文档库 最新最全的文档下载
当前位置:文档库 › 全息图matlab程序

全息图matlab程序

全息图matlab程序
全息图matlab程序

%Modified off-axis reference beam CGH of Burch% %读入原始图象

PI=3.14159;

Image=imread('lena256.jpg');

N=512;

A=zeros(N,N);

B=zeros(N,N);

for I=1:1:256

for J=1:1:256

ImageNum=double(Image(I,J,1));

A(I,J)=ImageNum/255;

B(I,J)=0;

end;end;

figure;

imshow(A);

%为降低全息图的动态范围,乘一随机位相因子%

for I=1:1:N

for J=1:1:N

R=rand(1,1);

B(I,J)=A(I,J)*sin(R*2*PI);

A(I,J)=A(I,J)*cos(R*2*PI);

F(I,J)=A(I,J)+j*B(I,J);

end;end;

%为降低全息图的动态范围,乘一随机位相因子% %对物函数做二维FFT变换%

F=fft2(F);

Max=max(max(abs(F)));

F=F/Max;

A=real(F);

B=imag(F);

%对物函数做二维FFT变换%

%定义载波参数

alpha=0.5;

for I=1:1:N

for J=1:1:N

Xcos=(J-1)/127;

A1(I,J)=cos(2*PI*alpha*Xcos);

B1(I,J)=sin(2*PI*alpha*Xcos);

end;end;

%定义载波参数

%全息图数据区

for I=1:1:N

for J=1:1:N

Holodata(I,J)=0.5+0.5*(A(I,J)*A1(I,J)+B(I,J)*B1(I,J)); end;end;

%全息图数据区

%绘制全息图,制作灰阶全息图像,灰度等级256

M=512;%定义全息图的大小,

Hologram=zeros(M,M);

S=M/N;%定义每个抽样单元大小为S,S

for I=1:1:N

for J=1:1:N

Xa=(J-1)*S+1;

Xb=J*S;

Ya=(I-1)*S+1;

Yb=I*S;

for Ix=Xa:1:Xb

for Iy=Ya:1:Yb

Hologram(Iy,Ix)=Holodata(I,J);

end;end;

end;end;

Max=max(max(Hologram));

Hologram=Hologram/Max;

figure;

imshow(Hologram);

%绘制全息图,制作灰阶全息图像,灰度等级256 %再现

Object=fft2(Hologram);

Object=fftshift(Object);

Object=abs(Object);

Object=1000*Object/max(max(Object)); figure;

imshow(Object);

matlab相关图形实现代码

根据数据点绘制饼图和针状图: x=[1 2 3 4 5 6]; >> subplot(2,2,1);pie(x); >> subplot(2,2,2);pie3(x); >> subplot(2,2,3);stem(x); >>subplot(2,2,4);stem3(x); 5% 10% 14% 19% 24% 29% 24% 29% 19% 5%14% 10%0 2 4 6 2 4 6 5 10 01 2 05 10

根据数据点绘制向量场图、羽状图和罗盘图: x=[1 2 3 4 5 6];y=[1 2 3 4 5 6]; u=[1 2 3 4 5 6];v=[1 2 3 4 5 6]; subplot(2,2,1);quiver(x,y,u,v); subplot(2,2,2);quiver(x,y,u,v,'r'); subplot(2,2,3);feather(u,v); subplot(2,2,4);compass(u,v); 024680 246 802468 246 80 5 10 15 2 4 6 5 10 30 210 60240 90270 120 300 150330 180

rand(m,n)产生m ×n 均匀分布的随机矩阵,元素取值在0.0~1.0。 randn 函数:产生标准正态分布的随机数或矩阵的函数。 Y = randn(m,n) 或 Y = randn([m n])返回一个m*n 的随机项矩阵。 > theta=10*rand(1,50); %确定50个随机数theta >> Z=peaks; %确定Z 为峰值函数peaks >> x=0:0.01:2*pi;y=sin(x); %确定正弦函数数据点x.y >> t=randn(1000,1); %确定1000个随机数t >> subplot(2,2,1);rose(theta); %关于(theta )的玫瑰花图 >> subplot(2,2,2);area(x,y); %关于(x,y)的面积图 >> subplot(2,2,3);contour(Z); %关于Z 的等值线图(未填充) >> subplot(2,2,4);hist(t); %关于t 的柱状图 5 10 30 210 60 240 90270 120300150330 18000246 -1 -0.500.5 110 20 30 40 10 2030 40-4 -2 2 4 100 200 300

程序文件流程图

目录 8.2.3.4 a.质量手册编号 (2) 8.2.3.4 b.程序文件编号 (2) 8.2.3.4 d.质量记录编号 (2) 8.2附图 1:组织(及所属部门)制订、发放的文件受控流程图 (3) 8.2附图 2:外来受控文件受控流程图 (4) 8.3.2质量记录控制流程图 (5) 8.4.2内部质量审核工作流程图 (6) 8.5.2 6.10进货检验的不合格品控制程序 (7) 8.5.2 6.10产品已交付和使用时发现的不合格品控制程序 (8) 8.5.2产品最终检验的不合格品控制程序流程图 (9) 8.5.2产品实现过程中不合格品控制程序流程图 (10) 8.6.2A类纠正措施流程图 (11) 8.6.2B类纠正措施 (12) 8.6.2C类纠正措施 (13) 8.7.2《质量情况通报》的编制、发放、回收、处理 (14) 8.7.2财务状况预警系统 (15) 8.7.2预防措施的制订、实施和评价 (16) 8.8.2管理评审控制程序流程图 (17) 8.9.2人员招聘录用程序流程图 (18) 8.9.2培训程序流程图 (19) 8.9.2考核程序流程图 (20) 8.11.2产品实现过程策划程序流程图 (21) 8.11.2策划依据 (22) 8.12.2产品要求的识别与评审过程 (23) 8.12.2产品合同修改过程 (24) 8.12.2市场信息控制过程 (25) 8.13.2设计和开发控制程序 (26) 8.14.2采购控制程序流程图 (27) 8.15.2生产运作程序流程图 (28) 8.17.2测量和监控策划程序 (29) 8.18.2体系业绩的测量和监控过程程序 (30) 8.19.2过程的测量、监控和分析程序流程图 (31) 8.20.2产品测量和监控程序流程图 (32) 8.21.2持续改进过程控制程序 (33)

matlab 三维图形绘制实例

三维图形 一. 三维曲线 plot3(x1,y1,z1,选项1,x2,y2,z2,选项2,…,xn,yn,zn,选项n) 其中每一组x,y,z 组成一组曲线的坐标参数,选项的定义和plot 函数相同。当x,y ,z 是同维向量时,则x,y,z 对应元素构成一条三维曲线。当x,y ,z 是同维矩阵时,则以x,y,z 对应列元素绘制三维曲线,曲线条数等于矩阵列数。 Example1.绘制三维曲线。 程序如下: clf, t=0:pi/100:20*pi; x=sin(t); y=cos(t); z=t.*sin(t).*cos(t); %向量的乘除幂运算前面要加点 plot3(x,y,z); title('Line in 3-D Space'); xlabel('X');ylabel('Y');zlabel('Z'); grid on; 所的图形如下: -1 1 X Line in 3-D Space Y Z 二. 三维曲面 1. 产生三维数据 在MATLAB 中,利用meshgrid 函数产生平面区域内的网格坐标矩阵。

语句执行后,矩阵X 的每一行都是向量x ,行数等于向量y 的元素的个数,矩阵Y 的每一列都是向量y ,列数等于向量x 的元素的个数。 2. 绘制三维曲面的函数 surf 函数和mesh 函数 example2. 绘制三维曲面图z=sin(x+sin(y))-x/10。 程序如下: clf, [x,y]=meshgrid(0:0.25:4*pi); %产生平面坐标区域内的网格坐标矩阵 z=sin(x+sin(y))-x./10; surf(x,y,z); axis([0 4*pi 0 4*pi -2.5 1]); title('surf 函数所产生的曲面'); figure; mesh(x,y ,z); axis([0 4*pi 0 4*pi -2.5 1]); title('mesh 函数所产生的曲面'); -2.5 -2-1.5-1-0.500.51surf 函数所产生的曲面

MATLAB程序代码

MATLAB 程序代码以及运行结果function [ ]= xy_1( A ) % Detailed explanation goes here x0=653.779 y0=604.47 %%%JD0的坐标 x1=757.119 y1=569.527 %%%JD1的坐标 dx=x0-x1 dy=y0-y1 L=(dx^2+dy^2)^0.5 %JD1到ID2的距离 T=T1(12,28,37) %%%切线长 xk0=T-L yk0=0 %JD2的局部坐标 c=0.9473 s=-0.3203 %%%预设cos和sin的值 %求左端缓和曲线坐标 for l=0:10:40 x=l-(l^5)/(40*(A^2))+l^9/(3456*(A^4)) %求左端缓和曲线X局部坐标 y=l^3/(6*A)-(l^7)/(336*(A^3)) %求左端缓和曲线Y局部坐标 dxk=x-xk0 dyk=y-yk0 B=[x0;y0]+[c,-s;s,c]*[dxk;dyk] %进行坐标换算 end end function [ T1 ] = T1( a,b,c) %求左端切线长 % Detailed explanation goes here A=a+b/60+c/3600 r=750 p1=p(40,750) p2=p(30,750) m1=m(40,750) T1=(r+p2-(r+p1)*cosd(A))/sind(A)+m1 end

function x = JZ1( ) %左端坐标系坐标转换矩阵 % Detailed explanation goes here x0=653.779 y0=604.47 %%%JD0的坐标 x1=757.119 y1=569.527 %%%JD1的坐标 dx=x0-x1 dy=y0-y1 L=(dx^2+dy^2)^0.5 %JD1到ID2的距离T=T1(12,28,37) %%%切线长 xk0=T-L yk0=0 %JD0的局部坐标 xk1=T yk1=0 %JD1的局部坐标 dxk=xk0-xk1 dyk=yk0-yk1 A=[dxk,-dyk;dyk,dxk] b=[dx,dy]' x=inv(A)*b %依次输出cos、sin 的值 end xy_1(30000) A = 30000 x0 = 653.7790 y0 = 604.4700 x1 =

Matlab程序代码

Matlab程序代码: clc; clear; N=20; T=0.1 t=0:T:N m=length(t) syms x1 x2 x3 fx=[0;x1+x2^2;x1-x2] gx=[exp(x2);exp(x2);0] hx=x3; R=10*eye(1) Q=[10 0 0;0 1 0;0 0 1] A=[0 1 0;0 0 1;0 0 0] B=[0;0;1] SS=B*inv(R)*B' [p1,p2,lamp,perr,wellposed,P]=aresolv(A,Q,SS) z1=hx z2=[diff(hx,x1) diff(hx,x2) diff(hx,x3)]*fx z3=[diff(z2,x1), diff(z2,x2), diff(z2,x3)]*fx ax=[diff(z3,x1), diff(z3,x2), diff(z3,x3)]*fx bx=[diff(z3,x1), diff(z3,x2), diff(z3,x3)]*gx z=[z1;z2;z3] k=inv(R)*B'*P %diff(z)=A*z+B*v=(A-B*K)*Z %x(0)=[1;0;0] abk=A-B*k x1(1)=1 x2(1)=0 x3(1)=1 z1(1)=x3(1) z2(1)=x1(1)-x2(1) z3(1)=-(x1+x2^2) for i=2:m z1(i)=z1(i-1)+T*(abk(1,1)*z1(i-1)+abk(1,2)*z2(i-1)+abk(1,3)*z3(i-1)) z2(i)=z2(i-1)+T*(abk(2,1)*z1(i-1)+abk(2,2)*z2(i-1)+abk(2,3)*z3(i-1)) z3(i)=z3(i-1)+T*(abk(3,1)*z1(i-1)+abk(3,2)*z2(i-1)+abk(3,3)*z3(i-1))

程序设计流程图.doc

程序设计流程图 程序设计流程图 程序设计的基本过程 (1)分析需求:了解清楚程序应有的功能。 (2)设计算法:根据所需的功能,理清思路,排出完成功能的具体步骤,其中每一步都应当是简单的、确定的。这一步也被称为逻辑编程。 (3)编写程序:根据前一步设计的算法,编写符合C++语言规则的程序文本。 (4)输入与编辑程序:将程序文本输入到计算机内,并保存为文件,文件名后缀为.cpp 。 至此,产生了完整的程序文本,被称为源程序或源代码。保存源程序的文件(例如前面的c:\student\ch1_01.cpp)称为源程序文件,简称源文件,文件名的后缀是.cpp 。 (5)编译(Compile):把C++程序编译成机器语言程序。 编译产生的程序称为目标程序,目标程序被自动保存为文件,这一文件称为目标文件,文件名的后缀是.obj 。 VC++进行编译的依据是源程序,如果源程序中的符号、词语、整体结构等有差错,超出了VC++的理解能力,VC++就无法完成编译,这样的差错称为语法错误。一旦发现语法错误,VC++就不生成目标文件,并在窗口下方列出错误;如果没有语法错误,则显示0 error(s) ,并生成目标文件,允许继续进行后面的步骤。 编译没有出现错误,仅仅说明程序中没有语法错误。 (6)生成执行程序:从目标文件进一步连接生成Windows环境下的可执行文件,即文件名后缀为.exe 的文件。

由于可执行文件是由若干个文件拼接而成的,其中不但有目标文件,还有另一些标准的库文件,一些规模较大的程序还会有多个目标文件,所以这一步骤又被称为连接(Link)。 (7)运行:在Windows环境中使用可执行文件。这是程序设计的最终目的。这一步也常被称为Run 。 程序设计流程图: 1.程序设计的流程图 2.程序结构流程图 3.程序算法描述流程图 4.程序算法流程图 5.浅谈程序设计的心得

基于matlab的计算器编程附代码

1.需求分析 本次的实验要求是设计一个计算器,主要功能如下: (1)实现基本数学运算(加减乘除等),而且要能进行混合运算 (2)实现部分函数功能,如求平方根、求倒数等 (3)能实现小数运算 界面与标准计算器界面类似 根据要求以及以前的学习情况,决定使用matlab进行编程。Matlab强大的计算功能以及便捷的GUI设计,可以较为简便的实现所要求的功能。按照要求,数据输入和输出支持小数点,支持四则混合运算,决定使用如下几个数据进行分析:(1+3)*5 Sqrt(4) 1/2 Sin4 用以检验是否可以进行加减乘除四则运算、平方根、倒数、正弦的运算。 2.程序设计 M atlab的程序设计较为简便,用GUI设计出一个计算器的模型,然后系统会自动生成一个框架,在框架中,写入每一个按键对应的程序就可以实现功能。 3.调式分析 编程的过程中遇到的问题不是很多,基本就是找要实现各个功能的子程序,通过上网和去图书馆,加上自己的编写,终于实现了实验要求的功能。但是有一点很重要,matlab不支持中文,所以从路径到文件名必须是全英文的,不然就无法识别。此外,给每个按键命名也是很重要的,不然在生成的程序框架里面,就无法识别各个按键的作用,编写程序的时候也就无法做到一一对应。 4.使用说明 程序的使用比较简单,由于是可视化界面,直接打开matlab,然后建立一个GUI 工程,再打开生成的fig文件,就是一个计算器的界面,直接按照市面上卖的计算器的

方法,按键使用即可。 5.测试结果 计算结果为20 4sqrt=2 Sin4结果为 1/2=0.5 经过计算,这些结果均与实际结果相吻合,计算器的功能实现的较为完好。 6.心得体会 本次试验由于不限制语言,于是计算功能强大,操作简便的matlab变成了首选,matlab的GUI设计,操作是较为简单的,首先建立一个GUI工程,然后用可视化界面,

VBA程序设计用例:程序流程图及程序代码

VBA程序教学用例 【例1】求解一元二次方程Ax2+Bx+C=0。 顺序结构的VBA程序: SUB JFC1() A = Sheets("解一元二次方程").Cells(1, 2) B = Sheets("解一元二次方程").Cells(2, 2) C = Sheets("解一元二次方程").Cells(3, 2) X1=(-B+SQR(B^2-4*A*C))/2/A X2=(-B-SQR(B^2-4*A*C))/2/A DEBUG.PRINT “X1=”,X1 DEBUG.PRINT “X2=”,X2 END SUB 提示:先将三个系数A、B、C存放到表"解一元二次方程"的单元格B1:B3中,运行结果在立即窗口中(可用CTRL+G组合键打开立即窗口)。 带判断条件的VBA程序: Sub JFC2() A = Sheets("解一元二次方程").Cells(1, 2) B = Sheets("解一元二次方程").Cells(2, 2) C = Sheets("解一元二次方程").Cells(3, 2) If B * B - 4 * A * C >= 0 Then Sheets("解一元二次方程").Cells(4, 2) = (-B + Sqr(B ^ 2 - 4 * A * C)) / 2 / A Sheets("解一元二次方程").Cells(5, 2) = (-B - Sqr(B ^ 2 - 4 * A * C)) / 2 / A Else Sheets("解一元二次方程").Cells(4, 2) = "此方程无实根" Sheets("解一元二次方程").Cells(5, 2) = "此方程无实根" End If End Sub 提示:先将三个系数A、B、C存放到表"解一元二次方程"的单元格B1:B3中,运行结果在B4:B5中)。

基于MATLAB的潮流计算源程序代码(优.选)

%*************************电力系统直角坐标系下的牛顿拉夫逊法潮流计算********** clear clc load E:\data\IEEE014_Node.txt Node=IEEE014_Node; weishu=size(Node); nnum=weishu(1,1); %节点总数 load E:\data\IEEE014_Branch.txt branch=IEEE014_Branch; bwei=size(branch); bnum=bwei(1,1); %支路总数 Y=(zeros(nnum)); Sj=100; %********************************节点导纳矩阵******************************* for m=1:bnum; s=branch(m,1); %首节点 e=branch(m,2); %末节点 R=branch(m,3); %支路电阻 X=branch(m,4); %支路电抗 B=branch(m,5); %支路对地电纳 k=branch(m,6); if k==0 %无变压器支路情形 Y(s,e)=-1/(R+j*X); %互导纳 Y(e,s)=Y(s,e); end if k~=0 %有变压器支路情形 Y(s,e)=-(1/((R+j*X)*k)); Y(e,s)=Y(s,e); Y(s,s)=-(1-k)/((R+j*X)*k^2); Y(e,e)=-(k-1)/((R+j*X)*k); %对地导纳 end Y(s,s)=Y(s,s)-j*B/2; Y(e,e)=Y(e,e)-j*B/2; %自导纳的计算情形 end for t=1:nnum; Y(t,t)=-sum(Y(t,:))+Node(t,12)+j*Node(t,13); %求支路自导纳 end G=real(Y); %电导 B=imag(Y); %电纳 %******************节点分类************************************* * pq=0; pv=0; blancenode=0; pqnode=zeros(1,nnum); pvnode=zeros(1,nnum); for m=1:nnum; if Node(m,2)==3 blancenode=m; %平衡节点编号 else if Node(m,2)==0 pq=pq+1; pqnode(1,pq)=m; %PQ 节点编号 else if Node(m,2)==2 pv=pv+1; pvnode(1,pv)=m; %PV 节点编号 end end end end %*****************************设置电压初值********************************** Uoriginal=zeros(1,nnum); %对各节点电压矩阵初始化 for n=1:nnum Uoriginal(1,n)=Node(n,9); %对各点电压赋初值 if Node(n,9)==0;

Java课程设计实验报告及全部源码流程图

课程设计 一、实验目的 1.加深对课堂讲授内容的理解,掌握解决实际应用问题时所应具有的查阅资料、技术标准和规范,以及软件编程、调试等能力,掌握面向对象的编程思想及Java语言程序设计的规律与技巧,为进一步学习web应用开发及今后从事专业工作打下基础。 2. 使用本学期学习的Java SE技术(也可以使用课堂教学中没有学习过的Java技术,但是应当以Java SE技术为主)完成多功能日历GUI程序的设计,使之具有如下基本功能:一年日历用12页显示,每页显示一个月的日历。日历可以按年或月前后翻动,能够显示当前的日期,可以为每页日历选择背景图片。 3.在完成基本功能的基础上发挥自己的想象力与创造力,使程序凸显出与众不同的特点与功能,形成本小组的特性色。 二、实验要求 1.问题描述准确、规范。 2.程序结构合理,调试数据准确、有代表性.。 3.界面布局整齐,人机交互方便。 4.输出结果正确。 5.正确撰写实验报告。 三、实验内容 编写一个GUI程序实现日历的功能。一年日历用12页显示,每页显示一个月的日历。日历可以按年或月前后翻动,能够显示当前的日期以及当前农历,可以为每页日历选择背景图片。可以实现显示时钟,时钟能进行整点报

时。可以实现备忘记事功能,能在每天添加、修改、删除记事等操作。 四、实验步骤 1.在上机实验前,小组成员进行选题讨论,确定小组感兴趣而又伸缩性强的题目多功能日历。 2.在第一次上机实验时讨论分工,分工明确之后,分头合作进行。 3.各成员完成自己的任务后,最后进行统筹合并,以及程序最后的优化。 4. 根据实验结果,写出合肥工业大学实验报告。实验报告应当包括:实验内容,程序流程图,类结构,程序清单,运行结果,以及通过上机取得的经验。 5.详细的上机实验步骤见任务分工及程序设计进度表。 五、实验结果 经过小组成员的共同努力,最终我们小组设计的多功能日历程序能够实现实验的基本要求——一年日历用12页显示,每页显示一个月的日历。日历可以按年或月前后翻动,能够显示当前的日期,可以为每页日历选择背景图片。另外,在完成基本要求的基础上,我们增添了显示农历、显示时钟、添加备忘录、修改备忘录等功能。整体程序运行流畅、功能齐全、符合操作习惯。 下面是程序运行效果截图: 日历主界面(可以实现每个月的日历,可以按年或按月前后翻动,能够显示当前日期,并能够选择背景图片):

基本粒子群算法的matlab源程序

主函数源程序(main.m) %------基本粒子群优化算法(Particle Swarm Optimization)----------- %------名称:基本粒子群优化算法(PSO) %------作用:求解优化问题 %------说明:全局性,并行性,高效的群体智能算法 %------初始格式化-------------------------------------------------- clear all; clc; format long; %------给定初始化条件---------------------------------------------- c1=1.4962; %学习因子1 c2=1.4962; %学习因子2 w=0.7298; %惯性权重 MaxDT=1000; %最大迭代次数 D=10; %搜索空间维数(未知数个数) N=40; %初始化群体个体数目 eps=10^(-6); %设置精度(在已知最小值时候用) %------初始化种群的个体(可以在这里限定位置和速度的范围)------------ for i=1:N for j=1:D x(i,j)=randn; %随机初始化位置 v(i,j)=randn; %随机初始化速度 end end %------先计算各个粒子的适应度,并初始化Pi和Pg---------------------- for i=1:N p(i)=fitness(x(i,:),D); y(i,:)=x(i,:); end pg=x(1,:); %Pg为全局最优 for i=2:N if fitness(x(i,:),D) pg=x(i,:); end end %------进入主要循环,按照公式依次迭代,直到满足精度要求------------ for t=1:MaxDT for i=1:N v(i,:)=w*v(i,:)+c1*rand*(y(i,:)-x(i,:))+c2*rand*(pg-x(i,:)); x(i,:)=x(i,:)+v(i,:); if fitness(x(i,:),D) p(i)=fitness(x(i,:),D); y(i,:)=x(i,:);

软件开发流程图

软件开发流程 V1.0 目录 1.目的 (2) 2.适用围 (2) 3.定义 (2) 4.输入 (2) 5.输出 (2) 6.角色职责 (2) 7.流程图 (2) 8.流程活动说明 (2) 9.纪录和表格 (7) 10.相关文件 (7) 11.流程评测指标 (8) 12.流程负责人 (8)

1.目的 规软件开发过程,指导软件开发人员执行软件开发活动,保障软件开发的顺利进行,确保软件开发进度、开发质量,达到预期目标;并为智力资产库提供输入。 2.适用围 本流程适用于产品研发过程中所有软件(包括固件)开发活动的执行过程 3.定义 4.输入 《产品总体需求规格书》、《产品总体设计方案》 5.输出 5.1《软件概要设计报告》 5.2《软件详细设计报告》 5.3《测试报告》 5.4 源程序(代码) 5.5 可执行程序 6.角色职责 6.1 PDT经理(LPDT):根据需要参与软件过程中的评审。 6.2 系统工程师(SE):参与软件开发过程中的评审,指导QA完成评审报告; 6.3 软件工程师(SWE):编写软件概要设计报告、软件详细设计报告;进行软件编码并自测;进行单元测试、集成测试、系统测试,更新系统测试计划。 6.4 测试工程师(TE):参与制定测试计划;参与软件开发过程中的评审;参与实施单元测试、集成测试以及系统测试。 6.5 质量保证(QA):组织、监控软件开发过程中的评审,开发文档的基线化。 6.6 软件配置管理员(CMO):负责开发过程中的文档及代码的基线化。 6.7 软件需求管理员(RMO):负责开发过程中的需求跟踪。 7.流程图 见附件: 软件开发子流程-流程图。 8.流程活动说明 010 制定软件项目计划开发组组长&系统工程师&软件工程师&测试工程师 根据产品的开发计划,制定产品软件部分的开发计划,包括进度、任务安排、风险、人

Matlab实现HHT程序(源码,非常珍贵)

clear all; x=load ('06514135360001170106.TXT'); fs=1000000; N=length(x); t=0:1/fs:(N-1)/fs; z=x; c=emd(z); %计算每个IMF分量及最后一个剩余分量residual与原始信号的相关性[m,n]=size(c); for i=1:m; a=corrcoef(c(i,:),z); xg(i)=a(1,2); end xg; for i=1:m-1 %-------------------------------------------------------------------- %计算各IMF的方差贡献率 %定义:方差为平方的均值减去均值的平方 %均值的平方 %imfp2=mean(c(i,:),2).^2 %平方的均值 %imf2p=mean(c(i,:).^2,2) %各个IMF的方差 mse(i)=mean(c(i,:).^2,2)-mean(c(i,:),2).^2; end; mmse=sum(mse); for i=1:m-1 mse(i)=mean(c(i,:).^2,2)-mean(c(i,:),2).^2; %方差百分比,也就是方差贡献率 mseb(i)=mse(i)/mmse*100; %显示各个IMF的方差和贡献率 end; %画出每个IMF分量及最后一个剩余分量residual的图形 figure(1) for i=1:m-1 disp(['imf',int2str(i)]) ;disp([mse(i) mseb(i)]); end; subplot(m+1,1,1) plot(t,z) set(gca,'fontname','times New Roman') set(gca,'fontsize',14.0) ylabel(['signal','Amplitude']) for i=1:m-1 subplot(m+1,1,i+1);

高手怎么画出好看的程序流程图

高手怎么画出好看的程序流程图 导语: 作为一名绘图高手,自然是什么流程图都不在话下。有时候高手和菜鸟的区别并不在于有多高的技术功底,而仅仅在于一款软件的差别,用对了软件,你也可以从菜鸟瞬间转变成绘图高手。下面就让我们一起来看看绘图高手都是怎么画出好看的程序流程图吧! 免费获取亿图图示软件:https://www.wendangku.net/doc/5a8910982.html,/edrawmax/ 简单漂亮的程序流程图用什么软件画? 想要快速制作简单漂亮的程序流程图,首选一定不是Word或者PPT的。这里推荐一款好评度非常高的流程图软件亿图图示!亿图图示(EdrawMax)是一款跨平台、多功能、同时支持云储存、分享功能的国产专业流程图绘制软件。软件内置了12000多种精美素材和实例模板,以及实时在线免费模板供用户选择。当用户完成绘制之后,可将作品导出文件为Visio、SVG、HTML、PS、JPG、PNG、PDF等多种格式。

亿图图示软件特色: 1、丰富的模板例子:亿图图示支持超过200种图表绘制,轻松绘完流程图。 2、专业的图表软件:不仅可以绘制流程图,还可以绘制组织结构图、思维导图、网络图等。 3、值得信赖的产品:超过六百万次的下载,用户遍布全世界。 4、支持流程图在线分享,生成的网页链接可以在不同的用户终端进行查看。 5、可以使用软件轻松绘制箭头、图框,让办公效率无限提升。 画程序流程图的一般规则 1、用标准,使用标准的框图符号 2、按顺序,框图一般按从上到下、从左到右的方向画 3、看出入,大多数图形符号只有一个进入点和一个退出点,判断框是具有超过一个退出点的唯一符号,终端框用在开始时只有退出点,结束时只有进入点。 4、简说明,图形符号内描述的语言要简练清楚。 5、辨流向,流程线的箭头表明执行的方向,不可缺少。

BP神经网络matlab源程序代码

close all clear echo on clc % NEWFF——生成一个新的前向神经网络 % TRAIN——对 BP 神经网络进行训练 % SIM——对 BP 神经网络进行仿真 % 定义训练样本 % P为输入矢量 P=[0.7317 0.6790 0.5710 0.5673 0.5948;0.6790 0.5710 0.5673 0.5948 0.6292; ... 0.5710 0.5673 0.5948 0.6292 0.6488;0.5673 0.5948 0.6292 0.6488 0.6130; ... 0.5948 0.6292 0.6488 0.6130 0.5654; 0.6292 0.6488 0.6130 0.5654 0.5567; ... 0.6488 0.6130 0.5654 0.5567 0.5673;0.6130 0.5654 0.5567 0.5673 0.5976; ... 0.5654 0.5567 0.5673 0.5976 0.6269;0.5567 0.5673 0.5976 0.6269 0.6274; ... 0.5673 0.5976 0.6269 0.6274 0.6301;0.5976 0.6269 0.6274 0.6301 0.5803; ... 0.6269 0.6274 0.6301 0.5803 0.6668;0.6274 0.6301 0.5803 0.6668 0.6896; ... 0.6301 0.5803 0.6668 0.6896 0.7497]; % T为目标矢量 T=[0.6292 0.6488 0.6130 0.5654 0.5567 0.5673 0.5976 ... 0.6269 0.6274 0.6301 0.5803 0.6668 0.6896 0.7497 0.8094]; % Ptest为测试输入矢量 Ptest=[0.5803 0.6668 0.6896 0.7497 0.8094;0.6668 0.6896 0.7497 0.8094 0.8722; ... 0.6896 0.7497 0.8094 0.8722 0.9096]; % Ttest为测试目标矢量 Ttest=[0.8722 0.9096 1.0000]; % 创建一个新的前向神经网络 net=newff(minmax(P'),[12,1],{'logsig','purelin'},'traingdm'); % 设置训练参数 net.trainParam.show = 50; net.trainParam.lr = 0.05; net.trainParam.mc = 0.9; net.trainParam.epochs = 5000; net.trainParam.goal = 0.001; % 调用TRAINGDM算法训练 BP 网络 [net,tr]=train(net,P',T); % 对BP网络进行仿真 A=sim(net,P'); figure; plot((1993:2007),T,'-*',(1993:2007),A,'-o'); title('网络的实际输出和仿真输出结果,*为真实值,o为预测值'); xlabel('年份'); ylabel('客运量'); % 对BP网络进行测试 A1=sim(net,Ptest');

DS18B20介绍、流程图和程序源代码

DS18B20单线数字温度传感器 DALLAS半导体公司的数字化温度传感器DS1820是世界上第一片支持“一线总线”接口的温度传感器,体积更小、适用电压更宽、更经济。一线总线独特而且经济的特点,使用户可轻松地组建温度传感器网络,为测量系统的构建引入全新概念。DS18B20、DS1822 “一线总线”数字化温度传感器同DS1820一样,支持“一线总线”接口,测量温度范围为-55°C~+125°C,在-10~+85°C范围内,精度为±0.5°C,而DS1822的精度较差为± 2°C 。现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性,适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。 DS18B20可以程序设定9~12位的分辨率,精度为±0.5°C,分辨率设定,以及用户设定的报警温度存储在EEPROM中,掉电后依然保存。DS1822与DS18B20软件兼容,是DS18B20的简化版本。省略了存储用户定义报警温度、分辨率参数的EEPROM,精度降低为±2°C,适用于对性能要求不高,成本控制严格的应用,是经济型产品。继“一线总线”的早期产品后,DS1820开辟了温度传感器技术的新概念。DS18B20和DS1822使电压、特性及封装有更多的选择,让我们可以构建适合自己的经济的测温系统。 1、 DS18B20性能特点 DS18B20的性能特点:①采用单总线专用技术,既可通过串行口线,也可通过其它I/O口线与微机接口,无须经过其它变换电路,直接输出被测温度值(9位二进制数,含符号位),②测温范围为-55℃-+125℃,测量分辨率为0.0625℃,③内含64位经过激光修正的只读存储器ROM,④适配各种单片机或系统机,⑤用户可分别设定各路温度的上、下限,⑥内含 寄生电源。 2、 DS18B20内部结构 DS18B20内部结构主要由四部分组成:64位光刻 ROM,温度传感器,非挥发的温度报警触发器TH和 TL,高速暂存器。DS18B20的管脚排列如图1所示。64 位光刻ROM是出厂前被光刻好的,它可以看作是该 DS18B20的地址序列号,不同的器件地址序列号不同。 8位产品系列号48位产品序号8位CRC编码DS18B20高速暂存器共9个存储单元,如表所示: 序号寄存器名称作用序号寄存器名称作用 0 温度低字节 以16位补码形式存放4、5 保留字节1、2 1 温度高字节 6 计数器余值 2 TH/用户字节1 存放温度上限7 计数器/℃ 3 HL/用户字节2 存放温度下限8 CRC CRC校验 图1 DS18B20引脚分布图

Matlab源程序代码

正弦波的源程序: (一),用到的函数 1,f2t函数 function x=f2t(X) global dt df t f T N %x=f2t(X) %x为时域的取样值矢量 %X为x的傅氏变换 %X与x长度相同并为2的整幂 %本函数需要一个全局变量dt(时域取样间隔) X=[X(N/2+1:N),X(1:N/2)]; x=ifft(X)/dt; end 2,t2f函数。 function X=t2f(x) global dt df N t f T %X=t2f(x) %x为时域的取样值矢量 %X为x的傅氏变换 %X与x长度相同,并为2的整幂。 %本函数需要一个全局变量dt(时域取样间隔) H=fft(x); X=[H(N/2+1:N),H(1:N/2)]*dt; end (二),主程序。 1,%(1)绘出正弦信号波形及频谱 global dt df t f N close all k=input('取样点数=2^k, k取10左右'); if isempty(k), k=10; end f0=input('f0=取1(kz)左右'); if isempty(f0), f0=1; end N=2^k; dt=0.01; %ms df=1/(N*dt); %KHz T=N*dt; %截短时间

Bs=N*df/2; %系统带宽 f=[-Bs+df/2:df:Bs]; %频域横坐标 t=[-T/2+dt/2:dt:T/2]; %时域横坐标 s=sin(2*pi*f0*t); %输入的正弦信号 S=t2f(s); %S是s的傅氏变换 a=f2t(S); %a是S的傅氏反变换 a=real(a); as=abs(S); subplot(2,1,1) %输出的频谱 plot(f,as,'b'); grid axis([-2*f0,+2*f0,min(as),max(as)]) xlabel('f (KHz)') ylabel('|S(f)| (V/KHz)') %figure(2) subplot(2,1,2) plot(t,a,'black') %输出信号波形画图grid axis([-2/f0,+2/f0,-1.5,1.5]) xlabel('t(ms)') ylabel('a(t)(V)') gtext('频谱图') 最佳基带系统的源程序: (一),用到的函数 f2t函数和t2f函数。代码>> (二),主程序 globaldt t f df N T close all clear Eb_N0 Pe k=input('取样点数=2^k, k取13左右'); if isempty(k), k=13; end z=input('每个信号取样点数=2^z, z

实验Matlab三维作图的绘制

实验9 三维绘图 一、实验目的 学会MATLAB软件中三维绘图的方法。 二、实验内容与要求 1.三维曲线图 格式一:plot3(X,Y,Z,S). 说明:当X,Y,Z均为同维向量时,则plot3描出点X(i),Y(i),Z(i)依次相连的空间曲线.若X,Y均为同维矩阵,X,Y,Z每一组相应列向量为坐标画出一条曲线,S为‘color﹣linestyle﹣marker’控制字符表1.6~表1.10. 【例1.79】绘制螺旋线. >>t=0:pi/60:10*pi; >>x=sin(t); >>y=cos(t); >>plot3(x,y,t,’*-b’) >>grid on 图形的结果如图1.16所示. 格式二:comet3(x,y,z). 说明:显示一个彗星通过数据x,y,z确定的三维曲线. 【例1.80】 >>t=-20*pi:pi/50:20*pi; >>comet3(sin(t),cos(t),t) 可见到彗星头(一个小圆圈)沿着数据指定的轨道前进的动画图象,彗星轨道为整个函数所画的螺旋线. 格式三:fill3(X,Y,Z,C) ℅填充由参数X,Y,Z确定的多边形,参数C指定颜色. 图1.16 例1.79图形结果图1.17 例1.81图形结果 【例1.81】

>>X=[2,1,2;9,7,1;6,7,0]; >>Y=[1,7,0;4,7,9;0,4,3]; >>Z=[1,8,6;7,9,6;1,6,1]; >>C=[1,0,0;0,1,0;0,0,1] >>fill3(X,Y,Z,C) >>grid on 图形的结果如图1.17所示. 问题1.30:图1.17中每个三角形按什么规律画出的?(用X,Y,Z的对应列元素值为坐标画三角形)每个三角形内填充的颜色又有何规律?(用C 第i列元素值对应的颜色,从第i个三角形对应顶点向中心过渡)若C=[1,5,10;1,5,10;1,5,10],结果如何? 2.三维网格图 格式:mesh(X,Y,Z,C) ℅画出颜色由C指定的三维网格图. meshc(X,Y,Z,C) ℅画出带有等高线的三维网格图. meshz(X,Y,Z,C) ℅画出带有底座的三维网格图. 说明:若X与Y均为向量,n=length(X),m=length(Y), Z必须满足[m,n]=size(Z),则空间中的点(X(j),Y(i),Z(i,j))为所画曲面网线的交点,X 对应于Z的列,Y对应于Z的行;若X,Y,Z均为同维矩阵,则空间中的点(X(i,j),Y(i,j),Z(i,j))为所画曲面的网线的交点;矩阵C指定网线的颜色,MATLAB对矩阵C中的数据进行线性处理,以便从当前色图中获得有用的颜色,若C缺省,网线颜色和曲面的高度Z相匹配. 在三维作图常用到命令meshgrid,其功能是生成二元函数z=f(x,y)中x-y平面上的矩形定义域中数据点矩阵X和Y. 格式:[X,Y]= meshgrid(x,y). 说明:输入向量x为x-y平面上x轴的值,向量y为x-y平面上y轴的值.输出矩阵X为x-y平面上数据点的横坐标值,输出矩阵Y为x-y平面上数据点的纵坐标值. 【例1.82】 >> x=1:4; >> y=1:5; >> [x,y]=meshgrid(x,y) x = 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 y = 1 1 1 1

求最小费用最大流算法的MATLAB 程序代码

求最小费用最大流算法的MATLAB 程序代码如下(算例): n=5; C=[0 15 16 0 0 0 0 0 13 14 0 11 0 17 0 0 0 0 0 8 0 0 0 0 0]; %弧容量 b=[0 4 1 0 0 0 0 0 6 1 0 2 0 3 0 0 0 0 0 2 0 0 0 0 0]; %弧上单位流量的费用 wf=0;wf0=Inf; %wf 表示最大流量, wf0 表示预定的流量值 for(i=1:n)for(j=1:n)f(i,j)=0;end;end %取初始可行流f 为零流 while(1) for(i=1:n)for(j=1:n)if(j~=i)a(i,j)=Inf;end;end;end%构造有向赋权图 for(i=1:n)for(j=1:n)if(C(i,j)>0&f(i,j)==0)a(i,j)=b(i,j); elseif(C(i,j)>0&f(i,j)==C(i,j))a(j,i)=-b(i,j); elseif(C(i,j)>0)a(i,j)=b(i,j);a(j,i)=-b(i,j);end;end;end for(i=2:n)p(i)=Inf;s(i)=i;end %用Ford 算法求最短路, 赋初值 for(k=1:n)pd=1; %求有向赋权图中vs 到vt 的最短路 for(i=2:n)for(j=1:n)if(p(i)>p(j)+a(j,i))p(i)=p(j)+a(j,i);s(i)=j;pd=0;end;end;end if(pd)break;end;end %求最短路的Ford 算法结束 if(p(n)==Inf)break;end %不存在vs 到vt 的最短路, 算法终止. 注意在求最小费用最大流时构造有 向赋权图中不会含负权回路, 所以不会出现k=n dvt=Inf;t=n; %进入调整过程, dvt 表示调整量 while(1) %计算调整量 if(a(s(t),t)>0)dvtt=C(s(t),t)-f(s(t),t); %前向弧调整量 elseif(a(s(t),t)<0)dvtt=f(t,s(t));end %后向弧调整量 if(dvt>dvtt)dvt=dvtt;end if(s(t)==1)break;end %当t 的标号为vs 时, 终止计算调整量 t=s(t);end %继续调整前一段弧上的流f pd=0;if(wf+dvt>=wf0)dvt=wf0-wf;pd=1;end%如果最大流量大于或等于预定的流量值 t=n;while(1) %调整过程 if(a(s(t),t)>0)f(s(t),t)=f(s(t),t)+dvt; %前向弧调整 elseif(a(s(t),t)<0)f(t,s(t))=f(t,s(t))-dvt;end %后向弧调整 if(s(t)==1)break;end %当t 的标号为vs 时, 终止调整过程 t=s(t);end if(pd)break;end %如果最大流量达到预定的流量值 wf=0; for(j=1:n)wf=wf+f(1,j);end;end %计算最大流量 zwf=0;for(i=1:n)for(j=1:n)zwf=zwf+b(i,j)*f(i,j);end;end %计算最小费用 f %显示最小费用最大流 wf %显示最小费用最大流量 zwf %显示最小费用, 程序结束

相关文档