交于A、C 两点,其中C 点的横坐标为2. (1)求A、B 两点的坐标及直线AC 的函数表达式; (2)P 是线段AC 上的一个动点,过P 点作y 轴的平行线交抛物线于E 点,求线段PE 长度的最大值; (3)点G 抛物线上的动点,在x 轴上是否存在点F,使A、C、F、G 这样的四个点为顶点的四边形是平行 四边形?如果存在,求出所有满足条件的F 点坐标;如果不存在,请说明理由.

相似三角形的存在性(讲义及答案).

相似三角形的存在性(讲义) 知识点睛 1.存在性问题的处理思路 ①分析不变特征 分析背景图形中的定点,定线,定角等不变特征. ②分类、画图 结合图形形成因素(判定,定义等)考虑分类,画出符合题意的图形. 通常先尝试画出其中一种情形,分析解决后,再类比解决其他情形. ③求解、验证 围绕不变特征、画图依据来设计方案进行求解;验证时,要回归点的运动范围,画图或推理,判断是否符合题意. 注:复杂背景下的存在性问题往往需要研究背景图形,几何背景往往研究点,线,角;函数背景研究点坐标,表达式等.2.相似三角形的存在性不变特征及特征下操作要点举例: 一般先从角(不变特征)入手,分析对应关系后,作出符合题意图形,再借助不变特征和对应边成比例列方程求 解.常见特征如一组角对应相等,这一组相等角顶点为确定对应点,结合对应关系分类后,作出符合题意图形,一般利用对应边成比例列方程求解.

精讲精练 1.如图,将长为8cm,宽为5cm的矩形纸片ABCD折叠,使 点B落在CD边的点E处,压平后得到折痕MN,点A的对称点为点F,CE=4cm.若点G是矩形边上任意一点,则当△ABG与△CEN相似时,线段AG的长为. 2.如图,抛物线y=-1x2+10x-8经过A,B,C三点,BC⊥OB, 33 AB=BC,过点C作CD⊥x轴于点D.点M是直线AB上方的抛物线上一动点,作MN⊥x轴于点N,若△AMN与△ACD 相似,则点M的坐标为.

3.如图,已知抛物线y=3x2+bx+c与坐标轴交于A,B,C三 4 点,点A的坐标为(-1,0),过点C的直线y=3 4t x-3与x轴 交于点Q,点P是线段BC上的一个动点,过P作PH⊥OB 于点H.若PB=5t,且0<t<1. (1)点C的坐标是,b=,c=.(2)求线段QH的长(用含t的代数式表示). (3)依点P的变化,是否存在t的值,使以P,H,Q为顶点的三角形与△COQ相似?若存在,求出所有符合条件的t 值;若不存在,说明理由.

(完整版)二次函数与三角形的存在性问题的解法

二次函数与三角形的存在性问题 一、预备知识 1、坐标系中或抛物线上有两个点为P (x1,y ),Q (x2,y ) (1)线段对称轴是直线2x 2 1x x += (2)AB 两点之间距离公式:221221)()(y y x x PQ -+-= 中点公式:已知两点 ()()2211y ,x Q ,y ,x P ,则线段PQ 的中点M 为??? ??++222121y y ,x x 。 2、两直线的解析式为11b x k y +=与 22b x k y += 如果这两天两直线互相垂直,则有121-=?k k 3、平面内两直线之间的位置关系:两直线分别为:L1:y=k1x+b1 L2:y=k2x+b2 (1)当k1=k2,b1≠b2 ,L1∥L2 (2)当k1≠k2, ,L1与L2相交 (3)K1×k2= -1时, L1与L2垂直 二、三角形的存在性问题探究: 三角形的存在性问题主要涉及到的是等腰三角形,等边三角形,直角三角形 (一)三角形的性质和判定: 1、等腰三角形 性质:两腰相等,两底角相等,三线合一(中线、高线、角平分线)。 判定:两腰相等,两底角相等,三线合一(中线、高线、角平分线)的三角形是等腰三角形。 2、直角三角形 性质:满足勾股定理的三边关系,斜边上的中线等于斜边的一半。 判定:有一个角是直角的三角形是直角三角形。 3、等腰直角三角形 性质:具有等腰三角形和等边三角形的所以性质,两底角相等且等于45°。 判定:具有等腰三角形和等边三角形的所以性质的三角形是等腰直角三角形 4、等边三角形 性质:三边相等,三个角相等且等于60°,三线合一,具有等腰三角形的一切性质。 判定:三边相等,抛物线或坐标轴或对称轴上三个角相等,有一个角是60°的等腰三角形是等边三角形。

相似三角形存在性探究精品

文档收集于互联网,已重新整理排版.word 版本可编辑,有帮助欢迎下载支持. 1文档来源为:从网络收集整理.word 版本可编辑. 【关键字】条件、速度、方向 相似三角形存在性探究 如图,点D 在△ABC 的边上. (1)要判断△ADB 与△ (2)要判断△ADB 与△(3)通过(1)(2)例1如图,在△ABC 的边AB 上有一点E ,AB =4cm AE =1cm AC =3cm 。在AC 边上是否存 在点F ,使得△AEF 和△ABC 相似?若存在,求出AF 的长。 变式 如图, 点E 在AB 边上从点A 向点B 运动,速度为2cm/s , 点F 同时从点C 向点A 运动,速度为1cm/s,设运动时间为t 秒,问是否存在t 的值,使得 △AEF 和△ABC 相似?若存在,试求出t 的值,若不存在,请说明理由。 例2如图,在平面点直角坐标系xoy 中,A (1,0)、B (3,0)、C (0,-3)、P (2,1)请问在x 轴上是 否存在点Q,使以P ,B,Q 为顶点的三角形与△ABC 相似?若存在,求出点Q 的坐标,若不存 在,请说明理由。 变式 如图,在平面点直角坐标系xoy 中,A (1,0)、B (3,0)、C (0,-3)、P (2,1) (1)求过A 、B 、C 三点的抛物线解析式 (2)请问在x 轴下方的抛物线上是否存在点M ,过M 作M N ⊥x 轴于点N,使以A,M,N 为顶点的 三角形与△BCP 相似?若存在,求出点M 的坐标,若不存在,请说明理由。 做一做 如图,抛物线 与x 轴交于A ,B 两点(A 点在B 点左侧)与y 轴交于点C ,动直线EF (EF //x 轴)从点C 出发,以每秒1个单位长度的速度沿y 轴负 方向平移,且分别交y 轴、线段BC 于E 、F 两点,动点P 同时从点B 出发,在线段OB 上 以每秒2个单位长度的速度向原点O 运动,是否存在t 的值,使△BPF 与△ABC 相似?若 存在试求出t 的值,若不存在,请说明理由。 B 42 3812+-=x x y O

中考数学二次函数存在性问题 及参考答案

中考数学二次函数存在性问题 及参 考答案
一、二次函数中相似三角形的存在性问题 1.如图,把抛物线 向左平移 1 个单位,再向下平移 4 个单位,得到抛物线 . 所得抛物线与 轴交于 A,B 两点(点 A 在点 B 的左边),与 轴交于点 C,顶点为 D. (1)写出 的值;(2)判断△ACD 的形状,并说明理由; (3)在线段 AC 上是否存在点 M,使△AOM∽△ABC?若存在,求出点 M 的坐标;若不存在, 说明理由.
2.如图,已知抛物线经过 A(﹣2,0),B(﹣3,3)及原点 O,顶点为 C. (1)求抛物线的解析式; (2)若点 D 在抛物线上,点 E 在抛物线的对称轴上,且 A、O、D、E 为顶点的四边形是平行 四边形,求点 D 的坐标; (3)P 是抛物线上的第一象限内的动点,过点 P 作 PM x 轴,垂足为 M,是否存在点 P, 使得以 P、M、A 为顶点的三角形△BOC 相似?若存在,求出点 P 的坐标;若不存在,请说明 理由.
1 / 13

二、二次函数中面积的存在性问题 3.如图,抛物线 与双曲线 相交于点 A,B.已知点 B 的坐标为(-2,-2),点 A 在第一象限内,且 tan∠AOX=4.过点 A 作直线 AC∥ 轴,交抛物线于另一点 C. (1)求双曲线和抛物线的解析式; (2)计算△ABC 的面积; (3)在抛物线上是否存在点 D,使△ABD 的面积等于△ABC 的面积.若存在,请你写出点 D 的坐标;若不存在,请你说明理由.
4.如图,抛物线 y=ax2+c(a>0)经过梯形 ABCD 的四个顶点,梯形的底 AD 在 x 轴上, 其中 A(-2,0),B(-1, -3). (1)求抛物线的解析式;(3 分) (2)点 M 为 y 轴上任意一点,当点 M 到 A、B 两点的距离之和为最小时,求此时点 M 的坐
2 / 13

二次函数的存在性问题(面积)及答案

图12-2 x C O y A B D 1 1 二次函数的存在性问题(面积问题) 1、[08云南双柏]已知:抛物线y =ax 2 +bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,其中点B 在x 轴 的正半轴上,点C 在y 轴的正半轴上,线段OB 、OC 的长(OB

相似三角形的存在性问题解题策略

中考数学压轴题解题策略(2) 相似三角形的存在性问题解题策略 《挑战压轴题·中考数学》的作者 上海 马学斌 专题攻略 相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等. 判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验,如例题1、2、3、4. 应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等,如例题6. 应用判定定理3解题不多见,如例题5,根据三边对应成比例列连比式解方程(组). 例题解析 例? 如图1-1,抛物线213482 y x x =-+与x 轴交于A 、B 两点(A 点在B 点左侧),与y 轴交于点C .动直线EF (EF //x 轴)从点C 开始,以每秒1个单位的速度沿y 轴负方向平移,且分别交y 轴、线段BC 于E 、F 两点,动点P 同时从点B 出发,在线段OB 上以每秒2个单位的速度向原点O 运动.是否存在t ,使得△BPF 与△ABC 相似.若存在,试求出t 的值;若不存在,请说明理由. 图1-1 【解析】△BPF 与△ABC 有公共角∠B ,那么我们梳理两个三角形中夹∠B 的两条边. △ABC 是确定的.由213482 y x x = -+,可得A (4, 0)、B (8, 0)、C (0, 4). 于是得到BA =4,BC =12CE CO EF OB ==. △BPF 中,BP =2t ,那么BF 的长用含t 的式子表示出来,问题就解决了. 在Rt △EFC 中,CE =t ,EF =2t ,所以CF . 因此)BF t ==-. 于是根据两边对应成比例,分两种情况列方程: ①当BA BP BC BF ==.解得43t =(如图1-2).

(完整版)二次函数中的存在性问题(答案)

二次函数中的存在性问题姓名 1.已知抛物线y=﹣x2+x﹣3与x轴交于A,B两点,与y轴交于点C.在直线CA上方的抛物线上是否存在一点D,使得△ACD的面积最大?若存在,求出点D的坐标;若不存在,请说明理由. 2.已知y=ax2+bx+c(a≠0)图象与直线y=kx+4相交于A(1,m),B(4,8)两点,与x轴交于原点及点C.(1)求直线和抛物线解析式; (2)在x轴上方的抛物线上是否存在点D,使S△OCD=2S△OAB?如果存在,求出点D坐标,如果不存在,说明理由. 3.已知直线y=x﹣3与x轴交于点A,与y轴交于点C,抛物线y=﹣x2+mx+n经过点A和点C. (1)求此抛物线的解析式; (2)在直线CA上方的抛物线上是否存在点D,使得△ACD的面积最大?若存在,求出点D的坐标;若不存在,说明理由.

4.在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴交于A、B两点(点A在点B的左侧),过点A的直线y=kx+1交抛物线于点C(2,3). (1)求直线AC及抛物线的解析式; (2)若直线y=kx+1与抛物线的对称轴交于点E,以点E为中心将直线y=kx+1顺时针旋转90°得到直线l,设直线l与y轴的交点为P,求△APE的面积; (3)若G为抛物线上一点,是否存在x轴上的点F,使以B、E、F、G为顶点的四边形为平行四边形?若存在,直接写出点F的坐标;若不存在,请说明理由. 5.如图,在平面直角坐标系中,抛物线交x轴于A,B两点(A在B的左侧),交y轴于点C. (1)求直线BC的解析式; (2)求抛物线的顶点及对称轴; (3)若点Q是抛物线对称轴上的一动点,线段AQ+CQ是否存在最小值?若存在,求出点Q的坐标;若不存在,说明理由; (4)若点P是直线BC上方的一个动点,△PBC的面积是否存在最大值?若存在,求出点P的坐标及此时△PBC 的面积;若不存在,说明理由.

相似三角形存在性问题

因动点产生得相似三角形问题 例1 2015年上海市宝山区嘉定区中考模拟第24题 如图1,在平面直角坐标系中,双曲线(k≠0)与直线y=x+2都经过点A(2, m). (1)求k与m得值; (2)此双曲线又经过点B(n, 2),过点B得直线BC与直线y=x+2平行交y轴于点C,联结AB、AC,求△ABC得面积; (3)在(2)得条件下,设直线y=x+2与y轴交于点D,在射线CB上有一点E,如果以点A、C、E所组成得三角形与△ACD相似,且相似比不为1,求点E得坐标、 图1 动感体验 请打开几何画板文件名“15宝山嘉定24”,拖动点E在射线CB上运动,可以体验到, △ACE与△ACD相似,存在两种情况。 思路点拨 1、直线AD//BC,与坐标轴得夹角为45°. 2.求△ABC得面积,一般用割补法. 3。讨论△ACE与△ACD相似,先寻找一组等角,再根据对应边成比例分两种情况列方程. 满分解答 (1)将点A(2, m)代入y=x+2,得m=4.所以点A得坐标为(2,4). 将点A(2, 4)代入,得k=8。 (2)将点B(n, 2),代入,得n=4。 所以点B得坐标为(4, 2)、 设直线BC为y=x+b,代入点B(4, 2),得b=—2. 所以点C得坐标为(0,—2). 由A(2, 4) 、B(4, 2) 、C(0,-2),可知A、B两点间得水平距离 与竖直距离都就是2,B、C两点间得水平距离与竖直距离都就是4. 所以AB=,BC=,∠ABC=90°.

图2 所以S△ABC===8、 (3)由A(2, 4)、D(0, 2) 、C(0,—2),得AD=,AC=、 由于∠DAC+∠ACD=45°,∠ACE+∠ACD=45°,所以∠DAC=∠ACE。 所以△ACE与△ACD相似,分两种情况: ①如图3,当时,CE=AD=. 此时△ACD≌△CAE,相似比为1. ②如图4,当时,、解得CE=.此时C、E两点间得水平距离与竖直距离都就是10,所以E(10, 8)、 图3 图4 考点伸展 第(2)题我们在计算△ABC得面积时,恰好△ABC就是直角三角形、 一般情况下,在坐标平面内计算图形得面积,用割补法、 如图5,作△ABC得外接矩形HCNM,MN//y轴. 由S矩形HCNM=24,S△AHC=6,S△AMB=2,S△BCN=8,得S△ABC=8. 图5 例22014年武汉市中考第24题 如图1,Rt△ABC中,∠ACB=90°,AC=6 cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm得速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4 cm得速度向点B匀速运动,运动时间为t秒(0

二次函数的存在性问题(面积问题)

二次函数的存在性问题(面积问题) [08湖北荆州]已知:如图,R t △AOB 的两直角边OA 、OB 分别在x 轴的正半轴和y 轴的负 半轴上,C 为OA 上一点且OC =OB ,抛物线y=(x -2)(x -m )-(p-2)(p-m)(m 、p 为常数且m+2≥2p>0)经过A 、C 两点. (1)用m 、p 分别表示OA 、OC 的长; (2)当m 、p 满足什么关系时,△AOB 12220.(1)0 2)()(2)()0 )(2)0,222020 2,1(2),2 11 (2) 2211 (2)22 1 (2) 1 2(2)1 2 2()2 AOB AOB AO y x x m p p m x p x m p x p x m p m p m p p OA m p OC P OC OB S OA OB S OA OB P m p P m P m p m S =-----=---+=∴==+-+>>∴+->>∴=+-===∴==+-=-+++∴=-=+?-令得:(整理得:(当时,. B 最大 [08湖北荆州]如图,等腰直角三角形纸片AB C 中,AC =BC =4,∠ACB =90o,直角边AC 在x 轴上,B 点在第二象限,A (1,0),AB 交y 轴于E ,将纸片过E 点折叠使BE 与EA 所在直线重合,得到折痕EF (F 在x 轴上),再展开还原沿EF 剪开得到四边形BCFE ,然后把四边形BCFE 从E 点开始沿射线EA 平移,至B 点到达A 点停止.设平移时间为t (s ),移动速度为每秒1个单位长度,平移中四边形BCFE 与△AEF 重叠的面积为S. (1)求折痕EF 的长; (2)是否存在某一时刻t 使平移中直角顶点C 经过抛物线243y x x =++的顶点?若存在, 求出t 值;若不存在,请说明理由; (3)直接写出....S 与t 的函数关系式及自变量t 25.145101ABC BE EA FE EA Rt AC BC CAB EF EA A OA OE AE EF ∴⊥=∴∠=?∴=∴===∴=()折叠后与所在直线重合又中(,) ,折痕 ∥BA 交Y 轴于P , 2()存在.设CP 413 POC C CP AC OA OC OP ==∴==则为等腰直角三角形,直角顶点在射线上移动 ,

初中数学相似三角形的存在性问题(word版+详解答案)

相似三角形的存在性问题 【考题研究】 相似三角形的存在性问题是近几年中考数学的热点问题.解相似三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根。难点在于寻找分类标准,分类标准寻找的恰当,可以使得解的个数不重复不遗漏,也可以使得列方程和解方程又好又快. 【解题攻略】 相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等. 判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验。 应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等. 应用判定定理3解题不多见,根据三边对应成比例列连比式解方程(组). 【解题类型及其思路】 相似三角形存在性问题需要注意的问题: 1、若题目中问题为△ABC ∽△DEF ,则对应线段已经确定。 2、若题目中为△ABC 与 △DEF 相似,则没有确定对应线段,此时有三种情况:①△ABC ∽△DEF , ②△ABC ∽△FDE 、 ③△ABC ∽△EFD 、 3、若题目中为△ABC 与 △DEF 并且有 ∠A 、 ∠D (或为90°),则确定了一条对应的线段,此时有二种情况:①、△ABC ∽△DEF ,②、△ABC ∽△DFE 需要分类讨论上述的各种情况。 【典例指引】 类型一 【确定符合相似三角形的点的坐标】 典例指引1.(2019·贵州中考真题)如图,抛物线212 y x bx c = ++与直线1 32y x =+分别相交于A ,B 两 点,且此抛物线与x 轴的一个交点为C ,连接AC ,BC .已知(0,3)A ,(3,0)C -.

二次函数(存在性问题)

函数图象中点的存在性问题(强化训练) 切入点一:利用基本图形来作图(充分利用图形的特殊性质),并描述作图方法 切入点二:做好数据准备,计算尽量利用相似、数形结合(交轨法) 切入点三:紧扣不变量,善于使用前题所采用的方法或结论 切入点四:在题目中寻找多解的信息(不重不漏) 1.1因动点产生的平行四边形问题 1. 如图1,直线L:y=-x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线G:y=ax2+bx+c 与x轴的另一交点为A,顶点为P,且对称轴是直线x=2. (1)该抛物线G的解析式为; (2)将直线L沿y轴向下平移个单位长度,能使它与抛物线G只有一个公共点; (3)若点E在抛物线G的对称轴上,点F在该抛物线上,且以点A、B、E、F为顶点的四边形为平行四边形,求点E与点F坐标并直接写出平行四边形的周长. (4)连接AC,得△ABC.若点Q在x轴上,且以点P、B、Q为顶点的三角形与△ABC相似,求点Q 的坐标.

2. 在平面直角坐标系xOy中,已知二次函数y=ax2-2ax+c(a≠0)的图象与x轴交于A,B两点(点A在点B的左边),AB=4,与y轴交于点C,且过点(2,3). (1)求此二次函数的表达式; (2)若抛物线的顶点为D,连接CD、CB,问抛物线上是否存在点P,使得∠PBC+∠BDC=90°?若存在,求出点P的坐标;若不存在,请说明理由; (3)点K为抛物线上C关于对称轴的对称点,点G抛物线上的动点,在x轴上是否存在点F,使A、K、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.

-几何图形在二次函数中的存在性问题探解

---几何图形在二次函数中的存在性问题探解 二次函数是初中数学的重要内容,更是中考的重要考点之一,它以丰富的知识内涵,深远的知识综合,深厚的数学思想,灵活的解题方法,奇趣的知识背景等深深吸引着命题老师,更深刻启迪着每位同学.下面就把几何图形在二次函数中的存在性问题介绍给大家,供学习时借鉴. 一、.三角形的存在性 1.1 等腰三角形的存在性 例1 (2017年淮安)如图1-1,直线y=﹣x+3与x 轴、y 轴分别交于点B 、点C ,经过B 、C 两点的抛物线y=2x +bx+c 与x 轴的另一个交点为A ,顶点为P . (1)求该抛物线的解析式; (2)在该抛物线的对称轴上是否存在点M ,使以C ,P ,M 为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M 的坐标;若不存在,请说明理由; (3)当0<x <3时,在抛物线上求一点E ,使△CBE 的面积有最大值(图1-2、1-3供画图探究). 分析: 第一问考查的是待定系数法确定函数的解析式,思路有几个待定系数,解答时就需要确定几个点的坐标; 第二问探析等腰三角形的存在性,解答时,要做到一先一后,先清楚动点的位置与特点,后对等腰三角形进行科学分类,一是按边分类,一是按角分类; 第三问探求三角形面积的最大值,这是二次函数的看家本领,只需将三角形的面积适当分割,恰当表示,最后将三角形面积最大问题转化为二次函数的最值问题求解即可. 解: (1)因为直线y=﹣x+3与x 轴、y 轴分别交于点B 、点C ,所以B (3,0),C (0,3), 所以{c =39a+3b+c =0,解得{c =3b =4-,所以抛物线解析式为y=2x ﹣4x+3; (2)因为y=2x ﹣4x+3=2(x 2)-﹣1,所以抛物线对称轴为x=2,顶点P (2,﹣1), 设M (2,t ),因为△CPM 为等腰三角形,如图2所示, ①当MC=PC 时,过C 作CQ ⊥对称轴,垂足为Q ,则Q(2,3),所以QP=MQ=3-(-1)=4,所以M 到x 轴的距离8-1=7,所以1M 的坐标(2,7); ②当MP=MC 时,作PC 的垂直平分线交对称轴于点M ,所以222(t+1)2+(t-3)=,解得t=32,所以2M 的坐标(2, 32 );

初中数学专题03相似三角形的存在性问题(原卷版)

专题三 相似三角形的存在性问题 【考题研究】 相似三角形的存在性问题是近几年中考数学的热点问题.解相似三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根。难点在于寻找分类标准,分类标准寻找的恰当,可以使得解的个数不重复不遗漏,也可以使得列方程和解方程又好又快. 【解题攻略】 相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等. 判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验。 应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等. 应用判定定理3解题不多见,根据三边对应成比例列连比式解方程(组). 【解题类型及其思路】 相似三角形存在性问题需要注意的问题: 1、若题目中问题为△ABC ∽△DEF ,则对应线段已经确定。 2、若题目中为△ABC 与 △DEF 相似,则没有确定对应线段,此时有三种情况:①△ABC ∽△DEF , ②△ABC ∽△FDE 、 ③△ABC ∽△EFD 、 3、若题目中为△ABC 与 △DEF 并且有 ∠A 、 ∠D (或为90°),则确定了一条对应的线段,此时有二种情况:①、△ABC ∽△DEF ,②、△ABC ∽△DFE 需要分类讨论上述的各种情况。 【典例指引】 类型一 【确定符合相似三角形的点的坐标】 典例指引1.(2019·贵州中考真题)如图,抛物线212 y x bx c = ++与直线1 32y x =+分别相交于A ,B 两 点,且此抛物线与x 轴的一个交点为C ,连接AC ,BC .已知(0,3)A ,(3,0)C -.

二次函数存在性问题总结

已知,抛物线322 --=x x y 交x 轴于点A 、B ,交y 轴于点C. 1、线段最值 ①线段和最小 点P 是抛物线对称轴上一动点,当点P 坐标为多少时,PA+PC 值最小. A B C O x y ②线段差最大 点Q 是抛物线对称轴上一动点,当点Q 坐标为多少时,|QA -QC|值最大. A B C O x y ③线段最值 连接BC,点M 是线段BC 上一动点,过点M 作MN//y 轴,交抛物线于点N,求线段MN 的最大值及点N 的坐标. A B C O x y N M 变式① 点N 是第四象限内抛物线上一动点,连接BN 、CN,求BCN S ?的最大值及点N的坐标 A B C O x y N

变式② 点N是第四象限内抛物线上一动点,求点N到线段BC 的最大距离及点N的坐标 A B C O x y N M 2、等腰三角形的存在性问题 点D 为抛物线322 --=x x y 的顶点,连接BC ,点P 是直线B C上一动点,是否存在点P,使△PAD 为等腰三角形,若存在,求出点P 的坐标,若不存在,说明理由. A B C O x y D 3、菱形的存在性问题 点D为抛物线322 --=x x y 的顶点,连接BC 点P 是直线BC 上一动点,点Q 为坐标平面内一点,是否存在以A 、D、P、Q 为顶点的四边形是菱形,若存在,求出点P 坐标,若不存在,说明理由. A B C O x y D 4、平行四边形的存在性问题 点D 为抛物线322 --=x x y 的顶点,点M 是抛物线上一动点,点N 为直线BC 上一动点,是否存在以O 、D 、M、N 为顶点的四边形是平行四边形,若存在,求出点M 坐标,若不存在,说明理由. A B C O x y D 5、直角三角形的存在性问题

相似三角形存在性探究

相似三角形存在性探究 如图,点D 在△ABC 的边上. (1)要判断△ADB 与△ABC 相似, 添加一个条件是 (2)要判断△ADB 与△ABC 相似,AB =4、AD =2. 则AC = (3)通过(1)(2)的解答,你能说出相似三角形哪些知识? 例1如图,在△ABC 的边AB 上有一点E ,AB =4cm AE =1cm AC =3cm 。在AC 边上是否存在点F ,使得△AEF 和△ABC 相似?若存在,求出AF 的长。 变式 如图, 点E 在AB 边上从点A 向点B 运动,速度为2cm/s , 点F 同时从点C 向点A 运动,速度为1cm/s,设运动时间为t 秒,问是否存在t 的值,使得△AEF 和△ABC 相似?若存在,试求出t 的值,若不存在,请说明理由。 C A D B C E F B E F

例2如图,在平面点直角坐标系xoy中,A(1,0)、B(3,0)、C(0,-3)、P(2,1)请问在x轴上是 否存在点Q,使以P,B,Q为顶点的三角形与△ABC相似?若存在,求出点Q的坐标,若不存在,请说明理由。 变式如图,在平面点直角坐标系xoy中,A(1,0)、B(3,0)、C(0,-3)、P(2,1) (1)求过A、B、C三点的抛物线解析式 (2)请问在x轴下方的抛物线上是否存在点M,过M作 M N⊥x轴于点N,使以A,M,N为顶点的 三角形与△BCP相似?若存在,求出点M的坐标,若不存在,请说明理由。

做一做 如图,抛物线 与x 轴交于A ,B 两点(A 点在B 点左侧)与y 轴交于点C ,动直线EF (EF //x 轴)从点C 出发,以每秒1个单位长度的速度沿y 轴负方向平移,且分别交y 轴、线段BC 于E 、F 两点,动点P 同时从点B 出发,在线段OB 上以每秒2个单位长度的速度向原点O 运动,是否存在t 的值,使△BPF 与△ABC 相似?若存在试求出t 的值,若不存在,请说明理由。 42 3812+-=x x y

相似三角形的存在性问题

相似三角形的存在性问题 【真题典藏】 1.(2008年上海市第25题)(本题满分14分,第(1)小题满分5分,第(2)小题满分4分,第(3)小题满分5分)已知AB=2,AD=4,∠DAB=90°,AD//BC(如图13).E是射线BC上的动点(点E与点B不重合),M是线段DE的中点. (1)设BE=x,△ABM的面积为y,求y关于x的函数解析式,并写出函数的定义域; (2)如果以线段AB为直径的圆与以线段DE为直径的圆外切,求线段BE的长; (3)联结BD,交线段AM于点N,如果以A、N、D为顶点的三角形与△BME相似,求线段BE的长. 图1 备用图 2.(2009年闸北区第25题)如图2,△ABC中,AB=5,AC=3,c os A= 3 10 .D为射线BA上的点(点 D不与点B重合),作DE//BC交射线CA于点E.. (1) 若CE=x,BD=y,求y与x的函数关系式,并写出函数的定义域; (2) 当分别以线段BD,CE为直径的两圆相切时,求DE的长度; (3) 当点D在AB边上时,BC边上是否存在点F,使△ABC与△DEF相似?若存在,请求出线段BF的长;若不存在,请说明理由. 图2 备用图备用图 【满分攻略】 我们先来解读第1题(2008年上海市第25题)的第(3)题,学习相似三角形的存在性问题:

第一步,把两个三角形涂上颜色或者画上阴影(如图6),寻找分类标准与分类方法. 一般来讲,不论用相似三角形的判定定理1,还是判定定理2,至少有一组角是相等的. 我们可以看到,∠ADN 的大小是确定不动的,∠AND 是钝角,∠ADN =∠DBE >∠MBE ,因此按照与∠AND 相等,分两种情况①∠ADN =∠BME ;②∠ADN =∠BEM . 第二步,拿起三角尺,按照分类情况反复比划,画两个比较准确的示意图(如图7,图8),把相等的角都标记出来. 第三步,具体情况具体分析. ① 如图7,当∠ADN =∠BME 时, 经过等量代换,∠DBE =∠BME ,这时△DBE 与△BME 就是我们熟悉的相似三角形的典型图“A 字形”,那么2 21 2 EB EM ED ED =?=,这样问题就转化为如何用含有x 的式子表示ED 的长. 已知直角梯形的两底和直腰,你说怎样求斜腰ED 呢? ②如图8,当∠ADN =∠BEM 时,经过等量代换,∠DBE =∠BEM ,这时△DBE 是等腰三角形,BC =2AD =8. 图6 图7 图8 还需要提醒的是,备用图暗示要分类讨论,合理利用试卷和答题纸上的备用图,不要急于乱画,先分好类,再反复比划,后落笔.图7不可能画准确,但是要接近,这样好观察图形间的关系. 示范一下书写,注意用标志性的语句引领书写的层次性和阅卷老师的眼球. (2)①当∠ADN =∠BME 时,∠DBE =∠BME ,这时△DBE ∽△BME . ∴2 212EB EM ED ED =?= . ∴222 12(4)2 x x ??=+-??. ∴122,10x x ==-(舍去负值). ②当∠ADN =∠BEM 时,∠DBE =∠BEM ,这时△DBE 是等腰三角形,BC =2AD =8. 综上所述,当△ADN 与△BME 相似时,BE 的长为2或8. 我们再来解读第2题(2009年闸北区第25题)的第(3)题, 求等腰三角形DEF 的存在性. 由第(1)、(3)题知,在△BDG 中,645,,cos 55 BD x DG x BDG =-=∠=. 第一步,寻找分类标准与分类方法.

答案 二次函数-矩形的存在性问题

参考答案 1. (2015 黑龙江省龙东地区) 如图,四边形OABC 是矩形,点A 、C 在坐标轴上,△ODE 是△OCB 绕点O 顺 时针旋转90°得到的,点D 在x 轴上,直线BD 交y 轴于点F ,交OE 于点H ,线段BC 、OC 的长是方程x 2﹣6x+8=0的两个根,且OC >BC . (1)求直线BD 的解析式; (2)求△OFH 的面积; (3)点M 在坐标轴上,平面内是否存在点N ,使以点 D 、F 、M 、N 为顶点的四边形是矩形?若存在, 请直接写出点N 的坐标;若不存在,请说明理由. 1. 分析: (1)解方程可求得OC 、BC 的长,可求得B 、D 的坐标, 利用待定系数法可求得直线BD 的解析式; (2)可求得E 点坐标,求出直线OE 的解析式,联立直线BD 、OE 解析式可求得H 点的横坐标,可求得△OFH 的面积; (3)当△MFD 为直角三角形时,可找到满足条件的点N ,分∠MFD=90°、∠MDF=90°和∠FMD=90°三种情况,分别求得M 点的坐标,可分别求得矩形对角线的交点坐标,再利用中点坐标公式可求得N 点坐标. 解答: 解:(1)解方程x 2﹣6x+8=0可得x=2或x=4,∵BC 、OC 的长是方程x 2 ﹣6x+8=0的两个根,且OC >BC , ∴BC=2,OC=4,∴B (﹣2,4),∵△ODE 是△OCB 绕点O 顺时针旋转90°得到的, ∴OD=OC=4,DE=BC=2,∴D (4,0),设直线BD 解析式为y=kx+b , 把B 、D 坐标代入可得,解得,∴直线BD 的解析式为y=﹣x+; (2)由(1)可知E (4,2),设直线OE 解析式为y=mx , 把E 点坐标代入可求得m=, ∴直线OE 解析式为y=x ,令﹣x+=x , 解得x=,∴H 点到y 轴的距离为, 又由(1)可得F (0,),∴OF=,∴S △OFH =××=; (3)∵以点D 、F 、M 、N 为顶点的四边形是矩形, ∴△DFM 为直角三角形, ①当∠MFD=90°时,则M 只能在x 轴上,连接FN 交MD 于点G ,如图1, 由(2)可知OF=,OD=4,则有△MOF ∽△FOD , ∴=,即=,解得OM=,∴M (﹣,0),且D (4,0),∴G (,0), 设N 点坐标为(x ,y ),则=,=0,解得x=,y=﹣,此时N 点坐标为(,﹣); ②当∠MDF=90°时,则M 只能在y 轴上,连接DN 交MF 于点G ,如图2, 则有△FOD ∽△DOM , ∴=,即=,解得OM=6, ∴M (0,﹣6),且F (0,), ∴MG=MF=,则OG=OM ﹣MG=6﹣=, ∴G (0,﹣), 设N 点坐标为(x ,y ),则=0,=﹣, 解得x=﹣4,y=﹣,此时N (﹣4,﹣); ③当∠FMD=90°时,则可知M 点为O 点,如图3, ∵四边形MFND 为矩形, ∴NF=OD=4,ND=OF=,可求得N (4,); 综上可知存在满足条件的N 点,其坐标为(,﹣)或(﹣4,﹣)或(4,). 2. (2015 重庆市綦江县) 如图,抛物线2 23y x x =-++与x 轴交与A ,B 两点(点A 在点B 的左侧),与

相似三角形的存在性(习题及答案).

相似三角形的存在性(习题) 复习巩固 1.如图,矩形ABCD中,AB=3,BC=10,点P是AD上的一个 动点,若以A,P,B为顶点的三角形与△PDC相似,则 AP=________. 2.在平面直角坐标系中,二次函数图象的顶点坐标为C(4, 3 ),且与x轴的两个交点间的距离为6. (1)求二次函数的解析式; (2)在x轴上方的抛物线上,是否存在点Q,使得以Q,A,B为顶点的三角形与△ABC相似?如果存在,请求出点Q的坐标;如果不存在,请说明理由.

3.如图,已知抛物线y=x2-1与x轴交于A,B两点,与y轴交 于点C,过点A作AP∥CB交抛物线于点P. (1)求A,B,C三点的坐标. (2)在x轴上方的抛物线上是否存在一点M,过点M作MG⊥x轴于点G,使以A,M,G为顶点的三角形与△PCA相似? 若存在,请求出点M的坐标;若不存在,请说明理由.

4.如图,抛物线y=ax2+b与x轴交于点A,B,且点A的坐标为 (1,0),与y轴交于点C(0,1). (1)求抛物线的解析式,并求出点B的坐标. (2)过点B作BD∥CA交抛物线于点D,在x轴上点A的左侧是否存在点P,使以P,A,C为顶点的三角形与△ABD 相似?若存在,求出点P的坐标;若不存在,请说明理由.

5.如图,抛物线经过A(4,0),B(1,0),C(0,-2)三点. (1)求抛物线的解析式. (2)P是抛物线上一动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.

6.如图,二次函数y =-x 2+4x +5图象的顶点为D ,对称轴是直线 l ,一次函数215 y x = +的图象与x 轴交于点A ,且与直线DA 关于l 的对称直线交于点B .(1)点D 的坐标是_________; (2)直线l 与直线AB 交于点C ,N 是线段DC 上一点(不与点D ,C 重合),点N 的纵坐标为n .过点N 作直线与线段DA ,DB 分别交于点P ,Q ,使得△DPQ 与△DAB 相似.①当275 n =时,求DP 的长;②若对于每一个确定的n 的值,有且只有一个△DPQ 与△DAB 相似,请直接写出n 的取值范围_________.

中考数学相似三角形的存在性问题解题策略

相似三角形的存在性问题解题策略 专题攻略 相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等. 判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验,如例题1、2、3、4. 应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等,如例题6. 应用判定定理3解题不多见,如例题5,根据三边对应成比例列连比式解方程(组). 例题解析 例1、 如图1-1,抛物线213482 y x x =-+与x 轴交于A 、B 两点(A 点在B 点左侧),与y 轴交于点C .动直线EF (EF //x 轴)从点C 开始,以每秒1个单位的速度沿y 轴负方向平移,且分别交y 轴、线段BC 于E 、F 两点,动点P 同时从点B 出发,在线段OB 上以每秒2个单位的速度向原点O 运动.是否存在t ,使得△BPF 与△ABC 相似.若存在,试求出t 的值;若不存在,请说明理由. 图1-1 【解析】△BPF 与△ABC 有公共角∠B ,那么我们梳理两个三角形中夹∠B 的两条边. △ABC 是确定的.由213482 y x x = -+,可得A (4, 0)、B (8, 0)、C (0, 4). 于是得到BA =4,BC =12CE CO EF OB ==. △BPF 中,BP =2t ,那么BF 的长用含t 的式子表示出来,问题就解决了. 在Rt △EFC 中,CE =t ,EF =2t ,所以CF . 因此)BF t ==-. 于是根据两边对应成比例,分两种情况列方程: ①当BA BP BC BF ==43t =(如图1-2). ②当 BA BF BC BP ==207t =(如图1-3).

相关文档
相关文档 最新文档