文档库 最新最全的文档下载
当前位置:文档库 › Immunity against NS3 Protein of Classical Swine Fever Virus Does Not Protect against Lethal C

Immunity against NS3 Protein of Classical Swine Fever Virus Does Not Protect against Lethal C

Immunity against NS3 Protein of Classical Swine Fever Virus Does Not Protect against Lethal C
Immunity against NS3 Protein of Classical Swine Fever Virus Does Not Protect against Lethal C

VIRAL IMMUNOLOGY

Volume 20, Number 3, 2007

?Mary Ann Liebert, Inc.

Pp. 487–493

DOI: 10.1089/vim.2006.0111

Brief Report

Immunity against NS3 Protein of Classical Swine Fever Virus

Does Not Protect against Lethal Challenge Infection

HEINER VOIGT,1DANIEL WIENHOLD,1CHRISTIAN MARQUARDT,1

KONSTANZE MUSCHKO,1EBERHARD PFAFF,1and MATHIAS BUETTNER 2

ABSTRACT

Classical swine fever is a highly contagious disease of swine caused by classical swine fever virus,an OIE list A pathogen. In the European Union the virus has been eradicated from the domestic pig population and prophylactic immunization has been banned. Nevertheless, intervention immu-nizations using marker vaccines are one possibility to deal with reintroduced CSFV. At present,baculovirus-expressed E2 protein is used as such a marker vaccine. However, this vaccine cannot fully protect against viral spread; hence the use of another subunit, or of a combination of two or more subunits, might be beneficial. Therefore the immunological effects of nonstructural protein 3(NS3) on the humoral as well as the cellular arms of the immune system were investigated. Although effectors of both sides of the immune system were stimulated by application of recombinant NS3protein, no protection against lethal CSFV challenge could be achieved.487

1Institute for Immunology, Friedrich Loeffler Institute, Federal Research Institute for Animal Health, Tuebingen, Germany.2Veterinary Medicine, Bavarian Health and Food Safety Authority, Oberschlei?heim, Germany.

C LASSICAL SWINE FEVER (CSF) is a highly contagious

disease of domestic pigs and wild boar, causing high

economic losses. The causative agent is classical swine

fever virus (CSFV), an enveloped positive-strand RNA

virus. Together with the related bovine viral diarrhea virus

(BVDV) of cattle and border disease virus (BDV) of

sheep, CSFV represents the genus Pestivirus in the Fla-

viviridae family. High fever, anorexia, diarrhea, and cen-

tral nervous disorders are typical clinical signs of CSF. In

necropsy hemorrhages of inner organs are prominent (22).

The approximately 12.3-kb-long RNA genome en-

codes a hypothetical polyprotein that is co- and post-

translationally processed by cellular as well as viral pro-

teases into 11 or 12 proteins. The dominant noncytopathic

strains do not cause a visible cytopathic effect when prop-agated in cultured cells. Here the NS2-3 fusion protein is expressed predominantly. In contrast, a cytopathic ef-fect is seen in cells infected with cytopathic CSFV strains.In these cells the fusion protein NS2-NS3 and moreover the NS3 protein can be detected (1).The pestiviral NS3 protein is a viral helicase, NTPase,and protease (15). Its expression in mammalian cells is reported to induce apoptosis (30). The NS3 protein is known to be a target of pestivirus-specific antibodies (3,5,17); however, in the BVDV system NS3-specific mAb did not show neutralizing capacity (13).In addition, the NS3 protein was referred to as a strong activator of T cells in CSFV (2,27)- as well as BVDV (11,12)-immune animals. These findings together with the observation that animals showing cellular immune re-

sponse to CSFV are protected against the virus, even in absence of neutralizing antibodies (34), led to the hy-pothesis that immunization with the NS3 protein can in-duce humoral as well as cell-mediated immune responses against CSFV and therefore might be able to protect pigs against a lethal CSF challenge. In contrast to one study (27), we analyzed the immunological and protective properties of the isolated nonstructural protein NS3 of CSFV. Therefore, the NS3 gene of CSFV strain Glentorf was isolated from total RNA of CSFV strain Glentorf-infected STE cells, using the reverse transcription-poly-merase chain reaction (RT-PCR) and gene-specific primers (forward primer, 5?-TTT-TTT-GCA-TGC-AGT-CTG-CAA-GAA-GGT-CAC-CGA-A-3?; reverse primer, 5?-AAA-AAA-CCC-GGG-TTA-GTG-ATG-GTG-ATG-GTG-ATG-TAC-TTG-TTT-TAG-TGC-TCT-ACC-AAC-3?; the histidine tag is underlined and the introduced restriction sites [Sph I and Xma I] are indi-cated in boldface), and cloned into bacterial expression vector pQE51. Expression of the NS3 protein was veri-fied by Western blot analysis using NS3-specific mono-clonal antibody C16 (25) (Fig. 1) and it was purified by affinity chromatography under denaturing conditions. Four Munich miniature pigs (MMS) (38) 20 wk of age were immunized intramuscularly with 400 ?g of rNS3 protein in Freund’s complete adjuvant for priming. One boost immunization was administered intramuscularly with 400 ?g of rNS3 protein in Freund’s incomplete ad-juvant on day 21 and a second boosting followed on day 52 after prime with 200 ?g of rNS3 protein without ad-juvant. Two wk later, on day 66 after prime, the vacci-nated pigs as well as a nonvaccinated animal of the same age and breed were challenged intranasally with 3?105 TCID50(median tissue culture infective dose) of highly virulent CSFV strain Eystrup.

ANTIBODY RESPONSE TO CSFV NS3

PROTEIN IN VACCINATED PIGS

The correlation between protection against CSFV and humoral immune response has frequently been described

VOIGT ET AL. (4,35,37). Therefore we decided to monitor the success of the NS3 immunization in a first step by the develop-ment of CSFV-specific antibodies. To verify the CSFV-specific humoral immune response a Western blot analy-sis was established using CSFV-infected and noninfected PK-15 cells and the prepared sera pre- and postimmu-nization. All immunized pigs developed NS3-specific an-tibodies after immunization, in contrast to the sera before immunization (Fig. 2). The NS3 protein is present in two different forms in the two biotypes of CSFV (1). There-fore, Western blot analyses were performed with CSFV cytopathic strain Lothringen as well as with CSFV non-cytopathic strain Eystrup. We were able to detect NS3 (?80 kDa) in CSFV cytopathic strain Lothringen-in-fected cells with the swine serum obtained after immu-nization. In lysates of cells infected with CSFV noncy-topathic strain Eystrup NS2-NS3 (?125 kDa) fusion protein-specific signals were detected (Fig. 2).

The NS3-specific antibodies were quantified by en-zyme-linked immunosorbent assay (ELISA), using the recombinant NS3 protein as the coating reagent. Esch-erichia coli-specific antibodies were removed by preab-sorption of the sera with E. coli lysates not containing CSFV NS3 protein. The cutoff was determined as the av-erage optical density of prevaccination serum plus 2 stan-dard deviations. As seen in Fig. 3, NS3-specific anti-bodies could already be measured after the first booster immunization. A rise in NS3-specific antibody titers oc-curred after the second booster immunization as well as after the CSFV challenge infection.

For protection against viral infections neutralizing an-tibodies are of great importance. The prognostic correla-tion for protection of CSFV neutralizing antibodies be-fore challenge infection has been described previously (37). Therefore sera were tested in a neutralizing perox-idase-linked antibody (NPLA) test for their neutralizing capacity against the virulent CSFV challenge strain Eystrup. Although CSFV-specific antibodies were de-tected by Western blotting as well as by ELISA the sera of all animals did not neutralize the virus at any time point before or after challenge. This observation is in line with reports of Bolin and Ridpath (3), who could detect

488

Recombinant NS3 protein in Western blot analysis. Lysates of uninfected PK-15 cells (lanes 1 and 3) and of PK-15 cells infected with CSFV noncytopathic Glentorf (lane 2) and CSFV cytopathic Lothringen (lane 4) as well as lysates of bacte-ria carrying plasmid pQE-51-NS3 before (lane 5) and after (lane 6) induction with IPTG were separated by SDS–PAGE and transferred to nitrocellulose. Proteins were detected with monoclonal antibodies C16 specific for pestivirus NS3 pro-tein. The 120-kDa NS2-3 fusion protein and 80-kDa NS3 protein are indicated.

NS3-specific antibodies in nonneutralizing sera of

BVDV-infected cattle early after infection. Moreover, an-

tibodies induced in cattle by an NS3-encoding DNA were

also seen to possess no virus-neutralizing activity (39).

This might be explained by the absence of the NS3 pro-

tein in the mature virion (36).

CELL-MEDIATED IMMUNE RESPONSE TO

CSFV IN VACCINATED PIGS

T cell epitopes have been identified in the NS3 pro-

tein of BVDV (11) and CSFV (2). In addition, Suradhat

et al . (34) described protection of live virus C-strain-vac-

cinated pigs showing measurable interferon (IFN)-?-IMMUNITY AGAINST NS3 PROTEIN OF CSFV secreting cells after CSFV stimulation but no CSFV neutralizing antibodies. Moreover, antigen-specific cell-mediated cytotoxicity has been reported after CSFV re-stimulation of primed T cells (26) as well as after res-timulation with recombinant NS3 protein (27). We tested the peripheral blood mononuclear cells (PBMCs) of vac-cinated pigs for CSFV-specific IFN-?-secreting cells before and after challenge to monitor the induction of cell-mediated immunity by enzyme-linked immunospot (ELISPOT) assay. Therefore, PBMCs were purified at several time points before and after challenge by density gradient centrifugation, using lymphocyte separation medium (PAA, Pasching, Austria) with a specific weight of 1077 g/ml as previously described (7). The cells were stimulated with CSFV strain Eystrup (multiplicity of in-489

FIG. 2.Detection of CSFV NS3-specific antibodies in Western blot analysis. Sera of the animals prevaccination and after the third vaccination were tested by Western blot analysis using noninfected PK-15 cells (PK) as well as CSFV-infected PK-15cells (V) as antigen. Reactivity of the sera with noncytopathic CSFV strain Eystrup (Fig2a) and cytopathogenic CSFV strain Lothringen (Fig. 2b) is presented. NS3-specific monoclonal antibodies (C16) were used as positive control. NS3-reactive anti-bodies could be found in the sera of all vaccinated animals after third vaccination.

B

fection [MOI], ?1) or mock stimulated and assayed ac-

cording to an ELISPOT protocol described previously

(2). PBMCs of naive pigs reacted to CSFV stimulation

with nearly equal numbers of spots as in their response

to mock stimulation. In contrast, after first boost immu-

nizations CSFV stimulation led to a significant increase

in spot numbers compared with mock stimulation (p ?

0.005) (Fig. 4). These findings were also reported for

BVDV in a mouse model using a recombinant adenovirus

vector expressing the NS3 protein (15). The number of

CSFV-specific IFN-?-secreting cells was even slightly

higher after the second boost immunization. For the anti-

gen-specific secretion of IFN-?from PBMCs of CSFV-VOIGT ET AL.

immune donors efficient viral restimulation is necessary

in vitro (2,34). As stimulating subunits for the IFN-?se-

cretion the E2, NS3, as well as an NS3-NS4a fusion pro-

tein were identified (8,27). We could show that the NS3

lacking formerly described T cell epitopes in the adja-

cent NS2 protein (2) or NS4a protein (24) can induce

CSFV-specific IFN-?-secreting cells. Nevertheless, IFN-

?-secreting cells were not able to control challenge in-fection when the immunizing subunit was NS3 alone, as

shown by clinical outcome after challenge infection.

Interestingly, after challenge infection the PBMCs of

the animals no longer showed statistically significant dif-

ferences in the numbers of IFN-?-secreting cells after in

vitro CSFV or mock stimulation. This phenomenon might

be explained by the activated cell death that occurs dur-

ing CSFV infection (32).CLINICAL SIGNS AND VIRUS DETECTION AFTER CSFV CHALLENGE INFECTION Fourteen days after the third immunization the vacci-nated pigs and the nonvaccinated control animal were challenged with 3?105TCID 50of highly virulent CSFV strain Eystrup intranasally. Pigs were examined clinically every day. Although the immunization induced a mea-surable cellular and humoral immune response the pro-gression of disease was unimpaired in vaccinated animals in direct comparison with a nonvaccinated control. On day 5 after challenge infection the nonvaccinated control animal as well as all vaccinated swine developed fever 490FIG. 3.NS3-specific antibody ELISA. Sera were tested on rNS3-coated ELISA plates for NS3-specific antibodies. Sera were diluted in log 2steps starting with 1:100. The cutoff was determined as the mean optical density (OD) of prevaccination sera plus 2?standard deviation. Mean titers are presented as the reciprocal of the highest dilution resulting in an OD higher than cutoff.

FIG. 4.IFN-?-secreting cells in ELISPOT. PBMCs of the vaccinated animals were tested at several time points before and after vaccination and after challenge infection in IFN-?-specific ELISPOT assay. PBMCs were seeded in each well (duplicates)and stimulated for 24 h with CSFV strain Eystrup at an MOI of 1 or with a comparable mock volume. Presented are the mean numbers of spots formed by 5?105PBMCs of the vaccinated animals. Error bars represent 1 standard deviation. Statistical sig-nificance was calculated using the Student t

test.

of more than 40°C. From this day on clinical signs such as apathia, anorexia, diarrhea, and incoordination of movement could be seen. By day 9 postchallenge all an-imals had developed severe CSF symptoms and had to be killed for reasons of animal welfare.

On days 5 and 7 postchallenge blood samples were collected from all animals and white blood cells (WBCs)were isolated (20) and tested for CSFV presence by cocultivation with PK-15 indicator cells. The presence of CSFV was determined in a peroxidase-linked assay as previously described (22). CSFV was isolated from WBCs of the control animal as well as from all vacci-nated swine.

On postmortem examination only the nonvaccinated control and one of the vaccinated swine showed petechiae on the kidney. No other pathological changes were ob-served macroscopically. Samples of spleen tissue were examined for CSFV in cocultivation as well as in diag-nostic RT-PCR described by Ridpath et al . (29). CSFV could be detected in the spleens of the nonvaccinated as well as all vaccinated animals in both assays. Vaccina-tion with the rNS3 protein did not affect the clinical outcome of lethal CSF infection despite two booster ap-plications with adjuvant, although virus-specific non-neutralizing antibodies and IFN-?-secreting cells had been induced.

To determine any beneficial effect of the NS3 subunit,Rau et al . (27) analyzed the coadministration of NS3 with the E2 subunit, a known inducer of protective immunity against CSFV when administered two or three times (4).Comparable to their results showing no beneficial effect,we can conclude that immune reactions of the cellular and humoral arms of the immune system against the NS3protein cannot impair CSFV virulence.

In the present study the immunogenic and especially protective properties of the NS3 protein as a single CSFV subunit were tested under lethal challenge conditions in swine. Although CSFV-specific antibody formation as well as IFN-?-secreting cells were induced by the vac-cine no protection was observed. These findings once more show the importance of neutralizing antibodies for protective immunity against CSF. Only a little is known about the effects of T cells in Pestivirus infection and protection from disease. For BVDV the prominent im-portance of CD4?helper T cells was shown (17). These cells were described as helper T type 2 (Th2) cells se-creting especially B cell-stimulatory cytokines (28). Here IFN-?is secreted mostly by CD8?cells (28), but de-pletion of CD8?cells in opposite to depletion of CD4?cells does not influence viremia in challenged animals

(17). Although virus-specific, MHC-I-restricted cytotox-icity has been reported to be effective against CSFV-in-fected target cells in vitro (2,24,26), for CSF develop-ment the passive transfer of CD2?cells from immune to IMMUNITY AGAINST NS3 PROTEIN OF CSFV naive inbred pigs was shown to be ineffective in con-trolling CSFV challenge infection, whereas transfer of immune sera protected the naive animals (26). The in-ability of CSFV-specific T cells to protect animals from CSFV infection might be explained by the immunosup-pressive and escape strategies of the virus. After infec-tion, especially with highly virulent strains such as the CSFV strain Eystrup used here, lymphocytes and espe-cially ??-TCR ?T cells are severely diminished (33). As causative agents for leukocyte apoptosis soluble factors such as viral glycoprotein E rns (6) or CSFV-induced TNF-?(9) are discussed. In particular, cells bearing an activated phenotype are reported to undergo apoptosis,probably due to the expression of Fas on their surface (32). It can be speculated that induced T cells are more likely to be killed instead of controlling virus replication.An indication for this hypothesis might be the reduced number of virus-specific IFN-?-secreting cells observed after challenge infection (Fig. 4). In opposite to these findings, partial protection against BVDV infection due to NS3 subunit vaccine was reported (39). This discrep-ancy might be explained as resulting from the severe im-munosuppression mediated by highly virulent CSFV strains (e.g., Eystrup) in contrast to the generally non-lethal BVDV genotype I strains.In synergy with neutralizing antibodies the cell-medi-ated immune response seems to be beneficial especially for the recovery of diseased animals (34). However, the characterization and beneficial role of NS3-induced im-mune mechanisms remain to be determined. As shown from many studies, neutralizing antibodies play a pivotal role in protection of pigs from lethal CSFV challenge (35). It can be speculated that the presence of serum neu-tralizing antibodies avoids virus spread and systemic replication and may be a key factor in the control of virus-induced immunosuppression. Cell-mediated immune re-sponse solely induced by the NS3 subunit of CSFV is not sufficient to control virus replication and virulence.ACKNOWLEDGMENT The authors thank Elke Rufer for excellent technical assistance. This work was funded by the European Union project QLK2-CT-2001-01346.REFERENCES 1.Aoki H, Sakoda Y, Nakamura S, Suzuki S, and Fukusho A: Cytopathogenicity of classical swine fever viruses that do not show the exaltation of Newcastle disease virus is associated with accumulation of NS3 in serum-free cul-

tured cell lines. J Vet Med Sci 2004;66:161–167.491

2.Armengol, E., Wiesmuller KH, Wienhold D, Büttner M,

Pfaff E, Jung G, and Saalmüller A: Identification of T-cell epitopes in the structural and non-structural proteins of classical swine fever virus. J Gen Virol 2002;83:551–560.

3.Bolin SR, and Ridpath JF: Specificity of neutralizing and

precipitating antibodies induced in healthy calves by mono-valent modified-live bovine viral diarrhea virus vaccines.

Am J Vet Res 1989;50:817–821.

4.Bouma A, de Smit AJ, de Kluijver EP, Terpstra C, and

Moormann RJ: Efficacy and stability of a subunit vaccine based on glycoprotein E2 of classical swine fever virus.

Vet Microbiol 1999;66:101–114.

5.Brown L M, Papa RA, Frost MJ, Mackintosh SG, Gu X,

Dixon RJ, and Shannon AD: A single amino acid is criti-cal for the expression of B-cell epitopes on the helicase do-main of the Pestivirus NS3 protein. Virus Res 2002;84: 111–124.

6.Bruschke CJ, Hulst MM, Moormann RJ, van Rijn PA, and

van Oirschot JT: Glycoprotein E rns of pestiviruses induces apoptosis in lymphocytes of several species. J Virol 1997;

71:6692–6696.

7.Buettner M, Czerny CP, K.Wertz, L ehner KH, and Kaaden

OR: Interferon induction in peripheral blood mononuclear leukocytes (PBML) of man and farm animals by poxvirus vector candidates and some poxvirus constructs. Vet Im-munol Immunopathol 1995;146:179–184.

8.Ceppi M, de Bruin MG, Seuberlich T, Balmelli C, Pascolo

S, Ruggli N, Wienhold D, Tratschin JD, McCullough KC, and Summerfield A: Identification of classical swine fever virus protein E2 as a target for cytotoxic T cells by using mRNA-transfected antigen-presenting cells. J Gen Virol 2005;86:2525–2534.

9.Choi C, Hwang KK, and Chae C: Classical swine fever

virus induces tumor necrosis factor-?and lymphocyte apoptosis. Arch Virol 2004;149:875–889.

10.Chomczynski P, and Sacchi N: Single-step method of RNA

isolation by acid guanidinium thiocyanate–phenol–chloro-form extraction. Anal Biochem 1987;162:156–159.

11.Collen T, Carr V, Parsons K, Charleston B, and Morrison

WI: Analysis of the repertoire of cattle CD4?T cells re-active with bovine viral diarrhoea virus. Vet Immunol Im-munopathol 2002;87:235–238.

12.Collen T, and Morrison WI: CD4?T-cell responses to

bovine viral diarrhoea virus in cattle. Virus Res 2000;67: 67–80.

13.Corapi WV, Donis RO, and Dubovi EJ: Characterization

of a panel of monoclonal antibodies and their use in the study of the antigenic diversity of bovine viral diarrhea virus. Am J Vet Res 1990;51:1388–1394.

14.Devereux J, Haeberli P, and Smithies O: A comprehensive

set of sequence analysis programs for the VAX. Nucleic Acids Res 1984;12:387–395.

VOIGT ET AL.

15.Elahi SM, Shen SH, Harpin S, Talbot BG, and Elazhary

Y: Investigation of the immunological properties of the bovine viral diarrhea virus protein NS3 expressed by an adenovirus vector in mice. Arch Virol 1999;144:1057–1070.

16.Grassmann CW, Isken O, and Behrens SE: Assignment of

the multifunctional NS3 protein of bovine viral diarrhea virus during RNA replication: An in vivo and in vitro study.

J Virol 1999;73:9196–9205.

17.Howard CJ, Clarke MC, Sopp P, and Brownlie J: Immu-

nity to bovine virus diarrhoea virus in calves: The role of different T-cell subpopulations analysed by specific deple-tion in vivo with monoclonal antibodies. Vet Immunol Im-munopathol 1992;32:303–314.

18.Kramps JA, van Maanen C, van de Wetering G, Stienstra

G, Quak S, Brinkhof J, Ronsholt L, and Nylin B: A sim-ple, rapid and reliable enzyme-linked immunosorbent assay for the detection of bovine virus diarrhoea virus (BVDV) specific antibodies in cattle serum, plasma and bulk milk.

Vet Microbiol 1999;64:135–144.

19.L aemmli UK: Cleavage of structural proteins during the

assembly of the head of bacteriophage T4. Nature 1970;

227:680–685.

20.Malmquist WA, and Hay D: Hemadsorption and cytopathic

effect produced by African swine fever virus in swine bone marrow and buffy coat cultures. Am J Vet Res 1960;21: 104–108.

21.McClurkin AW, and Norman JO: Studies on transmissible

gastroenteriris of swine. II. Selected characteristics of a cy-topathogenic virus common to five isolates from transmis-sible gastroenteritis. Can J Comp Med 1966;30:190–198.

22.Meyers G, Saalmüller A, and Büttner M: Mutations abro-

gating the RNase activity in glycoprotein E rns of the Pes-tivirus classical swine fever virus lead to virus attenuation.

J Virol 1999;73:10224–10235.

23.Moennig V, Floegel-Niesmann G, and Greiser-Wilke I:

Clinical signs and epidemiology of classical swine fever:

A review of new knowledge. Vet J 2003;165:11–20.

24.Pauly T, Elbers K, K?nig M, L engsfeld T, Saalmüller A,

and Thiel HJ: Classical swine fever virus-specific cytotoxic T lymphocytes and identification of a T cell epitope. J Gen Virol 1995;76 :3039–3049.

25.Peters W, Greiser-Wilke I, Moennig V, and L iess B: Pre-

liminary serological characterization of bovine viral diar-rhoea virus strains using monoclonal antibodies. Vet Mi-crobiol 1986;12:195–200.

26.Piriou L, Chevallier S, Hutet E, Charley B, L e Potier MF,

and Albina E: Humoral and cell-mediated immune re-sponses of d/d histocompatible pigs against classical swine fever (CSF) virus.Vet Res 2003;34:389–404.

27.Rau H, Revets H, Balmelli C, McCullough KC, and Sum-

merfield A: Immunological properties of recombinant clas-

492

sical swine fever virus NS3 protein in vitro and in vivo .Vet Res 2006;37:155–168.

28.Rhodes SG, Cocksedge JM, Collins RA, and Morrison WI:

Differential cytokine responses of CD4?and CD8?T cells in response to bovine viral diarrhoea virus in cattle. J Gen Virol 1999;80:1673–1679.

29.Ridpath JF, Bolin SR, and Dubovi EJ: Segregation of

bovine viral diarrhea virus into genotypes. Virology 1994;205:66–74.

30.Sanger F, Nicklen S, and Coulson AR: DNA sequencing

with chain termination inhibitors. Proc Natl Acad Sci USA 1977;74:5463–5467.

31.St-L ouis MC, Massie B, and Archambault D: The bovine

viral diarrhea virus (BVDV) NS3 protein, when expressed alone in mammalian cells, induces apoptosis which corre-lates with caspase-8 and caspase-9 activation. Vet Res 2005;36:213–227.

32.Summerfield A, Knotig SM, and McCullough KC: L ym-

phocyte apoptosis during classical swine fever: Implication of activation-induced cell death. J Virol 1998;72:1853–1861.

33.Summerfield A, McNeilly F, Walker I, G Allan, Knoetig

SM, and McCullough KC: Depletion of CD4?and CD8high ?T-cells before the onset of viraemia during classical swine fever. Vet Immunol Immunopathol 2001;78:3–19.

34.Suradhat S, Intrakamhaeng M, and Damrongwatanapokin

S: The correlation of virus-specific interferon-( production and protection against classical swine fever virus infection.Vet Immunol Immunopathol 2001;83:177–189.IMMUNITY AGAINST NS3 PROTEIN OF CSFV 35.Terpstra C, and Wensvoort G: The protective value of vac-cine-induced neutralising antibody titres in swine fever. Vet Microbiol 1988;16:123–128.36.Thiel HJ, Stark R, Weiland E, Rümenapf T, and Meyers G: Hog cholera virus: Molecular composition of virions from a pestivirus. J Virol 1991;65:4705–4712.37.van Rijn PA, Bossers A, Wensvoort GR, and Moormann JM: Classical swine fever virus (CSFV) envelope glyco-protein E2 containing one structural antigenic unit protects pigs from lethal CSFV challenge. J Gen Virol 1996;77:2737–2745.38.Wanke R, and Briiuer H: Spontane Melanome in einer Son-derlinie des Münchener Miniatureschweines Troll. Ber Muench Tieraertzl Wochenschr 1986;99:69.39.Young NJ, Thomas CJ, Thompson I, Collins ME, and Brownlie J: Immune response to non structural protein 3(NS3) of bovine viral diarrhoea virus (BVDV) in NS3 DNA vaccinated and naturally infected cattle. Prev Vet Med 2005;72:115–120.Address reprint requests to:Dr. Heiner Voigt Institute for Immunology Friedrich Loeffler Institute Federal Research Institute for Animal Health Tuebingen, Germany E-mail:Heiner.Voigt@fli.bund.de 493

材料期刊排名及影响因子

【自然科学】材料期刊排名及影响因子 Nature 自然31.434 Science 科学28.103 Nature Material 自然(材料)23.132 Nature Nanotechnology 自然(纳米技术)20.571 Progress in Materials Science 材料科学进展18.132 Nature Physics 自然(物理)16.821 Progress in Polymer Science 聚合物科学进展16.819 Surface Science Reports 表面科学报告12.808 Materials Science & Engineering R-reports 材料科学与工程报告12.619 Angewandte Chemie-International Edition 应用化学国际版10.879 Nano Letters 纳米快报10.371 Advanced Materials 先进材料8.191 Journal of the American Chemical Society 美国化学会志8.091 Annual Review of Materials Research 材料研究年度评论7.947 Physical Review Letters 物理评论快报7.180 Advanced Functional Materials 先进功能材料 6.808 Advances in Polymer Science 聚合物科学发展 6.802 Biomaterials 生物材料 6.646 Small 微观? 6.525 Progress in Surface Science 表面科学进展 5.429 Chemical Communications 化学通信 5.34 MRS Bulletin 材料研究学会(美国)公 告 5.290 Chemistry of Materials 材料化学 5.046 Advances in Catalysis 先进催化 4.812 Journal of Materials Chemistry 材料化学杂志 4.646 Carbon 碳 4.373 Crystal Growth & Design 晶体生长与设计 4.215 Electrochemistry Communications 电化学通讯 4.194 The Journal of Physical Chemistry B 物理化学杂志,B辑:材 料、表面、界面与生物物 理 4.189 Inorganic Chemistry 有机化学 4.147 Langmuir 朗缪尔 4.097 Physical Chemistry Chemical Physics 物理化学 4.064 International Journal of Plasticity 塑性国际杂志 3.875 Acta Materialia 材料学报 3.729 Applied Physics Letters 应用物理快报 3.726 Journal of power sources 电源技术 3.477 Journal of the Mechanics and Physics of Solids 固体力学与固体物理学 杂志 3.467

国内科技期刊影响因子排名

排名代码期刊名称总被引频次影响因子 1 G190 世界华人消化杂志5249 2.924 2 G275 WORLD J OF GASTROENTEROLOG 1908 2.633 3 G147 中华结核和呼吸杂志2333 1.54 4 G654 护理研究1074 1.506 5 G170 中华心血管病杂志2022 1.444 6 G231 中华肝脏病杂志1131 1.44 7 G136 中华传染病杂志893 1.435 8 G152 中华流行病学杂志1400 1.293 9 G174 中华检验医学杂志1121 1.278 10 G138 中华儿科杂志2396 1.252 11 G272 中国实用外科杂志2499 1.229

12 G143 中华骨科杂志2821 1.184 13 G168 中华消化杂志1448 1.174 14 G194 中华医院感染学杂志1849 1.169 15 G591 中华医院管理杂志1420 1.152 16 G146 中华护理杂志2441 1.125 17 G900 中华烧伤杂志431 1.105 18 G156 中华内科杂志2193 1.092 19 G197 中华神经科杂志1616 1.044 20 G316 解放军护理杂志827 1.023 21 G161 中华肾脏病杂志845 1.022 22 G160 中华神经外科杂志1387 1.017 23 G116 中国危重病急救医学1378 1.017

24 G137 中华创伤杂志1252 1.011 25 G249 骨与关节损伤杂志734 1.004 26 G305 中国实用护理杂志1533 0.967 27 G299 中国临床康复3306 0.931 28 G140 中华放射学杂志2494 0.926 29 G142 中华妇产科杂志1982 0.902 30 G159 中华精神科杂志421 0.881 31 G192 中国脊柱脊髓杂志712 0.863 32 G155 中华内分泌代谢杂志890 0.858 33 G179 中华肿瘤杂志1427 0.84 34 G176 中华医学杂志2719 0.827 35 G985 中国艾滋病性病393 0.798

2015年SCI影响因子报告

汤森路透:2015年SCI影响因子报告!(TOP1000) 6月18日,备受关注的汤森路透《SCI期刊分析报告》新鲜出炉。该报告涵盖了来自82个国家的237个大类的11149本期刊。本年度有272本杂志第一次被收录;与去年相比,53%的杂志影响因子增加。Ca-Cancer J Clin、NEJM以及CHEM REV再次包揽了榜单的前三甲,影响因子分别为115.84、55.873、46.568。 与去年相比,排在前十名的杂志中出现两位新成员,一个是排在第5位的NATURE REVIEWS DRUG DISCOVERY,影响因子41.908,去年该杂志排在第11位,影响因子为37.231;另一个是排在第9位的NATURE REVIEWS MOLECULAR CELL BIOLOGY,影响因子为37.806,去年排在第12位,影响因子为36.458。 备受瞩目的《柳叶刀》杂志今年排到了第4位,影响因子45.217,较去年上升了4个名次(去年影响因子39.207)。Nature、Science、Cell分别排在第7、16和20位,对应的影响因子为41.456、33.611、32.242。与去年相比,Nature下降了2个名次、Science上升了1个名次、Cell下降了4个名次。 此外,今年Nature杂志有两个子刊排在了主刊的前面,除了上述前十的新成员NATURE REVIEWS DRUG DISCOVERY,还有排在第6的NATURE BIOTECHNOLOGY,影响因子为41.514,该杂志去年排在榜单的第9位,影响因子为39.08。 影响因子在一定程度上是一本杂志质量高低的标准之一,并且能够带来科学以外太多的东西:教职、基金申请、学术影响力等。尽管很多学者批评过杂志影响因子,但是取消或者改革不是短时间就能实现的事情。以下列举排在前1000位的杂志最新的影响因子: Full Journal Title Rank Total Cites Journal Impact Factor CA-A CANCER JOURNAL FOR CLINICIANS 1 18,594 115.84 NEW ENGLAND JOURNAL OF MEDICINE 2 268,652 55.873 CHEMICAL REVIEWS 3 137,600 46.568 LANCET 4 185,361 45.217 NATURE REVIEWS DRUG DISCOVERY 5 23,811 41.908 NATURE BIOTECHNOLOGY 6 45,986 41.514 NATURE 7 617,363 41.456 Annual Review of Immunology 8 16,750 39.327 NATURE REVIEWS MOLECULAR CELL BIOLOGY 9 35,928 37.806 NATURE REVIEWS CANCER 10 39,868 37.4 NATURE REVIEWS GENETICS 11 29,388 36.978 NATURE MATERIALS 12 64,622 36.503

期刊影响因子的“含金量

这一业务包括了世界知名的科技文献检索系统“科学引文索引”(简称SCI)以及定期发布的《期刊引证报告》其中的期刊影响因子是一本学术期刊影响力的重要参考。这是一个以标准衡 量的世界。既然吃饭都有米其林餐厅评级作为参考,更何况严谨的学术科研成果…… 期刊 影响因子的“含金量” ■今日视点期刊影响因子长久以来被学术界视为一个重要的科研水平 参考指标。在一本影响因子高的期刊发表论文,科研人员的科研能力和成果也更容易获得认同。然而,部分科学家已对这一指标能否真正反映单篇论文乃至作者学术水平提出质疑,加 上每年发布这一指标的汤森路透公司在本月早些时候宣布把相关业务转售给两家投资公司, 影响因子未来能否继续维持其“影响力”令人存疑。广泛影响根据汤森路透发布的信息,该 公司已同意将旗下知识产权与科学业务作价35.5亿美元出售给私募股权公司Onex和霸菱亚 洲投资。这一业务包括了世界知名的科技文献检索系统“科学引文索引”(简称SCI)以及定 期发布的《期刊引证报告》,其中的期刊影响因子是一本学术期刊影响力的重要参考。新 华社记者就此事咨询了汤森路透,该公司一位发言人说,这一交易预计今年晚些时候完成, 在此之前该公司还会继续拥有并运营这项业务,“我们将在不影响这项业务开展和质量的前提下完成交易”。帝国理工学院教授史蒂芬·柯里接受记者采访时说,他对汤森路透用来计算期 刊影响因子所使用的数据是否可靠本来就有一定顾虑,“我不确定汤森路透的这次交易是否产生影响,但这项业务的接盘方如果未来能够保证这方面的透明度也是一件好事”。影响因子 的计算方法通常是以某一刊物在前两年发表的论文在当年被引用的总次数,除以该刊物前两 年发表论文的总数,得出该刊物当年的影响因子数值。理论上,一种刊物的影响因子越高, 影响力越大,所发表论文传播范围也更广。鉴于全球每个科研领域中都有大量专业期刊,如 果有一个可靠的指标能告诉研究人员哪个期刊影响力更大,他们就能更高效地选择在一个高 质量平台上发表科研成果。但这又引申出一个现象,即许多科研机构、高校甚至学术同行越 来越依赖影响因子来评判一篇论文甚至作者本身的科研水平,进而影响他们的职称评定和获 取科研项目资助等机会。业内争议这种过度依赖影响因子的做法引起不少业内争议。来自 帝国理工学院、皇家学会等科研机构学者以及《自然》《科学》等期刊出版方的高级编辑, 合作撰写了一份报告分析其中弊端,并提出相关改进方案。这篇报告已在近期被分享到一个 公开的预印本服务器上供同行审阅。报告分析了包括《自然》《科学》在内11份学术期刊 在2013年至2014年间所刊发论文被引用次数的分布情况,这些数据也被用来计算2015年相关刊物的影响因子。报告作者发现,多数论文被引用次数都达不到发表它们的期刊的影响 因子数值水平,比如《自然》在这期间所刊发论文中的74.8%在2015年获得的引用次数就低于这本期刊当年影响因子所显示的水平,《科学》的情况也类似。报告说,这主要是因为这 些期刊中有一小部分论文被引用次数非常高,导致影响因子在均值计算过程中出现偏差。 报告详细描述了如何更准确地计算出期刊所刊发论文被引用次数的分布状况,并呼吁各家期 刊将这些基础数据公布出来,减少学术界对影响因子的过度依赖。史蒂芬·柯里是报告作者 之一,他告诉记者:“我们想强调期刊影响因子的局限性,让那些评估科研成果水平的人将目光聚焦在论文本身。”他还鼓励大学等科研机构签署《关于研究评价的旧金山宣言》,这一宣言就指出学术界不应该过度依赖影响因子。他说,依赖影响因子来评价一个研究人员以及 他所撰写论文的科研水平是一个“危险的倾向”,这会导致很多问题,包括增加学术造假动机,鼓励研究人员跟风追逐抓眼球的科研成果以及抑制创新等。未来趋势目前,部分科研期刊 出版方已在这方面做出改变。就在汤森路透宣布出售知识产权与科学业务没多久,美国微生 物学会就公开表示,将不会在该协会期刊网站上公布影响因子。英国皇家学会以及欧洲分子

中国大陆中文期刊影响因子总排名

中国大陆中文期刊影响因子总排名排名代码期刊名称影响因子总被引频次 1R039电网技术2.857 5080FALSEFALSETRUE 2E309岩石学报2.649 2279FALSEFALSETRUE 3A113实验技术与管理2.587 1393FALSEFALSETRUE 4R040中国电机工程学报2.537 8127FALSEFALSETRUE 5E124中国沙漠2.455 2504FALSEFALSETRUE 6X031中国公路学报2.444 1239FALSEFALSETRUE 7H046PEDOSPHERE2.331 734FALSEFALSETRUE 8E010地质学报2.326 1651FALSEFALSETRUE 9E305地理学报2.302 3164FALSEFALSETRUE 10E139地质科学2.212 2187FALSEFALSETRUE 11A108中国科学D2.062 2760FALSEFALSETRUE 12A115实验室研究与探索2.026 1366FALSEFALSETRUE 13E146大地构造与成矿学1.906 548FALSEFALSETRUE 14G146中华护理杂志1.861 5805FALSEFALSETRUE 15H012土壤学报1.840 2670FALSEFALSETRUE 16E005高原气象1.715 1749FALSEFALSETRUE 17M102新型炭材料1.714 705FALSEFALSETRUE 18Z012自然资源学报1.675 1926FALSEFALSETRUE 19G138中华儿科杂志1.652 3413FALSEFALSETRUE 20F049生物多样性1.639 1077FALSEFALSETRUE 21E153地球物理学报1.634 2518FALSEFALSETRUE 22E008海洋与湖沼1.631 1574FALSEFALSETRUE 23F009植物生态学报1.590 2636FALSEFALSETRUE 24E654中国地质1.576 658FALSEFALSETRUE 25E001气象学报1.559 1935FALSEFALSETRUE 26E310地理研究1.556 1499FALSEFALSETRUE 27L031石油勘探与开发1.512 2205FALSEFALSETRUE 28E009地质论评1.495 1512FALSEFALSETRUE 29X672交通运输工程学报1.491 618TRUETRUETRUE

各大期刊影响因子

各学科SCI影响因子介绍:只做参考TOP JOURNAL 1、SCI 期刊分层方案。 2、超一流期刊影响因子 NA TURE 30.979 SCIENCE 29.162 3、一级学科顶级期刊综合版目录 a. NATURE 子系列(约26 种) 期刊名称影响因子(IF) NAT REV MOL CELL BIO 35.041 NAT REV CANCER 33.954 NAT MED 30.550 NAT IMMUNOL 28.180 NAT REV NEUROSCI 27.007 NAT REV IMMUNOL 26.957 NAT GENET 26.494 NAT REV GENET 25.664 NAT CELL BIOL 20.268 NAT REV DRUG DISCOV 17.732 NAT BIOTECHNOL 17.721 NAT NEUROSCI 15.141 NAT STRUCT BIOL 11.579 NAT MA TER 10.778 NAT REV MICROBIOL NAT METHODS NAT CHEM BIO NAT PHYSICS NCP CARDIOV ASCULAR MEDICINE NCP GASTROENTEROLOGY & HEPATOLOGY NCP ONCOLOGY NCP UROLOGY NCP ENDOCRINOLOGY & METABOLISM NCP NEPHROLOGY NCP NEUROLOGY NCP RHEMATOLOGY 3 b. 影响因子大于20 的期刊(根据03 年影响因子,去除SCIENCE、NATURE、NATURE 系列,则为13 种) 期刊名称影响因子(IF) ANNU REV IMMUNOL 52.28 ANNU REV BIOCHEM 37.65 PHYSIOL REV 36.83 NEW ENGL J MED 34.83 CA-CANCER J CLIN 33.06

期刊及影响因子

2010年SCI收录主要刊登植物化学的期刊及影响因子 2010,SCI收录,植物化学,期刊, 1. Phytochemistry(植物化学)Impact Factor: 3.104 (所标注IF皆为2009年的)The International Journal of Plant Chemistry, Plant Biochemistry and Molecular Biology. ISSN: 0031-9422 https://www.wendangku.net/doc/518757886.html,/wps/find ... /authorinstructions 2. Phytomedicine(植物医学),Impact Factor: 2.174 International Journal of Phytotherapy and Phytopharmacology ISSN: 0944-7113 https://www.wendangku.net/doc/518757886.html,/wps/find ... /authorinstructions 3. Phytochemistry Letters(植物化学快报),Impact Factor: 0.957 ISSN: 1874-3900 https://www.wendangku.net/doc/518757886.html,/wps/find ... ription#description 4. Fitoterapia(药用植物),Impact Factor: 1.363 The Journal for the Study of Medicinal Plants ISSN: 0367-326X 创刊年:1934 出版地:荷兰 1. Science Citation Index Expanded https://www.wendangku.net/doc/518757886.html,/wps/find ... ription#description 5. Phytochemical Analysisis(植物化学分析), Impact Factor: 1.744 phytochemistry, natural product, herbal, plant biochemistry, plant extract, plant product https://www.wendangku.net/doc/518757886.html,/journal/10.1002/(ISSN)1099-1565/ 6. Chemistry & Biodiversity(化学与生物多样性), impact factor: 1.926 biologically relevant chemistry https://www.wendangku.net/doc/518757886.html,/journal/10.1002/(ISSN)1612-1880 7. Planta Medica(植物药), Impact Factor:2.037 Journal of Medicinal Plant and Natural Product Research ISSN 0032-0943 http://www.thieme.de/fz/plantamedica-imprint.html

简评新出的材料类期刊影响因子

1. Nature 系列:Nature 自带贵族基因,Nature Energy 第一年就坐上了research 类文章的头把交椅,只能说有个好爹真好啊。Nature review Materials 同样影响因子超高,不过综述类期刊看影响因子本身意义也不大,也就看个热闹吧。Nature Commun.的影响因子稍显颓势,但仍然是大牛们才能灌的期刊,有些期刊真不是你有钱就搞定的。预计NC影响因子很难有大的突破了,基本就在10-13左右波动了。另外Nature最近也出了Communications XXX 如Commun. Chemistry 等,定位在NC和Scientfic reports 之间,Nature编辑团队加持,大概是ChemComm的水平,目前文章质量不如ChemComm,但是长远看影响因子也能到8左右,可以投资。 2. Wiley系列:AEM一越和正刊AM平起平坐了,再运作一下A EM估计称之为AM子刊都不合适了。AFM影响因子小幅增长,只能说中规中矩,反倒是.的影响因子一下到了,可以说AS这个期刊的创建现在最受影响的应该是AFM了,预计AS影响因子将会在明年反超AFM,AFM的地位稍显尴尬。Small的影响因子也突飞猛进到了以上,值得期待,AFM的地位更尴尬了。Wiley其他子刊影响因子都基本在7以下,基本可以看做是AM系列高端期刊的回收站,但这些回收站的地位还是高于其他几个数据库回收站的地位的,属于专业领域较为受认可的高质量期刊,算不上顶级期刊,期待他们成为Small这样的基本可以歇歇了。化学类期

刊Wiley表现平平,基本没有什么突破,预计将和ACS的差距逐步拉大,Wiley需要有所改变。 3. ACS系列:JACS地位无需用影响因子来证明,不在讨论之列。ACS Nano的势头依旧良好,其他老期刊表现中规中矩,ACS Ca tal势头较猛,强势甩开曾经的老大哥J. Catal. ACS AMI比较稳定达到了8,不过收刊量太大,认可度现在不高,搞了分刊,有效与否有待观察。ACS Energy Letters首个影响因子破10,完全是意料之中,不过喜欢偏理论和机理,在能源类期刊中走了一条不寻常的路。ACS Sustainable Chem. Eng.收文量大了之后影响因子小幅增加,预计影响力将更进一步扩大,超越ChemSusChem指日可待。ACS Central Science 当年吹得太猛,本来是要和Nature C hemistry PK的,但几年了我也未能有幸在茫茫文章中读到该期刊的论文,影响力是个大问题。ACS Omega 和Scientific Reports 一样,都是不要求创新性的OA期刊,基本所有稿件都来自于AC S AMI等期刊的转投,另一个Scientfic reports无疑了。 4. RSC系列:EES影响因子常规操作,Mater. Horizons势头良好,抢不了AM的稿源,但是可以抢抢AFM的稿源,建议大家投AFM的可以考虑这个期刊。Nanoscale Horizons首个影响因子没有破10 不过8-9已经超过我之前的预期了,目测要抢Material H orizons的风头,很有可能成为RSC除了EES的首选,JMCA 了,

化学、期刊影响因子

化学和药学类期刊影响因子一览 影响因子(Impact Factor,IF)是美国ISI(科学信息研究所)的JCR(期刊引证报告)中的一项数据。该指标是相对统计值,可克服大小期刊由于载文量不同所带来的偏差。一般来说,影响因子越大,其学术影响力也越大。 Chemistry 次序期刊名影响因子 1 CHEMICAL REVIEWS 20.220 2 ACCOUNTS OF CHEMICAL RESEARCH 12.880 3 ANGEWANDTE CHEMIE-INTERNATIONAL EDITION 8.029 4 JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA 6.229 5 CHEMICAL SOCIETY REVIEWS 5.936 6 JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 5.725 7 CHEMISTRY-A EUROPEAN JOURNAL 5.153 8 TOPICS IN CURRENT CHEMISTRY 4.397 9 CHEMICAL COMMUNICATIONS 3.407 10 CHEMICAL RESEARCH IN TOXICOLOGY 3.336 11 JOURNAL OF COMPUTATIONAL CHEMISTRY 2.861 12 JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES 2.609 13 PHARMACEUTICAL RESEARCH 2.530 14 HELVETICA CHIMICA ACTA 2.463 15 BIOCONJUGATE CHEMISTRY 2.269 16 ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2.238 17 MARINE CHEMISTRY 1.967 18 JOURNAL OF CONTROLLED RELEASE 1.894 19 NEW JOURNAL OF CHEMISTRY 1.797 20 JOURNAL OF PHARMACEUTICAL SCIENCES 1.764 21 PURE AND APPLIED CHEMISTRY 1.677 22 JOURNAL OF NATURAL PRODUCTS 1.641 23 COMPUTERS & CHEMISTRY 1.566 24 CHEMISTRY LETTERS 1.546 25 SUPRAMOLECULAR CHEMISTRY 1.404 26 ENANTIOMER 1.388 27 REVIEWS ON HETEROATOM CHEMISTRY 1.349 28 BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 1.338 29 ACTA CHEMICA SCANDINAVICA 1.257 30 CHEMICO-BIOLOGICAL INTERACTIONS 1.197 31 INFLAMMATION RESEARCH 1.141 32 CHEMICAL & PHARMACEUTICAL BULLETIN 1.135 33 USPEKHI KHIMII 1.099 34 CANADIAN JOURNAL OF CHEMISTRY-REVUE CANADIENNE DE CHIMIE 1.092 35 CHIMIA 1.058

期刊影响因子的解说

期刊影响因子的解说 影响因子(Impact Factor,IF)是美国ISI(科学信息研究所)的JCR(期刊引证报告)中的一项数据。即某期刊前两年发表的 论文在统计当年的被引用总次数除以该期刊在前两年内发表的论文总数。这是一个国际上通行的期刊评价指标。 影响因子(ImPact Factor)是1972年由E·加菲尔德提出的,现已成为 国际上通用的期刊评价指标,它不仅是一种测度期刊有用性和显示度的指标,而且也是测度期刊的学术水平,乃至论文质量的重要指标影响因子是一个相 对统计量. 简介 例如,某期刊2005年影响因子的计算 本刊2004年的文章在2005年的被引次数: 48 ; 本刊2004年的发文量: 187 本刊2003年的文章在2005年的被引次数: 128 ; 本刊2003年的发文量: 154 本刊2003-2004的文章在2005年的被引次数总计: 48+128=176 本刊2003-2004年的发文量总计: 187+154=341 本刊2005年的影响因子:0.5161 = 176÷341 意义 该指标是相对统计值,可克服大小期刊由于载文量不同所带来的偏差。 一般来说,影响因子越大,其学术影响力也越大。 影响因子(Impact factor,缩写IF)是指某一期刊的文章在特定年份 或时期被引用的频率,是衡量学术期刊影响力的一个重要指标,由美国科学 情报研究所(ISI)创始人尤金·加菲得(Eugene Garfield)在1960年代创立,其后为文献计量学的发展带来了一系列重大革新。 自1975年以来,每年定期发布于“期刊引用报告”(Journal Citation Reports)。 计算方法 影响因子是以年为单位进行计算的。以1992年的某一期刊影响因子为例,IF(1992年) = A / B 其中, A = 该期刊1990年至1991年所有文章在1992年中被引用的次数; B = 该期刊1990年至1991年所有文章数。 影响 许多著名学术期刊会在其网站上注明期刊的影响因子,以表明在对应学 科的影响力。如,美国化学会志、Oncogene等。 中国大陆各大高校(如清华大学、南开大学、吉林大学、哈尔滨工业大学、浙江大学、上海大学)都以学术期刊的影响因子作为评判研究生毕业的 主要标准。 影响因子的产生 在1998年,美国科技信息研究所所长尤金·加菲尔德(Eugene Garfield)博士在《科学家》(The Scientists)杂志中叙述了影响因子的产生过程。说 明他最初提出影响因子的目的是为《现刊目次,Current Contents》评估和

期刊影响因子

环境污染与防治:复合影响因子:1.163 综合影响因子:0.676 水资源保护:复合影响因子:1.177 综合影响因子:0.716 中国环境监测:复合影响因子:0.972 综合影响因子:0.753 工业水处理:复合影响因子:0.784 综合影响因子:0.497 水处理技术:复合影响因子:1.132 综合影响因子:0.686 给水排水:复合影响因子:0.536 综合影响因子:0.337 净水技术:复合影响因子:0.711 综合影响因子:0.522 四川环境:复合影响因子:0.595 综合影响因子:0.347 环境工程学报:复合影响因子:1.159 综合影响因子:0.718 清华大学学报(自然科学版):复合影响因子:0.916 综合影响因子:0.494环境与健康杂志:复合影响因子:0.545 综合影响因子:0.418 生态环境 生态环境学报:复合影响因子:1.715 综合影响因子:1.094 生态学杂志:复合影响因子:1.804 综合影响因子:1.201 化学进展:复合影响因子:1.498 综合影响因子:0.908 环境保护科学:复合影响因子:0.743 综合影响因子:0.433 同济大学学报(自然科学版):复合影响因子:1.019 综合影响因子:0.586中国给水排水:复合影响因子:0.923 综合影响因子:0.609 环境科学:复合影响因子:1.717 综合影响因子:1.159 中国环境科学:复合影响因子:2.349 综合影响因子:1.725 环境科学学报:复合影响因子:1.722 综合影响因子:1.165 环境科学研究:复合影响因子:1.862 综合影响因子:1.273 环境化学:复合影响因子:0.950 综合影响因子:0.673

影响因子5-10所有期刊,

可以直接复制到pubmed的过滤器中哦 "NAT REV ENDOCRINOL "[journal]or"MOL ASPECTS MED "[journal]or"LASER PHYS LETT "[journal]or"MOL ASPECTS MED "[journal]or"J AM CHEM SOC "[journal]or"BLOOD "[journal]or"ADV MICROB PHYSIOL "[journal]or"ADV MICROB PHYSIOL "[journal]or"ANNU REV PHYTOPATHOL "[journal]or"CURR OPIN CHEM BIOL "[journal]or"CURR OPIN CHEM BIOL "[journal]or"NAT PROD REP "[journal]or"P NATL ACAD SCI USA "[journal]or"J AM SOC NEPHROL "[journal]or"CURR BIOL "[journal]or"CURR BIOL "[journal]or"BIOTECHNOL ADV "[journal]or"BIOTECHNOL ADV "[journal]or"ENERG ENVIRON SCI "[journal]or"ENERG ENVIRON SCI "[journal]or"ENERG ENVIRON SCI "[journal]or"LEUKEMIA "[journal]or"LEUKEMIA "[journal]or"DRUG RESIST UPDATE "[journal]or"CURR OPIN IMMUNOL "[journal]or"CIRC RES "[journal]or"CIRC RES "[journal]or"CIRC RES "[journal]or"CRIT REV SOLID STA TE "[journal]or"CRIT REV SOLID STA TE "[journal]or"BRAIN "[journal]or"BRAIN "[journal]or"PROG RETIN EYE RES "[journal]or"ANNU REV NUTR "[journal]or"CURR OPIN STRUC BIOL "[journal]or"CURR OPIN STRUC BIOL "[journal]or"CSH PERSPECT BIOL "[journal]or"BEHA V BRAIN SCI "[journal]or"BEHA V BRAIN SCI "[journal]or"BBA-REV CANCER "[journal]or"BBA-REV CANCER "[journal]or"BBA-REV CANCER "[journal]or"PROG INORG CHEM "[journal]or"ACTA NEUROPATHOL "[journal]or"ACTA NEUROPA THOL "[journal]or"ACTA NEUROPATHOL "[journal]or"CURR OPIN PLANT BIOL "[journal]or"J HEPATOL "[journal]or"HUM REPROD UPDATE "[journal]or"HUM REPROD UPDA TE "[journal]or"EMBO J "[journal]or"EMBO J "[journal]or"CLIN INFECT DIS "[journal]or"CLIN INFECT DIS "[journal]or"TRENDS BIOTECHNOL "[journal]or"PLOS PATHOG "[journal]or"PLOS PA THOG "[journal]or"PLOS PATHOG "[journal]or"FRONT ECOL ENVIRON "[journal]or"FRONT ECOL ENVIRON "[journal]or"ANNU REV CLIN PSYCHO "[journal]or"BIOL REV "[journal]or"BIOL REV "[journal]or"ANNU REV ANAL CHEM "[journal]or"ANNU REV ANAL CHEM "[journal]or"GENOME BIOL "[journal]or"GENOME BIOL "[journal]or"GENOME BIOL "[journal]or"PLANT CELL "[journal]or"PLANT CELL "[journal]or"PROG NEUROBIOL "[journal]or"CELL DEATH DIFFER "[journal]or"CELL DEATH DIFFER "[journal]or"NAT REV CARDIOL "[journal]or"SCHIZOPHRENIA BULL "[journal]or"ANN RHEUM DIS "[journal]or"PLOS GENET "[journal]or"NEUROSCI BIOBEHA V R "[journal]or"PROG SURF SCI "[journal]or"PROG SURF SCI "[journal]or"PHARMACOL THERAPEUT "[journal]or"EUR UROL "[journal]or"ANTIOXID REDOX SIGN "[journal]or"ANTIOXID REDOX SIGN "[journal]or"NAT REV RHEUMATOL "[journal]or"SMALL "[journal]or"SMALL "[journal]or"SMALL "[journal]or"SMALL "[journal]or"NEUROLOGY "[journal]or"DIABETES "[journal]or"BIOL PSYCHIAT "[journal]or"BIOL PSYCHIAT "[journal]or"CAN MED ASSOC J "[journal]or"CAN MED ASSOC J "[journal]or"CELL RES "[journal]or"ADV COLLOID INTERFAC "[journal]or"TRENDS ENDOCRIN MET "[journal]or"NAT REV GASTRO HEPAT "[journal]or"DIABETES CARE "[journal]or"CURR OPIN GENET DEV "[journal]or"CURR OPIN GENET DEV "[journal]or"CURR OPIN COLLOID IN "[journal]or"NAT CLIN PRACT ONCOL "[journal]or"NEUROPSYCHOPHARMACOL "[journal]or"NEUROPSYCHOPHARMACOL "[journal]or"NEUROPSYCHOPHARMACOL "[journal]or"PHYSIOLOGY "[journal]or"CURR OPIN MICROBIOL "[journal]or"TRENDS

医学期刊影响因子排名

NO. 期刊名称名称缩写参考中文名字影响因子 1 CA: A Cancer Journal for Clinicians CA Cancer J Clin 癌 74.575 ↑ 2 New England Journal of Medicine N Engl J Med 新英格兰医学杂志 50.017 ↓ 3 Annual Review of Immunology Annu Rev Immunol 免疫学年评 41.059 ↓ 4 Nature Reviews Molecular Cell Biology Nat Rev Mol Cell Biol 自然评论:分子细胞生物学 35.423 ↑ 5 Physiological Reviews Physiol Rev 生理学评论 35 ↑ 6 JAMA JAMA 美国医学会志 31.718 ↑ 7 Nature Nature 自然 31.434 ↑ 8 Cell Cell 细胞 31.253 ↑ 9 Nature Reviews Cancer Nat Rev Cancer 自然评论:癌症 30.762 ↑ 10 Nature Genetics Nat Genet 自然遗传学 30.259 ↑ 11 Annual Review of Biochemistry Annu Rev Biochem 生物化学年评 30.016 ↓ 12 Nature Reviews Immunology Nat Rev Immunol 自然评论:免疫学 30.006 ↑ 13 Nature Reviews Drug Discovery Nat Rev Drug Discov 自然评论:药物发 现 28.69 ↑ 14 Lancet Lancet 柳叶刀 28.409 ↓ 15 Science Science 科学 28.103 ↑ 16 Nature Medicine Nat Med 自然医学 27.553 ↑ 17 Annual Review of Neuroscience Annu Rev Neurosci 神经科学年评 26.405 ↑ 18 Nature Reviews Neuroscience Nat Rev Neurosci 自然评论:神经科学 25.94 ↑

全球SCI收录材料期刊影响因子排名

全球SCI收录材料期刊影响因子排名 Nature自然31.434 Science科学28.103 Nature Material自然(材料)23.132 Nature Nanotechnology自然(纳米技术)20.571 Progress in Materials Science材料科学进展18.132 Nature Physics自然(物理)16.821 Progress in Polymer Science聚合物科学进展16.819 Surface Science Reports表面科学报告12.808 Materials Science & Engineering R-reports材料科学与工程报告12.619 Angewandte Chemie-International Edition应用化学国际版10.879 Nano Letters纳米快报10.371 Advanced Materials先进材料8.191 Journal of the American Chemical Society美国化学会志8.091 Annual Review of Materials Research材料研究年度评论7.947 Physical Review Letters物理评论快报7.180 Advanced Functional Materials先进功能材料6.808 Advances in Polymer Science聚合物科学发展6.802 Biomaterials生物材料6.646 Small微观?6.525 Progress in Surface Science表面科学进展5.429 Chemical Communications化学通信5.34 MRS Bulletin材料研究学会(美国)公告5.290 Chemistry of Materials材料化学5.046 Advances in Catalysis先进催化4.812 Journal of Materials Chemistry材料化学杂志4.646 Carbon碳4.373 Crystal Growth & Design晶体生长与设计4.215 Electrochemistry Communications电化学通讯4.194 The Journal of Physical Chemistry B物理化学杂志,B辑:材料、表面、界面与生物物理4.189 Inorganic Chemistry无机化学4.147 Langmuir朗缪尔4.097 Physical Chemistry Chemical Physics物理化学4.064 International Journal of Plasticity塑性国际杂志3.875 Acta Materialia材料学报3.729 Applied Physics Letters应用物理快报3.726 Journal of power sources电源技术3.477 Journal of the Mechanics and Physics of Solids固体力学与固体物理学杂志3.467 International Materials Reviews国际材料评论3.462 Nanotechnology纳米技术3.446 Journal of Applied Crystallography应用结晶学3.212 Microscopy and Microanalysis 2.992

相关文档
相关文档 最新文档