文档库 最新最全的文档下载
当前位置:文档库 › 高考数学等比数列专题复习(专题训练) 百度文库

高考数学等比数列专题复习(专题训练) 百度文库

高考数学等比数列专题复习(专题训练) 百度文库
高考数学等比数列专题复习(专题训练) 百度文库

一、等比数列选择题

1

12

的等比中项是( )

A .-1

B .1

C

D

.±

2.已知等比数列{}n a 的前n 项和为,n S 且63

9S S =,则42a

a 的值为( )

A

B .2

C

.D .4

3.数列{}n a 是等比数列,54a =,916a =,则7a =( ) A .8

B .8±

C .8-

D .1

4.已知各项不为0的等差数列{}n a 满足2

6780a a a -+=,数列{}n b 是等比数列,且

77b a =,则3810b b b =( )

A .1

B .8

C .4

D .2

5.已知等比数列{}n a 的各项均为正数,公比为q ,11a >,676712a a a a +>+>,记

{}n a 的前n 项积为n

T

,则下列选项错误的是( ) A .01q <<

B .61a >

C .121T >

D .131T >

6.已知等比数列{}n a 中,1354a a a ??=

,公比q =,则456a a a ??=( ) A .32

B .16

C .16-

D .32-

7.已知数列{}n a 满足112a =

,*

11()2

n n a a n N +=∈.设2n n n b a λ-=,*n N ∈,且数列

{}n b 是单调递增数列,则实数λ的取值范围是( )

A .(,1)-∞

B .3

(1,)2

-

C .3(,)2

-∞

D .(1,2)-

8.已知等比数列{a n }的前n 项和为S n ,若S 3=7,S 6=63,则数列{na n }的前n 项和为( ) A .-3+(n +1)×2n B .3+(n +1)×2n C .1+(n +1)×2n

D .1+(n -1)×2n

9.已知正项等比数列{}n a 的公比不为1,n T 为其前n 项积,若20172021T T =,则2020

2021

ln ln a a =

( ) A .1:3 B .3:1 C .3:5 D .5:3 10.在3和81之间插入2个数,使这4个数成等比数列,则公比q 为( )

A .2±

B .2

C .3±

D .3

11.数列{}n a 满足:点()1,n n a -(n N ∈,2n ≥)在函数()2x f x =的图像上,则{}n a 的前10项和为( )

A .4092

B .2047

C .2046

D .1023

12.公差不为0的等差数列{}n a 中,2

3711220a a a -+=,数列{}n b 是等比数列,且

77b a =,则68b b =( )

A .2

B .4

C .8

D .16

13.已知数列{}n a ,{}n b 满足12a =,10.2b =,1112

33

n n n a b a ++=+

,113

44

n n n b a b +=

+,则使0.01n n a b -<成立的最小正整数n 为( ) A .5

B .7

C .9

D .11

14.在各项均为正数的等比数列{}n a 中,22

6598225a a a a ++=,则113a a 的最大值是

( ) A .25

B .

254

C .5

D .

25

15.数列{a n }满足2

1

1232222

n n n

a a a a -+++?+=

(n ∈N *),数列{a n }前n 和为S n ,则S 10等于( )

A .55

12?? ???

B .10

112??- ???

C .9

112??- ??? D .66

12?? ???

16..在等比数列{}n a 中,若11a =,54a =,则3a =( ) A .2

B .2或2-

C .2-

D

17.若数列{}n a 是等比数列,且17138a a a =,则311a a =( ) A .1 B .2 C .4 D .8 18.已知1,a ,x ,b ,16这五个实数成等比数列,则x 的值为( )

A .4

B .-4

C .±4

D .不确定

19.已知等比数列的公比为2,其前n 项和为n S ,则3

3

S a =( ) A .2

B .4

C .

74 D .

158

20.已知等比数列{}n a 的前n 项和为S n ,则下列命题一定正确的是( ) A .若S 2021>0,则a 3+a 1>0 B .若S 2020>0,则a 3+a 1>0 C .若S 2021>0,则a 2+a 4>0

D .若S 2020>0,则a 2+a 4>0

二、多选题

21.已知数列{},{}n n a b 均为递增数列,{}n a 的前n 项和为,{}n n S b 的前n 项和为,n T 且满足*112,2()n n n n n a a n b b n N +++=?=∈,则下列结论正确的是( )

A .101a <<

B

.11b <<

C .22n n S T <

D .22n n S T ≥

22.已知1a ,2a ,3a ,4a 依次成等比数列,且公比q 不为1.将此数列删去一个数后得到的数列(按原来的顺序)是等差数列,则正数q 的值是( )

A B C D 23.已知等比数列{}n a 公比为q ,前n 项和为n S ,且满足638a a =,则下列说法正确的是( )

A .{}n a 为单调递增数列

B .

6

3

9S S = C .3S ,6S ,9S 成等

比数列

D .12n n S a a =-

24.已知数列{}n a 是公比为q 的等比数列,4n n b a =+,若数列{}n b 有连续4项在集合{-50,-20,22,40,85}中,则公比q 的值可以是( ) A .34

-

B .23

-

C .43

-

D .32

-

25.已知数列{}n a 是等比数列,那么下列数列一定是等比数列的是( )

A .1{}n

a B .2

2log ()n a

C .1{}n n a a ++

D .12{}n n n a a a ++++

26.设{}n a 是各项均为正数的数列,以n a ,1n a +为直角边长的直角三角形面积记为

n S ()n *∈N ,则{}n S 为等比数列的充分条件是( )

A .{}n a 是等比数列

B .1a ,3a ,??? ,21n a -,???或 2a ,4a ,??? ,2n a ,???是等比数列

C .1a ,3a ,??? ,21n a -,???和 2a ,4a ,???,2n a ,???均是等比数列

D .1a ,3a ,??? ,21n a -,???和 2a ,4a ,??? ,2n a ,???均是等比数列,且公比相同 27.在《增减算法统宗》中有这样一则故事:三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关.则下列说法正确的是( ) A .此人第三天走了二十四里路

B .此人第一天走的路程比后五天走的路程多六里

C .此人第二天走的路程占全程的

14

D .此人走的前三天路程之和是后三天路程之和的8倍

28.在《增删算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关.”则下列说法正确的是( ) A .此人第二天走了九十六里路

B .此人第三天走的路程站全程的

18

C .此人第一天走的路程比后五天走的路程多六里

D .此人后三天共走了42里路

29.已知等比数列{}n a 的公比为q ,前n 项和0n S >,设213

2

n n n b a a ++=-

,记{}n b 的前

n 项和为n T ,则下列判断正确的是( ) A .若1q =,则n n T S = B .若2q >,则n n T S >

C .若14q =-

,则n n T S >

D .若3

4

q =-,则n n T S > 30.将2n 个数排成n 行n 列的一个数阵,如下图:

111213212223231

32

3331312

n n n n n n n

n

a a a a a a a a a a a a a a a a ?????????? 该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中0m >).已知112a =,13611a a =+,记这2n 个数的和为

S .下列结论正确的有( )

A .3m =

B .7

67173a =?

C .1

(31)3

j ij a i -=-?

D .()1

(31)314

n S n n =

+- 31.设数列{}n x ,若存在常数a ,对任意正数r ,总存在正整数N ,当n N ≥,有

n x a r -<,则数列{}n x 为收敛数列.下列关于收敛数列正确的有( )

A .等差数列不可能是收敛数列

B .若等比数列{}n x 是收敛数列,则公比(]1,1q ∈-

C .若数列{}n x 满足sin cos 22n x n n ππ????

=

? ?????

,则{}n x 是收敛数列 D .设公差不为0的等差数列{}n x 的前n 项和为()0n n S S ≠,则数列1n S ??

????

一定是收敛数列

32.设{}n a 是无穷数列,若存在正整数k ,使得对任意n +∈N ,均有n k n a a +>,则称

{}n a 是间隔递增数列,k 是{}n a 的间隔数,下列说法正确的是( )

A .公比大于1的等比数列一定是间隔递增数列

B .已知4

n a n n

=+

,则{}n a 是间隔递增数列 C .已知()21n

n a n =+-,则{}n a 是间隔递增数列且最小间隔数是2

D .已知2

2020n a n tn =-+,若{}n a 是间隔递增数列且最小间隔数是3,则45t ≤<

33.关于等差数列和等比数列,下列四个选项中不正确的有( )

A .若数列{}n a 的前n 项和2(n S an bn c a =++,b ,c 为常数)则数列{}n a 为等差数列

B .若数列{}n a 的前n 项和1

22n n S +=-,则数列{}n a 为等差数列

C .数列{}n a 是等差数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,?仍为等差数列

D .数列{}n a 是等比数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,?仍为等比数列;

34.已知数列{}n a 是等比数列,则下列结论中正确的是( ) A .数列2

{}n a 是等比数列

B .若32a =,732a =,则58a =±

C .若123a a a <<,则数列{}n a 是递增数列

D .若数列{}n a 的前n 和1

3n n S r -=+,则1r =-

35.等差数列{}n a 的公差为d ,前n 项和为n S ,当首项1a 和d 变化时,3813++a a a 是一个定值,则下列各数也为定值的有( ) A .7a

B .8a

C .15S

D .16S

【参考答案】***试卷处理标记,请不要删除

一、等比数列选择题 1.D 【分析】

利用等比中项定义得解. 【详解】

2311(

)((22-==±,的等比中项是2

± 故选:D 2.D 【分析】

设等比数列{}n a 的公比为q ,由题得()4561238a a a a a a ++=++,进而得2q

,故

24

2

4a q a ==. 【详解】

解:设等比数列{}n a 的公比为q ,因为

6

3

9S S =,所以639S S =, 所以6338S S S -=,即()4561238a a a a a a ++=++,

由于()3

456123a a a q a a a ++=++,

所以3

8q =,故2q

所以24

2

4a q a ==. 故选:D. 3.A 【分析】

分析出70a >,再结合等比中项的性质可求得7a 的值. 【详解】

设等比数列{}n a 的公比为q ,则2

750a a q =>,

由等比中项的性质可得2

75964a a a ==,因此,78a =.

故选:A. 4.B 【分析】

根据等差数列的性质,由题中条件,求出72a =,再由等比数列的性质,即可求出结果. 【详解】

因为各项不为0的等差数列{}n a 满足2

6780a a a -+=,

所以2

7720a a -=,解得72a =或70a =(舍);

又数列{}n b 是等比数列,且772b a ==,

所以3

3810371178b b b b b b b ===.

故选:B. 5.D 【分析】

等比数列{}n a 的各项均为正数,11a >,676712a a a a +>+>,可得67(1)(1)0a a --<,因此61a >,71a <,01q <<.进而判断出结论. 【详解】 解:

等比数列{}n a 的各项均为正数,11a >,676712a a a a +>+>,

67(1)(1)0a a ∴--<,

11a >,若61a <,则一定有71a <,不符合

由题意得61a >,71a <,01q ∴<<,故A 、B 正确. 6712a a +>,671a a ∴>,

6121231267()1T a a a a a a =?=>,故C 正确,

13

1371T a =<,故D 错误,

∴满足1n T >的最大正整数n 的值为12.

故选:D . 6.A 【分析】

由等比数列的通项公式可计算得出()6

456135a a a q a a a ??=??,代入数据可计算得出结果.

【详解】

由6

326456135135432a a a a q a q a q a a a q ??=?????=???=?=.

故选:A. 7.C 【分析】 由*11()2n n a a n N +=

∈可知数列{}n a 是公比为2的等比数列,1

2

n n a =,得2(2)2n n n

n b n a λ

λ-=

=-,结合数列{b n }是单调递增数列,可得1n n b b +>对于任意的*n N ∈*恒成立,参变分离后即可得解.

【详解】 由*11

()2

n n a a n N +=

∈可知数列{}n a 是公比为2的等比数列, 所以1111()222

n n n a -=

=, 2(2)2n n n

n b n a λ

λ-=

=- ∵数列{n b 是单调递增数列, ∴1n n b b +>对于任意的*n N ∈*恒成立, 即1

(12)2

(2)2n n n n λλ++->-,整理得:2

2

n λ+<

3

2λ∴< ,

故选:C. 【点睛】

本题主要考查了已知数列的单调性求参,一般研究数列的单调性的方法有: 一、利用数列单调性的定义,由1n n a a +>得数列单增,1n n a a +<得数列单减; 二、借助于函数的单调性研究数列的单调性. 8.D 【分析】

利用已知条件列出方程组求解即可得1,a q ,求出数列{a n }的通项公式,再利用错位相减法求和即可. 【详解】

设等比数列{a n }的公比为q ,易知q ≠1,

所以由题设得()

()

3136

1617

11631a q S q a q S q ?-?==-?

?-?

=

=?-?

, 两式相除得1+q 3=9,解得q =2, 进而可得a 1=1, 所以a n =a 1q n -1=2n -1, 所以na n =n ×2n -1.

设数列{na n }的前n 项和为T n , 则T n =1×20+2×21+3×22+…+n ×2n -1, 2T n =1×21+2×22+3×23+…+n ×2n ,

两式作差得-T n =1+2+22

+…+2n -1

-n ×2n

=

1212

n

---n ×2n =-1+(1-n )×2n , 故T n =1+(n -1)×2n . 故选:D. 【点睛】

本题主要考查了求等比数列的通项公式问题以及利用错位相减法求和的问题.属于较易题. 9.A 【分析】

由20172021T T =得20182019202020211a a a a =,由等比数列性质得20182021201920201a a a a ==,这样可把2020a 和2021a 用q 表示出来后,可求得2020

2021

ln ln a a . 【详解】

{}n a 是正项等比数列,0n a >,0n T ≠,*n N ∈,

所以由2017202120172018201920202021T T T a a a a ==?,得20182019202020211a a a a =, 所以20182021201920201a a a a ==,设{}n a 公比为q ,1q ≠,

22021201820213()1a a a q ==,2

202020192020()1a a a q

==,即322021a q =,122020a q =, 所以

12

2020

3

2021

2

1ln ln ln 123ln 3ln ln 2

q

a q a q q ===. 故选:A . 【点睛】

本题考查等比数列的性质,解题关键是利用等比数列性质化简已知条件,然后用公比q 表示出相应的项后可得结论.

10.D 【分析】

根据等比数列定义知3

813q =,解得答案.

【详解】

4个数成等比数列,则3

813q =,故3q =.

故选:D. 11.A 【分析】

根据题中条件,先得数列的通项,再由等比数列的求和公式,即可得出结果. 【详解】

因为点()1,n n a -(n N ∈,2n ≥)在函数()2x f x =的图像上, 所以()12

,2n

n a n N n -=∈≥,因此()12n n a n N ++=∈,

即数列{}n a 是以4为首项,以2为公比的等比数列, 所以{}n a 的前10项和为()10412409212

-=-.

故选:A. 12.D 【分析】

根据等差数列的性质得到774a b ==,数列{}n b 是等比数列,故2

687b b b ==16.

【详解】

等差数列{}n a 中,31172a a a +=,故原式等价于2

7a -740a =解得70a =或74,a =

各项不为0的等差数列{}n a ,故得到774a b ==,

数列{}n b 是等比数列,故2

687b b b ==16.

故选:D. 13.C 【分析】

令n n n c a b =-,由1112

3

3n n n a b a ++=+

,11344

n n n b a b +=+可知数列{}n c 是首项为1.8,公比为12的等比数列,即1

1.812n n c -?? ?

??

=?,则1

10.0121.8n -??< ?

??

?,解不等式可得n 的最小

值. 【详解】

令n n n c a b =-,则11120.2 1.8c a b =-=-=

1111131313

4444412123334

3n n n n n n n n n n n

n c a b a b a b b a a a b ++++??=-=+--=+-- ??+?

111222

n n n a b c -==

所以数列{}n c 是首项为1.8,公比为12的等比数列,所以1

1.812n n c -?? ?

??

=?

由0.01n n a b -<,即1

10.0121.8n -??< ?

??

?,整理得12180n ->

由72128=,82256=,所以18n -=,即9n =

故选:C. 【点睛】

本题考查了等比数列及等比数列的通项公式,解题的关键是根据已知的数列递推关系式,利用等比数列的定义,得到数列{}n c 为等比数列,考查了学生的分析问题能力能力与运算求解能力,属于中档题. 14.B 【分析】

由等比数列的性质,求得685a a +=,再结合基本不等式,即可求得113a a 的最大值,得到答案. 【详解】

由等比数列的性质,可得()2

2222

65986688682225a a a a a a a a a a ++=++=+=,

又因为0n a >,所以685a a +=,所以2

68113682524a a a a a a +??=≤=

???

, 当且仅当685

2

a a ==时取等号. 故选:B . 15.B 【分析】

根据题意得到2

212311

2222

n n n a a a a ---+++

+=

,(2n ≥),与条件两式作差,得到12n n a =

,(2n ≥),再验证112a =满足12n n a =,得到12n n

a =()*

n N ∈,进而可求出结果. 【详解】 因为数列{}n a 满足2

11232222

n n n a a a a -+++

+=

, 2212311

2222

n n n a a a a ---+++

+=

,(2n ≥) 则1

112

222--=

-=n n n n a ,则12

n n a =,(2n ≥),

又112a =

满足12n n a =,所以12

n n a =()*

n N ∈, 因此1010210123101011111

11221122

2212

S a a a a ??- ?????++=

+++==- ?+?-=?.

故选:B 16.A 【分析】

由等比数列的性质可得2

315a a a =?,且1a 与3a 同号,从而可求出3a 的值

【详解】

解:因为等比数列{}n a 中,11a =,54a =,

所以2

3154a a a =?=,

因为110a =>,所以30a >, 所以32a =, 故选:A 17.C 【分析】

根据等比数列的性质,由题中条件,求出72a =,即可得出结果. 【详解】

因为数列{}n a 是等比数列,由17138a a a =,得3

78a =,

所以72a =,因此2

31174a a a ==.

故选:C. 18.A 【分析】

根据等比中项的性质有216x =,而由等比通项公式知2

x q =,即可求得x 的值. 【详解】

由题意知:216x =,且若令公比为q 时有2

0x q =>,

∴4x =, 故选:A 19.C 【分析】

利用等比数列的通项公式和前n 项和公式代入化简可得答案 【详解】

解:因为等比数列的公比为2,

所以313

12311(12)

7712244

a S a a a a --===?, 故选:C 20.A 【分析】

根据等比数列的求和公式及通项公式,可分析出答案. 【详解】

等比数列{}n a 的前n 项和为n S ,当1q ≠时,

202112021(1)01a q S q

-=>-,

因为2021

1q

-与1q -同号,

所以10a >,

所以2

131(1)0a a a q +=+>,

当1q =时,

2021120210S a =>,

所以10a >,

所以1311120a a a a a +=+=>, 综上,当20210S >时,130a a +>, 故选:A 【点睛】

易错点点睛:利用等比数列求和公式时,一定要分析公比是否为1,否则容易引起错误,本题需要讨论两种情况.

二、多选题

21.ABC 【分析】

利用数列单调性及题干条件,可求出11,a b 范围;求出数列{},{}n n a b 的前2n 项和的表达式,利用数学归纳法即可证明其大小关系,即可得答案. 【详解】

因为数列{}n a 为递增数列, 所以123a a a <<,

所以11222a a a <+=,即11a <, 又22324a a a <+=,即2122a a =-<, 所以10a >,即101a <<,故A 正确;

因为{}n b 为递增数列, 所以123b b b <<,

所以2

1122b b b <=

,即1b <

又2

2234b b b <=,即21

2

2b b =

<, 所以11b >

,即11b <<,故B 正确;

{}n a 的前2n 项和为21234212()()()n n n S a a a a a a -=++++???++

= 22(121)

2[13(21)]22

n n n n +-++???+-=

=,

因为12n n n b b +?=,则1

122n n n b b +++?=,所以22n n b b +=,

则{}n b 的2n 项和为13212422()()n n n b b b b b b T -=++???++++???+

=1101101122(222)(222)()(21)n n n

b b b b --++???++++???+=+-

1)1)n n

>-=-, 当n =1

时,222,S T =>,所以22T S >,故D 错误; 当2n ≥时

假设当n=k

时,21)2k k ->

21)k k ->, 则当n=k +1

1121)21)21)2k k k k k ++-=

+-=->

2221(1)k k k >++=+

所以对于任意*n N ∈

,都有21)2k k ->,即22n n T S >,故C 正确 故选:ABC 【点睛】

本题考查数列的单调性的应用,数列前n 项和的求法,解题的关键在于,根据数列的单调性,得到项之间的大小关系,再结合题干条件,即可求出范围,比较前2n 项和大小时,需灵活应用等差等比求和公式及性质,结合基本不等式进行分析,考查分析理解,计算求值的能力,属中档题. 22.AB 【分析】

因为公比q 不为1,所以不能删去1a ,4a ,设等差数列的公差为d ,分类讨论,即可得到答案 【详解】

解:因为公比q 不为1,所以不能删去1a ,4a ,设等差数列的公差为d , ①若删去2a ,则有3142a a a =+,得231112a q a a q =+,即2321q q =+, 整理得()()()2

111q

q q q -=-+,

因为1q ≠,所以21q q =+, 因为0q >

,所以解得12

q +=

, ②若删去3a ,则2142a a a =+,得31112a q a a q =+,即3

21q q =+,

整理得(1)(1)1q q q q -+=-,因为1q ≠,所以(1)1q q +=, 因为0q >

,所以解得q =,

综上q =

或q =, 故选:AB 23.BD 【分析】

根据638a a =利用等比数列的性质建立关系求出2q ,然后结合等比数列的求和公式,

逐项判断选项可得答案. 【详解】

由638a a =,可得3338q a a =,则2q

当首项10a <时,可得{}n a 为单调递减数列,故A 错误;

由6

63

312912S S -=

=-,故B 正确; 假设3S ,6S ,9S 成等比数列,可得2693S S S =?, 即6239(12)(12)(12)-=--不成立,

显然3S ,6S ,9S 不成等比数列,故C 错误; 由{}n a 公比为q 的等比数列,可得11

122121

n n n n a a q a a S a a q --===--- 12n n S a a ∴=-,故D 正确;

故选:BD . 【点睛】

关键点睛:解答本题的关键是利用638a a =求得2q ,同时需要熟练掌握等比数列的求

和公式. 24.BD 【分析】

先分析得到数列{}n a 有连续四项在集合{54-,24-,18,36,81}中,再求等比数列的公比. 【详解】 4n n b a =+

4n n a b ∴=-

数列{}n b 有连续四项在集合{-50,-20,22,40,85}中

∴数列{}n a 有连续四项在集合{54-,24-,18,36,81}中

数列{}n a 是公比为q 的等比数列,

∴在集合{54-,24-,18,36,81}中,数列{}n a 的连续四项只能是:24-,36,

54-,81或81,54-,36,24-.

∴363242

q =

=--或2432

36q -==-. 故选:BD 25.AD 【分析】

主要分析数列中的项是否可能为0,如果可能为0,则不能是等比数列,在不为0时,根据等比数列的定义确定. 【详解】

1n a =时,22log ()0n a =,数列22{log ()}n a 不一定是等比数列, 1q =-时,10n n a a ++=,数列1{}n n a a ++不一定是等比数列,

由等比数列的定义知1{}n

a 和12{}n n n a a a ++++都是等比数列. 故选AD . 【点睛】

本题考查等比数列的定义,掌握等比数列的定义是解题基础.特别注意只要数列中有一项为0,则数列不可能是等比数列. 26.AD 【分析】

根据{}n S 为等比数列等价于2

n n

a a +为常数,从而可得正确的选项. 【详解】

{}n S 为等比数列等价于

1n n S S +为常数,也就是等价于12

+1n n n n a a a a ++即2n n

a a +为常数.

对于A ,因为{}n a 是等比数列,故22

n n

a q a +=(q 为{}n a 的公比)为常数,故A 满足; 对于B ,取21221,2n

n n a n a -=-=,此时满足2a ,4a ,??? ,2n a ,???是等比数列,

1a ,3a ,??? ,21n a -,???不是等比数列,

21

21

n n a a +-不是常数,故B 错. 对于C ,取2123,2n n

n n a a -==,此时满足2a ,4a ,??? ,2n a ,???是等比数列,

1a ,3a ,??? ,21n a -,???是等比数列,

21213n n a a +-=,2222n n

a

a +=,两者不相等,故C 错. 对于D ,根据条件可得2

n n

a a +为常数. 故选:AD. 【点睛】

本题考查等比数列的判断,此类问题应根据定义来处理,本题属于基础题. 27.BD 【分析】

根据题意,得到此人每天所走路程构成以1

2

为公比的等比数列,记该等比数列为{}n a ,公比为1

2

q =

,前n 项和为n S ,根据题意求出首项,再由等比数列的求和公式和通项公式,逐项判断,即可得出结果. 【详解】

由题意,此人每天所走路程构成以1

2

为公比的等比数列, 记该等比数列为{}n a ,公比为1

2

q =

,前n 项和为n S , 则16611163

237813212

a S a ?

?- ?

??===-,解得1192a =,

所以此人第三天走的路程为23148a a q =?=,故A 错;

此人第一天走的路程比后五天走的路程多()1611623843786a S a a S --=-=-=里,故B 正确;

此人第二天走的路程为21378

9694.54

a a q =?=≠

=,故C 错; 此人前三天走的路程为31231929648336S a a a =++=++=,后三天走的路程为

6337833642S S -=-=,336428=?,即前三天路程之和是后三天路程之和的8倍,D 正

确; 故选:BD. 【点睛】

本题主要考查等比数列的应用,熟记等比数列的通项公式与求和公式即可,属于常考题型. 28.ACD 【分析】

若设此人第n 天走n a 里路,则数列{}n a 是首项为1a ,公比为1

2

q =

的等比数列,由6378S =求得首项,然后分析4个选项可得答案.

【详解】

解:设此人第n 天走n a 里路,则数列{}n a 是首项为1a ,公比为1

2

q =

的等比数列, 因为6378S =,所以1661(1)

2=

378112

a S -

=-,解得1

192a =,

对于A ,由于21

192962a =?=,所以此人第二天走了九十六里路,所以A 正确; 对于B ,由于 31481

19248,

43788

a =?=>,所以B 不正确; 对于C ,由于378192186,1921866-=-=,所以此人第一天走的路程比后五天走的路程

多六里,所以C 正确; 对于D ,由于45611

11924281632a a a ??++=?++= ???

,所以D 正确, 故选:ACD 【点睛】

此题考查等比数的性质,等比数数的前项n 的和,属于基础题. 29.BD 【分析】

先求得q 的取值范围,根据q 的取值范围进行分类讨论,利用差比较法比较出n T 和n S 的大小关系. 【详解】

由于{}n a 是等比数列,0n S >,所以110,0a S q =>≠, 当1q =时,10n S na =>,符合题意; 当1q ≠时,()1101n n a q S q

-=

>-,即

101n

q q ->-,上式等价于1010n q q ?->?->?

①或10

10

n q q ?-

-.解①,由于n 可能是奇数,也可能是偶数,所以()()1,00,1q ∈-.

综上所述,q 的取值范围是()

()1,00,-+∞.

2213322n n n n b a a a q q ++??=-=- ???,所以232n n T q q S ?

?=- ??

?,所以

()2311222n n n n T S S q q S q q ???

?-=?--=?+?- ? ????

?,而0n S >,且()()1,00,q ∈-?+∞.

所以,当1

12

q -<<-

,或2q >时,0n n T S ->,即n n T S >,故BD 选项正确,C 选项错

误. 当1

2(0)2

q q -

<<≠时,0n n T S -<,即n n T S <. 当12

q =-

或2q 时,0,n n n n T S T S -==,A 选项错误.

综上所述,正确的选项为BD. 故选:BD 【点睛】

本小题主要考查等比数列的前n 项和公式,考查差比较法比较大小,考查化归与转化的数学思想方法,考查分类讨论的数学思想方法,属于中档题. 30.ACD 【分析】

根据题设中的数阵,结合等比数列的通项公式和等比数列的前n 项和公式,逐项求解,即可得到答案. 【详解】

由题意,该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列,且112a =,13611a a =+,

可得22

13112a a m m ==,6111525a a d m =+=+,所以22251m m =++,

解得3m =或1

2

m =-

(舍去),所以选项A 是正确的; 又由666

6761(253)3173a a m ==+??=?,所以选项B 不正确;

又由1

111111(3[((1)][2(1)3]31)3j j j j ij i a m

a i m m i i a ----==+-??==-?+-??,所以选

项C 是正确的; 又由这2n 个数的和为S , 则111212122212()()()n n n n nn S a a a a a a a a a =++

++++++++++

11121(13)(13)(13)131313

n n n n a a a ---=++

+

---1(231)(31)22n

n n +-=-? 1

(31)(31)4

n n n =

+-,所以选项D 是正确的, 故选ACD. 【点睛】

本题主要考查了数表、数阵数列的求解,以及等比数列及其前n 项和公式的应用,其中解答中合理利用等比数列的通项公式和前n 项和公式,准确计算是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题. 31.BCD 【分析】

根据等差数列前n 和公式以及收敛数列的定义可判断A ;根据等比数列的通项公式以及收敛的定义可判断B ;根据收敛的定义可判断C ;根据等差数列前n 和公式以及收敛数列的定

义可判断D. 【详解】

当0n S >时,取2111222

222n d d d

d d d S n a n n n a n a ????=

+-=+-≥+- ? ?????, 为使得1n S r >,所以只需要1122d d n a r

+->1112222

d

a ra dr r

n N d dr -+

-+?>==. 对于A ,令1n x =,则存在1a =,使0n x a r -=<,故A 错; 对于B ,1

1n n x x q

-=,若1q >,则对任意正数r ,

当11log 1q r n x ??

+>+ ? ???

时, 1n x r >+,所以不存在正整数N 使得定义式成立,

若1q =,显然符合;若1q =-为摆动数列()1

11n n x x -=-,

只有1x ±两个值,不会收敛于一个值,所以舍去;

若()1,1q ∈-,取0a =,1log 11q r

N x ??=++????

, 当n N >时,1

11

1

0n n r

x x q x r x --=<=,故B 正确; 对于C ,()1

sin cos sin 0222

n x n n n πππ????===

? ?????,符合; 对于D ,()11n x x n d =+-,2122n d d S n x n ??

=

+- ??

?, 当0d >时,n S 单调递增并且可以取到比

1

r

更大的正数,

当n N >=时,110n n

r S S -=<,同理0d <,所以D 正确. 故选:BCD 【点睛】

关键点点睛:解题的关键是理解收敛数列的定义,借助等差数列前n 和公式以及等比数列

的通项公式求解,属于中档题. 32.BCD 【分析】

根据间隔递增数列的定义求解. 【详解】 A. ()

1111

111n k n n n k k n a a a a q

q q a q +---+=-=--,因为1q >,所以当10a <时,

n k n a a +<,故错误;

B. ()()244441++n k

n n kn a a n k n k k n k n n k n n k n +????+-?

?-=++-+=-= ? ? ? ? ?+??????

,令24t n kn =+-,t 在n *∈N 单调递增,则()1140t k =+->,解得3k >,故正确;

C. ()()

()()()()21212111n k

n n

k n k n a a n k n k ++??-=++--+-=+---??

,当n 为奇数

时,()2110k

k --+>,存在1k 成立,当n 为偶数时,()2110k

k +-->,存在2

k ≥成立,综上:{}n a 是间隔递增数列且最小间隔数是2,故正确; D. 若{}n a 是间隔递增数列且最小间隔数是3,

则()()()

2

2

2

2020202020n k n a a n k t n k n tn kn k tk +-=+-++--+=+->,n *

∈N 成立,

则()2

20k t k +->,对于3k ≥成立,且()2

20k t k +-≤,对于k 2≤成立

即()20k t +->,对于3k ≥成立,且()20k t +-≤,对于k 2≤成立 所以23t -<,且22t -≥ 解得45t ≤<,故正确. 故选:BCD 【点睛】

本题主要考查数列的新定义,还考查了运算求解的能力,属于中档题. 33.ABD 【分析】

根据题意,结合等差、等比数列的性质依次分析选项,综合即可得的答案. 【详解】

根据题意,依次分析选项:

对于A ,若数列{}n a 的前n 项和2

n S an bn c =++,

若0c =,由等差数列的性质可得数列{}n a 为等差数列, 若0c ≠,则数列{}n a 从第二项起为等差数列,故A 不正确;

对于B ,若数列{}n a 的前n 项和1

22n n S +=-,

可得1422a =-=,2218224a S S =-=--=,33216268a S S =-=--=, 则1a ,2a ,3a 成等比数列,则数列{}n a 不为等差数列,故B 不正确;

对于C ,数列{}n a 是等差数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,?,即为

12n a a a ++?+,12n n a a ++?+,213n n a a ++?+,?,

即为2

2322n n n n n n n S S S S S S S n d --=---=为常数,仍为等差数列,

故C 正确;

相关文档