文档库 最新最全的文档下载
当前位置:文档库 › 高三文科数学导数专题

高三文科数学导数专题

高三文科数学导数专题
高三文科数学导数专题

2008届高三文科数学第二轮复习资料

——《函数与导数》专题

1.设()f x 是定义在(,)-∞+∞上的函数,对一切x R ∈均有()(3)0f x f x ++=,且当11x -<≤时,

()23f x x =-,求当24x <≤时,()f x 的解析式.

2. 已知定义域为R 的函数12()2x x b

f x a

+-+=+是奇函数.(Ⅰ)求,a b 的值;(Ⅱ)若对任意的t R ∈,不等式

22(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围.

3.集合A 是由适合以下性质的函数f(x)组成的:对于任意的x ≥0,f(x)∈(1,4],且f(x)在[0,+∞)上是减函数.

(1)判断函数f 1(x)=2-x 及f 2(x)=1+3·(x

)2

1(x ≥0)是否在集合A 中?若不在集合A 中,试说明

理由;

(2)对于(1)中你认为是集合A 中的函数f(x),不等式f(x)+f(x+2)≤k 对于任意的x ≥0总成立.求实数k 的取值范围.

4. 对于函数2

()(1)2(0)f x ax b x b a =+++-≠,若存在实数0x ,使00()f x x =成立,则称0x 为()f x 的不动点.

(1)当2,2a b ==-时,求()f x 的不动点;

(2)若对于任何实数b ,函数()f x 恒有两个相异的不动点,求实数a 的取值范围;

(3)在(2)的条件下,若()y f x =的图象上,A B 两点的横坐标是函数()f x 的不动点,且直线

2

121

y kx a =+

+是线段AB 的垂直平分线,求实数b 的取值范围.

5. 已知函数f(x)=2x 3+ax 与g(x)=bx 2

+c 的图像都过P (2,0),且在点P 处有相同的切线. (1)求实数a 、b 、c 的值;

(2)设函数F(x)=f(x)+g(x),求F(x)的单调区间.

6.设x=1与x=2是函数f(x) = a lnx + bx 2 + x 的两个极值点.

(Ⅰ)试确定常数a 和b 的值;

(Ⅱ)试判断x=1,x=2是函数f(x)的极大值还是极小值,并说明理由.

7. 2005年10月12日,我国成功发射了“神州”六号载人飞船,这标志着中国人民又迈出了具有历史意

义的一步.已知火箭的起飞重量M 是箭体(包括搭载的飞行器)的重量m 和燃料重量x 之和.在不考虑空气阻力的条件下,假设火箭的最大速度y 关于x 的函数关系式为

[ln())]4ln 2(0)y k m x k =+-+≠其中.当燃料重量为m e )1(-吨(e 为自然对数的底数,

72.2≈e )时,该火箭的最大速度为4(km/s ).

(Ⅰ)求火箭的最大速度)/(s km y 与燃料重量x 吨之间的函数关系式)(x f y =;

(Ⅱ)已知该火箭的起飞重量是544吨,是应装载多少吨燃料,才能使该火箭的最大飞行速度达到8km/s ,顺利地把飞船发送到预定的轨道?

8.某工厂统计资料显示,产品次品率?与日产量x (件)(891≤≤∈x N x 且)的关系符合如下规律:

又知每生产一件正品盈利α元,每生产一件次品损失

2

α

元).0(>a (Ⅰ)将该厂日盈利额T (元)表示为日产量x (件)的函数;

(Ⅱ)为了获得最大盈利该厂的日产量应定为多少件?(取7.13≈计算).

9. 某厂家拟在2006年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x 万件与年促 销费用m 万元(m ≥0)满足1

3+-

=m k

x (k 为常数),如果不搞促销活动,则该产品的年销售量只能 是1万件.已知2006年生产该产品的固定投入为8万元,每生产1万件该产品需要投入16万元,厂家 将每年产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资 金,不包括促销费用).

(1)将2006年该产品的利润y 万元表示为年促销费用m 万元的函数; (2)该厂家2006年的促销费用投入多少万元时,厂家的利润最大?

10.某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当

一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.

(Ⅰ)当一次订购量为多少个时,零件的实际出厂单价恰降为51元?

(Ⅱ)设一次订购量为x 个,零件的实际出厂单价为P 元,写出函数)(x f P =的表达式; (Ⅲ)当销售商一次订购多少件时,该厂获得的利润为6000元?(工厂售出一个零件的利润=实际出厂单价-成本)

11. 甲、乙两公司同时开发同一种新产品,经测算,对于函数f (x )、g (x ),当甲公司投入x 万元作宣传

时,若乙公司投入的宣传费小于f (x )万元,则乙公司对这一新产品的开发有失败的风险,否则没有失败的风险;当乙公司投入x 万元作宣传时,若甲公司投入的宣传费小于g (x )万元,则甲公司对这一新产品的开发有失败的风险,否则没有失败的风险. (Ⅰ)试解释20)0(,10)0(==g f 的实际意义; (Ⅱ)设20)(,104

1

)(+=+=

x x g x x f ,甲、乙公司为了避免恶性竞争,经过协商,同意在双方均无失败风险的情况下尽可能少地投入宣传费用,问甲、乙两公司应投入多少宣传费?

12. 某汽车生产企业上年度生产一品牌汽车的投入成本为10万元/辆,出厂价为13万元/辆,年销售量为、

5000辆.本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆车投入成本增加的

比例为x (0<x <1),则出厂价相应提高的比例为0.7x ,年销售量也相应增加.已知年利润=(每辆车的出厂价-每辆车的投入成本)×年销售量.

(Ⅰ)若年销售量增加的比例为0.4x ,为使本年度的年利润比上年度有所增加,则投入成本增加的比例x 应在什么范围内?

(Ⅱ)年销售量关于x 的函数为)3

52(32402

++-=x x y ,则当x 为何值时,本年度的年利润最大?最大利润为多少?

参考答案

1.解:由()(3)0f x f x ++=有(3)()f x f x +=-,

当11x -<≤时,(3)()23f x f x x +=-=-+.

设3x t +=,则由11x -<≤得24t <≤,又3x t =-, 于是()2(3)329f t t t =--+=-+, 故当24x <≤时,()29f x x =-+.

2.解:(Ⅰ)因为()f x 是奇函数,所以(0)f =0,即1

11201()22x

x b b f x a a +--=?=∴=++ 又由f (1)= -f (-1)知1

112

2 2.41

a a a -

-=-?=++

(Ⅱ)由(Ⅰ)知11211()22221

x x x f x +-==-+++,易知()f x 在(,)-∞+∞上为减函数.

又因()f x 是奇函数,从而有不等式:2

2

(2)(2)0f t t f t k -+-< 等价于2

2

2(2)(2)(2)f t t f t k f k t -<--=-, 因()f x 为减函数,由上式推得:2

2

22t t k t ->-.

即对一切t R ∈有:2

320t t k -->,从而判别式1

4120.3

k k ?=+

3.解:(1)∵f )49(1=2-49=-5?(1,4],∴f )(1x 不在集合A 中.

又∵x ≥0, ∴0<(x

)2

1≤1, ∴0<3·(x

)2

1≤3,从而1<1+3·(x

)2

1≤4.∴f 2(x)∈(1,4].

又f 2(x)=1+3·(x

)2

1在[0,+∞)上为减函数,∴f 2(x)=1+3·(x

)2

1在集合A 中.

(2)当x ≥0时,f(x)+f(x+2)=2+

415·(x )21≤4

23. 又由已知f(x)+f(x+2) ≤k 对于任意的x ≥0总成立, ∴k ≥4

23

. 因此所求实数k 的取值范围是[4

23

,+∞).

4.解: 2

()(1)2(0)f x ax b x b a =+++-≠,

(1)当2,2a b ==-时,2

()24f x x x =--.

设x 为其不动点,即224x x x --=,则2

2240x x --=. 所以121,2x x =-=,即()f x 的不动点是1,2-. (2)由()f x x =得2

20ax bx b ++-=.

由已知,此方程有相异二实根,所以2

4(2)0a b a b ?=-->,

即2

480b ab a -+>对任意b R ∈恒成立.

20,16320b a a ∴?<∴-<,02a ∴<<.

(3)设1122(,),(,)A x y B x y ,直线21

21y kx a =+

+是线段AB 的垂直平分线,1k ∴=-.

记AB 的中点00(,)M x x ,由(2)知02b

x a

=-.

212()20,b

f x x ax bx b x x a

=?++-=∴+=-Q

M Q 在2

121y kx a =++上,21

2221

b b a a a ∴-=++

化简得:211

21

4

2a b a a a

=-

=-

≥=

++

,当2a =时,等号成立.

即,44b b ??≥-∴∈-+∞?????

5.解:(1)∵f(x),g(x)的图像过P (2,0)∴f(2)=0即2×23

+a ×2=0,所以a=-8.

g(2)=0 即:4×b+c=0

又∵f(x),g(x)在P 处有相同的切线,∴4b=16,b=4,c=-16, ∴a=-18,b=4,c=-16.

(2)由F(x)=2x 3+4x 2-8x -16,有F ′(x)=6x 2

+8x -8

解不等式F ′(x)=6x 2

+8x -8≥0得x ≤-2或x ≥

32即单调增区间为),3

2

[],2,(+∞--∞. 同理,由F ′(x)≤0得-2≤x ≤32,即单调减区间为[-2,3

2

].

6.解:(Ⅰ)f ′(x)=

x a +2bx+1,由极值点的必要条件可知:f ′(1)=f ′(2)=0,即a+2b+1=0, 且2a

+4b+1=0, 解方程组可得a=-32,b=-61,∴f(x)=-32lnx -61x 2

+x .

(Ⅱ)f ′(x)=-32x -1-3

1

x+1,

当x ∈(0,1)时,f ′(x)<0, 当x ∈(1,2)时,f ′(x)>0, 当x ∈(2,+∞)时,f ′(x)<0, 故在x=1处函数f(x)取得极小值65, 在x=2处函数取得极大值34-3

2

ln2.

7.解:(Ⅰ)依题意把4,)1(=-=y m e x 代入函数关系式

.8,2ln 4)]2ln()[ln(=+-+=k m x m k y 解得

所以所求的函数关系式为,2ln 4)]2ln()[ln(8+-+=m x m y 整理得.)ln(8

m

x m y += (Ⅱ)设应装载x 吨燃料方能满足题意,此时,8,544=-=y x m ,

代入函数关系式).(344,1544544

ln ,)ln(

8t x x

m x m y ==-+=解得得 即应装载344吨燃料方能顺利地把飞船发送到预定的轨道.

8.解:(Ⅰ)由?与x 的对应规律得次品率为),891(1002

N x x x

∈≤≤-=

?

故日产量x 件中,次品数为x ?件,正品数为)(x x ?-件.

则日盈利额),891)(1003(N x x x x

x a T ∈≤≤--

= .

(Ⅱ))891)](100300

100(103[)1003(≤≤∈-+--=--=x N x x

x a x x x a T 且

(注:此步可由换元法令t x =-100得到)

320100300

100≥-+-x

x Θ

当且仅当x x -=-100300

100时取等号.

由,83310100,100300

100≈-=-=-x x

x 得

83=∴x 当时,x

x -+-100300

100取得最小值,

又0>α,取得最大值时当T x ,83=∴,

因此,要获得最大盈利,该厂的日产量应定为83件.

9.解(1)由题意可知当0=m 时,1=x (万件)

,231=-=∴k k 即 1

23+-

=∴m x

每件产品的销售价格为x x

1685.1+?

(元) )168(]1685.1[2006m x x x

x y ++-+?=∴年的利润

m n m x -+-+=-+=)1

2

3(8484…

)0(29)]1(1

16[≥++++-=m m m

(2),8162)1(1

16

,0=≥+++≥m m m 时Θ

311

16

,21298=?+=+=+-≤∴m m m y 当且仅当(万元)时,21max =y (万元)

所以该厂家2006年的促销费用投入3万元时,厂家的利润最大,最大值为21万元.

10.解:(1)设每个零件的实际出厂价恰好降为51元时,一次订购量为o x 个,则.55002

.051

60100=-+

=o x 因此,当一次订购量为550个时,每个零件的实际出厂价恰好降为51元.

(2)当;60,1000=≤

当,550100时<

62)100(02.060x x P -=--= 当.51,550=≥P x 时

所以????

???≥∈<<-≤<==),

550(,51)(),550100(,5062),1000(,60)(x N x x x x x f P

(3)设销售商的一次订购量为x 个时,工厂获得的利润为L 元,则

??

??

?

??≥∈<<-≤<=-=),

550(,11)(),550100(,5022),1000(,20)40(2x x N x x x x x x x P L

由于当2000,1000≤≤

所以,,550100<

222

x x L -= 由??

???<<=-

.500100600050

222

x x x 解得500=x . 因此,当销售商一次订购500个零件时,该厂获得利润6000元.

11.解:(I )f (0)=10表示当甲公司不投入宣传费时,乙公司要避免新产品的开发有失败风险,至少要投

入10万元宣传费;g (0)=20表示当乙公司不投入宣传费时,甲公司要避免新产品的开发有失败的

风险,至少要投入20万元宣传费.

(Ⅱ)设甲公司投入宣传费x 万元,乙公司投入宣传费y 万元,依题意,当且仅当

??

??

?

+=≥+=≥)2(..........20)()1.......(1041)(y y g x x x f y 成立,双方均无失败的风险. 由(1)(2)得060410)20(4

1

≥--?++≥

y y y y 0)154)(4(≥+-∴y y 24

20420,1640154=+≥+≥

≥?≥∴>+y x y y y Θ

1624min min ==y x

答:要使双方均无失败风险,甲公司至少要投入24万元,乙公司至少要投入16万元.

12. 解:(I )由题意得:本年度每辆车的投入成本为10×(1+x );出厂价为13×(1+0.7x ); 年销售

量为5000×(1+0.4x ).因此本年度的利润为

)

4.01(5000)9.03()

4.01(5000)]1(10)7.01(13[x x x x x y +??-=+??+?-+?=

)10(15000150018002<<++-=x x x

(Ⅱ)本年度的利润为

)55.48.49.0(3240)3

5

2(3240)9.03()(232++-?=++-??-=x x x x x x x f

则),3)(59(972)5.46.97.2(3240)(2

'

--=+-?=x x x x x f

由,39

5

,0)('===x x x f 或解得

当)(,0)()9

5,0('

x f x f x >∈时,是增函数; 当)(,0)()1,9

5('

x f x f x <∈时,是减函数. ∴当95=

x 时,20000)9

5

()(=f x f 取极大值万元, 因为f (x )在(0,1)上只有一个极大值,所以它是最大值. 即当9

5

=

x 时,本年度的年利润最大,最大利润为20000万元.

北京市第十九中学2010届高三数学

函数与导数测试(二)

班级 姓名 学号

一、选择题(每题5分,共50分)

1.下列两个集合间的对应构成函数的是 ( ) (1)A=R ,{}|0,:||B x x f x y x =>→=;(2)A=B=N ,:|3|f x y x →=-; (3){}|0A x x =>,B=R ,:f x y x →=±;

(4){}|06,A x x =≤≤{}|03B x x =≤≤:2

x f x y →=

A (1)(4)

B (2) (3)

C (2)(4)

D (4)

2.设a <b,函数2

()()y x a x b =--的图像可能是 ( C )

3.下列每组函数是同一函数的是 ( )

A 2()1,()1)f x x g x x =-=-

B 2()1,()(1)f x x g x x =-=-

C 2

4(),()22

x f x g x x x -==+- D 2()||,()f x x g x x ==

4.已知()f x =

21,01,0

x x x x +≥-+<,则[(1)]f f -的值为 ( )

A 5

B 2

C -1

D -2 5.设95

(3)2

x f x +=

(1)f 的值是 ( ) 7 B 7 C 2 2

6.函数2

2log 2x

y x

-=+的图像 ( ) (A ) 关于原点对称 (B )关于主线y x =-对称

(C ) 关于y 轴对称 (D )关于直线y x =对称

7.函数2

()32f x x x =++在区间[-5,5]上的最小值、最大值分别是 ( )

A 42,12

B 42,14-

C 12,14-

D 最小值是1

4

-,无最大值 8.已知函数()f x 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有

(1)(1)()xf x x f x +=+,则5

(())2

f f 的值是( )

A.0

B.12

C.1

D.5

2

9.对于定义域是R 的任何奇函数()f x ,都有 ( ) A ()()0f x f x --> B ()()0f x f x --≤ C ()()0f x f x ?-≤ D ()()0f x f x ?-> 10.定义在R 上的偶函数()f x ,在(0,)+∞上是增函数,则 ( ) A (3)(4)()f f f π<-<- B ()(4)(3)f f f π-<-< C (3)()(4)f f f π<-<- D (4)()(3)f f f π-<-<

二、填空题(每题5分,共20分)

11.函数21x y x =+的值域为 12.已知函数y =

21,02,0

x x x x +≤->,若()10f x =,则x=

13.函数2

()2(1)2f x x a x =+-+在(,4]-∞上是减函数,则实数a 的取值范围是 14.已知矩形的周长为30cm ,一边长xcm ,面积S (cm 2

)。则S 表示为x 的函数为 ,该函数的定义域为 ,该矩形的最大面积为

三、解答题

15.(7分)已知()f x 是二次函数,且满足(0)1f =,(1)()2f x f x x +-=,求()f x

16.(7分)已知函数2

2()1

x

f x x =

+ (1)用定义证明该函数在[1,)+∞上是增函数 (2)判断该函数的奇偶性

17.(8分)已知函数2

()2||3f x x x =-- (1) 证明该函数是偶函数 (2) 画该函数的图象

(3) 写出该函数的单调区间

18. (8分)设函数()(0)kx

f x xe k =≠

(Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)求函数()f x 的单调区间;

(Ⅲ)若函数()f x 在区间(1,1)-内单调递增,求k 的取值范围.

19. (10分)设函数()()2

1f x x aIn x =++有两个极值点12x x 、,且12x x <

(I )求a 的取值范围,并讨论()f x 的单调性; (II )证明:()2122

4

In f x ->

20.某地建一座桥,两端的桥墩已建好,这两墩相距m米,余下工程只需要建两端桥墩之间的桥面和桥墩,

经预测,一个桥墩的工程费用为256万元,距离为x米的相邻两墩之间的桥面工程费用为(2x万元。假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为y万元。

(Ⅰ)试写出y关于x的函数关系式;

(Ⅱ)当m=640米时,需新建多少个桥墩才能使y最小?

所以

22

a a

b =+=,解得a=1,b=-1

2()1f x x x ∴=-+

16.(1)设12,[1,)x x ∈+∞且12x x <

1212221222()()11x x f x f x x x -=

-++=211222122()(1)

(1)(1)

x x x x x x --++ 1212,0x x x x <∴-<∵ 22121212,[1,)(1)0,(1)(1)0x x x x x x ∈+∞∴->++>∵

所以12()()0f x f x -<,即12()()f x f x < 所以该函数在[1,)+∞上是增函数

(2)x R ∈又222()2()()()11

x x

f x f x x x --==-=--++

所以该函数是奇函数

17.(1)x R ∈又22

()()2||32||3()f x x x x x f x -=----=--=

所以该函数是偶函数 (2)

(4) 递增区间是[1,0]-、[1,)+∞

递减区间是(,1]-∞-、[0,1]

综上可知,函数()f x ()1,1-内单调递增时,k 的取值范围是[)(]1,00,1-U .

19.解: (I )()2222(1)11a x x a f x x x x x

++'=+=>-++

令2

()22g x x x a =++,其对称轴为1

2

x =-

。由题意知12x x 、是方程()0g x =的两个均大于1-的不相等的实根,其充要条件为480(1)0

a g a ?=->??

-=>?,得1

02a <<

⑴当1(1,)x x ∈-时,()0,()f x f x '>∴在1(1,)x -内为增函数;⑵当12(,)x x x ∈时,()0,()f x f x '<∴在12(,)x x 内为减函数; ⑶当2,()x x ∈+∞时,()0,()f x f x '>∴在2,()x +∞内为增函数; (II )由(I )21

(0)0,02

g a x =>∴-

<<,222(2)a x x =-+2 ()()()22222222221(2)1f x x aln x x x x ln x ∴=++=-++2

设()()2

2

1(22)1()2

h x x x x ln x x =-++>-,

则()()()22(21)122(21)1h x x x ln x x x ln x '=-++-=-++ ⑴当1(,0)2x ∈-时,()0,()h x h x '>∴在1

[,0)2

-

单调递增; ⑵当(0,)x ∈+∞时,()0h x '<,()h x 在(0,)+∞单调递减。

()1112ln 2

(,0),()224

x h x h -∴∈->-=

当时 故()22122

()4

In f x h x -=>.

20.解 (Ⅰ)设需要新建n 个桥墩,(1)1m n x m x +=-,即n=

所以 (2m m

x x x

-1)+

2562256.x

m x

=+-

(Ⅱ) 由(Ⅰ)知,2

33

2

222561'()(512).22m m f x mx x x

x

=-

+=- 令'()0f x =,得32

512x =,所以x =64 当0

当64640x <<时,'()f x >0. ()f x 在区间(64,640)内为增函数, 所以()f x 在x =64处取得最小值,此时,640

119.64

m n x =

-=-=

故需新建9个桥墩才能使y最小。

高考文科数学专题复习导数训练题(文)

考点一:求导公式。 例1. ()f x '是3 1()213f x x x =++的导函数,则(1)f '-的值是 。 解析: ()2'2 +=x x f ,所以()3211'=+=-f 答案:3 考点二:导数的几何意义。 例2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是1 22y x = +,则(1)(1)f f '+= 。 解析:因为 21=k ,所以()211'=f ,由切线过点(1(1))M f ,,可得点M 的纵坐标为25,所以()251= f , 所以()()31'1=+f f 答案:3 例3.曲线 32 242y x x x =--+在点(13)-,处的切线方程是 。 解析: 443'2 --=x x y ,∴点(13)-,处切线的斜率为5443-=--=k ,所以设切线方程为b x y +-=5,将点(13)-, 带入切线方程可得2=b ,所以,过曲线上点(13)-,处的切线方程为:025=-+y x 考点三:导数的几何意义的应用。 例4.已知曲线C : x x x y 232 3+-=,直线kx y l =:,且直线l 与曲线C 相切于点()00,y x 00≠x ,求直线l 的方程及切点坐标。 解析: 直线过原点,则 ()000 ≠= x x y k 。由点()00,y x 在曲线C 上,则02 0300 23x x x y +-=,∴ 2302 00 0+-=x x x y 。又263'2 +-=x x y ,∴ 在 () 00,y x 处曲线C 的切线斜率为 ()263'02 00+-==x x x f k ,∴ 2632302 002 0+-=+-x x x x , 整理得:03200=-x x ,解得: 2 30= x 或00=x (舍),此时, 830-=y ,41-=k 。所以,直线l 的方程为x y 41 -=,切点坐标是??? ??-83,23。 考点四:函数的单调性。 例5.已知 ()132 3+-+=x x ax x f 在R 上是减函数,求a 的取值围。 解析:函数()x f 的导数为 ()163'2 -+=x ax x f 。对于R x ∈都有()0'a 时,函数()x f 在R 上存在增区间。所以,当3->a 时,函数()x f 在R 上不是单调递减函数。 综合(1)(2)(3)可知3-≤a 。 答案:3-≤a 考点五:函数的极值。 例6. 设函数3 2 ()2338f x x ax bx c =+++在1x =及2x =时取得极值。 (1)求a 、b 的值;(2)若对于任意的[03]x ∈, ,都有2 ()f x c <成立,求c 的取值围。 解析:(1) 2 ()663f x x ax b '=++,因为函数()f x 在1x =及2x =取得极值,则有(1)0f '=,(2)0f '=.即6630241230a b a b ++=?? ++=?, .,解得3a =-,4b =。 (2)由(Ⅰ)可知,32()29128f x x x x c =-++, 2 ()618126(1)(2)f x x x x x '=-+=--。

2020年高考文科数学《导数的综合应用》题型归纳与训练

a - a (- ),( , +∞) 单调递增, 在 (- ( 2020 年高考文科数学《导数的综合应用》题型归纳与训练 【题型归纳】 题型一 含参数的分类讨论 例1 已知函数 f ( x ) = ax 3 - 12 x ,导函数为 f '( x) , (1)求函数 f ( x ) 的单调区间; (2)若 f '(1)= -6, 求函数f ( x ) 在[—1,3]上的最大值和最小值。 【答案】略 【解析】(I ) f '( x ) = 3ax 2 - 12 = 3(ax 2 - 4) ,(下面要解不等式 3(ax 2 - 4) > 0 ,到了分类讨论的时机,分 类标准是零) 当 a ≤ 0时, f '( x ) < 0, f ( x )在(-∞, +∞) 单调递减; 当 a > 0时,当x 变化时, f '( x ), f ( x ) 的变化如下表: x (-∞, - 2 ) 2 2 2 , ) a a 2 a ( 2 a , +∞) f '( x ) + 0 — + f ( x ) 极大值 极小值 此时, f ( x )在(-∞, - 2 2 6 a 2 2 , ) 单调递减; a a (II )由 f '(1) = 3a -12 = -6, 得a = 2. 由(I )知, f ( x )在(-1, 2) 单调递减 ,在( 2 ,3)单调递增。 【易错点】搞不清分类讨论的时机,分类讨论不彻底 【思维点拨】分类讨论的难度是两个, 1)分类讨论的时机,也就是何时分类讨论,先按自然的思路推理, 由于参数的存在,到了不能一概而论的时候,自然地进入分类讨论阶段;(2)分类讨论的标准,要做到不 重复一遗漏。还要注意一点的是,最后注意将结果进行合理的整合。 题型二 已知单调性求参数取值范围问题 例 1 已知函数 f ( x) = 1 3 x 3 + x 2 + ax - 5 , 若函数在[1,+∞) 上是单调增函数,求 a 的取值范围

人教版2017年高考数学真题导数专题

2017年高考真题导数专题   一.解答题(共12小题) 1.已知函数f(x)=ae2x+(a﹣2)e x﹣x. (1)讨论f(x)的单调性; (2)若f(x)有两个零点,求a的取值范围. 2.已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0. (1)求a; (2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2. 3.已知函数f(x)=x﹣1﹣alnx. (1)若f(x)≥0,求a的值; (2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值. 4.已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b关于a的函数关系式,并写出定义域; (2)证明:b2>3a; (3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围. 5.设函数f(x)=(1﹣x2)e x. (1)讨论f(x)的单调性; (2)当x≥0时,f(x)≤ax+1,求a的取值范围. 6.已知函数f(x)=(x﹣)e﹣x (x≥). (1)求f(x)的导函数; (2)求f(x)在区间[,+∞)上的取值范围. 7.已知函数f(x)=x2+2cosx,g(x)=e x(cosx﹣sinx+2x﹣2),其中e≈2.17828…是自然对数的底数. (Ⅰ)求曲线y=f(x)在点(π,f(π))处的切线方程;

(Ⅱ)令h(x)=g (x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值. 8.已知函数f(x)=e x cosx﹣x. (1)求曲线y=f(x)在点(0,f(0))处的切线方程; (2)求函数f(x)在区间[0,]上的最大值和最小值. 9.设a∈Z,已知定义在R上的函数f(x)=2x4+3x3﹣3x2﹣6x+a在区间(1,2)内有一个零点x0,g(x)为f(x)的导函数. (Ⅰ)求g(x)的单调区间; (Ⅱ)设m∈[1,x0)∪(x0,2],函数h(x)=g(x)(m﹣x0)﹣f(m),求证:h(m)h(x0)<0; (Ⅲ)求证:存在大于0的常数A,使得对于任意的正整数p,q,且 ∈[1,x0)∪(x0,2],满足|﹣x0|≥. 10.已知函数f(x)=x3﹣ax2,a∈R, (1)当a=2时,求曲线y=f(x)在点(3,f(3))处的切线方程; (2)设函数g(x)=f(x)+(x﹣a)cosx﹣sinx,讨论g(x)的单调性并判断有无极值,有极值时求出极值. 11.设a,b∈R,|a|≤1.已知函数f(x)=x3﹣6x2﹣3a(a﹣4)x+b,g(x) =e x f(x). (Ⅰ)求f(x)的单调区间; (Ⅱ)已知函数y=g(x)和y=e x的图象在公共点(x0,y0)处有相同的切线,(i)求证:f(x)在x=x0处的导数等于0; (ii)若关于x的不等式g(x)≤e x在区间[x0﹣1,x0+1]上恒成立,求b的取值范围. 12.已知函数f(x)=e x(e x﹣a)﹣a2x. (1)讨论f(x)的单调性; (2)若f(x)≥0,求a的取值范围.

高考文科数学专题复习导数训练题

高考文科数学专题复习导数训练题(文) 一、考点回顾和基础知识 1.导数的概念及其运算是导数应用的基础,是高考重点考查的内容.考查方式以客观题为主,主要考查导数的基本公式和运算法则,以及导数的几何意义. 2.导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题.选择填空题侧重于利用导数确定函数的单调性、单调区间和最值问题,解答题侧重于导数的综合应用,即与函数、不等式、数列的综合应用. 3.应用导数解决实际问题,关键是建立适当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极值,而此时不用和端点值进行比较,也可以得知这就是最值. 在0x 处有增量x ?,称为函数)(x f y =在则称函数)(x f y =在)0或0|'x x y =,即 f . )(v u v u ±=±)(...)()()(...)()(2121x f x f x f y x f x f x f y n n +++=?+++=?''''''')()(cv cv v c cv u v vu uv =+=?+=(c 为常数) )0(2''' ≠-= ?? ? ??v v u v vu v u *复合函数的求导法则:)()())(('''x u f x f x ??= 或x u x u y y '''?= 4.几种常见的函数导数: I.0'=C (C 为常数) x x cos )(sin ' = 1')(-=n n nx x (R n ∈) x x sin )(cos '-= II. x x 1)(ln '= e x x a a log 1 )(log '= x x e e =')(a a a x x ln )('= 二、经典例题剖析 考点一:求导公式

(完整)高考文科数学导数专题复习

高考文科数学导数专题复习 第1讲 变化率与导数、导数的计算 知 识 梳 理 1.导数的概念 (1)函数y =f (x )在x =x 0处的导数f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0 lim x ?→f (x 0+Δx )-f (x 0) Δx . (2)函数f (x )的导函数f ′(x )=0 lim x ?→f (x +Δx )-f (x ) Δx 为f (x )的导函数. 2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,过点P 的切线方程为y -y 0=f ′(x 0)(x -x 0). 3.基本初等函数的导数公式 4.导数的运算法则若f ′(x ),g ′(x )存在,则有: 考点一 导数的计算 【例1】 求下列函数的导数: (1)y =e x ln x ;(2)y =x ? ?? ??x 2+1x +1x 3; 解 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x 1x =? ?? ??ln x +1x e x .(2)因为y =x 3 +1+1x 2, 所以y ′=(x 3)′+(1)′+? ?? ??1x 2′=3x 2 -2x 3. 【训练1】 (1) 已知函数f (x )的导函数为f ′(x ),且满足f (x )=2x ·f ′(1)+ln x ,则f ′(1)等于( ) A.-e B.-1 C.1 D.e 解析 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1 x ,∴f ′(1)=2f ′(1)+1,则f ′(1)=-1.答案 B (2)(2015·天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________. (2)f ′(x )=a ? ?? ??ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3.答案 (2)3 考点二 导数的几何意义 命题角度一 求切线方程 【例2】 (2016·全国Ⅲ卷)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1 -x ,则曲线y =f (x )在点(1,2)处的 切线方程是________.解析 (1)设x >0,则-x <0,f (-x )=e x -1 +x .又f (x )为偶函数,f (x )=f (-x )=e x -1 +x , 所以当x >0时,f (x )=e x -1 +x .因此,当x >0时,f ′(x )=e x -1 +1,f ′(1)=e 0 +1=2.则曲线y =f (x )在点(1, 2)处的切线的斜率为f ′(1)=2,所以切线方程为y -2=2(x -1),即2x -y =0. 答案 2x -y =0 【训练2】(2017·威海质检)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( )A.x +y -1=0 B.x -y -1=0 C.x +y +1=0 D.x -y +1=0

高中数学文科导数练习题

数学导数练习(文) 一、1. 一个物体的运动方程为S=1+t+t^2其中s 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时速度是( )A 7米/秒 B 6米/秒 C 5米/秒 D 8米/秒 2. 已知函数f (x )=ax 2+c ,且(1)f '=2,则a 的值为( ) A.1 B.2 C.-1 D. 0 3 ()f x 与()g x 是定义在R 上的两个可导函数,若()f x ,()g x 满足''()()f x g x =,则 ()f x 与()g x 满足( )A ()f x =2()g x B ()f x -()g x 为常数函数 C ()f x =()0g x = D ()f x +()g x 为常数函数 4. 函数3y x x =+的递增区间是( )A )1,(-∞ B )1,1(- C ),(+∞-∞ D ),1(+∞ 5.若函数f(x)在区间(a ,b )内函数的导数为正,且f(b)≤0,则函数f(x)在(a , b )内有( )A. f(x) 〉0 B.f(x)〈 0 C.f(x) = 0 D.无法确定 6.0'()f x =0是可导函数y =f(x)在点x =x 0处有极值的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .非充分非必要条件 7.曲线3()2f x x x =+-在0p 处的切线平行于直线41y x =-,则0p 点的坐标为( ) A (1,0) B (2,8) C (1,0)和(1,4)-- D (2,8)和(1,4)-- 8.函数313y x x =+- 有 ( ) A.极小值-1,极大值1 B. 极小值-2,极大值3 C.极小值-1,极大值3 D. 极小值-2,极大值2 9 对于R 上可导的任意函数()f x ,若满足'(1)()0x f x -≥,则必有( ) A (0)(2)2(1)f f f +< B (0)(2)2(1)f f f +≤ C (0)(2)2(1)f f f +≥ D (0)(2)2(1)f f f +> 10.函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在 ),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内 有极小值点( ) A. 1个 B.2个 C.3个 D.4个 二、11.函数3 2 y x x x =--的单调区间为___________________________________. 12.已知函数3 ()f x x ax =+在R 上有两个极值点,则实数a 的取值范围是 . 13.曲线x x y 43 -=在点(1,3)- 处的切线倾斜角为__________. 14. 曲线3 x y =在点()1,1处的切线与x 轴、直线2=x 所围成的三角形的面积为 __________。 15. 已知曲线3 1433 y x = + ,在点(2,4)P 的切线方程是______________ a b x y ) (x f y '=O

高考文科数学导数全国卷

导数高考题专练 1、(2012课标全国Ⅰ,文21)(本小题满分12分) 设函数f (x )= e x -ax -2 (Ⅰ)求f (x )的单调区间 (Ⅱ)若a =1,k 为整数,且当x >0时,(x -k ) f ′(x )+x +1>0,求k 的最大值 2、(2013课标全国Ⅰ,文20)(本小题满分12分) 已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4. (1)求a ,b 的值; (2)讨论f (x )的单调性,并求f (x )的极大值. 3、(2015课标全国Ⅰ,文21).(本小题满分12分) 设函数2()ln x f x e a x =-. (Ⅰ)讨论()f x 的导函数'()f x 零点的个数; (Ⅱ)证明:当0a >时,2 ()2ln f x a a a ≥+。 4、(2016课标全国Ⅰ,文21)(本小题满分12分) 已知函数.2)1(2)(-+-= x a e x x f x )( (I)讨论)(x f 的单调性; (II)若)(x f 有两个零点,求的取值范围. 5、((2016全国新课标二,20)(本小题满分12分) 已知函数()(1)ln (1)f x x x a x =+--. (I )当4a =时,求曲线()y f x =在()1,(1)f 处的切线方程;

(II)若当()1,x ∈+∞时,()0f x >,求a 的取值范围. 6(2016山东文科。20)(本小题满分13分) 设f (x )=x ln x –ax 2+(2a –1)x ,a ∈R . (Ⅰ)令g (x )=f'(x ),求g (x )的单调区间; (Ⅱ)已知f (x )在x =1处取得极大值.求实数a 的取值范围. 2017.(12分) 已知函数)f x =(a e 2x +(a ﹣2) e x ﹣x . (1)讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围. 2018全国卷)(12分) 已知函数()1 ln f x x a x x = -+. ⑴讨论()f x 的单调性; ⑵若()f x 存在两个极值点1x ,2x ,证明: ()()1212 2f x f x a x x -<--. 导数高考题专练(答案) 1 2解:(1)f ′(x )=e x (ax +a +b )-2x -4. 由已知得f (0)=4,f ′(0)=4. 故b =4,a +b =8. 从而a =4,b =4. (2)由(1)知,f (x )=4e x (x +1)-x 2-4x ,

高考文科数学专题复习导数训练题文

欢迎下载学习好资料 高考文科数学专题复习导数训练题(文)一、考点回顾导数的概念及其运算是导数应用的基础,是高考重点考查的内容。考查方式以客观题为主,主1. 要考查导数的基本公式和运算法则,以及导数的几何意义。导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工2.具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题。选择填空题侧重于利用导不等式、解答题侧重于导数的综合应用,即与函数、数确定函数的单调性、单调区间和最值问题,数列的综合应用。3.应用导数解决实际问题,关键是建立恰当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极大(小)值,而此时不用和端点值进行比较,也可以得知这就是最大(小)值。 二、经典例题剖析 考点一:求导公式。 13f(x)?x?2x?1??ff(?1)(x)3的值是的导函数,则。例1. 是 ????2?1?2?1?f'32x??xf'解析:,所以 答案:3 点评:本题考查多项式的求导法则。 考点二:导数的几何意义。 1x?y?2(1?(1))f(x)My,f2,点则图数2. 例已知函的象程的处切线方在是 ??(1)(f1?)f。 115???fk?'1M(1,f(1))222,所的纵坐标为,所以,由切线过点,可得点M 解析:因为5???f1?????3'f1?f12以,所以3 答案: 学习好资料欢迎下载 32?3)(1,2??4x?yx?2x例3. 。在点曲线处的切线方程是 2?3)(1,4??4xy'?3x5?k?3?4?4??解析:,所以设切线方程,处切线的斜率为点?3)(1, ?3)y??5x?b(1,2b?,将点处的切线为带入切线方程可得,所以,过曲线上点5x?y?2?0方程为:5x?y?2?0答案:点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 ??23x?,y0x l:y?kx x?3x?2y?xl与曲线C且直线相切于点,,例,4.已知曲线C:直线000l的方程及切点坐标。求直线y??00k??x??0x y,x?0在曲析解:线直线过原点,C则。由点上, ??00232x?2x?3xy?x yx,y'?3x?6x?2??0在,处,。又 则00y20?x?3x?2 000000??222x?3x?2?3x?6x?22x?'6x??3xk?f?,整曲线C,的切线斜率为 0000000331y???k??x03x??2x x?00082400。所以,(舍),此时,,解得:理得:,或033??1,???y??x82l??4的方程为,切点坐标是直线。 33??1,???y??x82l??4的方程为,切点坐标是答案:直线点评:本小题考查导数

(完整版)专题05导数与函数的极值、最值—三年高考(2015-2017)数学(文)真题汇编.doc

1. 【 2016 高考四川文科】已知函数的极小值点,则=( ) (A)-4 (B) -2 (C)4 (D)2 【答案】 D 考点:函数导数与极值. 【名师点睛】本题考查函数的极值.在可导函数中函数的极值点是方程但是极大值点还是极小值点,需要通过这点两边的导数的正负性来判断,在 的解,附近,如 果时,,时,则是极小值点,如果时,,时,,则是极大值点, 2. 【 2015 高考福建,文A.充分而不必要条 件12】“对任意 B.必要而不充分条件 ,”是“ C .充分必要条件 D ”的() .既不充分也不必 要条件 【答案】 B 【解析】当时,,构造函数,则 .故在单调递增,故,则;当时,不等式等价于,构造函数 ,则,故在递增,故 ”是“,则.综上 ”的必要不充分条件,选 所述,“ 对任 意B. ,

【考点定位】导数的应用. 【名师点睛】 本题以充分条件和必要条件为载体考查三角函数和导数在单调性上的应用, 根 据已知条件构造函数,进而研究其图象与性质,是函数思想的体现,属于难题. 3. (2014 课标全国Ⅰ,文 12) 已知函数 f ( x ) = ax 3 - 3 2 + 1,若 f ( ) 存在唯一的零点 x 0 ,且 x x x 0>0,则 a 的取值范围是 ( ) . A . (2 ,+∞ ) B . (1 ,+∞) C . ( -∞,- 2) D .( -∞,- 1) 答案: C 解析:当 a = 0 时, f ( x ) =- 3x 2+ 1 存在两个零点,不合题意; 当 a >0 时, f ′(x ) = 3ax 2- 6x = , 令 ′( ) = 0,得 x 1 = 0, , fx 所以 f ( x ) 在 x =0 处取得极大值 f (0) = 1,在 处取得极小值 , 要使 f ( x ) 有唯一的零点,需 ,但这时零点 x 0 一定小于 0,不合题意; 当 a <0 时, f ′(x ) = 3ax 2- 6x = , 令 f ′(x ) = 0,得 x 1=0, ,这时 f ( x ) 在 x =0 处取得极大值 f (0) = 1,在 处取得极小值 , 要使 f ( x ) 有唯一零点,应满足 ,解得 a <- 2( a > 2 舍去 ) ,且这时 零点 x 0 一定大于 0,满足题意,故 a 的取值范围是 ( -∞,- 2) . 名师点睛:本题考查导数法求函数的单调性与极值,函数的零点,考查分析转化能力,分类讨论思想, 较难题 . 注意区别函数的零点与极值点 . 4. 【 2014 辽宁文 12】当 时,不等式 恒成立,则实数 a 的取 值范围是()

(完整版)高三文科数学导数专题复习

高三文科数学导数专题复习 1.已知函数)(,3 ,sin )(x f x x b ax x f 时当π =+=取得极小值 33 -π . (Ⅰ)求a ,b 的值; (Ⅱ)设直线)(:),(:x F y S x g y l ==曲线. 若直线l 与曲线S 同时满足下列两个条件: (1)直线l 与曲线S 相切且至少有两个切点; (2)对任意x ∈R 都有)()(x F x g ≥. 则称直线l 为曲线S 的“上夹线”. 试证明:直线2:+=x y l 是曲线x b ax y S sin :+=的“上夹线”. 2. 设函数3 221()231,0 1.3 f x x ax a x a =- +-+<< (1)求函数)(x f 的极大值; (2)若[]1,1x a a ∈-+时,恒有()a f x a '-≤≤成立(其中()f x '是函数()f x 的导函数),试确定实数a 的取值范围. 3.如图所示,A 、B 为函数)11(32 ≤≤-=x x y 图象上两点,且AB//x 轴,点M (1,m )(m>3)是△ABC 边AC 的中点. (1)设点B 的横坐标为t ,△ABC 的面积为S ,求S 关于t 的函数关系式)(t f S =; (2)求函数)(t f S =的最大值,并求出相应的点C 的坐标.

4. 已知函数x a x x f ln )(2-=在]2,1(是增函数,x a x x g -=)(在(0,1)为减函数. (I )求)(x f 、)(x g 的表达式; (II )求证:当0>x 时,方程2)()(+=x g x f 有唯一解; (III )当1->b 时,若21 2)(x bx x f -≥在x ∈]1,0(内恒成立,求b 的取值范围 5. 已知函数3 2 ()f x x ax bx c =+++在2x =处有极值,曲线()y f x =在1x =处的切线平行于直线32y x =--,试求函数()f x 的极大值与极小值的差。 6.函数x a x x f - =2)(的定义域为]1,0((a 为实数). (1)当1-=a 时,求函数)(x f y =的值域; (2)若函数)(x f y =在定义域上是减函数,求a 的取值范围; (3)求函数)(x f y =在∈x ]1,0(上的最大值及最小值,并求出函数取最值时x 的值. 7.设x=0是函数2()()()x f x x ax b e x R =++∈的一个极值点. (Ⅰ)求a 与b 的关系式(用a 表示b ),并求)(x f 的单调区间; (Ⅱ)设]2,2[,,)1()(,0212 2-∈++-=>+ξξ问是否存在x e a a x g a ,使得|1|)()(21≤-ξξg f 成立?若存在,求a 的取值范围;若不存在,说明理由. 8. 设函数()2ln q f x px x x =- -,且()2p f e qe e =--,其中e 是自然对数的底数. (1)求p 与q 的关系;

高考文科数学专题复习导数训练题(文)

高考文科数学专题复习导数训练题(文) 一、考点回顾 1.导数的概念及其运算是导数应用的基础,是高考重点考查的内容。考查方式以客观题为主,主要考查导数的基本公式和运算法则,以及导数的几何意义。 2.导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题。选择填空题侧重于利用导数确定函数的单调性、单调区间和最值问题,解答题侧重于导数的综合应用,即与函数、不等式、数列的综合应用。 3.应用导数解决实际问题,关键是建立恰当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极大(小)值,而此时不用和端点值进行比较,也可以得知这就是最大(小)值。 二、经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213f x x x =++的导函数,则(1)f '-的值是 。 解析: ()2'2+=x x f ,所以()3211'=+=-f 答案:3 点评:本题考查多项式的求导法则。 考点二:导数的几何意义。 例2. 已知函数()y f x =的图象在点(1 (1))M f ,处的切线方程是1 22y x = +,则 (1)(1)f f '+= 。 解析:因为 21= k ,所以()211'= f ,由切线过点(1(1))M f ,,可得点M 的纵坐标为25 ,所 以 ()25 1= f ,所以()()31'1=+f f 答案:3

例3.曲线 32 242y x x x =--+在点(13)-,处的切线方程是 。 解析: 443'2 --=x x y ,∴点(13)-,处切线的斜率为5443-=--=k ,所以设切线方程为b x y +-=5,将点(13)-, 带入切线方程可得2=b ,所以,过曲线上点(13)-,处的切线方程为:025=-+y x 答案:025=-+y x 点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 例4.已知曲线C :x x x y 232 3+-=,直线kx y l =:,且直线l 与曲线C 相切于点()00,y x 00 ≠x ,求直线l 的方程及切点坐标。 解析: 直线过原点,则 ()000 ≠= x x y k 。由点 () 00,y x 在曲线C 上,则 02 30023x x x y +-=,∴?2302 00 0+-=x x x y 。又263'2 +-=x x y ,∴ 在 ()00,y x 处 曲线C 的切线斜率为 ()263'02 00+-==x x x f k ,∴?2632302 002 0+-=+-x x x x ,整理 得:0 3200=-x x ,解得: 230= x 或00=x (舍),此时,830-=y ,41 - =k 。所以,直线l 的方程为 x y 41 -=,切点坐标是??? ??-83,23。 答案:直线l 的方程为 x y 41 -=,切点坐标是??? ??-83,23 点评:本小题考查导数几何意义的应用。解决此类问题时应注意“切点既在曲线上又在切线上”这个条件的应用。函数在某点可导是相应曲线上过该点存在切线的充分条件,而不是必要条件。 考点四:函数的单调性。 例5.已知()132 3 +-+=x x ax x f 在R 上是减函数,求a 的取值范围。 解析:函数()x f 的导数为 ()163'2 -+=x ax x f 。对于R x ∈都有()0'

高考数学专题导数题的解题技巧

第十讲 导数题的解题技巧 【命题趋向】导数命题趋势: 综观2007年全国各套高考数学试题,我们发现对导数的考查有以下一些知识类型与特点: (1)多项式求导(结合不等式求参数取值范围),和求斜率(切线方程结合函数求最值)问题. (2)求极值, 函数单调性,应用题,与三角函数或向量结合. 分值在12---17分之间,一般为1个选择题或1个填空题,1个解答题. 【考点透视】 1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念. 2.熟记基本导数公式;掌握两个函数和、差、积、商的求导法则.了解复合函数的求导法则,会求某些简单函数的导数. 3.理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值. 【例题解析】 考点1 导数的概念 对概念的要求:了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念. 例1.(2007年北京卷)()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 . [考查目的] 本题主要考查函数的导数和计算等基础知识和能力. [解答过程] ()2 2 ()2,(1)12 3.f x x f ''=+∴-=-+=Q 故填3. 例2. ( 2006年湖南卷)设函数()1 x a f x x -=-,集合M={|()0}x f x <,P='{|()0}x f x >,若M P,则实 数a 的取值范围是 ( ) A.(-∞,1) B.(0,1) C.(1,+∞) D. [1,+∞) [考查目的]本题主要考查函数的导数和集合等基础知识的应用能力.

高三文科数学导数及其应用

导数及其应用 导数的几何意义与运算 1.常见函数的导数 (1)C '=0(C 为常数) (2)()n x '=1n nx - (3)(sin )x '=cos x (4)(cos )x '=sin x - (5)()x e '=x e (6)()x a '=ln x a a (7)(ln )x '=1x (8)(log )a x '=11log ln a e x x a = 2.可导函数四则运算的求导法则 (1)()u v '±=u v ''± (2)()uv '=u v uv ''+ (3)()u v '=2u v uv v ''-(0)v ≠ 3.导数的几何意义 4.已知切线的斜率,求切线方程 例题1 曲线3 11y x =+在点(1,12)P 处的切线与y 轴交点的纵坐标是( ) A.9- B. 3- C. 9 D. 15 例题2已知函数()f x 的导函数为()f x ',且满足()2(1)ln ,f x xf x '=+则(1)f '=( ) A.e - B. 1- C. 1 D. e 例题3函数2(0)y x x =>的图象在点2(,)k k a a 处的切线与x 轴交点的横坐标为1,k a k +为正整数,116,a =则 135a a a ++的值为__________ 例题4在平面直角坐标系xOy 中,已知点P 是函数)0()(>=x e x f x 的图象上的动点,该图象在P 处的切线l 交y 轴于点M ,过点P 作l 的垂线交y 轴于点N ,设线段MN 的中点的纵坐标为t ,则t 的最大值是_______ 利用导数研究函数的单调性

A. (,2)-∞ B. (0,3) C. (1,4) D. (2,)+∞ 例题2设函数22 ()ln ,0f x a x x ax a =-+> (Ⅰ)求()f x 的单调区间; 例题3已知函数()ln()x f x e x m =-+. (Ⅰ)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性; 利用导数研究函数的极值与最值 [高考常考] 例题1设函数2()(,,)f x ax bx c a b c R =++∈,若1x =-为函数()x f x e 的一个极值点,则下列图象不可能为

高考文科数学导数真题汇编(带答案)

高考数学文科导数真题汇编答案 一、客观题组 4 5. 7.设函数()f x 在R 上可导,其导函数()f x ',且函数()f x 在2x =-处取得极小值,则函数()y xf x '=的图象可能是

8设函数f (x )= 2 x +lnx 则 ( ) A .x=12为f(x)的极大值点 B .x=1 2为f(x)的极小值点 C .x=2为 f(x)的极大值点 D .x=2为 f(x)的极小值点 9、函数y= 12 x 2 -㏑x 的单调递减区间为 (A )(-1,1] (B )(0,1] (C.)[1,+∞) (D )(0,+∞) 11(2018年高考1卷) 12(2019年高考1卷) 一、 客观题答案1B ; 2.D; 3.y=x+1; 4.A . 5.y=2x-2 6D ,7C; 8D; 9B; 10.C 11.D; 12.y=3x 二、大题组 【2011新课标】21. 已知函数ln ()1a x b f x x x = ++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=。 (1)求a 、b 的值; (2)证明:当0x >,且1x ≠时, f (x )>ln x x -1 【解析】

(1)22 1 ( ln ) '()(1)x x b x f x x x α+-= - + 由于直线230x y +-=的斜率为1 2 - ,且过点(1,1), 故(1)1,1'(1),2f f =???=-?? 即1,1,22 b a b =???-=-?? 解得1a =,1b =。 (2)由(1)知f (x )=x x x 11ln ++,所以f (x )-ln x x -1=11-x 2 (2ln x -x 2-1 x ), 考虑函数,则2 2 222)1()1(22)(x x x x x x x h --=---=', 所以x ≠1时h ′(x )<0,而h (1)=0 故)1,0(∈x 时,h (x )>0可得,),1(+∞∈x 时,h (x )<0可得, 从而当,且时,. 【2012新课标】21. 设函数f (x ) = e x -ax -2 (1)求f (x )的单调区间 (2)若a =1,k 为整数,且当x >0时,(x -k ) f ′(x )+x +1>0,求k 的最大值 【解析】 (1) f (x )的定义域为(,)-∞+∞,()x f x e a '=-, 若0a ≤,则()0f x '>,所以()f x 在(,)-∞+∞单调递增. 若0a >,则当(,ln )x a ∈-∞时,()0f x '<;当(ln ,)x a ∈+∞时,()0f x '>,所以()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增. (2)由于1a =,所以()()1()(1)1x x k f x x x k e x '-++=--++. 故当0x >时,()()10x k f x x '-++>等价于1(0) (1) x x k x x e +<+>-①. 令1()(1) x x g x x e +=+-,则221(2)()1(1)(1)x x x x x xe e e x g x e e ----'=+= --. 由(1)知,函数()2x h x e x =--在(0,)+∞单调递增,而(1)0h <,(2)0h >, 所以()h x ,在(0,)+∞存在唯一的零,故()g x '在(0,)+∞存在唯一的零点. 设此零点为a ,则(1,2)a ∈. 当(0,)x a ∈时,()0g x '<;当(,)x a ∈+∞时,()0g x '>. 所以()g x 在(0,)+∞的最小值为()g a . 又由()0g a '=,可得2a e a =+,所以()1(2,3)g a a =+∈. 由于①式等价于()k g a <,故整数k 的最大值为2 【2013新课标1】20. 已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4. (1)求a ,b 的值; ln ()1x f x x > -ln ()1x f x x >-0x >1x ≠ln ()1 x f x x >-

高中数学导数专题训练

精心整理 高二数学导数专题训练 一、选择题 1.一个物体的运动方程为S=1+t+2 t 其中s 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时速度是() A 7米/秒 B 6米/秒 C 5米/秒 D 8米/秒 2.已知函数f (x )=ax 2 +c ,且(1)f '=2,则a 的值为() A.1 B.2 C.-1 D.0 3()f x 与(f x A (f C (f 4.函数y A (5.若函数A.f(x)6.0'()f x A C 7.曲线f A (1,0)C (1,0)8.函数y A.C.9.对于R A (0)(2)2(1)f f f + 10.若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000 ()() lim h f x h f x h h →+-- 的值为() A .' 0()f x B .' 02()f x C .' 02()f x -D .0 二、填空题 11.函数32 y x x x =--的单调区间为___________________________________. 12.已知函数3 ()f x x ax =+在R 上有两个极值点,则实数a 的取值范围是.

13.曲线x x y 43 -=在点(1,3)-处的切线倾斜角为__________. 14.对正整数n ,设曲线)1(x x y n -=在2x =处的切线与y 轴交点的纵坐标为n a ,则数列1n a n ?? ??+?? 的前n 项和的公式是 . 三、解答题: 15.求垂直于直线2610x y -+=并且与曲线3 2 35y x x =+-相切的直线方程 16 17 (1)求y (2)求 y 18(I (II (III 19(I (II 20.已知x (1)求m (2)求f (3)当x AABCBACCDB 二、填空题 11.递增区间为:(-∞,13),(1,+∞)递减区间为(1 3 -,1) (注:递增区间不能写成:(-∞,1 3 )∪(1,+∞)) 12.(,0)-∞13.3 4 π 14.1 2 2n +-()()/ 112 22,:222(2)n n n x y n y n x --==-++=-+-切线方程为,

高中文科经典导数练习题及答案

高二数学导数单元练习 一、选择题 1. 一个物体的运动方程为S=1+t+t^2其中s 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时速度是( ) A 7米/秒 B 6米/秒 C 5米/秒 D 8米/秒 2. 已知函数f (x )=ax 2+c ,且(1)f '=2,则a 的值为( ) B.2 C.-1 D. 0 3 ()f x 与()g x 是定义在R 上的两个可导函数,若()f x ,()g x 满足' ' ()()f x g x =,则 ()f x 与()g x 满足( ) ~ A ()f x =2()g x B ()f x -()g x 为常数函数 C ()f x =()0g x = D ()f x +()g x 为常数函数 4. 函数3 y x x 的递增区间是( ) A )1,(-∞ B )1,1(- C ),(+∞-∞ D ),1(+∞ 5.若函数f(x)在区间(a ,b )内函数的导数为正,且f(b)≤0,则函数f(x)在(a , b )内有( ) A. f(x) 〉0 (x)〈 0 (x) = 0 D.无法确定 6.0'()f x =0是可导函数y =f(x)在点x =x 0处有极值的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .非充分非必要条件 7.曲线3 ()2f x x x 在0p 处的切线平行于直线41y x ,则0p 点的坐标为( ) . A (1,0) B (2,8) C (1,0)和(1,4)-- D (2,8)和(1,4)-- 8.函数3 13y x x =+- 有 ( ) A.极小值-1,极大值1 B. 极小值-2,极大值3 C.极小值-1,极大值3 D. 极小值-2,极大值2 9 对于R 上可导的任意函数()f x ,若满足' (1)()0x f x -≥,则必有( ) A (0)(2)2(1)f f f +< B (0)(2)2(1)f f f +≤ C (0)(2)2(1)f f f +≥ D (0)(2)2(1)f f f +> 二、填空题

相关文档
相关文档 最新文档