文档库 最新最全的文档下载
当前位置:文档库 › 振动测量的基本原理

振动测量的基本原理

振动测量的基本原理
振动测量的基本原理

振动测量的基本原理

一.振动的基本概念

振动是工程中极为常见的现象,尤其在热能动力机械工程中更是如此。有害的振动可能产生噪音,影响机器的正常工作,造成人体不适,甚至导致零部件损坏。

振动对人体的影响分为全身振动和局部振动。对人体最有害的振动振动频率是与人体某些器官固有频率相吻合(共振)的频率。

二.振动测量的基本原理

惯性式振动测量仪可简化为一单自由度阻尼振动系统,如下图所示:

设:m—惯性元件质量, k—弹簧刚度, c—阻尼系数

则:质量 m 的运动微分方程为:

考虑相对运动:

则有:

令:

那么:

解得稳态受迫振动为:

其中:

讨论:

①当时:

, , 相对运动的振幅 A* 与振动物体振动加速度的振幅成正比。可作加速度传感器。

②当时:

,相对运动的振幅 A* 与振动物体速度的振幅成正比。可作速度传感器。

③当时:

,相对运动的振幅 A* 与振动物体位移的振幅成正比。可作位移传感器。

《岩石力学》地应力及其测量

1. 地壳是静止不动的还是变动的?怎样理解岩体的自然平衡状态? 答:地壳是变动的。 自然平衡状态是指:岩体中初始应力保持不变的状态。 2. 初始应力、二次应力和应力场的概念。 答:未受影响的应力称为初始应力 工程开挖时,受工程开挖影响而形成的应力称为二次应力 地应力是关于时间和空间的函数,可以用“场”的概念来描述,称之为地应力场。 3. 何谓海姆假说和金尼克假说? 答:海姆首次提出了地应力的概念,并假定地应力是一种静水应力状态,即地壳中 任意一点的应力在各个方向上均相等,且等于单位面积上覆岩层的重量,即???= ????=???? 金尼克认为地壳中各点的垂直应力等于上覆岩层的重量,而侧向应力(水平应力)是泊松效应的结果,其值应为乘以一个修正系数K。他根据弹性力学理论,认 为这个系数等于?? 1-??,即????=????,???=?? 1-?? ???? 4. 地应力是如何形成的? 答:地应力的形成主要与地球的各种动力运动过程有关,其中包括:板块边界受压、地幔热对流、地球内应力、地心引力、地球旋转、岩浆侵入和地壳非均匀扩容等。 另外,温度不均、水压梯度、地表剥蚀或其他物理化学变化等也可引起相应的应力 场。 5. 什么是岩体的构造应力?构造应力是怎样产生的?土中有无构造应力?为什么?答:岩体中由于地质构造运动引起的应力称为构造应力。 关于构造应力的形成有两种观点:地质力学观点认为是地球自转速度变比的结果;大地构造学说则认为是出于地球冷却收缩、扩张、脉动、对流等引起的,如板 块边界作用力。 土中没有构造应力,由于土本身是各向同性介质,不存在地质构造。 6. 试述自重应力场与构造应力场的区别和特点。 答:由地心引力引起的应力场称为重力应力场,重力应力场是各种应力场中惟一能 够计算的应力场。地壳中任一点的自重应力等于单位面积的上覆岩层的重量,即????=????。 重力应力为垂直方向应力,它是地壳中所有各点垂直应力的主要组成部分,但 是垂直应力一般并不完全等于自重应力,因为板块移动,岩浆对流和侵入,岩体非 均匀扩容、温度不均和水压梯度均会引起垂直方向应力变化。 构造应力是由地质构造运动形成的。当前的构造应力状态主要由最近一次的构 造运动所控制,但也与历史上的构造运动有关。构造应力主要表现为以水平应力为 主,“在构造应力的作用仅影响地壳上层一定厚度的情况下,水平应力分量的重要性远远超过垂直应力分量。” 7. 岩体原始应力状态与哪些因素有关? 答:地形地貌;岩体结构;岩石力学性质;地下水。 8. 简述地应力场的分布规律 答:1)地应力场的特性 (1)地应力场是一个以水平应力为主的三向不等压应力场 (2)地应力场是一个具有相对稳定性的非稳定应力场 2)垂直应力的分布规律 在深度为25~~2700m的范围内,????呈线性增长,大致相当于按平均容量??γ等于273kN???-3?计算出来的重力????。 3)水平应力的分布规律

地应力与地应力测量方法简介

地应力与地应力测量方法简介地应力,又称原岩应力,也称岩体初始应力或绝对应力,是在漫长的地质年代里,由于地质构造运动等原因产生的。在一定时间和一定地区内,地壳中的应力状态是各种起源应力的总和。主要由重力应力、构造应力、孔隙压力、热应力和残余应力等耦合而成,重力应力和构造应力是地应力的主要来源。地应力的形成主要与地球的各种动力运动过程有关,其中包括:板块边界受压、地幔热对流、地球内应力、地心引力、地球旋转、岩浆侵入和地壳非均匀扩容等。另外,温度不均、水压梯度、地表剥蚀或其他物理化学变化等也可引起相应的应力场。而重力作用和构造运动是引起地应力的主要原因,其中尤以水平方向的构造运动对地应力的形成影响最大。 地应力测量,就是确定拟开挖岩体及其周围区域的未受扰动的三维应力状态,这种测量通常是通过多个点的量测来完成的。地应力测量是确定工程岩体力学属性、进行围岩稳定性分析、实现岩土工程开挖设计和决策科学化的前提。地应力对矿山开采、地下工程和能源开发等生产实践均起着至关重要的作用,所以地应力研究是当前国际采矿界上的一个前沿性课题,近几十年来,世界上许多国家均开展了地应力的测量及应用研究工作,取得了众多的成果。 随着矿区开采现代化进程的不断提高和开采深度的不断增加,对矿区所处的地质条件和应力环境提出了更进一步的要求。查明矿区深部煤炭资源的开采地质条件和应力环境,为深部矿井的设计、建设和生产提供更加精细可靠的地质资料和数据,以便采取有效技术手段和措施,避免和减少灾害的发生,是实现矿井安全高效生产的重要保障。 地应力是引起采矿工程围岩、支架变形和破坏、产生矿井动力现象的根本作用力,在诸多的影响采矿工程稳定性因素中,地应力是最重要和最根本的因素之一。准确的地应力资料是确定工程岩体力学属性,进行围岩稳定性分析和计算,矿井动力现象区域预测,实现采矿决策和设计科学化的必要前提条件。 采矿规模的不断扩大和开采深度的纵深发展,地应力的影响越加严重,不考虑地应力的影响进行设计和施工往往造成露天边坡的失稳、地下巷道和采场的坍塌破坏、冲击地压等矿井动力现象的发生,致使矿井生产无法进行,并经常引起

地应力测量

地应力测量的国内外研究现状 0 引言 地应力(in-situ stress),又称原岩应力,也称岩体初始应力或绝对应力,是在漫长的地质年代里,由于地质构造运动等原因产生的。在一定时间和一定地区内,地壳中的应力状态是各种起源应力的总和。主要由重力应力、构造应力、孔隙压力、热应力和残余应力等耦合而成,重力应力和构造应力是地应力的主要来源。地应力的形成主要与地球的各种动力运动过程有关,其中包括:板块边界受压、地幔热对流、地球内应力、地心引力、地球旋转、岩浆侵入和地壳非均匀扩容等。另外,温度不均、水压梯度、地表剥蚀或其他物理化学变化等也可引起相应的应力场(雷化南,等译.1976)。而重力作用和构造运动是引起地应力的主要原因,其中尤以水平方向的构造运动对地应力的形成影响最大。因此,岩石中的原地应力是由主动施加的力和积蓄的残余应变两者引起的。 地应力测量(In situ stress measurement),就是确定拟开挖岩体及其周围区域的未受扰动的三维应力状态,这种测量通常是通过多个点的量测来完成的。地应力测量是一项综合性的测试,可以说任何一种单一的方法都不能很好地完成,往往需要几种方法结合起来对比使用,才可以保证结果的可靠性。即使如此,地应力测量中也往往会出现同一测点测量值分散的情况。 地应力测量是确定工程岩体力学属性、进行围岩稳定性分析、实现岩土工程开挖设计和决策科学化的前提。地应力对矿山开采、地下工程和能源开发等生产实践均起着至关重要的作用,所以地应力研究是当前国际采矿界上的一个前沿性课题,近几十年来,世界上许多国家均开展了地应力的测量及应用研究工作,取得了众多的成果。 1 地应力测量在国外发展概况及研究现状 人们最初对地应力概念的认识以及地应力测量技术的发展都源于早期的矿山工程建设,最早的原位地应力测量起始于20世纪30年代。1932年,美国人劳伦斯(Lieurace)在胡佛坝(HooverDam)下面的一个隧道中采用岩体表面应力解除法首次成功地进行了原岩应力的测量。此后,地应力测试技术一直停留在岩体表面应力测量上,发展十分缓慢,在20世纪50年代,哈斯特(Hast)采用应力解

隔振原理

目录 题目要求:简要叙述隔振原理,力的传递和隔振,基底振动的隔离;关于隔振算例的编程并附上编程解释;以算例做样本,简单介绍GUI控件的应用。 第一节简述隔振的原理 1.1 隔振的含义 1.2 建筑结构抗震设计的方法 1.3 隔振原理及系统组成 1.3.1隔振原理 1.3.2 隔振系统的组成 第二节工程中的隔振(震) 2.1 力的传递和隔振 2.2 基底隔振 2.3 算例 第三节算例的编程 3.1 GUI控件介绍 3.2 matlab操作步骤 3.3 编程程序的简要讲述 第四节结束语

第一节简述隔振的原理 1.1 隔振的含义 人们常说的“隔振”可以统称为减震。 简单的说,抗震以“抗”为主,以“刚”为主,要提高整体刚变,要刚度均匀,避免若层。减震以“放”为主,以柔为主,改变结构刚度,设置耗能、吸能装置。其中结构减震的理论和方法比较先进,减震设计无规范可循,需要开发。 1.2 建筑结构抗震设计的方法 目前世界各国普遍采用的抗震设计方法都是既考虑强度,又考虑变形能力和能量耗散能力。在进行结构抗震设计时,适当控制结构的强度和刚度,使结构在大地震作用下进入非弹性状态时具有较好的延性,以便耗散输入结构的地震能量。这种抗震设计方法在很多情况下都是有效的。与其靠结构本身的强度、变形能力和能量耗散能力来抗御水平地震作用,不如人为地在结构中布置一些耗能装置,但这类耗能装置只能在结构能产生大变形时才有效。为适应这种需要,基地隔振方法应运而生。 建筑物基地隔振是结构物地面以上部分的底部设置隔震层,使之与固结于地基中的基础顶面分离开。目前采用的底部隔振主要用于隔离水平向的地面运动。隔振层的水平刚度显著低于上部结构的侧向刚度才能收到隔振效果。 基地隔振方法与传统的抗震设计方法相比,有很大的优越性,它用基地隔振系统来减少地震作用,并耗散地震能量,而不特别要求结构本身有较大的变形能力和能量耗散能力。 1.3 隔振原理及系统组成 1.3.1隔振原理 随着大量强震记录的获得,计算分析等手段不断进展,对建筑物的地震反应也有了不同层次的影响,主要因素有:(1)结构物的基本周期;(2)阻尼比。周期延长后,建筑物的位移必然增大,必须采用适当的阻尼元件,增大整个结构的阻尼,以控制主部结构与基础之间的相对位移,简单地说,由于隔振建筑物具有相对较长的固有周期,因此采用使发生在底层的较大的相对位移集中化的方法,来减少上部结构的加速度反应,保证建筑物安全,并且隔振建筑能够将部分地震能量或反馈回地面,或由集中发生在柔性底层的大变形来吸收,减少地震能量向上部结构的传递,使上部结构基本上保持在弹性工作范围内,避免建筑结构的破坏。 隔振的作用是减少振源和被隔振物体之间的动态耦合,从而减少不良振动传递给被保护物体或从物体传出。

1、隔振理论的要素及隔振设计方法

隔振理论的要素及隔振设计方法 采用隔振技术控制振动的传递是消除振动危害的重要途径。 隔振分类 1、主动隔振 对于本身是振源的设备,为了减少它对周围的影响,使用隔振器将它与基础隔离开来,减少设备传到基础的力称为主动隔振,也称为积极隔振。 2、被动隔振 对于允许振幅很小,需要保护的设备,为了减少周围振动对它的影响,使用隔振器将它与基础隔离开来,减少基础传到设备的振动称为被动隔振,也称消极隔振。 隔振理论的基本要素 1、质量m(Kg)指作用在弹性元件上的力,也称需要隔离构件(设备装置)负 载的重量。 2、弹性元件的静刚度K(N/mm) 在静态下作用在弹性元件上的力的增量T与相应位移的增量δ之比称为刚度 K=T(N)/δ(m)。如果有多个弹性元件,隔振器安装在隔振装置下,其弹性元件的总刚度计算方法如下: 如有静刚度分别为K1、K2、K3…Kn个弹性元件并联安装在装置下其总刚度K=K1+K2+K3+…+Kn。 如有静刚度分别为K1、K2、K3…Kn个弹性元件串联安装在装置下其总刚度1/K=(1/K1)+ (1/K2) + (1/K3) +(…) + (1/Kn)。

3、弹性元件的动刚度Kd。对于橡胶隔振器,它的动刚度值与隔振器橡胶硬度的 高低,使用橡胶的品种有关,一般的计算办法是该隔振器的静刚度乘以动态系数d,动态系数d按下列选取: 当橡胶为天然胶,硬度值Hs=40-60,d=1.2-1.6 当橡胶为丁腈胶,硬度值Hs=55-70,d=1.5-2.5 当橡胶为氯丁胶,硬度值Hs=30-70,d=1.4-2.8 d的数值随频率、振幅、硬度及承载方式而异,很难获得正确数值,通常只考虑橡胶硬度Hs=40°-70°。按上述范围选取,Hs小时取下限,否则相反。 4、激振圆频率ω(rad/s) 当被隔离的设备(装置)在激振力的作用下作简谐运动所产生的频率,激振力可视为发动机或电动机的常用轴速n 其激振圆频率的计算公式为ω=(n/60)×2π n—发动机(电动机)转速n转/分 5、固有圆频率ωn(rad/s) 质量m的物体作简谐运动的圆频率ωn称固有圆频率,其与弹性元件(隔振器)刚度K的关系可由下式计算:ωn(rad/s)=√K(N/mm)÷m(Kg) 6、振幅A(cm) 当物体在激振力的作用下作简谐振动,其振动的峰值称为振幅,振幅的大小按下列公式计算:A=V÷ω V—振动速度cm/s ω—激振圆频率,ω=2πn÷60(rad/s) 7、隔振系数η(绝对传递系数) 隔振系数指传到基础上的力F T与激振力F O之比,它是隔振设计中一个主要要

1、隔振理论的要素及隔振设计方法

1、隔振理论的要素及隔振设计方法

隔振理论的要素及隔振设计方法采用隔振技术控制振动的传递是消除振动危害的重要途径。 隔振分类 1、主动隔振 对于本身是振源的设备,为了减少它对周围的影响,使用隔振器将它与基础隔离开来,减少设备传到基础的力称为主动隔振,也称为积极隔振。 2、被动隔振 对于允许振幅很小,需要保护的设备,为了减少周围振动对它的影响,使用隔振器将它与基础隔离开来,减少基础传到设备的振动称为被动隔振,也称消极隔振。 隔振理论的基本要素 1、质量m(Kg)指作用在弹性元件上的力,也称需要隔离构件(设备装置)负 载的重量。 2、弹性元件的静刚度K(N/mm) 在静态下作用在弹性元件上的力的增量T与相应位移的增量δ之比称为刚度 K=T(N)/δ(m)。如果有多个弹性元件,隔振器安装在 隔振装置下,其弹性元件的总刚度计算方法如下: 如有静刚度分别为K1、K2、K3…Kn个弹性元件并联安装在装置下其总刚度K=K1+K2+K3+…+Kn。 如有静刚度分别为K1、K2、K3…Kn个弹性元件串联安装在装置下

其总刚度1/K=(1/K1)+ (1/K2) + (1/K3) +(…) + (1/Kn)。 3、弹性元件的动刚度Kd。对于橡胶隔振器,它的动刚度值与隔振器橡胶硬度的 高低,使用橡胶的品种有关,一般的计算办法是该隔振器的静刚度乘以动态系数d,动态系数d按下列选取: 当橡胶为天然胶,硬度值Hs=40-60,d=1.2-1.6 当橡胶为丁腈胶,硬度值Hs=55-70,d=1.5-2.5 当橡胶为氯丁胶,硬度值Hs=30-70,d=1.4-2.8 d的数值随频率、振幅、硬度及承载方式而异,很难获得正确数值,通常只考虑橡胶硬度Hs=40°-70°。按上述范围选取,Hs小时取下限,否则相反。 4、激振圆频率ω(rad/s) 当被隔离的设备(装置)在激振力的作用下作简谐运动所产生的频率,激振力可视为发动机或电动机的常用轴速n 其激振圆频率的计算公式为ω=(n/60)×2π n—发动机(电动机)转速n转/分 5、固有圆频率ωn(rad/s) 质量m的物体作简谐运动的圆频率ωn称固有圆频率,其与弹性元件(隔振器)刚度K的关系可由下式计算:ωn(rad/s)=√K(N/mm)÷m(Kg) 6、振幅A(cm) 当物体在激振力的作用下作简谐振动,其振动的峰值称为振幅,振幅的大小按下列公式计算:A=V÷ω V—振动速度cm/s ω—激振圆频率,ω=2πn÷60(rad/s) 7、隔振系数η(绝对传递系数)

水准测量的方法及其实施

水准测量的方法及其实施 水准测量原理 水准测量的基本测法是:在图2-1中,已知A点的高程为H A,只要能测出A点至B点的高程之差,简称高差h AB。,则B点的高程 H B就可用下式计算求得: H B=H A+h AB (2-1) 差h AB。的原理如图2-1所示, 在A、B两点上竖立水准尺, 并在A、B两点之间安置— 图2-1 水准测量原理示意图架可以得到水平视线的仪器 即水准仪,设水准仪的水平视线截在尺上的位置分别为M、N,过A 点作一水平线与过B点的竖线相交于C。因为BC的高度就是A、B 两点之间的高差h AB。,所以由矩形MACH就可以得到计算h AB的式: h AB = a - b (2-2) 测量时,a、b的值是用水准仪瞄准水准尺时直接读取的读数值。 因为A点为已知高程的点,通常称为后视点,其读数a为后视读数,

而B点称为前视点,其读数b为前视读数。即 h AB = 后视读数-前视读数 视线高H i=H A+a (2-3)B点高程H B=H i-b (2-4)综上所述要测算地面上两点间的高差或点的高程,所依据的就是一条水平视线,如果视线不水平,上述公式不成立,测算将发生错误。因此,视线必须水平,是水准测量中要牢牢记住的操作要领。 水准仪和水准尺 一、微倾式水准仪的构造 如图2-2所示,微倾式水准仪主要由望远镜、水准器和基座组成。水准仪的望远镜能绕仪器竖轴在水平方向转动,为了能精确地提供水平视线,在仪器构造上安置了一个能使望远镜上下作微小运动的微倾螺旋,所以称微倾式水准仪。 1.望远镜 望远镜由物镜、目镜和十字丝三个主要部分组成,它的主要作用是能使我们看清远处的目标,并提供一条照准读数值用的视线。 十字丝是在玻璃片上刻线后,装在十字丝环上,用三个或四个可

隔振原理

书:机械振动与噪声学 赵玫,周海亭, 陈光冶,朱蓓丽 科学出版社2004年9月第1版 2008年1月第三次印刷 P135 隔振:就是在振源和设备或其他物体之间用弹性或阻尼装置连接,使振源产生的大部分能量由隔振装置吸收,以减小振源对设备的干扰。 分类:主动隔振(积极隔振) 被动隔振(消极隔振) 如图所示,其中: m —机器的质量 k —弹性装置的刚度 c (或h/ω)—弹性装置的阻尼 当机器的振幅为0X 时,它传递到底座上的力有两部分:一部分通过 弹簧传递到基础上,即弹簧力0kX ;另一部分是由阻尼器传到地基上 的力,即阻尼力0X c ω(或0hX )。机器的受力分析和力矢量的关系如 图所示,传递到地基上的力幅T F 是上述两力的矢量和。 ()()()20202021ωζω+=+=kX X c kX F T 由式(4-23)()()222000 21/ωζωμ+-==kX kX F 代入上式得:()()()222202121ωζωωζ+-+=F F T 定义力传递率为:0F F S T ==刚性支承传递的力幅幅通过弹性支承传递的力 则()()()222202121ω ζωωζ+-+===F F S T 刚性支承传递的力幅幅通过弹性支承传递的力 当阻尼忽略不计时,0=ζ

2011ω-==F F S T 将上式画成力传递曲线,如下图所示,从图中可以看出: (1)当1<<ω时,1≈S ,当系统的固有频率远大于激励频率时,隔振效果几乎没有; (2)当2<ω时,1>S ,不但没有什么隔振效果,反而会将原来的振动放大; (3)当1=ω时,系统还要产生较大的共振振幅; (4)当2>ω时,1

水准测量基本原理教案

水准测量基本原理(教案)

水准测量基本原理 课型:讲授 教学目的与要求: 了解高程测量常用的方法。 理解水准测量基本原理。 掌握高差法、仪高法及连续水准测量计算未知点高程的方法。教学重点、难点: 重点:水准测量基本原理。 高差法、仪高法及连续水准测量计算未知点高程的方法。 难点:水准测量基本原理。 采用教具: 多媒体课件 复习、提问 1、高程的定义、高差的定义。

第一讲 水准测量基本原理 一、高程测量(测定地面点高程)的方法 高程是确定地面点位置的要素之一,在工程建设的设计、施工与管理等阶段都具有十分重要的作用。测定地面点高程的工作称为高程测量。按所使用的仪器和施测方法分:水准测量、三角高程测量、气压高程测量和GPS 高程测量。 二、水准测量基本原理 水准测量不是直接测定地面点的高程,而是测出两点间的高差。即在两个点上分别竖立水准尺,利用水准测量的仪器提供一条水平视线,瞄准并在水准尺上读数,求得两点间的高差,从而由已知点高程推求未知点高程。 如图1-1所示,设已知A 点高程为A H ,用水准测量方法求未知点B 的高程B H 。在A 、B 两点中间安置水准仪,并在A 、B 两点上分别竖立水准尺,根据水准仪提供的水平视线在A 点水准尺上读数为a ,在B 点的水准尺上读数为b ,则A 、B 两点间的高差为:b a h AB -= 图1-1 水准测量原理

设水准测量是由A 点向B 点进行,如图1-1中箭头所示,则规定 A 点为后视点,其水准尺读数a 为后视读数; B 点为前视点,其水准 尺读数b 为前视读数。由此可见,两点之间的高差一定是“后视读数”减“前视读数”。如果a >b ,则高差AB h 为正,表示B 点比A 点高;如果 a < b ,则高差AB h 为负,表示B 点比A 点低。 在计算高差AB h 时,一定要注意AB h 的下标A B 的写法: AB h 表示A 点至B 点的高差,BA h 则表示B 点至A 点的高差,两个高差应该是绝对值相同而符号相反,即:BA AB h h =- 测得A 、B 两点间高差AB h 后,则未知点B的高程B H 为: )(b a H h H H A AB A B -+=+= (1-1) 水准测量:水平视线(水准仪)+水准尺→待定点与已知点高差+已知点高程→未知点高程。 三、推导以下几种计算未知点高程的公式: 1、高差法(由一点求另一点):直接利用高差计算未知点高程。 b a h AB -=(后视读数-前视读数);AB A B h H H += 2、视线高法(仪高法,由一点求多点):由仪器视线高程H i 计算未知点B 点高程。H A 为A 点的高程,a 为水准尺读数,b 为待求高程点水准尺读数。 ?? ? -=+=b H H a H H i B A i 注意事项: ①区别仅在与计算方法不同;

地应力与地应力测量方法简介

3.1 地应力与地应力测量方法简介 地应力,又称原岩应力,也称岩体初始应力或绝对应力,是在漫长的地质年代里,由于地质构造运动等原因产生的。在一定时间和一定地区,地壳中的应力状态是各种起源应力的总和。主要由重力应力、构造应力、孔隙压力、热应力和残余应力等耦合而成,重力应力和构造应力是地应力的主要来源。地应力的形成主要与地球的各种动力运动过程有关,其中包括:板块边界受压、地幔热对流、地球应力、地心引力、地球旋转、岩浆侵入和地壳非均匀扩容等。另外,温度不均、水压梯度、地表剥蚀或其他物理化学变化等也可引起相应的应力场。而重力作用和构造运动是引起地应力的主要原因,其中尤以水平方向的构造运动对地应力的形成影响最大。 地应力测量,就是确定拟开挖岩体及其周围区域的未受扰动的三维应力状态,这种测量通常是通过多个点的量测来完成的。地应力测量是确定工程岩体力学属性、进行围岩稳定性分析、实现岩土工程开挖设计和决策科学化的前提。地应力对矿山开采、地下工程和能源开发等生产实践均起着至关重要的作用,所以地应力研究是当前国际采矿界上的一个前沿性课题,近几十年来,世界上许多国家均开展了地应力的测量及应用研究工作,取得了众多的成果。 随着矿区开采现代化进程的不断提高和开采深度的不断增加,对矿区所处的地质条件和应力环境提出了更进一步的要求。查明矿区深部煤炭资源的开采地质条件和应力环境,为深部矿井的设计、建设和生产提供更加精细可靠的地质资料和数据,以便采取有效技术手段和措施,避免和减少灾害的发生,是实现矿井安全高效生产的重要保障。 地应力是引起采矿工程围岩、支架变形和破坏、产生矿井动力现象的根本作用力,在诸多的影响采矿工程稳定性因素中,地应力是最重要和最根本的因素之一。准确的地应力资料是确定工程岩体力学属性,进行围岩稳定性分析和计算,矿井动力现象区域预测,实现采矿决策和设计科学化的必要前提条件。 采矿规模的不断扩大和开采深度的纵深发展,地应力的影响越加严重,不考虑地应力的影响进行设计和施工往往造成露天边坡的失稳、地下巷道和采场的坍塌破坏、冲击地压等矿井动力现象的发生,致使矿井生产无法进行,并经常引起

地应力知识

地应力知识 简介 地应力是存在于地层中的未受工程扰动的天然应力,也称岩体初始应力、绝对应力或原岩应力。 随着水利水电、矿山、交通与城建等边坡、洞室及深基坑等事故的明显增加从而使人们对地应力引起较为广泛的注意与重视,所以,地应力研究不但具有重要的实际意义,而且具有重要的理论意义。 一地应力的成因 产生地应力的原因是十分复杂的,也是至今尚不十分清楚的问题。30多年来的实测和理论分析表明,地应力形成主要与地球的各种动力运动过程有关,其中包括: 板块边界受压、地幔热对流、地球内应力、地心引力、地球旋转、岩浆侵入和地壳非均匀扩容等。另外,温度不均、水压梯度、地表剥蚀或其它物理化学等也可引起相应的应力场,其中,构造应力场和重力应力场是现今地应力场的主要组成部分。 1大陆板块边界受压引起的应力场 以中国大陆板块为例,由于受到印度板块和太平洋板块的推挤,推挤速度为每年数厘米,同时受到西伯利亚板块和菲律宾板块的约束。在这样的边界条件下,包括发生变形,产生水平受压应力场。2地幔热对流引起的应力场 由硅镁质组成的地幔因温度很高,具有可塑性,并可以上下对流和蠕动。地幔热对流引起地壳下面的水平切向应力,在亚洲形成由孟加拉湾一直延伸到贝加尔湖的最低重力槽。 3由地心引力引起的应力场(也称为重力场) 重力场,是各种应力场中唯一能够计算的应力场。重力应力为垂直方向应力,是地壳中所有各点垂直应力的主要组成部分,但是垂直应力一般并不完全

等于自重应力,因为板块移动、岩浆对流和侵入、岩体非均匀扩容、温度不均和水压梯度均会引起垂直方向应力变化。 4岩浆侵入引起的应力场 岩浆侵入挤压、冷凝收缩和成岩,均在周围底层中产生相应的应力场,其过程也是相当复杂。熔融状态的岩浆处于静水压力状态,对其周围施加的是各个方向相等均匀压力,但是热的岩浆侵入后逐渐冷凝收缩,并从接触面界面逐渐向内部发展,不同的热膨胀系数及热力学过程会使侵入岩浆自身及其周围岩体应力产生复杂的变化过程。 岩浆侵入引起的应力场是一种局部应力场。 5地温梯度引起的应力场 地层的温度随着深度增加而升高,一般为a=3℃/100m。由于地温梯度引起地层中不同深度不相同的膨胀,从而引起地层中的压应力,其值可达相同深度自重应力的数分之一。6地表剥蚀产生的应力场 地壳上升部分岩体因为风化、侵蚀和雨水冲刷搬运而产生剥蚀作用。剥蚀后,由于岩体内的颗粒结构的变化和应力松弛赶不上这种变化,导致岩体内仍然存在着比由地层厚度引起的自重应力还要大得多的水平应力值。因此,在某些地区,水平应力除与构造应力有关外,还和地表剥蚀有关。 二地应力的研究观点 对地应力的研究已有一百多年的历史了,但总的说来,现在主要有三种观点: 1“静水应力式”分布的观点 它最早是海姆(Heim)于1878年提出的“静水压力”假说。 以后(1905~1912年),又提出相应的应力计算公式。1925年,金尼克也提出了弹性理论计算法及相应的公式。但事实表明,它们只能适用于一定的环境条件下,如,埋深较大的未受到扰动的地层。

地应力与地应力测量方法简介

地应力与地应力测量方法简介 地应力,又称原岩应力,也称岩体初始应力或绝对应力,是在漫长的地质年代里,由于地质构造运动等原因产生的。在一定时间和一定地区内,地壳中的应力状态是各种起源应力的总和。主要由重力应力、构造应力、孔隙压力、热应力和残余应力等耦合而成,重力应力和构造应力是地应力的主要来源。地应力的形成主要与地球的各种动力运动过程有关,其中包括:板块边界受压、地幔热对流、地球内应力、地心引力、地球旋转、岩浆侵入和地壳非均匀扩容等。另外,温度不均、水压梯度、地表剥蚀或其他物理化学变化等也可引起相应的应力场。而重力作用和构造运动是引起地应力的主要原因,其中尤以水平方向的构造运动对地应力的形成影响最大。 地应力测量,就是确定拟开挖岩体及其周围区域的未受扰动的三维应力状态,这种测量通常是通过多个点的量测来完成的。地应力测量是确定工程岩体力学属性、进行围岩稳定性分析、实现岩土工程开挖设计和决策科学化的前提。地应力对矿山开采、地下工程和能源开发等生产实践均起着至关重要的作用,所以地应力研究是当前国际采矿界上的一个前沿性课题,近几十年来,世界上许多国家均开展了地应力的测量及应用研究工作,取得了众多的成果。 随着矿区开采现代化进程的不断提高和开采深度的不断增加,对矿区所处的地质条件和应力环境提出了更进一步的要求。查明矿区深部煤炭资源的开采地质条件和应力环境,为深部矿井的设计、建设和生产提供更加精细可靠的地质资料和数据,以便采取有效技术手段和措施,避免和减少灾害的发生,是实现矿井安全高效生产的重要保障。 地应力是引起采矿工程围岩、支架变形和破坏、产生矿井动力现象的根本作用力,在诸多的影响采矿工程稳定性因素中,地应力是最重要和最根本的因素之一。准确的地应力资料是确定工程岩体力学属性,进行围岩稳定性分析和计算,矿井动力现象区域预测,实现采矿决策和设计科学化的必要前提条件。 采矿规模的不断扩大和开采深度的纵深发展,地应力的影响越加严重,不考虑地应力的影响进行设计和施工往往造成露天边坡的失稳、地下巷道和采场的坍塌破坏、冲击地压等矿井动力现象的发生,致使矿井生产无法进行,并经常引起

水准测量基本原理教案

水准测量基本原理教案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

水准测量基本原理(教案)

水准测量基本原理 课型:讲授 教学目的与要求: 了解高程测量常用的方法。 理解水准测量基本原理。 掌握高差法、仪高法及连续水准测量计算未知点高程的方法。教学重点、难点: 重点:水准测量基本原理。 高差法、仪高法及连续水准测量计算未知点高程的方法。 难点:水准测量基本原理。 采用教具: 多媒体课件 复习、提问 1、高程的定义、高差的定义。

第一讲 水准测量基本原理 一、高程测量(测定地面点高程)的方法 高程是确定地面点位置的要素之一,在工程建设的设计、施工与管理等阶段都具有十分重要的作用。测定地面点高程的工作称为高程测量。按所使用的仪器和施测方法分:水准测量、三角高程测量、气压高程测量和GPS 高程测量。 二、水准测量基本原理 水准测量不是直接测定地面点的高程,而是测出两点间的高差。即在两个点上分别竖立水准尺,利用水准测量的仪器提供一条水平视线,瞄准并在水准尺上读数,求得两点间的高差,从而由已知点高程推求未知点高程。 如图1-1所示,设已知A 点高程为A H ,用水准测量方法求未知点B 的高程B H 。在A 、B 两点中间安置水准仪,并在A 、B 两点上分别竖立水准尺,根据水准仪提供的水平视线在A 点水准尺上读数为 a ,在B 点的水准尺上读数为 b ,则A 、B 两点间的高差为: b a h AB -=

图1-1 水准测量原理 设水准测量是由A 点向B 点进行,如图1-1中箭头所示,则规定 A 点为后视点,其水准尺读数a 为后视读数; B 点为前视点,其水准 尺读数b 为前视读数。由此可见,两点之间的高差一定是“后视读数”减“前视读数”。如果a >b ,则高差AB h 为正,表示B 点比A 点高;如果 a < b ,则高差AB h 为负,表示B 点比A 点低。 在计算高差AB h 时,一定要注意AB h 的下标A B 的写法:AB h 表示A 点至B 点的高差,BA h 则表示B 点至A 点的高差,两个高差应该是绝对值相同而符号相反,即:BA AB h h =- 测得A 、B 两点间高差AB h 后,则未知点B的高程B H 为: )(b a H h H H A AB A B -+=+= (1-1) 水准测量:水平视线(水准仪)+水准尺→待定点与已知点高差+已知点高程→未知点高程。 三、推导以下几种计算未知点高程的公式: 1、高差法(由一点求另一点):直接利用高差计算未知点高程。 b a h AB -=(后视读数-前视读数);AB A B h H H += 2、视线高法(仪高法,由一点求多点):由仪器视线高程H i 计算未知点B 点高程。H A 为A 点的高程,a 为水准尺读数,b 为待求高程点水准尺读数。

地应力检测(1)

1、地质雷达检测隧道支护情况 包括隧道衬砌厚度是否满足设计要求、钢筋保护层厚度是否满足设计要求、隧道衬砌钢筋布臵是否满足设计要求、隧道衬砌钢架布臵是否满足设计要求、隧道衬砌的密实情况(包括二衬背后脱空及初支背后空洞、不密实)。 评判标准:《公路工程质量检验评定标准》(GTG F80/1-2004);参考《铁路隧道衬砌质量无损检测规程》(TB10233-2004)。 2、地应力检测 我国地应力测量试验和研究开始于20世纪50年代后期,迄今为止,地应力测量的主要方法虽然很多,但尚未形成统一的分类标准.根据测量数据特点的不同,地应力测量大体分为绝对应力测量和相对应力测量.前者主要是确定地壳应力背景值,即主应力的大小和方向;后者则是观测应力随时间变化的动态变化规律,通常也称为地应力监测.根据测量基本原理的不同,绝对应力测量方法又可分为直接测量法和间接测量法.所谓直接测量法就是利用测量仪器直接测量和记录各种应力量,并由这些应力量和原岩应力的相互关系直接换算得到原岩应力值.间接测量法则是借助某些传感元件或媒介,测量和记录与岩体相关物理量的变化(如密度、泊松比、弹性波速等变化),然后通过相应的公式换算间接得到原岩应力值.目前,较为常用的绝对应力测量方法主要有水压致裂法、声发射法、钻孔崩落法、套芯应力解除法、应变恢复法等.其中,前3种方法属于直接测量方法,后2种方法属于间接测量方法.相对应力测量方法包括压磁法、压容法、体应变法、分量应变法及差应变法等.我们采用水压致裂法 地应力测量存在的问题与展望:随着我国工程建设不断向深部发展,地应力测量及监测正面临着严峻的考验.与发达国家相比,尚存在许多问题与不足.首先,在宏观层面上存在的问题与挑战有:第一,测量和监测深度不足。目前,国际上最大地应力测量深度已达5100m.在德国的KTB深钻及美国的SAFOD计划中,应力测量深度一般达到2000~3000m;日本也建立了数10座深度为1000~3800m的深井观测台站.我国的绝大部分应力测量深度仅数百米,超过1000m的深井观测极为稀少,这严重制约了测量数据在空间上的代表性.第二,缺乏合理系统的地应力监测网络.我国虽然积累了大量的地应力测量数据,但数据分布不均且质量参差不齐,地应力监测台站少、布局不合理,

地应力测量方法共6页

地应力测量方法 1.水压至裂法 水压致裂法地应力测试是通过在钻孔中封隔一小段钻孔,然后向封隔段注入高压流体,从而确定原位地应力的一种方法。水压致裂法的2种方法试验设备相同,都有封隔器、印模器,使用高压泵泵入高压液体使围岩产生新裂隙或使原生裂隙重张。 常规水压致裂法(HF法) HF法是从射井方法移植而来,假定钻孔轴向为1个主应力方向,岩石均质、各向同性、连续、线弹性,采用抗拉破坏准则,在垂直于最小主应力方向出现对称裂缝,其仅能测得垂直于钻孔横截面上的二维应力。在构造作用弱和地形平坦区,垂直孔所测结果可代表2个水平主应力,垂直应力约等于上覆岩体自重,裂缝方位为最大水平主应力方位。 HF法测试周期短,不需要岩石力学参数参与计算,适合工程初勘阶段,不需试验洞,可进行大深度测量,是目前惟一一种可直接进行深部地应力测定的方法。通过对HF法的改进,德国大陆科学深钻计划(KTB)在主孔6 000 m和9 000 m处已成功获得了地应力资料。HF法是一种平面应力测量方法,为获得三维应力,YMizutaI和M KuriyagawaE提出3孔交汇地应力测量,我国长江科学院和地壳所也进行了大量的测试。但研究表明,当钻孔轴向偏离主应力方向,其结果就有疑问,要精确获得三维地应力较困难。为此,文献[7]基于最小主应力破坏准则,对3孔交汇HF法测试理论进行了完善,其有助于提高测量结果的计算精度,但还有待足够的测量数据来验证。

原生裂隙水压致裂法(HTPF法) HTPF法是HF法的发展,其要求在含有原生节理和裂隙的钻孔段进行裂隙重张试验以确定原位应力。HTPF法假定裂隙面是平的,且面上应力一致。对于深孔三维地应力直接测量,HTPF法可进行大尺度的地壳地应力测试,很有发展前途。HTPF法同HF法相比,假设少,不需考虑岩石 破坏准则和孔隙水压力,在单孔中便可获得三维地应力。但用HTPF法测试费时,且裂隙产状和位置的确定误差都可降低计算精度。 2.套钻孔应力解除法 套钻孔应力解除法根据解除方式和传感器的安装部位分为探孔应力解除法、孔底应变解除法和孔壁切割解除法。探孔应力解除法根据传感器的类型可分为孔壁应变法和孔径变形法。 孔壁应变法 孔壁应变法基于岩石各向同性、均质、连续、线弹性的假设,通过孔壁6个以上不同方向的应变值来计算岩体的三维地应力。孔壁应变法又可分为直接粘贴方法和包体方法。CSIR型三轴应变计就是将应变元件直接贴到孔壁中。空心包体是将应变元件贴到薄筒壁中,再用胶将薄筒和孔壁粘结。还有一种实心圆柱式包体技术,由于受包体材料和岩石物理力学性质差异影响大,已基本不用。 孔壁应变法最大的优点是单孔单点可准确测量岩体的三维地应力,缺点是:对岩石的完整性要求高,岩芯解除长度大于40~60 cm,并且在岩芯易饼化时测试很难成功;存在应变元件的粘贴、防潮、全过程测量和定向等问题;受温度变化、岩性差异影响大,测量结果离散性大。

地应力的测量方法

地应力的测量原理 目前地应力测量方法有很多种,根据测量原理可分为三大类: 第一类是以测定岩体中的应变、变形为依据的力学法,如应力恢复法、应力解除法及水压致裂法等; 第二类是以测量岩体中声发射、声波传播规律、电阻率或其他物理量的变化为依据的地球物理方法; 第三类是根据地质构造和井下岩体破坏状况提供的信息确定应力方向。其中,应力解除法与水压致裂法得到比较广泛的应用,其他几种只能作为辅助方法。 1.应力解除法测试原理和技术 1.1应力解除法测试原理 具有初始应力的岩体,用人为的方法卸去其应力,在岩体恢复变形的过程中测试其应变,然后用弹性力学理论计算出地应力的大小,得出其方向、倾角。目前国内外地应力测量普遍采用空心包体应变计测量技术。KX一81型空心包体应变计由A、B、C 3组共12枚应变片嵌埋在1个壁厚约3 mm的空心环氧树脂圆筒中间,圆筒外表面与钻孔壁用专用环氧树脂胶黏结在一起,其是在澳大利亚CSIRO空心包体应变计的基础上研制出来的,是套钻孔应力解除法的一种,只需1个孔就能测量出某点的三维原岩应力,具有使用方便、安装操作简单、成本低、效率高等优点。 1.2完全温度补偿技术 KX一81型空心包体应变计与其他许多应变测量仪器一样,均采用应变计作为敏感元件,并根据惠斯顿电桥的原理13J,将应变的变化转换成电压变化经放大后记录下来。电阻应变计对温度变化是很敏感的,温度发生变化时应变计的电阻值将发生变化,从而产生虚假的附加应变值。因此在现场测试中必须采取温度补偿措施。 惠斯顿电桥原理:平衡时,检流计所在支路电流为零,则有,(1)流过R1和R3的电流相同(记作I1),流过R2和R4的电流相同(记作I2)。(2)B,D两点电位相等,即UB=UD。因而有 I1R1=I2R2;个阻值已知,便可求得第四个电阻。测量时,选择适当的电阻作为R1和R2,用一个可变电阻作为R3,令被测电阻充当R4,调节R3使电桥平衡,而且可利用高灵敏度的检流计来测零,故用电桥测电阻比用欧姆表精确。电桥不平衡时,G的电流IG与R1,R2,R3,R4有关。利用这一关系也可根据IG及三个臂的电阻值 求得第四个臂的阻值,因此不平衡电桥原则上也可测量电阻。在不平衡电桥中,G应从“检流计’改称为“电流计”,其作用而不是检查有无电流而是测量电流的大小。可见,不平衡电桥和平衡电桥的测量原理有原则上的区别。利用电桥还可测量一些非电学量。 1)根据惠斯顿电桥的原理自行设计并制成1个应变一电阻一电压转换装置,在每一桥路中,除工作应变桥臂外,其他3个桥臂均为电阻,其温度系数为1×10.6/℃,这样电阻在温度变化1℃时只产生5 X 10~P变化,从而可以忽略不计。 2)增加1个热敏电阻,在应力解除过程中连续不断地测量测点的温度变化。 3)在每一次应力解除完成后,进行温度、应变标定试验,为计算地应力给出正确的测量数据。 测点的布置 测点布置 测点应布置在裂隙、孔隙少且均匀致密的完整岩体中,且不受开采影响的区域,一般选择在开拓巷道或专门硐室内布置测试钻孔。钻孔要施工到巷道或硐室扰动应力场范围之外,避开巷道和采场的弯、叉拐、顶部等应力增高区,保证应力测点处于原岩应力区,钻孔深度一般

水准测量的基本原理及测量方法

水准测量的基本原理及测量方法 内容:理解水准测量的基本原理;掌握DS3 型微倾式水准仪、自动安平水准仪的构造特点、水准尺和尺垫;掌握水准仪的使用及检校方法;掌握水准测量的外业实施(观测、记录和检核)及内业数据处理(高差闭合差的调整)方法;了解水准测量的注意事项、精密水准仪和电子水准仪的构造及操作方法。 重点:水准测量原理;水准测量的外业实施及内业数据处理。 难点:水准仪的检验与校正。 §2.1 高程测量(Height Measurement )的概念 测量地面上各点高程的工作, 称为高程测量。高程测量根据所使用的仪器和施测方法的不同,分为: (1)水准测量(leveling) (2)三角高程测量(trigonometric leveling) (3)气压高程测量(air pressure leveling) (4)GPS 测量(GPS leveling) §2.2 水准测量原理 一、基本原理 水准测量的原理是利用水准仪提供的“水平视线”,测量两点间高差,从而由已知点高程推算出未知点高程。

a ——后视读数A ——后视点 b ——前视读数B ——前视点 1、A 、 B 两点间高差: 2、测得两点间高差后,若已知A 点高程,则可得B点的高程: 。 3、视线高程: 4、转点TP(turning point) 的概念:当地面上两点的距离较远,或两点的高差太大,放置一次仪器不能测定其高差时,就需增设若干个临时传递高程的立尺点,称为转点。 二、连续水准测量

如图所示,在实际水准测量中,A 、 B 两点间高差较大或相距较远,安置一次水准仪不能测定两点之间的高差。此时有必要沿A 、 B 的水准路线增设若干个必要的临时立尺点,即转点(用作传递高程)。根据水准测量的原理依次连续地在两个立尺中间安置水准仪来测定相邻各点间高差,求和得到A 、 B 两点间的高差值,有: h 1 = a 1 - b 1 h 2 = a 2 - b 2 …… 则:h AB = h 1 + h 2 +…… + h n = Σ h = Σ a -Σ b 结论:A 、 B 两点间的高差等于后视读数之和减去前视读数之和。 § 2.3 水准仪和水准尺 一、水准仪(level) 如图所示,由望远镜、水准器和基座三部分组成。

岩体地应力及其测量方法综述_3

岩体地应力及其测量方法综述论文导读:产生地应力的原因是十分复杂的,地应力的形成主要与地球的各种动力运动过程有关,其中包括:板块边界受压、地幔热对流、地球内应力、地心引力、地球旋转、岩浆浸入和地壳非均匀扩容等。地形地貌对地应力的影响是复杂的,剥蚀作用对地应力也有显著的影响,剥蚀前,岩体内存在一定数量的垂直应力和水平应力,剥蚀后,垂直应力降低较多,但有一部分来不及释放,仍保留一部分应力数量,而水平应力却释放很少,基本上保留为原来的应力数量,这就导致了岩体内部存在着比现有地层厚度所引起的自重应力还要大很多的应力数值。应力解除法是岩体应力测量中应用较广的方法。(2)对于地表剥蚀作用对初始地应力反演的影响问题,若不能考虑剥蚀作用,仅考虑自重和构造作用进行回归分析,但重力因子也会大于1,此时,不宜用所有测点去拟合地应力场,用于各部位的分析计算,而应当进行边坡和坝肩分析,宜用近地表测值反演。关键词:地应力,剥蚀作用,应力解除法,重力因子 1 地应力的成因及其分类地应力一般是质地壳岩体处在未经人为扰动的天然状态下所具有的内应力,或称初始应力,主要是在重力和构造运动综合作用下形成的应力,有时也包括在岩体的物理、化学变化及岩浆浸入等作用下形成的应力[1]。 1.1 地应力的成因 产生地应力的原因是十分复杂的,地应力的形成主要与地球的各种动力运动过程有关,其中包括:板块边界受压、地幔热对流、地球内应

力、地心引力、地球旋转、岩浆浸入和地壳非均匀扩容等。另外,温度不均、水压梯度、地表剥蚀或其它物理化学变化等也可引起相应的应力场。其中,构造应力场和自重应力场为现今地应力场的主要组成部分。 1.2 地应力的分类 地应力按不同起源分为:自重应力、构造应力、剩余应力和变异应力。值得注意的是剩余应力与残余构造应力是完全不同的:剩余应力不具有方向性,常是σx=σy;而残余应力引起的高水平应力具方向性,σx 与σy相差较大[2]。 2 岩体地应力的影响因素地壳深层岩体地应力分布复杂多变,造成这种现象的根本原因在于地应力的多来源性和多因素影响,但主要还是由岩体自重、地质构造运动和剥蚀决定。水平初始应力随深度的变化并不存在线性增大的变化关系,在地壳浅部与深部的变化规律是不同的。在众多的地应力分布影响因素中,地质构造历史、岩性和河谷切割地貌是主要因素。 2.1岩体自重的影响 岩体应力的大小等于其上覆岩体自重,研究表明[3]:在地球深部的岩体的地应力分布基本一致。但在初始地应力的研究中人们发现,岩体初始应力场的形成因素众多,剥蚀作用难以合理考虑,在常规的反演分析中,通常只考虑岩体自重和地质构造运动。以重力因子表示反演重度与实测重度的比值,在初始应力场的反演中,重力因子往往大于1,即反演所得岩体重度大于实测重度,这一现象未得到合理解释,

相关文档