文档库 最新最全的文档下载
当前位置:文档库 › L6599

L6599

L6599
L6599

2

9.131mm Ae = DC BUS V V 300400?=

51==Lr

Lm A 45.251=+=O ωω KHz F SW 100=

KHz KHz

f O 8.4045

.2100==

零 率 6.140=KHz L Q

811.865.0245

.0400?=+?=+?==

f O BUS S P V V D V N N n

?=???=+??=3.1115

.1165.24888

2

22

2ππO f

O i I V V n R pF F KHz R Q C i O KHz L r 563056.03.1118.4026

.140==???=

?=μπω 140=KHz L Q

pF F KHz R Q C i O KHz L r 333035.03.1118.4021

40?=???=

?=μπω 160=KHz L Q KHz f O 60=

pF F KHz R Q C i O KHz L r 2230238.03

.1116021

60?=???=

?=μπω 來 率 r C Lr

Lm

A =1

1≤L Q 7.0=L Q

pF F KHz R Q C i O L r 2230245.03

.1118.4027

.0?=???=?=μπω

H H KHz Q R L L O i μμπω62055.6207

.08.4023

.111?=???=?=

H H H Lm μμμ55066.51665620?=?= H H H Lr μμμ11033.10361

620?=?=

KHz F

H C L f r r R 36.102022.011021

21=???=?=μμππ

KHz F H C L L f r m r O 7.41022.0)110550(21

)(21=?+??=?+=μμππ 理論

KHz f 80min = KHz f f SW R 100== KHz f 200max = KHz f 300=

min min 31

F R CF f ??=

f f RF F I V I V R 2min min == mA I f 2= f C I f f ??=6 KHz f 80min =

mA KHz pF I f 2256.0804706min =??= ??==198682256.02min K K mA

V

R F

KHz f START 300= mA KHz pF I fstart 846.03004706=??= 流

流 mA I fRss 6204.02256.0846.0=?= 332236204.02K K mA

V

R SS ?==

F F R C SS

SS μμ1909.01033

?=?≥? 串聯

零 ?=K R C 100 pF C C 103= 路

流2mA

KHz f 200max = SAT V

mA KHz pF I f 564.02004706max =??= 流 流

mA I fRF 3384.02256.0564.0max =?= 153253384.02.02max K K mA

V

V R F ?=?=

利 路 狀

?=47A R pF C 332= 不 =B R

KHz f BURST 180= mA mA KHz pF I fBURST 282.02256.01804706=???=

BURST R mA V V ?+=282.02.025.1 93723282.02.025.1K K mA

V

V R BURST ?=?=

流 流 SS C DELAY C

DELAY MP C T ?=10 DELAY DELAY DELAY DELAY STOP C R In

C R T 5.23

.05

.3≈?= DELAY C

SH T uF C DELAY 1= mS T SH 100=

224=DELAY C ?=M R DELAY 1

uS T MP 2.222410=?= Sec M T STOP 55.022415.2=???=

SEN I

?=??=??=??M Vin Vin R OFF ON H 33.110

1530032010156

6 ??=?=?=6556525

.130025

.133.125.125.1K K Vin R R OFF H L

復 了

Grasshopper 参数化建筑设计应用

Grasshopper 参数化建筑设计应用 摘要:在各种常用的参数化辅助设计软件当中,Rhinoceros 和Grasshopper 组成 的参数化设计平台是目前最为流行、使用得最为广泛的一套设计平台,Grasshopper独特的可视化编程建模,适合于前期方案构思阶段的快速实验。Grasshopper 采用并行数据控制方式。使得简单的程序可以处理复杂的的数据控制。它不需要太多任何的程序语言的知识就可以通过一些简单流程方法达到设计师所 想要的模型。Grasshopper 其很大的价值在于它是以自己独特的方式完整记录起始模型(一个点或一个盒子)和最终模型的建模过程,从而达到通过简单改变起始 模型或相关变量就能改变模型最终形态的效果。当方案逻辑与建模过程联系起来时,grasshopper可以通过参数的调整直接改变模型形态。这无疑是一款极具特点、简单易行的参数化设计的软件。 关键词:参数化设计;Grasshopper;模型;变量绪论参数化建模技术在辅助 建筑设计上的应用越来越广泛,参数化设计,对应的英文是Parametric Design 标 准的英语表达是:ParametricDesign is designing by numbers.(Prof.Herr from ShenZhen University)。 它是一种建筑设计方法该方法的核心思想是,把建筑设计的要素都变成某个 函数的变量,通过改变函数,或者说改变算法,人们能够获得形态各异的建筑设 计方案。通过对Grasshopper 在建筑设计应用中的研究,可以帮助我们更好的理 解参数化设计建筑本身对建筑行业的影响,参数化概念的引入,可以对复杂形体 建筑构造进行精确调节,在保持固有衍生关系的前提下,进行最优化设计;并且 可以引入相应数学算法,使建筑自身在一个严密逻辑下进行自我设计。 一、Grasshopper 参数化设计概述1、目前参数化软件应用现状:参数化设计 工具随时间的发展和参数化设计的广泛应用,由一开始的应用其他领域的软件逐 渐发展到应用为建筑领域专门开发的软件。如动画领域的Maya、3dsmax,虽然是 为动画产业设计的软件,但其中有大量功能经恰当使用也可用来定义物体间的几 何逻辑关系。 UG、TopSolid 拥有明确的几何逻辑、强大的造型控制能力、极为准确的建模 功能以及直接将模型转化为施工图纸的建造服务功能。它们虽属工业化设计软件 却被用于辅助建筑设计。还有一类专门为建筑师开发的软件或插件。如以CATIA 为平台GT 开发的Digital Project、以RHINO 为平台的Grasshopper、Autodesk 公司 开发的Revit、以MicroStation 为平台开发的Generative Component 等。上述软件 可被应用于项目的不同阶段,也有各自不同优势。Revit Architecture 软件经过逐 渐的改进,目前已经具有了非常完善的建筑参数化设计与作图功能,其提供的族(Famliy)模型编写平台能够为建筑师较快掌握,建立特定制图环境所需的参数化模型、详图构件与标准符号。DP 主要应用于整个工程全面设计、生产、管理的较好选择。 2、Grasshopper 编程建模在各种常用的参数化辅助设计软件当中,Rhinoceros 和Grasshopper 组成的参数化设计平台是目前最为流行、使用得最为广泛的一套设计平台,Rhinoceros 建模软件拥有强大的造型能力和Grasshopper 独特的可视化编程建模,两者结合比较适合于前期方案构思阶段的快速实验。Grasshopper 采用并行数据控制方式。使得简单的程序可以处理复杂的的数据控制。它不需要太多任何的程序语言的知识就可以通过一些简单流程方法达到设计师所 想要的模型。

_参数化实现_设计的一个建筑实例杭州奥体中心体育游泳馆

杭州奥体中心体育游泳馆(以下简称“体育游泳馆”)位于杭州奥体博览中心内北侧,北临钱塘江,西临七甲河,是一座集合了体育馆、游泳馆、商业设施和停车设施等复杂内容的庞大综合体建筑,总建筑面积近40万平米。建筑形态分为上下两个部分,下部是一个形式低调的大平台,内部包含了以商业设施和地下停车为主的功能空间,平台上部放置了一个形态生动的巨大的非线性曲面,把体育馆、游泳馆两个最主要的功能空间覆盖其中。这一非线性曲面通过长短轴连续变化的一系列剖面椭圆连缀放样而成,曲面内的支撑结构和曲面外表皮分块相互对应,保持了内外一致,分格体系呈菱形网格状分布,使曲面成为巨大的网壳体。由于这一形态从造型到构造用传统手段难以完成设计、优化和输出,因此设计者从方案阶段引入了参数化手段直至施工图设计结束。借助参数化手段,设计者应用了一系列逻辑强烈的数学方式对网壳主体和各子体加以描述并确定其形态,对网壳结构和内外表面进行有效划分和组织,对空间构件进行定位,对围护结构构造和内外节点进行设计和控制,并且从实际加工角度对构件进行了逐次优化。同时,还在建筑内部进行了BIM 设计,使上部网壳围护结构的构造、空间结构、内外幕墙、雨水、采光、通风等系统等与下部功能对应的各系统全部虚拟搭建起来,并进行了三维的校核和调整。

之间最大的区别所在。

1. 通过参数化编程进行造型的区域 2. BIM的区域 DesIgn cycle anD aPPlIcatIon software 设计周期和应用软件 各软件分工和使用阶段如下: 平面工作由Microstation完成。方案时期的基础形态由Rhino生成,3DSMAX进行细节加工;初步设计时期引入GC对造型进行参数化,特殊部位使用Rhino生成,Catia进行综合并输出;施工图阶段由GC转移至Rhino平台,并采用Rhinoscript+Grasshopper实现从总体造型到特殊部位全过程的参数化,Catia进行整合、细化和BIM,并在Catia中实现输出。 图5

产品级参数化设计

第三章产品级参数化设计 本章所研究的是关于产品级的参数化设计问题,为此,拟订“产品模块化、模块参数化”的技术思路来对小型热风微波耦合干燥设备模块化设计进行研究。 3.1参数化设计概述 传统的CAD设计主要针对零件级别的建模,对产品设计本身缺乏有效的支撑,只有最后的结果,不注重整个设计过程,有输入数据量大,操作难度大,无参数设计功能,不能自动更新现有模型,设计周期长,效率低,工作量重复等缺点。 参数化设计过程中,Revit Building是一中重要思想,它在保证参数化模型约束不变的的条件下,通过修改模型的基本尺寸参数来驱动参数化模型,完成模型更新从而获得新模型的现代化设计方法。模型的设计不是一蹴而就的,往往经过一个复杂的过程,在设计初期,设计人员对产品的认识较浅,不能完全确定设计其边界条件,并不能一次性设计出满足产品要求的所有条件。随着时间的推移,研究的深入,设计人员通过不断的修改模型的尺寸和造型,摸索研究之后,一步一步设计出满足所有条件的产品。由此可知,设计是一个不断修改,不断更新数据并且不断满足模型约束条件的过程,这种精益求精,追求完美的过程促进了CAD系统中参数化设计的产生华和发展。参数化设计大大提高了设计的效率,缩短了设计周期的同时大大减少了设计人员的工作强度和工作压力。 目前,参数化设计已经实际运用并且不断的发展壮大,已经成为现代设计与制造,机械设计系统等方向的研究热点,与之相关的各种CAD软件系统也不断的设计完善自己的参数化设计系统和功能,满足未来设计发展的需要。另外,对于标准化,系列化产品,参数化设计尤为重要,对于此次热风微波耦合干燥系列产品,采用参数化设计技术是非常好的选择。 3.1.1 参数化设计定义 参数化设计是机械CAD系统的一项非常关键技术,从最初的概念设计到详细设计,到最后形成产品,它贯穿产品设计的全过程。参数化设计是将参数化的产品模型用数学中一一对应关系来表示,而不是确定其数值,当某些参数变化时,与之相关的其他参数也将随之改变,达到几何更改控制几何形状的目的。这种快速反应的尺寸驱动,高效的图形修改功能,为产品设计、产品造型、产品更新修改,产品系列化设计等提供了有效的手段。其核心是通过产品约束的表达方式,使用设计好的一组尺寸参数和约束来描述产品模型的几个图形,能够充分满足相同或者相近几何拓扑关系的设计需求,充分体现设计者的设计思想。 根据参数化设计对象不同,可以将参数化设计分成两种:零件级参数化设计和产品级参数化设计。目前,广泛应用于实践的是零件级参数化设计方法,主要是指在单个零部件的内部通过尺寸参数和约束控制零件的参数化模型,当尺寸参数和约束发生变化时,参数化零件模型自动更新。相对于零件级参数化设计,产品级参数化设计是一种更加高级的参数化设计方法,它更加注重零部件之间的相互关联关系,当某一个零件的参数修改后,与该零件相关的其他零部件也将完成同步更新,这种更新包括形状的更新和尺寸的更新。由此可知,产品

proe参数化设计实例

实验二 Proe参数化设计实验 一、程序参数化设计实验 1、实验步骤 (1)建立实验模型见图1,具体包括拉伸、打孔及阵列操作。 图1 (2)设置参数。在工具D=300、大圆高度H=100、边孔直径DL=50、阵列个数N=6、中孔直径DZ=100、中孔高度DH=100,见图2。

图2 (3)建立参数和图形尺寸的联系。在工具关系,建立如下关系:D1=D、D0=H、D10=DL、NUM=N、D3=DZ、D2=DH。其中NUM是图形中阵列个数的名称改变后得到的。 (4)建立程序设计。在工具程序,建立程序如下: INPUT DZ NUMBER "输入中孔直径值==" DH NUMBER "输入中孔高度值==" H NUMBER "输入大圆高度值==" D NUMBER "输入大圆直径值==" N NUMBER "输入阵列数目==" DL NUMBER "输入边孔直径值==" END INPUT 将此程序保存后,在提示栏中输入所定义的各个参数的值:大圆直径D=500、大圆高度H=20、边孔直径DL=20、阵列个数N=8、中孔直径DZ=150、中孔高度DH=200。 (5)最后生成新的图形见图3 图3 2、实验分析 本实验通过程序的参数化设计,改变了大圆直径、大圆高度、边孔直径、阵列个数、中孔直径、中孔高度的值,得到了我们预想要的结果。

二、族表的参数化设计 1、实验步骤 (1)建立半圆键模型。见图1 图1 (2)建立族表。通过工具族表,单击“在所选行处插入新实例”按钮,建立四个子零件名,再单击“添加/删除表列”按钮,建立所需要改变的尺寸(主要的标准尺寸h、b、d )。见图2 1 图2 (3)校验族的实例和字零件的生成。单击按钮“校验族的实例”,校验成功后,

基于Solidworks的零件参数化设计

基于Solidworks的零件参数化设计摘要:论述了利用Visual C++ 6.0对Solidworks进行二次开发的基本原理和一些关键技术,开发了可以与Solidworks无缝集成的动态链接库DLL,并且介绍了一个简单的应用实例的实现。 0 引言 Solidworks是一款非常优秀的三维机械软件,其易学易用、全中文界面等特点深受广大工程技术人员喜欢。随着学习和使用Solidwork的人员越来越多,企业为了提高效率和市场竞争力,必然有快速开发新产品、形成自身产品特色的需求,而且对于一些存在着许多重复性的劳动的产品设计需要缩短产品的开发周期。因此有必要对SolidWorks进行二次开发,使其能够在输入少量变化参数的情况下迅速生成所有产品模型并装配,最终生成工程图。 SolidWorks二次开发分两种,一种是基于OLE Automation的IDispatch技术,一般常用于Visual Basic、Delphi编程语言的接口,通过IDispatch接口暴露对象的属性和方法,以便在客户程序中使用这些属性并调用它所支持的方法,此种技术只能开发EXE 形式的程序,所开发的软件不能直接加挂在SolidWorks 系统下,无法实现与SolidWorks 的集成;另一种开发方式是基于COM的,这种技术可以使用最多的SolidWorks API(Application Programming Interface,应用程序接口) 函数。实际上SolidWorks 本身就是用Visual C++编写的,所以使用Visual C++通过COM接口

开发,可以实现对SolidWorks底层的开发并且代码的执行效率高。因为本文开发的是SolidWorks DLL(Dynamic Link Library,动态链接库) 插件,故采用基于COM的开发方式。 1 SolidWorks二次开发原理 1.1 SolidWorks API中的术语 COM(Component Object Model,组件对象模型)技术是SolidWorks API的基础,COM对象是一种包含接口、属性和事件以对象形式封装的实体,它以接口的方式提供服务,这种接口是COM 对象与使用COM对象的客户程序进行通信的唯一通道。 OLE (Object Linking and Embedding,对象的链接和嵌入)可以使应用程序之间能够通过数据嵌入或链接的方式共享数据。它是SolidWorks API构造的基础,是深入理解SolidWorks API的关键。SolidWorks API是SolidWorks作为OLE自动化服务器提供的属性和方法,我们开发的插件就是使用这些接口的OLE客户。 1.2 开发工具Visual C++ 6.0 SolidWorks API是基于COM组件技术构造的,SolidWorks通过COM技术为开发人员提供了强大的二次开发接口,因此Visual C++ 6.0作为当今最流行的软件开发工具之一,是程序员的首选编程利器。它提供了强大的集成开发环境,用以方便、有效地管理、编写、编译、跟踪C++程序,大大加速了程序员的工作,提高了程序代码

基于知识工程的参数化设计

基于知识工程的参数化设计 顾晓华,仲梁维 (上海理工大学CAD中心,上海 200093) 摘要:提出了一种基于知识工程的参数化设计方法,这种参数化设计方法通过为产品建立一个产品知识库,不仅能完成参数化设计的尺寸驱动和特征驱动,而且能实时地检验设计,提出设计建议,进行人机对话,是一种智能化CAD。它将有效地方便我们在许多行业中进行产品设计,提高设计效率。通过CA TIA知识工程顾问模块实现该参数化设计,并结合设计实例探讨这种参数化设计方法在产品设计中的应用情况。 关键词:CAD;CA TIA;知识工程;参数化设计 中图分类号:TH12;TP391172 文献标识码:A 文章编号:1007-9483(2001)04-0017-02 The Parametric Design Oriented to K now ledge B ase GU Xiao-hua,ZHON G Liang-wei (Shanghai University of Science&Technology,Shanghai,200093,China) Abstract:It discusses a kind of parametric design based on knowledge.By setting up a knowledge library for product,this method can realize the parametric and feature driving,design checking and advice.With this kind of intellectualized computer aided de2 sign,the product design in many fields may be convenient efficient.This method is realized by CA TIA Knowledge Advisor mod2 ule.The paper gives an example to explain its application. K ey w ords:CAD;CA TIA;Knowledge Engineering;Parametric Design CAD/CAM技术发展至今,已经历了二维绘图、线框模型、自由曲面造型、三维实体造型、特征造型等重要的发展阶段,其间又有参数化、变量化等辅助技术的出现。参数化设计是CAD技术在实际设计应用中被提出来、并得到发展的、有着强大实用价值的技术。知识工程是一门新兴的边缘学科,它以研究知识信息处理为主,并提供开发智能系统的技术,是人工智能、数据库技术、数理逻辑、认知科学、心理学等学科交叉发展的结果[1]。 本文探讨运用知识工程原理指导产品的参数化设计,将产品知识融于设计过程。CA TIA知识工程顾问模块能让开发人员把产品的设计知识用知识工程原理表达出来,方便地指导设计人员完成产品创新,并体现最佳的设计实践,最终实现智能化CAD。 1 参数化设计和知识工程原理 参数化设计不仅可以使CAD系统具有交互式绘图的功能,还可以使其具有自动绘图的功能。利用参数化设计开发出来的专用的产品设计系统,可以使设计人员从大量繁琐的绘图工作中解脱出来,可以大大提高设计速度,并减少信息的存储量。因而研究和提高参数化设计技术,是CAD技术应用领域内的一个重要的任务。 以往的参数化设计经常利用原有设计,提取一些主要的定形、定位或装配尺寸作为自定义变量,修改这些变量的同时由一些简单公式计算出并变动其它相关尺寸,即可得到所需的新的设计产品。但是传统的参数化设计明显有以下不足。 (1)自定义变量只能驱动几何尺寸,即通过一些公式来修改零件的几何尺寸,而零件的形状已基本明确,即零件的特征基本给定,几乎不能改变。 (2)自定义变量之间相互独立,不便建立任何函数关系,也不便对每个变量做约束。这使得当某些变量的修改量比较大时,某些特征出现严重变形,甚至使该特征和与它相关联的其它特征失去约束,出现悬空状态的特征,造成信息的丢失。 知识工程是人工智能在知识信息处理方面的发展,它主要研究如何由计算机表示知识,进行问题的智能求解。知识工程的研究使人工智能的研究从理论转向了应用,从基于推理的模型转向基于知识的模型,是新一代计算机的重要理论基础。它的根本目的是在研究知识的基础上,开发人工智能系统,补充和扩大大脑的功能,开创人机共同思考的时代。知识表示、知识利用、知识获取构成了知识工程的基础[1]。 可以考虑在参数化设计中引入知识工程,结合特征造型理论,来弥补当前参数化设计的不足。面向对象的技术已被深入应用于特征的描述,这使得特征本身已包含了参数化变动尺寸值所需的成员变量和成员函数,特征的尺寸值均可作为其变量,随时作适当改变。在这个基础上,进一步使特征以及特征之间的依附关系能随一定的条件改变,即可实现参数化特征。因而在产品设计过程中把涉及产品设计的所有信息集合起来,包括行业设计标准、产品的尺寸关联、尺寸约束、特征关联和工艺顺序等,组成一个产品的知识库。由此可以采用以下办法来解决上述参数化设计的 收稿日期:2001-03-16;修订日期:2001-05-21 作者简介:顾晓华(1977-),男,江苏无锡人,上海理工大学在读研究生,主要从事机械CAD软件的应用研究与开发。71 ?设计与研究? 顾晓华 仲梁维 基于知识工程的参数化设计

参数化设计论文

参数化实现”设计的一个建筑实例 ——杭州奥体中心体育游泳馆 【摘要】:杭州奥体中心体育游泳馆一座集合了体育馆、游泳馆、商业设施和停车设施等复杂内容的庞大综合体建筑,分为上下两个部分,下部是一个形式低调的大平台,设计者借助参数化手段应用了一系列逻辑强烈的数学方式对网壳主体和各子体加以描述并确定其形态,对网壳结构和内外表面进行有效划分和组织,对空间构件进行定位,对围护结构构造和内外节点进行设计和控制,并且从实际加工角度对构 件进行了逐次优化,最终完成了这一作品。 【关键词】:BIM,参数化设计,造型设计,单元设计 引言:杭州奥体中心体育游泳馆(以下简称“体育游泳馆”)位于杭州奥体博览中心内北侧,北临钱塘江,西临七甲河,是一座集合了体育馆、游泳馆、商业设施和停车设施等复杂内容的庞大综合体建筑,总建筑面积近40万平米。建筑形态分为上下两个部分,下部是一个形式低调的大平台,内部包含了以商业设施和地下停车为主的功能空间,平台上部放置了一个形态生动的巨大的非线性曲面,把体育馆、游泳馆两个最主要的功能空间覆盖其中。这一非线性曲面通过长短轴连续变化的一系列剖面椭圆连缀放样而成,曲面内的支撑结构和曲面外表皮分块相互对应,保持了内外一致,分格体系呈菱形网格状分布,使曲面成为巨大的网壳体。由于这一形态从造型到构造用传统手段难以完成设计、优化和输出,因此设计者从方案阶段引入了参数化手段直至施工图设计结束。借助参数化手段,设计者应用了一系列逻辑强烈的数学方式对网壳主体和各子体加以描述并确定其形态,对网壳结构和内外表面进行有效划分和组织,对空间构件进行定位,对围护结构构造和内外节点进行设计和控制,并且

本一CAD课程设计-VBA参数化编程方法及实例

第6章化学工程常用图形VBA参数化编程方法及实例 6.1 VBA参数化编程方法简介 VBA的全称是Visual Basic for Application,它有着与VB 几乎相同的语法和开发环境。基于VBA的参数化编程允许用户对AutoCAD进行二次开发,由用户输入(或选择)参数值,程序自动绘制相应的图形。其编程的一般步骤是先由用户输入一个基准点,然后根据基准点计算出其它各点的位置,调用AutoCAD命令进行绘图,最后还要对绘制的图形进行编辑修改,达到最终的效果,具体来说,二维、三维参数化编程主要分为下面几个步骤:(1)绘制图形并确定点图 ①交互绘制:拿到一个图形,首先要进行分析,这是必不可少的步骤。先要交互将图形绘制出来。 ②确定基点和其它点名:基点就是用户绘图的插入点,要根据实际情况确定,例如圆的基准点一般选择圆心,螺钉类图形通常选其结合面的中心点等。用文字命令将点名写到交互绘制图形上,例如0、1、2…n以便后面编程用到时候方便。 ③复杂图形:如果图形复杂,应该找出其相似的部分,单独编成函数,这样可以减少程序的代码量。 ④特点分析:对称性、重复性、循环性是某些编程图形的特点,符合这种特点的图形,在编程中只需绘出一个单元图,其余通过镜像、复制、循环语句即可绘出,这在编程中也是很重要的,它可以大大降低编程的工作量,提高程序的质量。 (2)确定参数和尺寸参数表 ①独立参数:参数化编程必须有参数,注意有些参数是独立的,需要由用户交互式输入,有些参数是不独立的,可能与某些独立参数相关,只需保留独立参数,不独立参数通过计算得到即可; ②尺寸参数表:此外通常标准件在手册上给出了图形各个尺寸参数的表格,技术人员需要根据表格中的参数及数据,将其输入使得计算机或CAD软件能够应用它们。 ③参数取舍:有些参数比较多,像化工上用的法兰或螺钉标准件,编程的参数太多,使得其工作量增加很多,有些参数对于设计人员来说是不重要的,此时将其适当简化是应该的,比如倒角半径、螺纹内外直径差、一些非常小的无关尺寸,当然一定是不重要的尺寸可以简化,重要的尺寸决不能采用这种方法,由此达到尽可能简化参数的数量,降低编程的工作量。 ④图形简化:有些图形真实的结果是非常复杂的,甚至有时用编程方法绘制相当麻烦,比如螺栓的头部圆角,法兰的各个侧面的倒角,此时应该将图形的圆角或倒角忽略,适当的忽略在参数化编程中是允许的,只要标注正确即可。

Inventor三维设计软件实现参数化设计的实例

图3-2是塔架的最终优化后的模型图,该塔架的结构型式是在参考和借鉴大量国内外不同机型设备之后确定的。由于型式做了很大变动,以及考虑国内外生产制造工艺质量的区别等因素,在最终确定使用该结构型式之前,需要通过有限元计算,合理更改梁高,板厚等参数,并经过再次计算验证。Inventor设计软件提供了从建模,计算,参数更改,再验算等完整功能。 图3-2 图3-3 3.1建立参数化模型 在参数化设计中,最重要的工作之一是如何将复杂的实际结构转化为参数化的计算模型。 由于工程机械产品(如图3-2塔架)的钢结构件,包含大量形状各异的板件、型材等。为了避免生成大额数量的零件以及免去复杂的零件装配工作,通常根据需要将部分钢结构设计为一个多特征叠加的实体

模型--一个零件,通过定义用户参数和尺寸约束确定板材厚度、外形、位置等。 要建立参数化模型,最好先建立坐标系和找出关键点--节点。节点的位置将决定模型的主体形状,继而影响结构件的承载能力。图3-3从模型中抽取出来的节点图。Inventor软件提供了和Excel表链接的功能。该功能可以大大减少设置参数和更新模型的时间,而且Excel表内可以设置不同的工作表,如图3-4中有工作表"45米悬臂","38米悬臂"……不同的参数表拥有相同的参数名和不同的参数值,相当于设置了不同的方案,只要激活需要的工作表,就可以生成相应的方案。在零件造型、分析设置或后处理过程中,可以随时定义和编辑参数。得出方案之后,如果更改了与载荷或约束关联的参数,系统将启用"更新"命令,即可以运行得到新的方案。 要得到参数化模型,在建模中需要注意的是,新的特征要尽可能利用已有的参数,必要的时候甚至可以引用参数方程式。其目的是尽可能减少参数的数量以及保证模型特征能够与参数相关联。 图3-4 Excel参数表 3.2有限元分析和数值优化…… Inventor中的应力分析,为机械产品的设计过程提供了一个便捷实用的工具。设计者可以在设计过程中随时对零件进行静力学基本分析和动力学的模态分析。Inventor具备ANSYS为内核的分析模块,又提供了很好的人机交互界面,因此非常实用。通过固定约束,施加载荷,设置应力分析环境等工作,就能得到分析结果。根据结果变更重要参数值就能得到最佳设计。 对于该文章中的塔架模型,我们仅以变动E和E的位置参数为例,通过多次更改和分析,得到了优化

相关文档
相关文档 最新文档