文档库 最新最全的文档下载
当前位置:文档库 › 用LINGO6_0求解大型数学规划

用LINGO6_0求解大型数学规划

用LINGO6_0求解大型数学规划
用LINGO6_0求解大型数学规划

高考数学线性规划专题练习

高考数学线性规划专题练习 1. “截距”型考题 在线性约束条件下,求形如(,)z ax by a b R =+∈的线性目标函数的最值问题,通常转化为求直线在y 轴上的截距的取值. 结合图形易知,目标函数的最值一般在可行域的顶点处取得.掌握此规律可以有效避免因画图太草而造成的视觉误差. 1.【20xx 年高考·广东卷 理5】已知变量满足约束条件,则 的最大值为( ) 2. (20xx 年高考·辽宁卷 理8)设变量满足,则的最大 值为 A .20 B .35 C .45 D .55 3.(20xx 年高考·全国大纲卷 理13) 若满足约束条件,则 的最小值为 。 4.【20xx 年高考·陕西卷 理14】 设函数,是由轴 和曲线及该曲线在点处的切线所围成的封闭区域,则在上的最大值为 . 5.【20xx 年高考·江西卷 理8】某农户计划种植黄瓜和韭菜,种植面积不超过50计,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表 ,x y 241y x y x y ≤?? +≥??-≤? 3z x y =+()A 12()B 11()C 3()D -1,x y -100+20015x y x y y ≤?? ≤≤??≤≤? 2+3x y ,x y 1030330 x y x y x y -+≥??? +-≤??+-≥??3z x y =-ln ,0 ()21,0x x f x x x >?=?--≤?D x ()y f x =(1,0)2z x y =-D

和韭菜的种植面积(单位:亩)分别为( ) A .50,0 B .30,20 C .20,30 D .0,50 6. (20xx 年高考·四川卷 理9 ) 某公司生产甲、乙两种桶装产品. 已知生产甲产品1桶需耗原料1千克、原料2千克; 生产乙产品1桶需耗原料2千克,原料1千克. 每桶甲产品的利润是300元, 每桶乙产品的利润是400元. 公司在生产这两种产品的计划中,要求每天消耗、原料都不超过12千克. 通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( ) A 、1800元 B 、2400元 C 、2800元 D 、 3100元 7. (20xx 年高考·安徽卷 理11) 若满足约束条件:;则的 取值范围为. 8.(20xx 年高考·山东卷 理5)的约束条件24 41x y x y +≤??-≥-?,则目标函数z=3x -y 的取值范围是 A . [32-,6] B .[3 2 -,-1] C .[-1,6] D .[-6, 3 2 ] 9.(20xx 年高考·新课标卷 理14) 设满足约束条件:; 则的取值范围为 . 2 . “距离”型考题 10.【2010年高考·福建卷 理8】 设不等式组x 1x-2y+30y x ≥?? ≥??≥?所表示的平面区域是 1Ω,平面区域是2Ω与1Ω关于直线3490x y --=对称,对于1Ω中的任意一点A 与2Ω中的任意一点B, ||AB 的最小值等于( ) A. 285 B.4 C. 12 5 D.2 11.( 20xx 年高考·北京卷 理2) 设不等式组,表示平面区域为D , 在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是 A B A B A B ,x y 02323x x y x y ≥?? +≥??+≤? x y -_____,x y ,013x y x y x y ≥?? -≥-??+≤? 2z x y =-???≤≤≤≤20, 20y x

高中数学(人教版A版必修五)配套单元检测:第3章:3.3.2 简单的线性规划问题(二)

3.3.2 简单的线性规划问题(二) 课时目标 1.准确利用线性规划知识求解目标函数的最值. 2.掌握线性规划实际问题中的两种常见类型. 1.用图解法解线性规划问题的步骤: (1)分析并将已知数据列出表格; (2)确定线性约束条件; (3)确定线性目标函数; (4)画出可行域; (5)利用线性目标函数(直线)求出最优解; 根据实际问题的需要,适当调整最优解(如整数解等). 2.在线性规划的实际问题中,主要掌握两种类型:一是给定一定数量的人力、物力资源,问怎样运用这些资源能使完成的任务量最大,收到的效益最大;二是给定一项任务,问怎样统筹安排,能使完成的这项任务耗费的人力、物力资源最小. 一、选择题 1.某厂生产甲产品每千克需用原料A 和原料B 分别为a 1、b 1千克,生产乙产品每千克需用原料A 和原料B 分别为a 2、b 2千克,甲、乙产品每千克可获利润分别为d 1、d 2元.月初一次性购进本月用的原料A 、B 各c 1、c 2千克,要计划本月生产甲产品和乙产品各多少千克才能使月利润总额达到最大.在这个问题中,设全月生产甲、乙两种产品分别为x 千克、y 千克,月利润总额为z 元,那么,用于求使总利润z =d 1x +d 2y 最大的数学模型中,约束条件为( ) A.????? a 1x +a 2y ≥c 1, b 1 x +b 2 y ≥c 2 ,x ≥0,y ≥0 B.????? a 1x +b 1y ≤c 1, a 2 x +b 2 y ≤c 2 , x ≥0, y ≥0 C.????? a 1x +a 2y ≤c 1, b 1 x +b 2 y ≤c 2 ,x ≥0,y ≥0 D.????? a 1x +a 2y =c 1, b 1 x +b 2 y =c 2 , x ≥0, y ≥0 2. 如图所示的坐标平面的可行域内(阴影部分且包括边界),若使目标函数z =ax +y (a >0)取得最大值的最优解有无穷多个,则a 的值为( ) A.14 B.35 C .4 D.53 3.某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对

2013—2017高考全国卷线性规划真题(含答案)

2013—2017高考全国卷线性规划真题 1.【2017全国1,文7】设x ,y 满足约束条件33,1, 0,x y x y y +≤??-≥??≥?则z =x +y 的最大值为 A .0 B .1 C .2 D .3 2.【2017全国2,文7】设,x y 满足约束条件2+330 233030x y x y y -≤??-+≥??+≥? ,则2z x y =+的最小值是 A.15- B.9- C.1 D 9 3.【2017全国3,文5】设x ,y 满足约束条件3260 0x y x y +-≤??≥??≥? ,则z x y =-的取值范围是 A .[–3,0] B .[–3,2] C .[0,2] D .[0,3] 4.(2016全国1,文16)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元. 5.(2016全国2,文14)若x ,y 满足约束条件?????x -y +1≥0,x +y -3≥0,x -3≤0, 则z =x -2y 的最小值为________. 6.(2016全国3,文13)设x ,y 满足约束条件?????2x -y +1≥0,x -2y -1≤0,x ≤1, 则z =2x +3y -5的最小值为_____. 7.(2015全国1,文15)若x ,y 满足约束条件20 210220x y x y x y +-≤??-+≤??-+≥? ,则z =3x +y 的最大值为 . 8.(2015全国2,文14)设x ,y 满足约束条件50 210210x y x y x y +-≤??--≥??-+≤?,则2 z x y =+的最大值为__________. 9.(2014全国1,文11)设x ,y 满足约束条件, 1,x y a x y +≥??-≤-?且z x a y =+的最小值为7,则a = A .-5 B.3 C.-5或3 D.5或-3

高中数学线性规划问题

高中数学线性规划问题 一.选择题(共28小题) 1.(2015?马鞍山一模)设变量x,y满足约束条件:,则z=x ﹣3y的最小值() A.﹣2 B.﹣4 C.﹣6 D.﹣8 2.(2015?山东)已知x,y满足约束条件,若z=ax+y的最大值为4,则a=() A.3 B.2 C.﹣2 D.﹣3 3.(2015?重庆)若不等式组,表示的平面区域为三角形,且其面积等于,则m的值为() A.﹣3 B.1 C.D.3 4.(2015?福建)变量x,y满足约束条件,若z=2x﹣y的最大值为2,则实数m等于() A.﹣2 B.﹣1 C.1 D.2 5.(2015?安徽)已知x,y满足约束条件,则z=﹣2x+y的最大值是()

A.﹣1 B.﹣2 C.﹣5 D.1 6.(2014?新课标II)设x,y满足约束条件,则z=2x﹣ y的最大值为() A.10 B.8 C.3 D.2 7.(2014?安徽)x、y满足约束条件,若z=y﹣ax取得最 大值的最优解不唯一,则实数a的值为() A.或﹣1 B.2或C.2或1 D.2或﹣1 8.(2015?北京)若x,y满足,则z=x+2y的最大值为()A.0 B.1 C.D.2 9.(2015?四川)设实数x,y满足,则xy的最大值为()A. B. C.12 D.16 10.(2015?广东)若变量x,y满足约束条件,则z=3x+2y 的最小值为() A.4 B. C.6 D. 11.(2014?新课标II)设x,y满足约束条件,则z=x+2y 的最大值为() A.8 B.7 C.2 D.1

12.(2014?北京)若x,y满足且z=y﹣x的最小值为﹣4, 则k的值为() A.2 B.﹣2 C.D.﹣ 13.(2015?开封模拟)设变量x、y满足约束条件,则目标函 数z=x2+y2的取值范围为() A.[2,8] B.[4,13] C.[2,13] D. 14.(2016?荆州一模)已知x,y满足约束条件,则z=2x+y 的最大值为() A.3 B.﹣3 C.1 D. 15.(2015?鄂州三模)设变量x,y满足约束条件,则s= 的取值范围是() A.[1,] B.[,1] C.[1,2] D.[,2] 16.(2015?会宁县校级模拟)已知变量x,y满足,则u= 的值范围是() A.[,] B.[﹣,﹣] C.[﹣,] D.[﹣,]

数学建模(教案)第一章--线性规划

数学建模 第一章 线性规划 §1 线性规划 在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。自从1947年G. B. Dantzig 提出求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。 1.1 线性规划的实例与定义 例1 某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000元与3000元。生产甲机床需用B A 、机器加工,加工时间分别为每台2小时和1小时;生产乙机床需用C B A 、、三种机器加工,加工时间为每台各一小时。若每天可用于加工的机器时数分别为A 机器10小时、B 机器8小时和C 机器7小时,问该厂应生产甲、乙机床各几台,才能使总利润最大? 上述问题的数学模型:设该厂生产1x 台甲机床和2x 乙机床时总利润最大,则21,x x 应满足 (目标函数) 2134m ax x x z += (1) s.t. ( 约 束 条 件 ) ?????? ?≥≤≤+≤+0 ,781022122 121x x x x x x x (2) 这里变量21,x x 称之为决策变量,(1)式被称为问题的目标函数,(2)中的几个不等式是问题的约束条件,记为s.t.(即subject to)。

上述即为一规划问题数学模型的三个要素。由于上面的目标函数及约束条件均为线性函数,故被称为线性规划问题。 总之,线性规划问题是在一组线性约束条件的限制下,求一线性目标函数最大或最小的问题。 在解决实际问题时,把问题归结成一个线性规划数学模型是很重要的一步,但往往也是困难的一步,模型建立得是否恰当,直接影响到求解。而选取适当的决策变量,是我们建立有效模型的关键之一。 1.2 线性规划的Matlab 标准形式 线性规划的目标函数可以是求最大值,也可以是求最小值,约束条件的不等号可以是小于号也可以是大于号。为了避免这种形式多样性带来的不便,Matlab 中规定线性规划的标准形式为 b Ax x c x T ≤ that such min 其中c 和x 为n 维列向量,b 为m 维列向量,A 为n m ?矩阵。 例如线性规划 b Ax x c x T ≥ that such max 的Matlab 标准型为 b Ax x c x T -≤-- that such min 1.3 线性规划问题的解的概念 一般线性规划问题的标准型为 ∑==n j j j x c z 1min (3) ∑==≤n j i j ij m i b x a 1,,2,1 s.t.Λ (4) 可行解 满足约束条件(4)的解),,,(21n x x x x Λ=,称为线性规划问题的可行解,而使目标函数(3)达到最小值的可行解叫最优解。

最新北航数理统计大作业-多元线性回归

北航数理统计大作业-多元线性回归

应用数理统计多元线性回归分析 (第一次作业) 学院: 姓名: 学号: 2013年12月

交通运输业产值的多元线性回归分析 摘要:本文基于《中国统计年鉴》(2012年版)统计数据,寻找影响交通运输业发展的因素,包括工农业发展水平、能源生产水平、进出口贸易交流以及居民消费水平等,利用统计软件SPSS对各因素进行了筛选分析,采用逐步回归法得到最优多元线性回归模型,并对模型的回归显著性、拟合度以及随机误差的正态性进行了检验,最后可以利用有效的最优回归模型对将来进行预测。 关键字:多元线性回归,逐步回归,交通运输产值,工业产值,进出口总额1,引言 交通运输业指国民经济中专门从事运送货物和旅客的社会生产部门,包括铁路、公路、水运、航空等运输部门。它是国民经济的重要组成部分,是保证人们在政治、经济、文化、军事等方面联系交往的手段,也是衔接生产和消费的一个重要环节。交通运输业在现代社会的各个方面起着十分重要的作用,因此研究交通运输业发展水平与各个影响因素间的关系显得十分重要,建立有效的数学相关模型对于预测交通运输业的发展,制定相关政策方案提供依据。根据经验交通运输业的发展受到工农业发展、能源生产、进出口贸易以及居民消费水平等众因素的影响,故建立一个完整精确的数学模型在理论上基本无法实现,并且在实际运用中也没有必要,一种简单有效的方式就是寻找主要影响因素,分析其与指标变量的相关性,建立多元线性回归模型就是一种有效的方式。 变量与变量之间的关系分为确定性关系和非确定性关系,函数表达确定性关系。研究变量间的非确定性关系,构造变量间经验公式的数理统计方法称为

高考全国卷及各省数学线性规划真题附答案.docx

2017 高考全国卷及自主招生数学高考真题 线性规划专题真题整理(附答案解析) x 3y 3, 1. ( 17 全国卷 I ,文数 )设 x ,y 满足约束条件 x y 1, 则 z=x+y 的最大值为( ) 7 y 0, A . 0 B . 1 C .2 D .3 答案: D 解析:如图,由图易知当目标函数 z x y 经过 直线 x 3 y 3 和 y 0 (即 x 轴)的交点 A(3,0) 时, z 能取到最大值,把 A(3,0) 代入 z=x+y 可得 z max 3 0 3 ,故选 D. x 2 y 1 2.(17 全国卷 I, 理数 14 题)设 x ,y 满足约束条件 2x y 1,则 z 3x 2 y 的最小值 x y 0 为 答案: 5 x 2 y 1 解析:不等式组 2x y 1 表示的平面区域如图所示。 x y 0 由 z 3x 2 y 变形得 y 3 x z 。要求 z 的最小值, 2 2 即求直线 y 3 x z 的纵截距的最大值。由右图,易知 2 2 当直线 y 3 x z 过图中点 A 时,纵截距最大。 2 2 联立方程组 2 x y 1 ,此时 z 3(1) 2 1 5 。 x 2 y 1 ,解得 A 点坐标为 ( 1,1) 故 z 3x 2 y 的最小值是 -5.

2x+3y 30 3. (17 全国卷Ⅱ,文数 7、理数 5)设 x、y 满足约束条件2x 3 y 3 0 .则z2x y的 y 30 最小值是() A.-15 C.1D9 答案: A 2x+3y 30 解析:不等式组2x 3y 30 表示的可行域如图所示, y30 易知当直线z 2x y 过到y 2 x 1与 y 3 交点 3 6 ,3 时,目标函数 z2x y 取到最小值,此时有 z min 26315 ,故所求z 最小值为15. )设,满足约束条件 3x 2 y60 的取值范围是 4. (17 全国卷Ⅲ,文数 5 x0,则 z=x-y x y y0 () A.[-3,0] B.[-3,2] C.[0,2] D.[0,3] 答案: B 解析:绘制不等式组表示的可行域,结合目标函数 的几何意义可得目标函数z x y 在直线3x 2y 60 与= - 直线 x0 (即x 轴)的交点A0,3处取得最小值, 此时 z min0 3 3。在点B2,0处取得最大值,此时 z max 2 0 2 . 故本题选择 B 选项 . 5.(17 全国卷Ⅲ,理数13)若 x,y 满足约束条件x y 0 x y 2 0 则z3x 4 y 的最小值为y 0 ________.

人教版高中数学总复习[知识梳理简单的线性规划(基础)

简单的线性规划 【考纲要求】 1.了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景。 2.会从实际情境中抽象出一元二次不等式模型。 3.会从实际情境中抽象出二元一次不等式组;了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组; 4.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决。 5.熟练应用不等式性质解决目标函数的最优解问题。 【知识网络】 【考点梳理】 【不等式与不等关系394841 知识要点】 考点一:用二元一次不等式(组)表示平面区域 二元一次不等式Ax+By+C >0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线) 要点诠释: 画二元一次不等式0(0)Ax By C ++>≥或0(0)Ax By C ++<≤表示的平面区域的基本步骤: ①画出直线:0l Ax By C ++=(有等号画实线,无等号画虚线); ②当0≠C 时,取原点作为特殊点,判断原点所在的平面区域;当0C =时,另取一特殊点判断; ③确定要画不等式所表示的平面区域。 简称:“直线定界,特殊点定域”方法。 考点二:二元一次不等式表示哪个平面区域的判断方法 因为对在直线Ax+By+c=0同一侧的所有点(x ,y),实数Ax+By+c 的符号相同,所以只需在此直线的某一侧任取一点(x 0, y 0)(若原点不在直线上,则取原点(0,0)最简便).把它的坐标代入Ax+By+c ,由其值的符号即可判断二元一次不等式Ax+By+c>0(或<0)表示直线的哪一侧. 要点诠释: 判断二元一次不等式Ax+By+c>0(或<0)表示直线的哪一侧的方法: 因为对在直线Ax+By+C =0同一侧的所有点(x ,y),数Ax+By+C 的符号相同,所以只需在此直线的某一侧任取一点(x 0, y 0)(若原点不在直线上,则取原点(0,0)最简便),它的坐标代入Ax+By+c ,由其值的符号 简单的线性规划 二元一次不等式(组)表示的区域 简单应用 不等式(组)的应用背景

一般线性规划数学模型

一般线性规划问题 1. 线性规划的条件: ① 决策变量有没有---------------------必须有 ② 目标函数和约束条件是不是决策变量的线性表达式------------------必须是 ③ 决策变量非负条件是否满足-------------必须满足 ④ 目标函数是否表现出极大化或极小化------必须表现 2. 线性规划的表达式 目标函数: x c x c x c n n z Max Min +???++=2211)( 约束条件: b x a x a x a n n 112 12 1 11 )(≤≥+???++ b x a x a x a n n 222 2 21 21 )(≤≥+???++ b x a x a x a n n 332 2 31 31 )(≤≥+???++ ..............

b x a x a x a n n nn n )(2 2 1 n1 ≤≥+???++ 非负性约束: 0,,0,02 1 ≥???≥≥x x x n 问题重述 某储蓄所每天的营业时间是上午9时到下午5时。根据经验,每天不同时间段所需要的服务员数量如表17所示。储蓄所可以雇用全时和半时两类服务员。全时服务员每天报酬100元,从上午9时到下午5时工作,但中午12时到下午2时之间必须安排1h 的午餐时间。储蓄所每天可以雇用不超过3名的半时服务员,每个半小时服务员必须连续工作4h ,报酬40元。(1)问该储蓄所应如何雇用全时和半时两类服务员。(2)如果不能雇用半时服务员,每天至少增加多少费用。(3)如果雇用半时服务员的数量没有限制,每天可以减少多少费用? 表16 每天不同时间段所需要的服务员数量

数学建模:运用Lindolingo软件求解线性规划

数学建模:运用Lindolingo软件求解线性规划 1、实验内容: 对下面是实际问题建立相应的数学模型,并用数学软件包Lindo/lingo对模型进行求解。 某厂生产甲乙两种口味的饮料,每百箱甲饮料需用原料6千克,工人10,可获利10万元;每百箱乙饮料需用原料5千克,工人20名,可获利9万元.名今工厂共有原料60千克,工人150名,又由于其他条件所限甲饮料产量不超过8百箱.问如何安排生产计划,即两种饮料各生产多少使获利最大.进一步讨论: 1)若投资0.8万元可增加原料1千克,问应否作这项投资. 2)若每百箱甲饮料获利可增加1万元,问应否改变生产计划. 数学建模论文 运用lindo/lingo软件求解线性规划 运用lindo/lingo软件求解线性规划 一、摘要 本文要解决的问题是如何安排生产计划,即两种饮料各生产多少使获利最大。 首先,对问题进行重述明确题目的中心思想,做出合理的假设,对符号做简要的说明。 然后,对问题进行分析,根据题目的要求,建立合适的数学模型。 最后,运用lindo/lingo软件求出题目的解。 【关键词】最优解 lindo/lingo软件 第二、问题的重述 某厂生产甲乙两种口味的饮料,每百箱甲饮料需用原料6千克,工人10名,可获利10万元;每百箱乙饮料需用原料5千克,工人20名,可获利9万元.今工厂共有原

料60千克,工人150名,又由于其他条件所限甲饮料产量不超过8百箱.问如何安排生产计划,即两种饮料各生产多少使获利最大.进一步讨论: 1)若投资0.8万元可增加原料1千克,问应否作这项投资。 2)若每百箱甲饮料获利可增加1万元,问应否改变生产计划。 第三、模型的基本假设 1、每一箱饮料消耗的人力、物力相同。 2、每个人的能力相等。 3、生产设备对生产没有影响。 第四、符号说明 1、x.....甲饮料 2、y.....乙饮料 3、z.....增加的原材料 第五、问题分析 根据题目要求:如何安排生产计划,即两种饮料各生产多少使获利最大,可知本题所求的是利润的最大值。我们可以先建立数学模型,然后用lindo/lingo软件包求解模型的最大值。 第六、模型的建立及求解根据题目建立如下3个模型: 模型1: max=0.1*x+0.09*y; 0.06*x+0.05*y<=60; 0.1*x+0.2*y<=150; x+y<=800; 结果:x=800;y=0;max=80 模型2:

近几年全国卷高考文科数学线性规划高考题

线性规划高考题 1.[2013.全国卷 2.T3]设,x y 满足约束条件10,10,3,x y x y x -+≥??+-≥??≤? ,则23z x y =-的最小值是( ) A.7- B.6- C.5- D.3- 2.[2014.全国卷2.T9]设x ,y 满足的约束条件1010330x y x y x y +-≥??--≤??-+≥? ,则2z x y =+的最大值为( ) A.8 B.7 C.2 D.1 3.[201 4.全国卷1.T11]设1,y 满足约束条件,1, x y a x y +≥??-≤-?且z x ay =+的最小值为7,则a =( ) A .-5 B. 3 C .-5或3 D. 5或-3 4. [2012.全国卷.T5] 已知正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z=-x+y 的取值范围是( ) A.(1-3,2) B.(0,2) C.(3-1,2) D.(0,1+3) 5.[2010.全国卷.T11]已知 Y ABCD 的三个顶点为A (-1,2),B (3,4),C (4,-2),点(x ,y )在 Y ABCD 的内部,则z=2x-5y 的取值范围是( ) A.(-14,16) B.(-14,20) C.(-12,18) D.(-12,20) 6. [2016.全国卷3.T13]设x ,y 满足约束条件210,210,1,x y x y x -+≥??--≤??≤? 则z =2x +3y –5的最小值为 7.[2016.全国卷2.T14]若x ,y 满足约束条件103030x y x y x -+≥??+-≥??-≤? ,则z =x -2y 的最小值为 8.[2015.全国卷2.T14]若x ,y 满足约束条件50210210x y x y x y +-≤??--≥??-+≤? ,则2z x y =+的最大值为

北航数理统计第二次大作业-数据分析模板

数理统计第二次大作业材料行业股票的聚类分析与判别分析 2015年12月26日

材料行业股票的聚类分析与判别分析摘要

1 引言 2 数据采集及标准化处理 2.1 数据采集 本文选取的数据来自大智慧软件的股票基本资料分析数据,从材料行业的股票中选取了30支股票2015年1月至9月的7项财务指标作为分类的自变量,分别是每股收益(单位:元)、净资产收益率(单位:%)、每股经营现金流(单位:元)、主营业务收入同比增长率(单位:%)、净利润同比增长率(单位:%)、流通股本(单位:万股)、每股净资产(单位:元)。各变量的符号说明见表2.1,整理后的数据如表2.2。 表2.1 各变量的符号说明 自变量符号 每股收益(单位:元)X1 净资产收益率(单位:%)X2 每股经营现金流(单位:元)X3 主营业务收入同比增长率(单位:%)X4 净利润同比增长率(单位:%)X5 流通股本(单位:万股)X6 每股净资产(单位:元)X7 表2.2 30支股票的财务指标 股票代码X1 X2 X3 X4 X5 X6 X7 武钢股份600005-0.0990-2.81-0.0237-35.21-200.231009377.98 3.4444宝钢股份6000190.1400 1.980.9351-14.90-55.011642427.88 6.9197山东钢铁600022-0.11650.060.0938-20.5421.76643629.58 1.8734北方稀土6001110.0830 3.640.652218.33-24.02221920.48 2.2856

杭钢股份600126-0.4900-13.190.4184-36.59-8191.0283893.88 3.4497抚顺特钢6003990.219310.080.1703-14.26714.18112962.28 1.4667盛和资源6003920.0247 1.84-0.2141-5.96-19.3739150.00 1.2796宁夏建材6004490.04000.510.3795-22.15-92.3447818.108.7321宝钛股份600456-0.2090-2.53-0.3313-14.81-6070.2043026.578.1497山东药玻6005290.4404 5.26 1.2013 6.5016.7825738.018.5230国睿科技6005620.410011.53-0.2949 3.3018.9416817.86 3.6765海螺水泥600585 1.15169.05 1.1960-13.06-25.33399970.2612.9100华建集团6006290.224012.75-0.57877.90-6.4034799.98 1.8421福耀玻璃6006600.790014.250.9015 3.6017.27200298.63 6.2419宁波富邦600768-0.2200-35.02-0.5129 3.1217.8813374.720.5188马钢股份600808-0.3344-11.710.3939-21.85-689.22596775.12 2.6854亚泰集团6008810.02000.600.1400-23.63-68.16189473.21 4.5127博闻科技6008830.503516.71-0.1010-10.992612.8023608.80 3.0126新疆众和6008880.0523 1.04-0.910662.64162.0464122.59 5.0385西部黄金6010690.0969 3.940.115115.5125.5712600.00 2.4965中国铝业601600-0.0700-2.920.2066-9.0882.79958052.19 2.3811明泰铝业6016770.2688 4.66-1.09040.8227.8640770.247.4850金隅股份6019920.1989 3.390.3310-10.05-39.01311140.26 6.7772松发股份6032680.35007.00-0.3195-4.43-9.622200.00 6.0244方大集团0000550.0950 5.66-0.480939.2920.6742017.94 1.6961铜陵有色0006300.0200 1.220.6132 3.23-30.74956045.21 1.5443鞍钢股份000898-0.1230-1.870.7067-27.32-196.21614893.17 6.4932中钢国际0009280.572714.45-0.4048-14.33410.2441286.57 4.2449中材科技0020800.684610.27 1.219547.69282.1740000.00 6.8936中南重工0024450.1100 4.300.340518.8445.0950155.00 2.7030 2.2 数据的标准化处理 由于不同的变量之间存在着较大的数量级的差别,因此要对数据变量进行标准化处理。本文采用Z得分值法标准化的方法进行标准化,用x的值减去x的均值再除以样本的方差。也就是把个案转换为样本均值为0、标准差为1的样本。如果不同变量的变量值数值相差太大,会导致计算个案间距离时,由于绝对值较小的数值权数较小,个案距离的大小几乎由大数值决定,标准化过程可以解决此类问题,使不同变量的数值具有同等的重要性。经Z标准化输出结果见表 2.2。 表2.2 经Z标准化后的数据 ZX1ZX2ZX3ZX4ZX5ZX6ZX7

数学建模 matlab求解线性规划实验报告

实验三 线性规划 程序: linprog c=[-0.4 -0.28 -0.32 -0.72 -0.64 -0.6]; A=[0.01 0.01 0.01 0.03 0.03 0.03;0.02 0 0 0.05 0 0;0 0.02 0 0 0.05 0;0 0 0.03 0 0 0.08]; b=[850;700;100;900]; Aeq=[]; beq=[]; vlb=[0;0;0;0;0;0]; vub=[]; [x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub) Exam5: function f=fun3(x); f=-x(1)-2*x(2)+(1/2)*x(1)^2+(1/2)*x(2)^2 实验目的 2、掌握用数学软件包求解线性规划问题。 1、了解线性规划的基本内容。 例1 max 6543216.064.072.032.028.04.0x x x x x x z +++++= 85003.003.003.001.001.001.0..654321≤+++++x x x x x x t s 70005.002.041≤+x x 10005.002.052≤+x x 90008.003.063≤+x x 6,2,10 =≥j x j

x0=[1;1]; A=[2 3 ;1 4]; b=[6;5]; Aeq=[];beq=[]; VLB=[0;0]; VUB=[]; [x,fval]=fmincon('fun3',x0,A,b,Aeq,beq,VLB,VUB) 书 求下列非线性规划 2221232212322 1232 12223123min 8020 ..2023,,0x x x x x x x x x s t x x x x x x x +++?-+≥?++≤??--+=??+=? ?≥? 在Matlab 2013软件中输入如下程序: (i )编写M 文件fun1.m 定义目标函数 function f=fun1(x); f=sum(x.^2)+8; (ii )编写M 文件fun2.m 定义非线性约束条件 function [g,h]=fun2(x); g=[-x(1)^2+x(2)-x(3)^2 x(1)+x(2)^2+x(3)^3-20]; %非线性不等式约束 h=[-x(1)-x(2)^2+2 x(2)+2*x(3)^2-3]; %非线性等式约束 (iii )编写主程序文件example2.m 如下: options=optimset('largescale','off'); [x,y]=fmincon('fun1',rand(3,1),[],[],[],[],zeros(3,1),[], ... 'fun2', options) 就可以求得当1230.5522 1.2033,,0.9478x x x ===时,最小值y =10.6511。 4. 选修课的策略 决策目标为选修的课程总数最少,即 921min x x x +++ 约束条件: (1) 满足课程要求:(至少2门数学课程,3门运筹学课程和2门计算机课程)

高中数学线性规划经典题型

高考线性规划归类解析 一、平面区域和约束条件对应关系。 例1、已知双曲线224x y -=的两条渐近线与直线3x =围成一个三角形区域,表示该区域的不等式组是() (A)0003x y x y x -≥??+≥??≤≤? (B)0003x y x y x -≥?? +≤??≤≤? (C) 003x y x y x -≤?? +≤??≤≤? (D) 0003x y x y x -≤?? +≥??≤≤? 解析:双曲线224x y -=的两条渐近线方程为y x =±,与直线3x =围 成一个三角形区域(如图4所示)时有0 003x y x y x -≥?? +≥??≤≤? 。 点评:本题考查双曲线的渐近线方程以及线性规划问题。验证法或排除法是最效的方法。 例2:在平面直角坐标系中,不等式组20 200x y x y y +-≤??-+≥??≥? 表示的平面区域的面积是() (A)42 (B)4 (C) 22 (D)2 解析:如图6,作出可行域,易知不等式组20 200x y x y y +-≤??-+≥??≥? 表示的平面区域是一个三角形。容 易求三角形的三个顶点坐标为A(0,2),B(2,0),C(-2,0).于是三角形的面积为: 11 ||||42 4.22 S BC AO =?=??=从而选B。 点评:有关平面区域的面积问题,首先作出可行域,探求平面区域图形的性质;其次利用面积公式整体或部分求解是关键。 二、已知线性约束条件,探求线性截距——加减的形式(非线性距离——平方的形式,斜率——商的形式)目标关系最值问题(重点) 例3、设变量x 、y 满足约束条件?? ? ??≥+-≥-≤-1122y x y x y x ,则 ①y x 32+的最大值为 。(截距) 解析:如图1,画出可行域,得在直线 2x-y=2与直线x-y=-1 的交点A(3,4)处,目标函数z 最大值为18 点评:本题主要考查线性规划问题,由线性约束条件画出可行域,然后求出目标函数的最大值.,是一道较为简单的送分题。数形结合是数学思想的重要手段之一。 ②则2 2 x y +的最小值是 . ③1y x =+的取值范围是 . 图1

高中数学必修5常考题型:简单的线性规划问题

简单的线性规划问题 【知识梳理】 线性规划的有关概念 【常考题型】 题型一、求线性目标函数的最值 (X+2Q2, 【例1】设变重X, *满足约束条件〈2x+ y<4, 则目标函数z= 3x- V的取值范围 〔4*- - 1, 是() 3 A. -6 C. [-L6] D. -6, 3. "+2E, [解析]约束条件〈2X+V<4,y> - 1所表示的平面区域如图阴影部分,直线y= 3x- Z斜率为

3 z 取最小值- 3 .??z=3x-y 的取值范围为6」,故选A. [答案]A 【类题通法】 解线性规划问题的关键是准确地作出可行域,正确理解z 的几何意义,对一个封闭图形而 言,最优解一般在可行域的边界上取得.在解题中也可由此快速找到最大值点或最小值点. 【对点训练】 X- 4y< -3, 3x+5y<25, 求z 的最大值和最小值. Q1, [解]作出不等式组表示的平面区域,即可行域,如图所示.把z=2x+>变形为v=-2x +乙则得到斜率为-2,在)/轴上的截距为乙旦随z 变化的一组平行直线.由图可以看出, 当直线z=2x+*经过可行域上的点/时,截距z 最大,经过点8时,截距z 最小. |x-4y+3 = 0, 解方程组i3H5 =。,得/点坐标为厚), X=l, 解方程组L-4*+3 =。,得8点坐标为("), 大值 = 2x5 + 2=12, z 建小值=2x 1 + 1 = 3. ( 于4尸 3=0 =0

题型二、求非线性目标函数的最值 ( X- y+5>0, X+VA O,x<3. ⑴求"=/+必的最大值与最小值; V ⑵求 >=六的最大值与最小值. X— O [解]画出满足条件的可行域如图所示, (1) /+,=。表示一组同心圆(圆心为原点Q,旦对同一圆上的点】+必的值都相等,由图可知:当(X, M在可行域内取值时,当旦仅当圆。过c点时,〃最大,过(0,0)时,〃最小.又Q3,8),所以u意大也=73、"缺小值=0. y (2) v^=—表示可行域内的点Rx, H到定点Q(5,0)的斜率,由图可知,蜘最大,处。最 A— O 小,又03,8), 8(3, -3), -3 3 8 所以/ 是大渲= 3 — 5 = 1',照小坦=3 _ 5 = 一4? 【类题通法】 非线性目标函数最值问题的求解方法 ⑴非线性目标函数最值问题,要充分理解非线性目标函数的几何意义,诸如两点间的距离(或平方),点到直线的距离,过已知两点的直线斜率等,充分利用数形结合知识解题,能起到事半功倍的效果?

北航数理统计期末考试题

材料学院研究生会 学术部 2011年12月 2007-2008学年第一学期期末试卷 一、(6分,A 班不做)设x 1,x 2,…,x n 是来自正态总体2(,)N μσ的样本,令 )x x T -= , 试证明T 服从t -分布t (2) 二、(6分,B 班不做)统计量F-F(n,m)分布,证明 111(,)F F n m αααα-的(0<<1)的分位点x 是。 三、(8分)设总体X 的密度函数为 其中1α>-,是位置参数。x 1,x 2,…,x n 是来自总体X 的简单样本,试求参数α的矩估计和极大似然估计。 四、(12分)设总体X 的密度函数为 1x exp x (;) 0 , p x μμσσσ??-? -≥??? =????? ,其它, 其中,0,μμσσ-∞<<+∞>已知,是未知参数。x 1,x 2,…,x n 是来自总体X 的简单样本。 (1)试求参数σ的一致最小方差无偏估计σ∧ ; (2)σ∧ 是否为σ的有效估计?证明你的结论。

五、(6分,A 班不做)设x 1,x 2,…,x n 是来自正态总体211(,)N μσ的简单样本,y 1,y 2,…,y n 是来自正态总体222(,)N μσ的简单样本,且两样本相互独立,其中221122,,,μσμσ是未知参数,2212σσ≠。为检验假设012112:, :,H H μμμμ=≠可令12, 1,2,..., , ,i i i z x y i n μμμ=-==-则上述假设检验问题等价于0111:0, :0,H H μμ=≠这样双样本检验问题就变为单检验问题。基于变换后样本z 1,z 2,…,z n ,在显著性水平α下,试构造检验上述问题的t-检验统计量及相应的拒绝域。 六、(6分,B 班不做)设x 1,x 2,…,x n 是来自正态总体20(,)N μσ的简单样本,0μ已知,2σ未知,试求假设检验问题 22220010:, :H H σσσσ≥<的水平为α 的UMPT 。 七、(6分)根据大作业情况,试简述你在应用线性回归分析解决实际问题时应该注意哪些方面? 八、(6分)设方差分析模型为 总离差平方和 试求A E(S ),并根据直观分析给出检验假设012:...0P H ααα====的拒绝域形式。 九、(8分)某个四因素二水平试验,除考察因子A 、B 、C 、D 外,还需考察A B ?,B C ?。今选用表78(2)L ,表头设计及试验数据如表所示。试用极差分析指出因子的主次顺序和较优工艺条件。

高考数学线性规划题型总结

2010年高考线性规划归类解析 线性规划问题是解析几何的重点,每年高考必有一道小题。 一、已知线性约束条件,探求线性目标关系最值问题 例1、设变量x 、y 满足约束条件?? ???≥+-≥-≤-112 2y x y x y x ,则y x z 32+=的最大值为 。 解析:如图1,画出可行域,得在直线2x-y=2与直线x-y=-1 的交点A(3,4)处,目标函数z 最大值为18 点评:本题主要考查线性规划问题,由线性约束条件画出可 行域,然后求出目标函数的最大值.,是一道较为简单的送分 题。数形结合是数学思想的重要手段之一。 二、已知线性约束条件,探求非线性目标关系最值问题 例2、已知1, 10,220x x y x y ≥??-+≤??--≤?则22x y +的最小值是 . 解析:如图2,只要画出满足约束条件的可行域,而22x y +表示 可行域内一点到原点的距离的平方。由图易知A (1,2)是满足条 件的最优解。22x y +的最小值是为5。 点评:本题属非线性规划最优解问题。求解关键是在挖掘目标关 系几何意义的前提下,作出可行域,寻求最优解。 三、约束条件设计参数形式,考查目标函数最值范围问题。 例3、在约束条件00 24x y y x s y x ≥??≥?? +≤??+≤?下,当35s ≤≤时,目标函数 32z x y =+的最大值的变化范围是() A.[6,15] B. [7,15] C. [6,8] D. [7,8] 解析:画出可行域如图3所示,当34s ≤<时, 目标函数 32z x y =+在(4,24)B s s --处取得最大值, 即 max 3(4)2(24)4[7,8)z s s s =-+-=+∈;当45s ≤≤时, 目标函数 32z x y =+在点(0,4)E 处取得最大值,即max 30248z =?+?=,故[7,8]z ∈,从而选D; 点评:本题设计有新意,作出可行域,寻求最优解条件,然后转化为目标函数Z 关于S 的函数关系是求解的关键。 四、已知平面区域,逆向考查约束条件。 例4、已知双曲线224x y -=的两条渐近线与直线3x =围成一个三角形 区域,表示该区域的不等式组是() (A)0003x y x y x -≥??+≥??≤≤? (B)0003x y x y x -≥??+≤??≤≤? (C) 0 003x y x y x -≤??+≤??≤≤? (D) 0003x y x y x -≤??+≥??≤≤? 解析:双曲线224x y -=的两条渐近线方程为y x =±,与直线3x = 围 图 2 图1 C

相关文档
相关文档 最新文档