文档库 最新最全的文档下载
当前位置:文档库 › 十双线性函数与正交空间,辛空间

十双线性函数与正交空间,辛空间

十双线性函数与正交空间,辛空间
十双线性函数与正交空间,辛空间

第十章 双线性函数与辛空间

第十章双线性函数与辛空间 1、设V是数域P上的一个三维线性空间,ε1,ε2,ε3是它的一组基,f是V上的 一个线性函数,已知 f (ε1+ε3)=1,f (ε2-2ε3)=-1,f (ε1+ε2)=-3 求f (X 1ε 1 +X 2 ε 2 +X 3 ε 3 ). 解因为f是V上线性函数,所以有 f (ε1)+ f (ε3)=1 f (ε2)-2 f (ε3)=-1 f (ε1)+f (ε2)=-3 解此方程组可得 f (ε1)=4,f (ε2)=-7,f (ε3)=-3 于是 f (X 1ε 1 +X 2 ε 2 +X 3 ε 3 ).=X 1 f (ε1)+X2 f (ε2)+X3 f (ε3) =4 X 1 -7 X 2 -3 X 3 2、设V及ε1,ε2,ε3同上题,试找出一个线性函数f ,使 f (ε1+ε3)=f (ε2-2ε3)=0, f (ε1+ε2)=1 解设f为所求V上的线性函数,则由题设有 f (ε1)+ f (ε3)=0 f (ε2)-2 f (ε3)=0 f (ε1)+f (ε2)=1 解此方程组可得 f (ε1)=-1,f (ε2)=2,f (ε3)=1 于是?a∈V,当a在V的给定基ε1,ε2,ε3下的坐标表示为 a= X 1ε 1 +X 2 ε 2 +X 3 ε 3 时,就有 f (a)=f (X 1ε 1 +X 2 ε 2 +X 3 ε 3 )

= X 1 f (ε1)+X 2 f (ε2 )+X 3 f (ε3) =-X 1+2 X 2+ X 3 3、 设ε1,ε2 ,ε3是线性空间V 的一组基,f1,f2,f3是它的对偶基,令 α1=ε1-ε3,α2=ε1+ε2-ε3,α3=ε2+ε3 试证:α1,α2,α3是V 的一组基,并求它的对偶基。 证: 设 (α1,α2,α3)=(ε1,ε2 ,ε3)A 由已知,得 A =110011111????????-?? 因为A ≠0,所以α1,α2,α3是V 的一组基。 设g1,g2,g3是α1,α2,α3得对偶基,则 (g1,g2,g3)=(f1,f2,f3)(A ˊ) 1 - =(f1,f2,f3)011112111-?? ??-????--?? 因此 g1=f2-f3 g2=f1-f2+f3 g3=-f1+2f2-f3 4.设V 是一个线性空间,f1,f2,…fs 是V * 中非零向量,试证:?α∈V ,使 fi(α)≠0 (i=1,2…,s) 证:对s 采用数学归纳法。 当s =1时,f1≠0,所以?α∈V ,使fi(α)≠0,即当s =1时命题成立。 假设当s=k 时命题成立,即?α∈V ,使fi(α)=αi ≠0 (i=1,2…,k) 下面证明s=k+1时命题成立。 若f 1k +(α)≠0,则命题成立,若f 1k +(α)=0,则由f 1k +≠0知,一定?β∈V 使f 1k +(β)=b,设fi(β)=di(i=1,2…,k),于是总可取数c ≠0,使 ai+cdi ≠0(i=1,2…,k) 令c γαβ=+,则γ∈V ,且

线性空间-知识点及其注释

第五章 线性空间-知识点及其注释 知识点:n 维数组向量,向量空间,线性空间,线性组合,线性表示,向量组等价,线性相关,线性无关,极大无关组,秩,生成子空间,子空间,基,维数,坐标,基变换,坐标变换,同构,交子空间,和子空间,直和,线性方程组的解空间,基础解系,特解,通解。 #n 维数组向量#简称为n 维向量,是指由数域F 中n 个数n a a a ,,,21 组成的n 元有序数组,常记为12(,,,)T n a a a 或),,,(21n a a a ,又称为n 元(数组)向量。由数域F 上所有n 维数组向量所构成的线性空间称为n 维(元)(数组)向量空间,记为n F 。 #线性组合#表达式1122s s k k k ααα+++称为向量组s ααα,,,21 的系数分别为12,,,()s k k k F ∈的线性组合,s k k k ,,,21 称为线性组合系数。 #线性表示#向量α可由向量组s ααα,,,21 线性表示(出)是指存在数域F 中的数s k k k ,,,21 ,使1122s s k k k αααα=+++。 向量组s ααα,,,21 可由向量组12,,,t βββ线性表示是指每个i α(1,2,...,i s =)都可由向量组12,,,t βββ线性表示。显然,向量组的线性表示具有传递性。 在n F 中,向量α可由向量组s ααα,,,21 线性表示?线性方程组 1122 s s x x x αααα+++=有解? 1212(,, ,,)(,, ,)s s rank rank ααααααα=。 #向量组等价#向量组s ααα,,,21 与向量组12,,,t βββ等价是指向量组 s ααα,,,21 与向量组12,,,t βββ可以相互线性表示。显然,向量组等价是 等价关系,即具有自反性、对称性和传递性。

子空间的和与直和

5.5 子空间的和与直和 授课题目: 子空间的和与直和. 教学目标: 1.理解并掌握子空间的概念. 2.掌握子空间的判别方法,熟悉几种常见的子空间. 3.掌握子空间的交与和的概念. 授课时数:3学时 教学重点:子空间的判别. 教学难点:子空间的交与和. 教学过程: 一 子空间的的和 回忆: 令W 是数域F 上向量空间V 的一个非空子集.如果W 对于V 的加法以及标量与向量的乘法来说是封闭的,那么就称W 是V 的一个子空间. 一个向量空间V 本身和零空间叫做V 的平凡子空间。V 的非平凡子空间叫做V 的真子空间。 1. 定义:设12,W W V ?,则称V 的子集{}121122/,W W αααα+∈∈ 为1212w w W W +与的和,记为 即12W W +={}121122/,W W αααα+∈∈ 定理5.5.1:若12,W W 均为V 的两个子空间,则12W W +仍然是子空间. 证明:12,W W θθθθθ∈∈∴=+∈ 12W W +故12W W +≠φ 对121212,,,,a b F W W αβαααβββ?∈?+=+=+有, 111222,,,W W αβαβ∈∈ 12W W +均为v 子空间. ∴ 111222,a b W a b W αβαβ+∈+∈ 于是 ()()()()1212112212a b a b a b a b W W αβααββαβαβ+=+++=+++∈+ ∴ 12W W +是V 的子空间。 推广:12,,,n W W W V n 为的个子空间,则 {}12121122/,,,n n n n W W W W W W αααααα+++=+++∈∈∈ 仍然是V 的子空间. 补充:若1W =L ()r ααα,,,21 ,()212,,,t W L βββ= 则12W W +=L ()t r βββααα,,,,,,,2121

第十章双线性函数与辛空间

第十章 双线性函数与辛空间 §1 线性函数 定义1 设V 是数域P 上的一个线性空间,f 是V 到P 的一个映射,如果f 满足 1))()()(βαβαf f f +=+; 2))()(ααkf k f =, 式中βα,是V 中任意元素,k 是P 中任意数,则称f 为V 上的一个线性函数. 从定义可推出线性函数的以下简单性质: 1. 设f 是V 上的线性函数,则)()(,0)0(ααf f f -=-=. 2. 如果β是s ααα,,,21 的线性组合: s s k k k αααβ+++= 2211 那么 )()()()(2211s s f k f k f k f αααβ+++= 例1设n a a a ,,,21 是P 中任意数,),,,(21n x x x X =是n P 中的向量.函数 n n n x a x a x a x x x f X f +++== 221121),,,()( (1) 就是P 上的一个线性函数.当021====n a a a 时,得0)(=X f ,称为零函数,仍用0表示零函数. 实际上,n P 上的任意一个线性函数都可以表成这种形式. 令 n i i ,,2,1,)0,,0,1,0,,0( ==ε. 第i 个 n P 中任一向量),,,(21n x x x X =可表成 n n x x x X εεε+++= 2211. 设f 是n P 上一个线性函数,则

∑∑====i i i i i i f x x f X f 1 1 )()()(εε 令 ,21,)(n i f a i i ,,, ==ε 则 n n x a x a x a X f +++= 2211)( 就是上述形式. 例2 A 是数域P 上一个n 级矩阵,设 ?? ?? ? ? ? ??=nn n n n n a a a a a a a a a A 2 1 22221 11211 , 则A 的迹 nn a a a A Tr +++= 2211)( 是P 上全体n 级矩阵构成的线性空间n n P ?上的一个线性函数. 例3 设t x P V ],[=是P 中一个取定的数.定义][x P 上的函数t L 为 ][)(,)())((x P x p t p x P L t ∈=, 即))((x p L t 为)(x p 在t 点的值,))((x p L t 是][x P 上的线性函数. 如果V 是数域P 上一个n 维线性空间.取定V 的一组基n εεε,,,21 .对V 上任意线性函数f 及V 中任意向量α: n n x x x εεεα+++= 2211 都有 ∑∑====n i i i n i i i f x x f f 1 1 )()()(εεα. (2) 因此,)(αf 由)(,),(),(21n f f f εεε 的值唯一确定.反之,任给P 中n 个数 n a a a ,,,21 ,用下式定义V 上一个函数f :

双线性函数及其应用

双线性函数及其应用

本科生毕业论文(设计) 题目:双线性函数及其应用 专业:数学与应用数学 学号: 学生姓名:

目录 摘要(关键词) (1) Abstract(Key words) (1) 前 言 (2) 1 常用的欧式空间 (1) 2 双线性函数 (2) 2.1 线性函数的简单性质 (2) 2.1.1 线性函数的定义 (2) 2.1.2 线性空间的性质 (3) 2.1.3 对偶基 (3) 2.2 双线性函数的内容及性质 (3) 2.2.1 双线性函数的性质 (3) 2.2.2 双线性函数的内容 (3)

3 双线性函数在不同基下的矩阵 (4) 3.1 双线性函数在不同基下的矩阵之间的关系 (4) 3.2 相同基下,不同的双线性函数所对应的矩阵 (5) 4 双线性函数与辛空间及对偶空间 (6) 4.1双线性函数与辛空间 (7) 4.2双线性函数与对偶空间 (10) 5双线性函数的应用领域 (13) 6 结束语 (14) 参考文献 (14) 致谢 (1)

双线性函数及其应用 摘要:在以往的密码学研究当中,双线性配对函数(Weil配对和Tate配对)通常被用在密码分析学中:通过使用配对函数,可以将某些椭圆曲线上的离散对数问题约减到有限域上的离散对数问题。近些年来,密码学家发现,如果对配对函数进行适当的改动,并应用在某些合适的椭圆曲线上,就可以构造出低带宽的、可证明安全的(provable secure)、基于双线性配对函数的加密、签名和密钥协商等协议。这些突破性的工作为密码协议的构造开辟了新的思路:由于双线性配对函数所具有的特性,可以用来设计一些具有特殊性质的密码协议,这些协议一般很难用其他方法实现,或者即使可以实现,其效率也没有基于双线性配对函数的高。例如短签名、三方一轮的密钥协商协议、基于身份的加密方案等。本文主要研究双线性配对函数在构造新的密码协议方面的应用。主要研究内容包括:(1)总结了双线性配对函数的概念、所具有的特性,并介绍了Diffie-Hellman难题以及双线性配对函数在密码学中的应用;(2)提出了一个使用双线性配对函数的前向安全的数字签名方案:在一个基于双线性配对函数的签名方案的基础上构造了一个前向安全的签名方案。文中对方案的安全性进行了分析,并与已有的一些前向安全的签名方案进行了比较,结果表明该方案在效率和

北京大学数学系《高等代数》(第3版)(双线性函数与辛空间)笔记和课后习题(含考研真题)详解【圣才出品

第10章双线性函数与辛空间 10.1复习笔记 一、线性函数 1.定义 设V是数域P上的一个线性空间,f是V到P的一个映射,如果f满足 (1)f(α+β)=f(α)+f(β), (2)f(kα)=kf(α), 式中α、β是V中任意元素,k是P中任意数,则称f为V上的一个线性函数. 2.性质 (1)设f是V上的线性函数,则f(0)=0,f(-α)=-f(α). (2)如果β是α1,α2,…,αs的线性组合:β=k1α1+k2α2+…+k sαs.那么f(β)=k1f(α1)+k2f(α2)+…+k s f(αs). 3.矩阵的迹 A是数域P上一个n级矩阵.设 则A的迹

Tr(A)=a11+a22+…+a nn 是P上全体n级矩阵构成的线性空间P n×n上的一个线性函数. 4.定理设V是P上一个n维线性空间,ε1,ε2,…,εn是V的一组基,a1,a2,…,a n是P中任意n个数,存在唯一的V上线性函数f使f(εi)=a i,i=1,2,…,n. 二、对偶空间 1.L(V,P)的加法和数量乘法 (1)设f,g是V的两个线性函数定义函数f+g如下:(f+g)(α)=f(α)+g(α),α∈V,f+g也是线性函数: f+g称为f与g的和. (2)设f是V上线性函数.对P中任意数k,定义函数kf如下:(kf)(α)=k(f(α)),α∈V,kf称为k与f的数量乘积,易证kf也是线性函数. 2.L(V,P)的性质 (1)对V中任意向量α,有

而对L(V,P)中任意向量f,有 (2)L(V,P)的维数等于V的维数,而且f1,f2,…,f n是L(V,P)的一组基. 3.对偶空间 (1)定义 L(P,V)称为V的对偶空间.由 决定的L(V,P)的基,称为ε1,ε2,…,εn的对偶基.V的对偶空间记作V*.(2)对偶基的性质 (1)设ε1,ε2,…,εn及η1,η2,…,ηn是线性空间V的两组基,它们的对偶基分别为f1,f2,…,f n及g1,g2,…,g n.如果由ε1,ε2,…,εn到η1,η2,…,ηn的过渡矩阵为A,那么由f1,f2,…,f n到g1,g2,…,g n的过渡矩阵为(A')-1. (2)设V是P上一个线性空间,V*是其对偶空间.取定V中一个向量x,定义V*的一个函数x**如下:x**(f)=f(x),f∈V*.则x**是V*上的一个线性函数,因此是V*的对偶空间(V*)*=V**中的一个元素. (3)V是一个线性空间,V**是V的对偶空间的对偶空间.V到V**的映射x→x**是一个同构映射. 结论:任一线性空间都可看成某个线性空间的线性函数所成的空间.

第十章 双线性函数

第十章 双线性函数 一 内容概述 1 线性函数 ⅰ)线性函数 设V 是数域P 上线性空间,映射f :V →P 满足 ① f (α+β)=f (α)+f (β) ∈?βα,V ② f (α)=k f (α) ?∈αV ,k ∈P 则f 是V 上的一个线性函数 ⅱ)线性函数的简单性质: (1) 设f 是V 上的线性函数,则f (0)=0,()()ααf f -=- (2) 如果是βs ααα ,,21的线性组合:s s k k k αααβ++= 2211 ,那么 s s k k k f αααβ+++= 2211)( 定理 设V 是P 上一个n 维线性空间,n εεε,,,21 是V 的一组基,而n a a a ,,,21 是P 中任意 n 个数,存在唯一的V 上线性函数f 使f (i ε)=i a n i ,,2,1 = 2 线性函数空间 设V 是数域上P 线性空间,V 上的全体线性函数的集合记为L(V , P), 定义 ⅰ)加法 (g f +)(α)=f (α)+g (α) g f ,?∈L(V , P) ?α∈V ⅱ)数乘()()()()ααkf kf =,() p k p V f ∈∈?,,τ 则()p V ,τ 也是一个 p 上的线性空间。并称() p V ,τ 为V 的对偶空间。 3 对偶基 设n εεε,,,21 为V 的一组基,定义 )(j i f ε=?? ?≠=i j i j 0 1 ,则n f f f ,,,21 是() P V ,τ的一组基。称 n f f f ,,,21 为n εεε,,,21 的对偶基。 定理 () P V ,τ的维数等于V 的维数,而且n f f f ,,,21 是() P V ,τ 的一组基 定理 设 n εεε,,,21 及 1η,2η, n η是线性空间V 的两组基,它们的对偶基分别与 n f f f ,,,21 及n g g g ,,,21 。如果由n εεε,,,21 到1η,2η, n η的过渡矩阵为 A ,那么由n f f f ,,,21 到n g g g ,,,21 的过渡矩阵为1')(-A

最新向量空间的定义教案(50分钟)

向量空间的定义教案 (50分钟)

“向量空间的定义”教案(50分钟) I 教学目的 1、使学生初步掌握向量空间的概念。 2、使学生初步了解公理化方法的含义。 3、使学生初步尝试现代数学研究问题的特点。 II 教学重点 向量空间的概念。 Ⅲ 教学方式 既教知识,又教思想方法。 Ⅳ 教学过程 第六章 向量空间 §6.1 定义和例子 一、向量空间概念产生的背景 1)αββα+=+ 数 a+b, ab; 2))()(γβαγβα++=++ 几何向量 αβα a ,+; 3)αα=+0 多项式 f(x)+g(x),af(x); 4)0='+αα 函数 f(x)+g(x),af(x); 5)βαβαa a a +=+)( 矩阵 A+B ,aA; 6)αααb a b a +=+)( …… 7))()(ααb a ab = 8)αα=1 二、向量空间的定义 定义1 令F 是一个数域,F 中的元素用小写拉丁字母a,b,c,…来表示。令V 是一个非空集合,V 中元素用小写希腊字母 ,,,γβα来表示。把V 中的元素叫做向量,而把F 中的元素叫做数(标)量,如果下列条件被满足,就称V 是F 上的向量空间: 1 在V 中定义了一个加法,对于V 中任意两个向量βα,,有唯一确定的向量与它们对应,这个向量叫做βα与的和,并且记作βα+。

即若,,V V ∈∈βα则V ∈+→βαβα),(。 2 有一个数量与向量的乘法,对于F 中每一个数a 和v 中每一个向量α有v 中唯一确定的向量与它们对应,这个向量叫做a 与α的积,并且记作αa 。 即V a a V F a ∈→∈∈ααα),(,,。 3 向量的加法和数与向量的乘法满足下列算律: 1)αββα+=+; 2))(γβαγβα++=++; 3)在V 中存在一个零向量,记作0,它具有以下性质:对于V 中每一个向量 α,都有αα=+0; 4)对于V 中每一向量α,在V 中存在一个向量α',使得0=+'αα,这样的α'叫做α的负向量。 5)βαβαa a a +=+)(; 6)ba a b a +=+αα)(; 7))()(ααb a ab =; 8)αα=1。 注1:定义1称为公理化定义,以公理化定义为基础进行研究的方法称为公理化方法。 公理化方法???形式以理化方法 实质公理化方法 注2:数域F 称为基础域。 三、向量空间的例子 例1 解析几何里,V 2或V 3对于向量的加法和实数与向量的乘法来说作成实数域上的向量空间。 例2 M mn (F )对于矩阵的加法和数乘来说作成F 上的向量空间。 特别,},,2,1,|),,,{(21n i F a a a a F i n n =∈=关于矩阵加法和数乘构成的F 上的向量空间称为F 上的n 元列空间。

(完整word版)高等代数II期末考试试卷及答案A卷,推荐文档

高等代数(II )期末考试试卷及答案(A 卷) 一、 填空题(每小题3分,共15分) 1、线性空间[]P x 的两个子空间的交()()11L x L x -+= I 2、设12,,...,n εεε与12,,...,n εεε'''是n 维线性空间 V 的两个基, 由12,,...,n εεε到12,,...,n εεε'''的过渡矩阵是C ,列向量X 是V 中向量ξ在基12,,...,n εεε下的坐标,则ξ在基12,,...,n εεε'''下 的坐标是 3、设A 、B 是n 维线性空间V 的某一线性变换在不同基下的矩阵, 则A 与B 的关系是 4、设3阶方阵A 的3个行列式因子分别为:()2 1,,1,λλ λ+ 则其特征矩阵E A λ-的标准形是 5、线性方程组AX B =的最小二乘解所满足的线性方程组是: 二、 单项选择题(每小题3分,共15分) 1、 ( )复数域C 作为实数域R 上的线性空间可与下列哪一个 线性空间同构: (A )数域P 上所有二级对角矩阵作成的线性空间; (B )数域P 上所有二级对称矩阵作成的线性空间; (C )数域P 上所有二级反对称矩阵作成的线性空间; (D )复数域C 作为复数域C 上的线性空间。 2、( )设A 是非零线性空间 V 的线性变换,则下列命题正确的是: (A )A 的核是零子空间的充要条件是A 是满射; (B )A 的核是V 的充要条件是A 是满射;

(C )A 的值域是零子空间的充要条件是A 是满射; (D )A 的值域是V 的充要条件是A 是满射。 3、( )λ-矩阵()A λ可逆的充要条件是: ()()()()0; A A B A λλ≠是一个非零常数; ()()C A λ是满秩的;()()D A λ是方阵。 4、( )设实二次型 f X AX '=(A 为对称阵)经正交变换后化为: 222 1122...n n y y y λλλ+++, 则其中的12,,...n λλλ是: ()()1;A B ±全是正数;()C 是A 的所有特征值;()D 不确定。 5、( )设3阶实对称矩阵A 有三重特征根“2-”,则A 的若当 标准形是: ()()()200200200020;120;120;002002012A B C ---?? ?? ?? ? ? ? --- ? ? ? ? ? ?---?????? ()D 以上各情形皆有可能。 三、 是非题(每小题2分,共10分) (请在你认为对的小题对应的括号内打“√”,否则打“?”) 1、( )设V 1,V 2均是n 维线性空间V 的子空间,且{}120V V =I 则12V V V =⊕。 2、( )n 维线性空间的某一线性变换在由特征向量作成的基下 的矩阵是一对角矩阵。 3、( )同阶方阵A 与B 相似的充要条件是E A λ-与E B λ- 等价。 4、( )n 维欧氏空间的正交变换在任一基下的矩阵都是正交矩阵。 5、( )欧氏空间的内积是一对称的双线性函数。

线性空间与子空间

第一讲 线性空间 一、 线性空间的定义及性质 [知识预备] ★集合:笼统的说是指一些事物(或者对象)组成 的整体 集合的表示:枚举、表达式 集合的运算:并(),交() 另外,集合的“和”(+):并不是严格意义上集合的运算,因为它限定了集合中元素须有可加性。 ★数域:一种数集,对四则运算封闭(除数不为零)。比如有理数域、实数域(R )和复数域(C )。实数域和复数域是工程上较常用的两个数域。 线性空间是线性代数最基本的概念之一,也是学习现代矩阵论的重要基础。线性空间的概念是某类事物从量的方面的一个抽象。 1. 线性空间的定义: 设V 是一个非空集合,其元素用x,y,z 等表示;K 是一个数域,其元素用k,l,m 等表示。如果V 满足[如下8条性质,分两类] (I )在V 中定义一个“加法”运算,即当x,y V ∈时,有唯一的和 x y V +∈(封闭性),且加法运算满足下列性质 (1)结合律 ()()x y z x y z ++=++; (2)交换律 x y y x +=+;

(3)零元律 存在零元素o ,使x +o x =; (4)负元律 对于任一元素x V ∈,存在一元素y V ∈,使x y +=o ,且称y 为x 的负元素,记为(x -) 。则有()x x +-= o 。 (II )在V 中定义一个“数乘”运算,即当x V ∈,k K ∈时,有唯一的kx V ∈(封闭性),且数乘运算满足下列性质 (5)数因子分配律 ()k x y kx ky +=+; (6)分配律 ()k l x kx lx +=+; (7)结合律 ()()k lx kl x =; (8)恒等律 1x x =; [数域中一定有1] 则称V 为数域K 上的线性空间。 注意:1)线性空间不能离开某一数域来定义,因为同一个集合, 如果数域不同,该集合构成的线性空间也不同。 (2)两种运算、八条性质 数域K 中的运算是具体的四则运算,而V 中所定义的加法运算和数乘运算则可以十分抽象。 (3)除了两种运算和八条性质外,还应注意唯一性、封闭 性。唯一性一般较显然,封闭性还需要证明,出现不封闭的情况:集合小、运算本身就不满足。 当数域K 为实数域时,V 就称为实线性空间;K 为复数域,V 就称为复线性空间。 例1. 设R +={全体正实数},其“加法”及“数乘”运算定义为

01 线性空间与子空间

第一讲 线性空间 一、 线性空间的定义及性质 [知识预备] ★集合:笼统的说是指一些事物(或者对象)组成 的整体 集合的表示:枚举、表达式 集合的运算:并(U ),交(I ) 另外,集合的“和”(+):并不是严格意义上集合的运算,因为它限定了集合中元素须有可加性。 ★数域:一种数集,对四则运算封闭(除数不为零)。比如有理数域、实数域(R )和复数域(C )。实数域和复数域是工程上较常用的两个数域。 线性空间是线性代数最基本的概念之一,也是学习现代矩阵论的重要基础。线性空间的概念是某类事物从量的方面的一个抽象。 1. 线性空间的定义: 设V 是一个非空集合,其元素用x,y,z 等表示;K 是一个数域,其元素用k,l,m 等表示。如果V 满足[如下8条性质,分两类] (I )在V 中定义一个“加法”运算,即当x,y V ∈时,有唯一的和x y V +∈(封闭性),且加法运算满足下列性质 (1)结合律 ()()x y z x y z ++=++; (2)交换律 x y y x +=+; (3)零元律 存在零元素o ,使x +o x =; (4)负元律 对于任一元素x V ∈,存在一元素y V ∈,使

x y +=o ,且称y 为x 的负元素,记为(x -) 。则有()x x +-= o 。 (II )在V 中定义一个“数乘”运算,即当x V ∈,k K ∈时,有唯一的kx V ∈(封闭性),且数乘运算满足下列性质 (5)数因子分配律 ()k x y kx ky +=+; (6)分配律 ()k l x kx lx +=+; (7)结合律 ()()k lx kl x =; (8)恒等律 1x x =; [数域中一定有1] 则称V 为数域K 上的线性空间。 注意:1)线性空间不能离开某一数域来定义,因为同一个集合, 如果数域不同,该集合构成的线性空间也不同。 (2)两种运算、八条性质 数域K 中的运算是具体的四则运算,而V 中所定义的加法运 算和数乘运算则可以十分抽象。 (3)除了两种运算和八条性质外,还应注意唯一性、封闭 性。唯一性一般较显然,封闭性还需要证明,出现不封闭的情况:集合小、运算本身就不满足。 当数域K 为实数域时,V 就称为实线性空间;K 为复数域,V 就称为复线性空间。 例1. 设R +={全体正实数},其“加法”及“数乘”运算定义为 x y=xy , k k x x =o 证明:R +是实数域R 上的线性空间。 [证明] 首先需要证明两种运算的唯一性和封闭性

欧氏空间与双线性函数

欧氏空间与双线性函数 基本概念 1. 欧几里得空间 设V 是实数R 上一线性空间,在V 上定义了一个二元函数,称为内积,记作(βα,),它具有以下性质: (1) (βα,)=(αβ,); (2) (βα,k )= k(βα,); (3) (αβα,+)= (γα,)+(γβ,); (4) (αα,)≥0,当且仅当α=0时,(αα,)=0。 这里γβα,,是V 中任意的向量,k 是任意实数,这样的线性空间V 称为欧几里得空间。 2. 酉空间 设V 是复数C 上的线性空间,在V 上定义了一个二元复函数,称为内积,记作(βα,),它具有以下性质: (1)(βα,)=(αβ,);这里(αβ,)是(αβ,)的共轭复数; (2)(βα,k )= k(βα,); (3) (αβα,+)= (γα,)+(γβ,); (4)(αα,)≥0,当且仅当α=0时,(αα,)=0。 这里γβα,,是V 中任意的向量,k 是任意实数,这样的线性空间称为酉空间。 3. 向量的长度 非负实数),(αα称为向量α的长度,记为α。 4. 向量的夹角 非零向量βα,的夹角 βα,规定为 βα,=arccos β αβα) ,(, 0≤ βα,≤π 5. 向量正交 如果向量βα,的内积为零,即(βα,)=0,那么βα,正交,记为βα⊥。 6. 基的度量矩阵 ,,21εε.n ε,???是n 维欧氏空间的V 一组基,令()j i,εεα=ij ,n j i ,, ???=2,1,,称

()nn ij A α=为基n εεε,,,???21的度量矩阵。 7. 正交向量组 欧氏空间V 中一组非零的向量,如果它们两两正交,就称为一正交向量组。 8. 正交基、标准正交基 在n 维欧氏空间中,由n 个向量组成的正交向量组称为正交基,由单位向量组成的正交基称为标准正交基。 9. 正交矩阵、酉矩阵 n 级实矩阵称A 为正交矩阵,如果E A A T =。 n 级复矩阵称A 为酉矩阵,如果 E A A T =。 10. 欧氏空间同构 实数域R 上欧式空间V 与V'称为同构的,如果由V 到V'有一个双射σ,满足 (1)σ()βα+=);()(βσασ+ (2));()(ασασk k = (3 );,())(),((βαβσασ= 这里βα,∈V ,k ∈R ,这样的映射σ称为V 到V'的同构映射。 11. 正交变换、酉变换 欧氏空间V 的线性变换σ如果满足 ),())(),((βαβσασ= 则称σ为V 的一个正交变换。 酉空间V 的线性变换σ如果满足 ),())(),((βαβσασ= 则称σ为酉空间的一个酉变换。 12. 子空间正交、向量与子空间正交 设2,1V V 是 欧氏空间V 的两个子空间,如果对于任意的,2,1V V ∈∈βα 恒有 (βα,)= 0 则称2,1V V 为正交的,记为21V V ⊥。一个向量α,如果对于任意的1V ∈β,恒有 (βα,)= 0 则称α与子空间1V 正交,记为1V ∈α。 13. 子空间的正交补 子空间2V 称为子空间1V 的一个正交补,如果21V V ⊥,并且V V V =+21。 14. 欧氏空间V 的线性变σ换如果满足 ))(())((βσαβασ,,=

9双线性函数

251 第九章 双线性函数 本章从线性函数入手,推广欧氏空间的若干性质到一般数域F 上向量空间上,即双线性函数的概念,然后介绍正交空间、辛空间的一些基本结论. §1 线性函数 定义1设V 是数域F 上的一个向量空间.σ是V 到F 的映射,如果 1) ,,()()()V αβσαβσασβ?∈+=+, 2) ,,()()V k F k k ασασα?∈?∈=, 则说σ是V 上的一个线性函数, 由定义可以看出线性函数就是V 到F 的线性映射。因而关于线性映射的基本结果对于线性函数也成立。 线性函数是十分重要的函数类,在数学的多个分支和一些实际问题中都要用到它.下面看几个例子. 例1 给定F 中的n 个元素12,,,n a a a , ?(12,n n x x F ∈,x ,),规定 121 12 2(,, ,)n n n f x x x a x a x a x =+++ 容易验证f 保持加法与纯量乘法两种运算.因此f 是n F 上的一个线性函数. 例2 矩阵的迹把数域F 上每一个n 阶矩阵()ij n n A a ?=对应F 中的一个元素1n ii i a =∑,并且有 ()()()T r A B T r A T r B + =+,()()Tr kA kTr A = . 所以矩阵的迹是()n M F 上的一个线性函数. 例3 定积分使每一个连续函数()f x 对应一个实数()b a f x dx ?,并 且满足 (()())()()(())()b b b b b a a a a a f x g x dx f x dx g x dx kf x dx k f x dx +=+=? ????,. 所以定积分是[,]C a b 上的一个线性函数.

双线性函数

第九章双线性函数与辛空间 1 本章的教学目标及基本要求 (1)理解线性函数及双线性函数,并会验证之 (2)理解和掌握对偶空间的定义,并能求对偶空间的对偶基 (3)掌握度量矩阵的定义、性质及求法 *(4)了解辛空间的定义及性质 2 本章教学内容及学时安排 §1 线性函数2学时 §2 对偶空间4学时 §3 双线性函数4学时 本章1次习题课,本章共计12学时 3 本章教学内容的重点及难点 本章的重点是线性函数和双线性函数的定义及证明。 在理解方面比较困难的是对偶空间及对偶基的求法。 4 本章的主要参考书目: [1]张禾瑞,郝鈵新编,高等代数(第四版),高等教育出版社,2001 [2]叶明训等编,线性空间引论(第二版),武汉大学出版社,2002 [3]蓝以中编,高等代数简明教程,北京大学出版社,1994 [4]姚慕生编,高等代数,复旦大学出版社,2002 第十章双线性函数与辛空间 在线性空间上定义线性函数,开拓上一章的度量性考察,阐述一般数域上线性空间的度量性方法,在阐述双线性函数的一般概念之后,介绍颇有应用价值的辛空间的定义及性质。

§1 线性函数 一、 线性函数的定义 设V 是数域P 上的一个向量空间. def1 设f ∈Hom(V ,P),即?α,β∈V ,?k ∈P ,都有 f (α+β)=f (α)+f (β),f (k α)=kf (α), 则称f 为V 上的一个线性函数. 从定义不能推出以下简单性质: 1)设f 为V 上的一个线性函数,则 (0)0,()().f f f αα=-=- 2)线性性;如果1122s s c c c βααα=+++,那么 1122()()()().s s f c f c f c f βααα=++ + 线性函数是十分重要的函数类,在数学的各个分支和许多实际问题中都将遇到它.下面举几个例子. 例1 定积分使每一个连续函数f (x )对应一个实数?b a dx x f )(,并 且满足 ?????=+=+b a b a b a b a b a dx x f k dx x kf dx x g dx x f dx x g x f )())(()()())()((,. 所以定积分是C [a ,b ]上的一个线性函数. 例2 矩阵的迹把数域P 上每一个n 阶矩阵A =(a ij )n n 对应P 中的一个元素∑=n i ii a 1,并且有 Tr(A +B )= Tr A + Tr B ,Tr(kA )=k Tr A . 所以矩阵的迹是M n (P)上的一个线性函数. 例3 在数域F 上的一元多项式环P [x ]中,字母x 用P 中的一个c 代入,它把每一个多项式f (x )对应P 中的数()f c .由于未定元x 用c 代入保持加法与乘法(从而也保持纯量乘法),所以x 用c 代入是向量空间F[x]上的一个线性函数.见P400,例3 例4 设12,,,n a a a 是P 中任意数,12(,,,)n n X x x x P ?=∈,函数 121122()(,,,)n n n f X f x x x a x a x a x ==+++, (1) 就是P 上的一个线性函数. 注:1)当0,1,2,,i a i n ==时,()0f X =,称为零函数; 2)在数学分析中,把形如++= 1121),,,(x a x x x g n b x a n n +的n 元函数g 称做线性函数.当b ≠0时, g 不保持加法运算,也不保持纯量乘法运算,因此g 不是定义1意义上的线性函数.故而“线性函数”这一术语在分析和代数里是有不同的含义,此时高等代数课程中讲的线性函数是分析课程中的齐次线性函数.

高等代数(第三版)10-习题课

1 高等代数 课程教案 授课类型 理论课 授课题目(教学章节或主题): 第十章 双线性函数与辛空间(习题课) 授课时间 教学目标或要求: 教学内容: 第十章 双线性函数与辛空间(小结) 一、基本概念 线性函数;对偶空间。对偶基;双线性函数及其在基下的度量矩阵;非退化的双线性函数,对称与反对称双线性函数,正交基;辛空间,辛正交基. 二、主要结论 1. 设V 是P 上一个n 维线性空间,n εεε,,,21"是V 的一组基,是中任意n 个数,存在唯一的V 上线性函数使 n a a a ,,,21"P f n i a f i i ,,2,1,)("==ε. 2. 设n εεε,,,21"及n ηηη,,,21"是线性空间V 的两组基,它们的对偶基分别 为及.如果由n f f f ,,,21"n g g g ,,,21"n εεε,,,21"到n ηηη,,,21"的过渡矩阵为A , 那么由到的过渡矩阵为. n f f f ,,,21"n g g g ,,,21"1)(?′A 3. 的维数等于V 的维数,而且是的一组基. ),(P V L n f f f ,,,21"),(P V L 4. 是一个线性空间,是V 的对偶空间的对偶空间. 到的映射 V ??V V ??V ??→x x 是一个同构映射. 5. 在给定的基下,V 上全体双线性函数与P 上全体级矩阵之间的一个双射. n 6. 同一个双线性函数在不同基下的度量矩阵是合同的. 7. 设V 是数域上n 维线性空间,P ),(βαf 是V 上对称双线性函数,则存在V

的一组基n εεε,,,21",使),(βαf 在这组基下的度量矩阵为对角矩阵. 8. 两个辛空间是辛同构的当且仅当它们有相同的维数. 9. 是辛空间,W 是V 的子空间,则 ),(f V W V W dim dim dim ?=⊥ 教学手段与方法: 采用启发式教学,利用多媒体与板书相结合的教学手段,以板书教学为主 思考题、讨论题、作业:

双线性函数及其应用

本科生毕业论文(设计) 题目:双线性函数及其应用 专业:数学与应用数学 学号: 学生姓名:

目录 摘要(关键词) (1) Abstract(Key words) (1) 前言 (2) 1 常用的欧式空间 (1) 2 双线性函数 (2) 2.1 线性函数的简单性质 (2) 2.1.1 线性函数的定义 (2) 2.1.2 线性空间的性质 (3) 2.1.3 对偶基 (3) 2.2 双线性函数的内容及性质 (3) 2.2.1 双线性函数的性质 (3) 2.2.2 双线性函数的内容 (3) 3 双线性函数在不同基下的矩阵 (4) 3.1 双线性函数在不同基下的矩阵之间的关系 (4) 3.2 相同基下,不同的双线性函数所对应的矩阵 (5) 4 双线性函数与辛空间及对偶空间 (6) 4.1双线性函数与辛空间 (7) 4.2双线性函数与对偶空间 (10) 5双线性函数的应用领域 (13) 6 结束语 (14) 参考文献 (14) 致谢 (1)

双线性函数及其应用 摘要:在以往的密码学研究当中,双线性配对函数(Weil配对和Tate配对)通常被用在密码分 析学中:通过使用配对函数,可以将某些椭圆曲线上的离散对数问题约减到有限域上的离散 对数问题。近些年来,密码学家发现,如果对配对函数进行适当的改动,并应用在某些合适 的椭圆曲线上,就可以构造出低带宽的、可证明安全的(provable secure)、基于双线性配对 函数的加密、签名和密钥协商等协议。这些突破性的工作为密码协议的构造开辟了新的思路:由于双线性配对函数所具有的特性,可以用来设计一些具有特殊性质的密码协议,这些协 议一般很难用其他方法实现,或者即使可以实现,其效率也没有基于双线性配对函数的高。 例如短签名、三方一轮的密钥协商协议、基于身份的加密方案等。本文主要研究双线性 配对函数在构造新的密码协议方面的应用。主要研究内容包括:(1)总结了双线性配对函数 的概念、所具有的特性,并介绍了Diffie-Hellman难题以及双线性配对函数在密码学中的应用;(2)提出了一个使用双线性配对函数的前向安全的数字签名方案:在一个基于双线性配对 函数的签名方案的基础上构造了一个前向安全的签名方案。文中对方案的安全性进行了分析,并与已有的一些前向安全的签名方案进行了比较,结果表明该方案在效率和签名长度上 有一定的优势;(3)本文对这样一种情况提出了解决方案:多个用户将加密数据(使用Alice的 公钥)发送到不完全可信的数据存储服务器上(例如邮件服务器和文件服务器等)。如果Alice想让服务器能够查询加密文档是否含有某些单词并反馈结果,但同时又不希望给予服 务器解密数据的能力。在这种情况下,需要特殊的技术来处理。本文构造了一个可查询的、基于公钥并与流密码结合的、使用双线性配对函数的加密系统,它能让服务器进行查询,而又不失数据的机密性。在该方案中,服务器并不能了解比查询结果更多的关于明文的 信息;且当只给定密文时,不被信任的服务器不能得到关于明文的信息。(4)提出了一个盲聚 合签名方案,它结合了盲签名和聚合签名两者的优点,使生成的盲签名聚合为一个聚合签名, 节省了时间和存储空间,也降低了对传输带宽的要求。 关键词:双线性函数;矩阵的合同;矩阵的相似 Abstract:In the past the cryptography studies, bilinear pairing function (Weil pairing Tate and matching) are usually used in analysis in learning, password: through the use of matching function, can will some of the elliptic curve discrete logarithm problem about reduced to a limited domain of discrete logarithm problem. In recent years, cryptography, home found that, if properly to visual function changes, and application in some appropriate elliptic curve, it can be constructed out of the low bandwidth, can prove safe (provable secure), based on bilinear pairings function of encryption, signatures and key agreement protocol, etc. These breakthrough for the construction of the password agreement opened up a new train: because bilinear pairings is the features of a function, can be used to design some has certain types of password agreement, these agreements with other method very hard commonly, or even can realize, its efficiency and no based on bilinear pairings function of high. For example, three square round short signature of key agreement protocol, identity based encryption scheme. This paper makes a study of the bilinear pairings function in the construction of new password agreement applications. The main research contents include: (1) summarized the bilinear pairings function concept, has the characteristics, and introduced the diffie-hellman problem and bilinear pairings function in the application of cryptography; (2) put forward a using bilinear pairings of function to safety before digital signature scheme: in a based on bilinear pairing the signature scheme based on the structure of a prior to the safety of the signature scheme. In this paper the safety of the scheme are analyzed, and some have to safety before the signature schemes are compared, and

相关文档
相关文档 最新文档