文档库 最新最全的文档下载
当前位置:文档库 › JSGF HYW 005-2014 密封结构设计技术规范要点

JSGF HYW 005-2014 密封结构设计技术规范要点

JSGF HYW 005-2014 密封结构设计技术规范要点
JSGF HYW 005-2014 密封结构设计技术规范要点

前言

本技术规范起草部门:技术与设计部

本技术规范起草人:何龙

本技术规范批准人:唐在兴

本技术规范文件版本:A0

本技术规范于2014年8月首次发布

密封结构设计技术规范

1适用范围

本技术规范适用于灯具外壳防护使用密封圈的静密封结构设计。包括气密性灯具密封结构设计。2引用标准或文件

GB/T 3452.1-2005 液压气动用O形橡胶密封圈第1部分:尺寸系列及公差

GB/T 3452.3-2005 液压气动用O形橡胶密封圈沟槽尺寸

GB/T 6612-2008 静密封、填料密封术语

JB/T 6659-2007 气动用0形橡胶密封圈尺寸系列和公差

JBT 7757.2-2006 机械密封用O形橡胶圈

JB/ZQ4609-2006 圆橡胶、圆橡胶管及沟槽尺寸

《静密封设计技术》(顾伯勤编著)

《橡胶类零部件(物料)设计规范》(在PLM中查阅)

3基本术语、定义

3.1密封:指机器、设备的连接处没有发生泄露的现象(该定义摘自《静密封设计技术》)。

3.2静密封: 相对静止的配合面间的密封。密封的功能是防止泄漏。

3.3泄漏: 通过密封的物质传递。造成密封泄漏的主要原因:(1)机械零件表面缺陷、尺寸加工误

差及装配误差形成的装配间隙;(2)密封件两侧存在压力差。减小或消除装配间隙是阻止泄漏的主要途径。

3.4接触型密封:借密封力使密封件与配合面相互压紧甚至嵌入,以减小或消除间隙的密封。

3.5密封力(或密封载荷):作用于接触型密封的密封件上的接触力。

3.6填料密封:填料作密封件的密封。

3.7接触压力:填料密封摩擦面间受到的力。

3.8密封垫片:置于配合面间几何形状符合要求的薄截面密封件。按材质分有:橡胶垫片,金属垫

片、纸质垫片、石绵垫片、塑料垫片、石墨垫片等。

3.9填料:在设备或机器上,装填在可动杆件和它所通过的孔之间,对介质起密封作用的零部件。

注:防爆产品电缆引入所指的填料在GB3836.1附录A2.2条中另有定义,指粘性液体粘接材料。

3.10 压紧式填料:质地柔软,在填料箱中经轴向压缩,产生径向弹性变形以堵塞间隙的填料。

3.11 密封圈:电缆引入装置或导管引入装置中,保证引入装置与电缆或导管与电缆之间的密封所使

用的环状物(该定义摘自GB3836.1第3.5.3条对防爆产品电缆密封圈的定义)。

3.12 衬垫:用于外壳接合处,起外壳防护作用的可压缩或弹性材料。(该定义摘自GB3836.1第6.5

条和GB3836.2第5.4条对防爆产品密封衬垫的定义)。

3.13 压缩率:密封圈装入密封槽内受挤压,其截面受压缩变形所产生的压缩变形率。也称作压缩比。注1:上述术语除3.1、3.11和3.12条外,其余均摘自《GB/T6612-2008静密封、填料密封术语》。

注2:本规范所述的密封圈泛指用于密封作用的橡胶密封圈或橡胶密封垫片。

4我司灯具常见密封结构型式

4.1灯具外壳防护常见密封型式一般均属于静密封。

4.2灯具使用密封圈进行外壳防护密封的结构型式常分为平面密封、轴向密封、径向密封。

(1)平面密封:密封圈承受的压力方向垂直于密封接触面的密封结构,见图1。

(2)轴向密封:O型橡胶密封圈承受的压力方向平行于密封件回转轴线方向的密封结构,密封位置在轴或孔的端面。见图2。

(3)径向密封:O型橡胶密封圈承受的压力方向垂直于密封件回转轴线方向的密封结构,密封位置在轴或孔的径向。见图3。

图1 平面密封

图2 轴向密封

图3 径向密封

5 静密封基本原理

5.1密封泄露主要形式

密封泄露主要形式有两种:渗透泄露、界面泄露。 5.2 渗透泄露失效机理

密封件材料多孔、组织疏松、致密性差、产生裂纹时,内部组织之间会存在微小孔隙,容易被密封介质浸透,存在压力差时,被密封的介质会透过材料内部的孔隙渗透出来。材料内部微小孔隙与流体分子直径、流体的表面张力、作用在密封表面的流体压力差有关。当最小密封间隙大于流体分子直径时,作用在密封表面的流体压力大于流体的表面张力时,就会发生毛细孔渗露现象。以下是比较典型的毛细间隙渗露现象: (a )铸件砂眼、裂纹:如8100砂铸外壳

(b )塑胶嵌件裂纹:如RHJ60A

(c )电缆铜芯、导线之间毛细间隙:如带电缆灯具的电缆芯线间隙在负压下可以吸水。

5.3 界面泄露失效机理

作用在密封圏上的压应力不足,流体、气体介质压力P1大于密封接触面的最小密封接触力P2时,在密封接触表会发生界面泄露。 见下图4示意:

图4 最小密封接触力

密封接触面的最小密封接触力的大小与橡胶压缩弹性应力、壳体最大变形应力、壳体密封槽与橡胶密封件尺寸极限公差大小有关。以下是比较典型的界面泄露现象:

(1)无损泄露。橡胶密封圈没有发生任何损坏的情况下而产生的泄露。橡胶密封圈与密封

圈安装沟槽的尺寸不匹配、密封面粗糙、机械变形、振动、高温或低温变形等原因造成密封圈 安装后的压缩率太小没有产生足够的压力,密封面不能紧密贴合而产生的泄露。

(2)老化变形。橡胶密封圈长时间存在或长时间在高温、低温及介质压力的作用下,弹性降低,产

生塑性变形后,不能恢复到初始状态,密封效果下降;当塑性变形率大于40%时,密封圈失去密封能力,最终发生泄露。

(3)表面损伤。摩擦与摩损、密封零件表面粗糙、划痕、棱角边切伤、密封圈变形压缩率过大等原

因造成密封圈损伤或损坏,或工作环境的灰尘和杂质积聚在密封圈两侧形成磨料,加速密封圈磨损,使密封效果降低或失效。

(4)扭曲泄露。装配中橡胶密封圈沿周向发生扭转或扭曲而产生的泄露。密封圈扭曲后,其不同部

位的密封高度会不相等,使密封圈各部分所受压缩变形不等,使密封效果降低或失效。 (5)间隙咬伤。密封配合件之间存在着一定的间隙,橡胶密封圈在装配时或高压介质挤压作用下被

挤入间隙而咬伤、剪切或撕裂而导致密封效果降低或失效。

(6)介质腐蚀。密封圈橡胶材料与密封介质的相容性不好而出现密封圈的体积、硬度、强度、塑性

和重量等发生变化以及橡胶料发生腐蚀损烂,使密封效果降低或失效。 5.4 影响泄露的主要因素

(1)被密封介质的物性参数。采用同样的密封连接结构,相同的工况条件,被密封介质不同,其

泄露率不同。气体的泄露率大于液体的泄露率,氢气的泄露率大于氮气的泄露率。被密封流

体的粘度越大,其泄露阻力就越大,其泄露率就越小。

(2)工况条件影响。密封工况条件主要包括介质的压力和温度。压力越大,泄露阻力越小,泄露率越大;橡胶回弹性能随温度升高面下降,蠕变量随温度升高而增大,老化,松弛会严重。

液体粘度会降低,温度越高,泄露越容易发生。

(3)密封表面粗糙度影响。表面粗糙度越小,泄露率越小。

(4)最小密封接触力的影响。最小密封接触力越大,泄露率越小。

(5)密封圈材料基本性能及密封结构尺寸的影响。密封圈材料基本性能包括两部分,一是密封圈的力学性能(压缩回弹性、蠕变、应力松弛特性等物料性能);二是密封性能(材料组织致密性、压紧残余应力与温度的关系等性能)。密封结构尺寸是指密封圈和密封槽的结构尺寸。密封圈越厚,其压缩量越大,界面泄露率越小,但渗透泄露截面积变大,渗透泄露增大。密封圈宽度越大,其泄露阻力通道越长,泄露率越低,但密封圈的表面积增大,其表面最小密封接触力会越大,宽密封圈的螺栓紧固力则会增大。

5.5灯具密封结构的三个基本要素

(1)压力:指密封接触面的密封接触力。见上图4所示。

防止泄漏方法:P2>P1

(2)密封圈横截面积:密封槽横截面积和密封圈横截面积计算如下:

(a)平面密封结构图示,见下图5

图5 端面密封结构图示

S圈=A×B ;S槽=C×D

(b) O型橡胶圈轴向密封结构图示,见图2和下图6

图6 轴向密封结构图示

S圈=πA2/4 ;S槽=C×D

(c) O型橡胶圈径向密封结构图示,见下图7

图7 径向密封结构图示

S圈=πA2/4 ;S槽=C×(φD –φd)/2

,尽量减小密封面装配间隙,防止密封圈被压溃损坏失效。

防止泄漏方法:S槽≥S圈

实际设计计算时,应根据密封圈和密封槽尺寸公差分别计算出密封圈和密封槽的最大横截面积和最小横截面积,并计算出密封圈在密封槽中的最大截面积占比和最小截面积占比。通常,密封圈在密封槽中的截面积占比为70%~85%之间(详见后面表5~表7分析)。

(3)橡胶密封圈压缩率(即压缩比):

(a)端面密封(见图5尺寸):

压缩量:△X= B-C

压缩率:δ= △X / B ×100%

(b)轴向密封(见图6尺寸):

压缩量:△X= A-C

压缩率:δ= △X / A×100%

(c) 径向密封(见图7尺寸):

压缩量:△X= A-(φD –φd)/2

压缩率:δ=△X / A ×100%

防止泄漏方法:合理选取密封圈材质、硬度,保证密封面有足够的压缩率,并使密封圈最大压率不超出材料的弹性形变范围。实际设计计算时,应根据密封圈和密封槽尺寸公差分别计算出密封圈的最大压缩率和最小压缩率。

6密封结构设计步骤

6.1 明确密封圈使用条件

(1)明确密封圈使用环境条件:灯具安装在室内还是室外、环境温度、污染油污、腐蚀气体和液体、耐磨、振动、结晶、聚合、光分解等条件。

(2)明确密封圈工作参数要求:灯具工作温度、灯腔压力、开启次数、维护要求、防护等级。

(3)明确灯具使用要求:灯具形状尺寸、密封部位结构尺寸要求和安装维护要求。

6.2 确定密封圈材料

根据6.1条密封圈使用条件选择合适的密封圈材料。常用橡胶圈的材料及代号见下表1:

注:表1内容摘自《JB/T7757.2-2006机械密封用O形橡胶圈》。

各种橡胶材料的主要特点和使用温度见下表2:

注:表2内容摘自《JB/T7757.2-2006机械密封用O形橡胶圈》。

注:此表内容摘自《橡胶类零部件(物料)设计规范》(在PLM中查阅)

各种橡胶胶料硫化胶的物理性能见下表3:

注:表3内容摘自《JB/T7757.2-2006机械密封用O形橡胶圈》。

6.3 确定密封结构型式和密封圈形状

(1)确定密封结构型式。根据6.1条使用条件确定密封结构型式,当密封结构尺寸要求较小(最小压缩量受尺寸限制)、外壳防护等级要求不高于IP66时,采用O形圈径向密封结构比较简单。当密封结构尺寸要求较大,外壳防护等级要求在IP65及以上时,

一般多采用平面密封,或采用O形圈密封轴向密封。平面密封圈主要结构如图8所示。

注1:(h)、(k)、(l)三种密封圈结构对法兰端盖螺栓预紧力计算要求较高,以防止密封圈长期处于较大压应力作用下压缩后发生永久变形,一般密封结构设计不推

荐使用。

注2:图8摘自《静密封设计技术》第七章。

(2)确定密封圈形状和尺寸。平面密封形状根据结构需要可设计为矩形密封圈、异形密封圈和O形圈。轴向密封和径向密封均选用O形圈。O形圈尺寸按《GB/T

3452.1-2005 液压气动用O形橡胶密封圈第1部分:尺寸系列及公差》中表2要求

选择合适直径的密封圈。

6.4 设定密封圈压缩率(即压缩比)

参考《静密封设计技术》第七章“真空和低温密封设计”内容,当橡胶邵氏硬度在50HA以上、最小压缩比15%时,无论密封圈形状如何,其气体渗透率可小于1.33×107Pa·L/s。该渗透率可满足普通真空系统的要求。我国通常把压缩比15%定为真空橡胶密封的最小压缩比。

下表4为国外部分国家真空密封设计常采用的压缩比,供参考。

由《GB/T3452.3-2005液压气动用O形橡胶密封圈沟槽尺寸》径向密封沟槽尺寸(表1)可计算出以下关系表5:表5 径向密封圈压缩量

由《GB/T3452.3-2005液压气动用O形橡胶密封圈沟槽尺寸》轴向密封沟槽尺寸(表2)可计算出以下关系表6:表6 轴向密封圈压缩量

由《JB/ZQ4609-2006圆橡胶、圆橡胶管及沟槽尺寸》中沟槽尺寸(表1)可计算出以下关系表7:

表7

综合表5、表6、表7内容可得出结论:在考虑密封圈和密封槽尺寸加工公差和装配公差等因素影响下,橡胶密封圈压缩率一般控制在20%~30%范围内比较合理。硬度则按图9要求确定。

6.5 确定密封圈硬度

参考《静密封设计技术》第七章“真空和低温密封设计”中橡胶密封圈压缩比与硬度之间关系图,下图9,一般可以根据图中曲线2来确定橡胶密封圈的压缩比。

注:图9内容摘自《静密封设计技术》第七章。

设计举例:说明密封圈压缩率计算和硬度选择。见下图10密封槽、密封圈结构尺寸。

图10 密封槽、密封圈结构尺寸

密封槽尺寸:槽宽:13.0mm 槽深:(4.5±0.2)mm 平面度:0.1 粗糙度:3.2

密封圈尺寸:宽度:(8.0±0.2 ) mm 高度:(6.5±0.2) mm

S圈= 6.5×8 = 52 mm2S槽= 13×4.5 = 58.5 mm2

即:S槽>S圈,说明密封槽和密封圈截面积设计合理。

最大压缩量:△X max=(6.5+0.2)-(4.5-0.2)= 2.4 mm

最小压缩量:△X min=(6.5-0.2)-(4.5+0.2)= 1.6mm

最大压缩率:δ=△X max / 6.5 ×100% =2.4/6.5×100% =37%

最小压缩率:δ=△X min / 6.5 ×100% =1.6/6.5×100% =25%

当密封圈压缩率范围:25%~37%,从图9中曲线2可看出应选用邵氏硬度20HA ~60HA的橡胶密封圈较为合理,以防止密封圈长期受压而发生塑性变形老化失效。

平面密封结构中,发泡橡胶密封圈材料首选硅橡胶,其它材料可结合灯具实际使用环境合理选择。邵氏A硬度一般大于15度,硬度大小主要看发泡程度(发泡粒径、个数等),硬度越低,工艺越难控制。发泡橡胶密封条截面形状多为实心,与透明件接触的截面形状可为波浪形、圆弧形、V形、矩形等,底面少量场合可采用异形结构。

6.6 密封结构设计

6.6.1 平面密封结构设计

(1)槽密封结构:如图8中的(a)、(b)、(c)、(d)、(e)密封形式。

(a)矩形槽:其结构如下图11所示:

图11 矩形槽

矩形槽尺寸可由下式确定:

式中:b—槽宽c—槽深;

H—矩形密封圈高度B—矩形密封圈宽度假;

d—O形圈直径;

—决定死区的无因次系数,即密封圈压入密封槽后留下的死区空隙系数。

举例:若设定橡胶密封圈压缩率为28%(邵氏硬度40HA~60HA),即C/H=1-28%=72%,或c/d=1-28%=72%,亦即c=0.72H或c=0.72d。假设k=1.05(死区为5%)。

从而计算可得:

矩形密封圈槽尺寸:c=0.72H ,b=HB/c=1.05HB/0.72H=1.46B

O形圈密封槽尺寸:c=0.72d ,b=1.05×3.14d2/(4×0.72d)=1.15d

目前采用的标准矩形槽尺寸可参考下表8:

注:表8内容摘自《静密封设计手册》第七章第1节“真空和低温密封设计”。

(b) 梯形槽:O形圈用密封槽常有三种形式,如下图12所示。图12(a)为燕尾槽,C/d=0.75~0.80;

A/d=0.9。图12(b)为开口梯形槽。图12(c)为平行边梯形槽,相比燕尾槽容易加工,其尺寸

可按下式求得:

式中:d min和d max—分别为O形圈最小及最大直径。

图12 梯形槽

也可以设计为底部为圆弧形的梯形槽,如图13所示。

图13 底部为圆弧槽的梯形槽

推荐的梯形槽尺寸可参考下表9:

注:表9内容摘自《静密封设计手册》第七章第1节“真空和低温密封设计”。

(2)其它形状的槽密封结构,如锥面密封结构、阶梯槽密封结构等设计方法在灯具密封结构中不常见。其常见结构详见《静密封设计手册》第七章相关内容。

6.6.2 轴向密封结构设计

(1)受内部压力的沟槽型式,见《GB/T3452.3-2005液压气动用O形橡胶密封圈沟槽尺寸》图4规定。

(2) 受外部压力的沟槽型式,见《GB/T3452.3-2005液压气动用O形橡胶密封圈沟槽尺寸》图5

规定。

(3)轴向密封沟槽尺寸,应符合《GB/T3452.3-2005液压气动用O形橡胶密封圈沟槽尺寸》表2和6.22条要求的规定。

(4)轴向密封沟槽外径和沟槽内径尺寸,应符合《GB/T3452.3-2005液压气动用O形橡胶密封圈沟槽尺寸》第5.2.2规定。

(5)沟槽尺寸公差,应符合《GB/T3452.3-2005液压气动用O形橡胶密封圈沟槽尺寸》表3的规定。(6)沟槽的同轴度公差,应符合《GB/T3452.3-2005液压气动用O形橡胶密封圈沟槽尺寸》第5.4条规定。

(7)密封沟槽和配合偶件表面的粗糙度,应符合《GB/T3452.3-2005液压气动用O形橡胶密封圈沟

槽尺寸》中表4的规定。

6.6.3 径向密封结构设计

(1)径向密封的活塞密封沟槽型式,见《GB/T3452.3-2005液压气动用O形橡胶密封圈沟槽尺寸》图1所示。

(2)径向密封的活塞杆密封沟槽型式,见《GB/T3452.3-2005液压气动用O形橡胶密封圈沟槽尺寸》图2所示。

(3)径向密封的沟槽尺寸,应符合《GB/T3452.3-2005液压气动用O形橡胶密封圈沟槽尺寸》中表1的规定。

(4)径向密封沟槽槽底直径,应符合《GB/T3452.3-2005液压气动用O形橡胶密封圈沟槽尺寸》第

5.1.2条规定。

(5)沟槽尺寸公差,应符合《GB/T3452.3-2005液压气动用O形橡胶密封圈沟槽尺寸》表3和6.2.1条的规定。

(6)沟槽的同轴度公差,应符合《GB/T3452.3-2005液压气动用O形橡胶密封圈沟槽尺寸》第5.4条规定。

(7)密封沟槽和配合偶件表面的粗糙度,应符合《GB/T3452.3-2005液压气动用O形橡胶密封圈沟槽尺寸》中表4的规定。

(8)径向静密封O形圈适用范围,应符合GB/T3452.3-2005液压气动用O形橡胶密封圈沟槽尺寸》中表5的规定。

7密封结构设计原则

7.1 实际设计计算时,应根据密封圈和密封槽尺寸公差分别计算出密封圈的最大压缩率和最小压缩

率。在考虑密封圈和密封槽尺寸加工公差和配合公差、变形等因素影响下,橡胶密封圈压缩率一般控制在20%~30%范围内比较合理,见表5~7分析。根据图9压缩率与硬度之间关系图曲线2所示,橡胶密封圈硬度选择在邵氏硬度40HA~80HA之间较好。对于厚度2mm~3mm 平橡胶垫片,将其压缩率控制在15%~20%,防止平垫片太软受挤压后被挤出密封面,可将硬度可选在75HA~85HA之间。

7.2 实际设计计算时,应根据密封圈和密封槽尺寸公差分别计算出密封圈和密封发槽的最大横截面

积和最小横截面积,并计算出密封圈在密封槽中的最大截面积占比和最小截面积占比。通常,密封圈在密封槽中的截面积占比为70%~85%之间(详见表5~表7分析)。

7.3 橡胶密封O形圈选型优先符合《橡胶类零部件(物料)设计规范》中优选表的要求。

7.4 橡胶密封O形圈尺寸选择应符合《GBT 3452.1-2005液压气动用O形橡胶密封圈第1部分尺

寸系列及公差》中表2系列尺寸要求。

7.5 径向密封、轴向密封沟槽尺寸设计应优先符合《GB/T3452.3-2005液压气动用O形橡胶密封圈

沟槽尺寸》中表1和表2要求尺寸。

7.6 选用硅橡胶密封圈材料时,需在技术要求中明确提出二次硫化要求。

8 密封不良案例分析

(1) 密封圈硬度选取不合理。硬度选择不符合密封压缩率与硬度之间关系图9要求。 例1:

例2:

例3:

硅橡胶密封圈,压缩率:硬度选取不合理

例4:

(2) 密封结构设计不合理。密封槽表面不平整,密封接触面之间有间隙。 例1:

(3)O 型密封圈沟槽结构设计不符合《GB/T3452.3-2005液压气动用O 形橡胶密封圈沟槽尺寸》

中表1和表2

要求结构尺寸。

×

×

(4)O 型密封圈尺寸选型(内径尺寸或外径尺寸)不合理,与O 型密封圈沟槽尺寸不匹配。

(5)密封圈成型工艺选择不合理。导致装配不良。

框剪结构施工技术要点

框剪结构施工技术要点 框剪结构是在框架结构中布置一定数量的剪力墙,构成灵活自由的使用空间,满足不同建筑功能的要求,同时又有足够的剪力墙,有相当大的侧向刚度。框剪结构的受力特点是由框架和剪力墙结构2种不同的抗侧力结构组成新的受力形式,所以框架不同于纯框架结构中的框架,剪力墙在框剪结构中也不同于剪力墙结构中的剪力墙。 钢筋工程 1柱钢筋 (1)基础柱钢筋为免轴线偏移,先在底板、承台或基础梁钢筋骨架上绑扎一个定位箍筋,并同底板、承台或基础梁钢筋骨架绑扎牢或点焊牢。 (2)按图纸要求间距,计算好每根柱箍筋数量,先将箍筋都套在下层处的搭接筋上,然后立主钢筋,在搭接长度内,绑扎扣不少于3个,绑扎要向里。 (3)焊接、绑扎接头的搭接长度按设计要求。下层柱的钢筋露出楼面或基础部分,当采用绑扎连接时,宜用工具或柱箍将其收进一个柱筋直径,以利上层柱的钢筋搭接。当柱截面有变化时,下层柱钢筋的露出部分,必须在绑扎梁的钢筋之前,先行收缩准确。 (4)绑扎时在立好的柱子钢筋上用粉笔或石墨条划出箍筋间距,然后将已套好的箍筋往上移动,由上往下宜采用缠扣绑扎。 (5)柱筋保护层:垫块应绑在柱立筋外皮上,间距一般1000mm左右,以保证主筋保护层厚度的正确。 2剪力墙钢筋

(1)绑扎时,先立2~4根竖筋,与下层伸出的搭接筋绑扎,画好水平筋的分档标志,然后于下部齐胸处绑两根横筋定出,并在横筋上画好标志,接着绑其余竖筋,最后再绑其余横筋。 (2)墙钢筋应逐点绑扎,双排钢筋之间应绑扎拉筋或撑铁,拉筋和撑铁可用直径6~10mm的钢筋制成,长度等于两层网片的净距,纵横间距约为1m,相互错开排列。 (3)墙水平钢筋在两端头、转角、十字节点、连梁等部位的锚固长度及洞口周转加固筋等均应符合设计要求。 (4)合模后,对伸出的钢筋应进行修整,在搭接处绑一道临时横筋定位,浇筑混凝土时派专人看管。 3梁钢筋 (1)绑扎时,首先在主梁模板上按图纸设计要求划好箍筋的间距。 (2)主筋穿好箍筋,按已画好的间距逐个分开,固定弯起筋和主筋,穿次梁弯起筋和主筋并套好箍筋,放主梁架立筋、次梁架立筋,隔一定间距将梁底主筋与箍筋绑住,再绑主筋。 (3)梁的受拉钢筋直径不小于25mm时,不宜采用绑扎接头,小于25mm采用绑扎接头。 (4)梁主筋双排时,可用短钢筋垫在两层钢筋之间。 4板钢筋 (1)清扫模板上的刨花、碎木、电线管头等杂物,用粉笔在模板上划好主筋,分布筋间距。按画好的间距,先摆受力主筋,后放分布筋,预埋件、电线管、预留孔等及时配合安装。

建筑结构设计优化技术应用要点探析 谭善平

建筑结构设计优化技术应用要点探析谭善平 发表时间:2018-01-14T15:50:01.977Z 来源:《基层建设》2017年第29期作者:谭善平 [导读] 摘要:近年来,随着城市规模越来越大,我国的建筑逐渐朝着高层化的方向迈进。 身份证号码:45232719790905XXXX 摘要:近年来,随着城市规模越来越大,我国的建筑逐渐朝着高层化的方向迈进。而项目投资大,建设周期长,对其进行结构优化设计能够有效的减少投资金额。通过调整各构件刚度之间的比例关系,充分利用各构件的受力特点,发挥它们各自的长处,使整体结构达到最优。本文在此从建筑结构设计应用理论出发,对建筑结构设计的具体应用做了详细研究。 关键词:结构;优化技术;剪力墙 前言 高层建筑结构优化设计是我国高层建筑设计与管理中较为重要的一个环节,其主要的目标就是在于提升高层建筑的结构合理性和经济性,需要对各环节均做好分析,涵盖建筑工程的各个方面,通过综合优化来提高建筑工程舒适度、空间应用率以及经济效益等。 一、建筑结构设计优化的意义 面对新时期房屋建筑的结构设计问题,人们更多重视的是建筑结构需要满足一定的安全性和功能要求,同时还应该具备一定的美观性和经济实用性。就建筑工程的施工而言,成本最大的是建筑结构造价问题。因此,需要在保证所有建筑功能特点的前提下对建筑房屋进行合理的设计,最大限度的降低工程施工成本。此外,建筑物的优化设计还能够满足社会经济发展的需要,实现建筑物的功能性和安全性。 二、建筑结构优化设计应用的理论 建筑结构优化应用有两方面的作用,一是在建筑分部结构的优化设计方面的作用,二是在房屋工程结构总体的优化设计方面的作用,两者都有细分,例如结构总体的优化设计囊括了总体方案优化设计和细部结构方案的优化设计等,从另一方面讲包含了形体结构选型、布置、机构体的受力分析、建筑整体造价分析等项目。在建筑结构优化的实际应用中,可以根据使用简单、应用方便的原则,对建筑工程进行结构优化设计,在建筑结构设计过程中,要满足设计意图、平面布置规则、整体形态对称原则、质量中心和刚度中心整体布局原则、建筑物水平荷载作用等一系列问题,做到在理论上为实践提供前提、提供理论基础,做好准备工作。 三、建筑结构设计优化的几个具体应用 1、整体布局优化 应从结构优化设计的全局观念出发,利用结构设计中的点、线、面,确定建筑结构设计的总体布局,处理好点、线、面之间的架构关系,借助于材料的选用、构件的布置,充分发挥单个构件与整体结构的配合与协调,使之能实现最佳受力状况,既实现整体结构良好的承重力、刚性与延展性,也实现单个构件的最大化与最佳化利用,保证达到建筑设计的国家质量标准,实现建筑功能性、安全性与经济性的多重目标。 2、地基基础结构设计优化 地基基础的结构设计优化首先要选择合适的方案,如果为桩基础,那么要根据现场地质条件选择桩基类型,尽量节省造价。桩端持力层对灌注桩桩长的选择影响很大,应多进行比较以确定最合适的方案。 独立基础设计荷载取值的优化。钢筋混凝土多层框架房屋多采用柱下独立基础,当地基主要受力层范围内不存在软弱粘性土层时,不超过8层且高度在25m以下的一般民用框架房屋或荷载相当的多层框架,可不必进行地基和基础的抗震承载力验算。但这些房屋在基础设计时应考虑风荷载的影响。因此,在钢筋混凝土多层框架房屋的整体计算分析中,必须输入风荷载,不能因为在地震区高层建筑以外的一般建筑风荷载不起控制作用就不输入:另一种情况是.在设计独立基础时,作用在基础顶面上的外荷载柱脚内力设计值,只取轴力设计值和弯矩设计值,无剪力设计值,或者甚至只取轴力设计值。以上两种情况都会导致基础设计尺寸偏小,配筋偏少,影响基础和上部结构的安全。 3、结构细部设计优化 进行建筑结构的设计优化,不但要关注整体设计,也应该对各个细部结构部件的设计给予重视,比如进行现浇板的设计时,为了达到去除拐角裂缝与结构受力均匀的目的就需要将异形板划分为矩形板。对于建筑结构底部的框架抗震墙的钢筋配置通常较大,如果在材料选用上使用冷轧带肋钢筋则能够适当减少钢筋配置,从而更加便于施工和达到控制工程造价的目的。 4、剪力墙结构优化设计 (1)连梁优化设计 在高层剪力墙结构中,连梁是一项关键的耗能构件,其剪切破坏将对结构抗震产生极为不利的影响,并会极大地降低结构体系的延性。因此在高层剪力墙结构的优化设计过程中,一定要注意对连梁进行强剪弱弯的验算,以保证连梁的剪切破坏晚于弯曲破坏。对于人为加大连梁纵筋的操作一定要慎之又慎,因为这样就有可能无法满足强剪弱弯的要求。 在住宅结构设计时,一般情况下不宜采用大刚度的窗下墙作为连梁,而宜将连梁设计成为截面、刚度较小的弱连梁。同时,在满足结构刚度与变形要求时,应从经济角度与抗力、变形方面综合考虑,合理布置抗侧力构件。 (2)结构延性设计 剪力墙结构有自身的特性,只有掌握了长处与短处,才能正确发挥好设计优化,保证剪力墙结构合理。在建筑设计中,剪力墙主要由整体墙、整体小开口墙和联肢墙三种形态。整体墙受力较大,要加大底部截面组合设计,提高或加大配筋率;联肢墙是连梁连接起来的剪力墙,联肢墙破坏形态以强墙肢弱连梁为宜,塑性变形和耗能能够进行分散。 要想从根本上避免脆性破坏,一定要限制墙肢或连梁平均剪应力与混凝土轴压比系数,做到设计值符合工程要求。一、二、三级剪力墙轴压比超过一定数值,必须设置约束边缘构件,这样才能确保结构的安全。 5、抗震优化设计 应结合建筑工程等级,在保证结构整体合理的基础上,尽可能多的设置抗震防线,对于抗震结构体系说来,其由若干个延性良好的分体系组成,并与延性优良的结构构件来连接进行协调工作。基于地震余震特点,在对建筑抗震结构进行优化设计时,还应保证抗震结构体系由最大可能数量内部、外部冗余度,并建立一系列分布屈服区,并保证主要构件具有较高的延性与刚度,提高对地震作用力的吸收与消

结构审图要点(完整版)

结构审图要点: 1.设计总说明 1.1 建筑抗震设防类别、场地抗震设防烈度、设计地震分组、设计基本地震加速度值、建筑场地类别、抗浮设计水位等是否正确。 1.2 建筑单体±0.00所对应的绝对高程与规划总平面一致。 1.3 地基持力层的描述:若采用天然地基,说明本建筑单体的地基承载力特征值为___;若为人工地基,说明地基处理方式、复合地基承载力及建筑单体的最终沉降量;若为桩基,说明桩的材料及沉桩方式等。 1.4 结构使用的材料: 钢筋:梁柱中各受力纵向钢筋、较大开间的楼板、约束边缘构件的箍筋(当用圆钢直径大于10时)、基础受力钢筋、墙体受力钢筋等采用HRB400。构造柱及过梁的纵向筋、地下室防水板及地下室外墙的分布钢筋等采用HRB335。混凝土:对于别墅及花园洋房,地下室、基础及地上采用C25,设备基础、圈梁、构造柱等次要构件采用C20,其他均应满足计算及构造需求,避免强度过高。 1.5 活荷载(特指荷载规范中不明确的部位),恒荷载(特指梁板上的建筑面层和车库顶板上的覆土等产生的恒荷载)是否与设计委托一致。 1.6 防水混凝土的使用部位、抗渗等级是否明确、恰当。 1.7 钢筋的接头形式(不同的规格分别描述如搭接、机械连接等)是否明确、恰当。 1.8 构造柱、圈梁的位置及做法、过梁的做法、墙柱与砌体之间的拉结钢筋等是否明确、恰当。 1.9 墙上开洞的补强措施。结构洞口的填充等是否明确、恰当。 1.10 对基础的施工要求,如挖槽、验槽、回填等的要求,和对不良地基的处理措施等是否明确、恰当。 1.11 如有冬季施工可能时,是否提出了相应的要求和注意事项。 1.12 预制构件目录中的构件名称、数量、图集号、是否准确。 1.13 构件代号表中的代号与详图中采用的是否一致。 1.14 对施工中应遵守的施工验收规范是否准确无误。 1.15 楼板上预留孔洞(直径大于300)大样图,小于或等于300时做法是否明确、恰当。 1.16 剪力墙住宅内隔墙中长度小于500mm的墙垛做法是否明确、恰当。 1.17 单独设计的预制构件、预应力构件、部分钢结构、幕墙等的要求是否交代清楚。 1.18 梁上开洞的允许位置、大小及相应的补强措施是否明确、恰当。 1.19 本建筑单体是否需进行沉降观测及相应的要求是否明确、恰当。 1.20 本建筑单体的防火等级。各构件的砼保护层厚度是否明确、恰当。 1.21 当门窗洞顶离上部的梁底不足300mm时的做法是否明确、恰当。 2. 基础平面布置图 2.1 与建筑图核对轴线号,轴线号是否一致 2.2 基础底部相对标高、基础底部标高变化处应在平面布置图中标注出来。 2.3 临近建筑或构筑物的基础埋置深度应标注出来。 2.4 与建筑图核对抗震缝、沉降缝及伸缩缝的位置是否一致。 2.5 地下室外墙的留洞位置及相应的防水措施是否明确、恰当。 2.6 基础底板厚度,独立基础、墙及柱的定位。集水坑的位置等是否明确、无误。 2.7 后浇带的位置、宽度,是否躲开集水坑、集水坑盖板等。 2.8 基础梁上留洞是否明确、无误。 2.9 筏板基础如设计外伸挑板,是否是地基承载力不够按计算设置。 2.10 是否存在抗浮问题。 2.11 若采用桩基,则核算单桩承载力、桩顶标高,桩的数量及验桩根数等。当采用标准设计的预制桩时,选用的标准图集号、桩号是否正确。 2.12 墙体厚度,柱子大小与轴线关系与建筑图是否一致,与结构详图是否一致。 2.13 钢筋混凝土柱墙号是否齐全,与结构详图是否一致。 2.14 管沟布置、盖板、人孔的布置和型号是否准确。

高层建筑结构抗震与设计考试重点复习题(含答案)

1.从结构的体系上来分,常用的高层建筑结构的抗侧力体系主要有:_框架结构,剪力墙结构,_框架-剪力墙_结构,_筒体_结构,悬挂结构和巨型框架结构。 2.一般高层建筑的基本风压取_50_年一遇的基本风压。对于特别重要或对风荷载比较敏感的高层建筑,采用_100_年一遇的风压值;在没有_100_年一遇的风压资料时,可近视用取_50_年一遇的基本风压乘以1.1的增大系数采用。 3.震级――地震的级别,说明某次地震本身产生的能量大小 地震烈度――指某一地区地面及建筑物受到一次地震影响的强烈程度 基本烈度――指某一地区今后一定时期内,在一般场地条件下可能遭受的最大烈度设防烈度――一般按基本烈度采用,对重要建筑物,报批后,提高一度采用 4.《建筑抗震设计规范》中规定,设防烈度为_6_度及_6_度以上的地区,建筑物必须进行抗震设计。 5.详细说明三水准抗震设计目标。 小震不坏:小震作用下应维持在弹性状态,一般不损坏或不需修理仍可继续使用 中震可修:中震作用下,局部进入塑性状态,可能有一定损坏,修复后可继续使用大震不倒:强震作用下,不应倒塌或发生危及生命的严重破坏 6.设防烈度相当于_B_ A、小震 B 、中震C、中震 7.用《高层建筑结构》中介绍的框架结构、剪力墙结构、框架-剪力墙结构的内力和位移的近似计算方法,一般计算的是这些结构在__下的内力和位移。 A 小震 B 中震C大震 8.在建筑结构抗震设计过程中,根据建筑物使用功能的重要性不同,采取不同的抗震设防 标准。请问建筑物分为哪几个抗震设防类别? 甲:高于本地区设防烈度,属于重大建筑工程和地震时可能发生严重次生灾害的建筑乙:按本地区设防烈度,属于地震时使用功能不能中断或需尽快恢复的建筑 丙:除甲乙丁外的一般建筑 丁:属抗震次要建筑,一般仍按本地区的设防烈度 9.下列高层建筑需要考虑竖向地震作用。(D) A 8°抗震设计时 B 跨度较大时 C 有长悬臂构件时 D 9°抗震设计

框架结构设计要求

框架结构 目录 特点 框架结构抗震构造措施 框架结构设计的要点和过程 框架结构与框剪结构的区别 框架结构(frame structure) 框架结构住宅是指以钢筋混凝土浇捣成承重梁柱,再用预制的加气混凝土、膨胀珍珠岩、浮石、蛭石、陶烂等轻质板材隔墙分户装配成而的住宅。适合大规模工业化施工,效率较高,工程质量较好。框架结构由梁柱构成,构件截面较小,因此框架结构的承载力和刚度都较低,它的受力特点类似于竖向悬臂剪切梁,楼层越高,水平位移越慢,高层框架在纵横两个方向都承受很大的水平力,这时,现浇楼面也作为梁共同工作的,装配整体式楼面的作用则不考虑,框架结构的墙体是填充墙,起围护和分隔作用,框架结构的特点是能为建筑提供灵活的使用空间,但抗震性能差。 [编辑本段] 特点 分类 房屋的框架按跨数分有单跨、多跨;按层数分有单层、多层;按立面构成分有对称、不对称;按所用材料分有钢框架、钢筋混凝土框架、预应力混凝土框架、胶合木结构框架或钢与钢筋混凝土混合框架等。 受力特点 水平方向仍然是楼板,然后楼板应该搭在这个梁上,梁支撑在两边的柱子上,这就把重量递给了柱子,沿着高度方向传到基础的部分,即梁、板、柱构成的承重体系。框架结构的特点非常突出:所有的墙都不承重跟厂房的承重没有关系,那个承重,是板搭在梁上,梁传给了柱子,墙都是后坐上去的用于其他的轻质材料,墙都不会承重,应用的时候都很灵活,如想要大房间不要墙,就要大房间,不想要大房间,想要小的,就可以在其中用其它的轻质材料来进行房间的划分,房间划分成若干个小房间,因此它的墙不承重,及起着一个划分空间的作用,仅起着一个保温,隔热,隔声的部分。注意:框架结构:指梁、板、柱的承重体系。 应用范围 框架结构可设计成静定的三铰框架或超静定的双铰框架与无铰框架。框架钢结构常用于大跨度的公共建筑、多层工业厂房和一些特殊用途的建筑物中,如剧场、商场、体育馆、火车站、展览厅、造船厂、飞机库、停车场、轻工业车间等。 [编辑本段] 框架结构抗震构造措施

结构工程师必知的100个设计要点

方案阶段 1.建设场地不能选在危险地段。 由于结构设计在建设场地的选择中一般是被动的接受方,因此,在结构方案及初步设计阶段, 应特别注重对建设场地的再判别。对不利地段,应根据不利程度采取相应的技术措施。 2.山地建筑尤其需要注意总平布置。 山区建筑场地应根据地质、地形条件和使用要求, 因地制宜设置符合抗震设防要求的边坡工程; 边坡附近的建筑基础应进行抗震稳定性设计。建筑基础与土质、强风化岩质边坡应留有足够的 距离, 其值应根据抗震设防烈度的高低确定, 并采取措施避免地震时地基基础破坏。当需要在 条状突出的山嘴、高耸孤立的山丘、非岩石的陡坡、河岸和边坡边缘等不利地段建造丙类及丙 类以上建筑时,除保证其在地震作用下的稳定性外, 尚应估计不利地段对设计地震动参数可能 产生的放大作用, 其地震影响系数最大值应乘以增大系数。其值可根据不利地段的具体情况确定, 在1.1~1.6 范围内采用。 此条为强条; 台地边缘建筑地震力放大系数也意味着单体建筑成本的增加。实际上, 有时边坡 支护的费用可能远远大于边坡上单体的费用。曾经有的方案设计单位布置总平时将 18~33层的高层布置在悬崖边缘或跨越十多米高的边坡, 这些都是对结构及地质不了解才会产生的错误。3.是否有地下室。 高层建筑宜设地下室;对无地下室的高层建筑,应满足规范对埋置深度的要求。 4.高度问题 室内外高差是多少,房屋高度是多少,房屋高度有没有超限。 5.结构高宽比问题 设计规定,6、7度抗震设防烈度时,框架- 剪力墙结构、剪力墙结构高宽比不宜超过 6。高 宽比控制的目的在于对高层建筑结构刚度、整体稳定、承载能力和经济合理性(主要影响结构 设计的经济性,对超高层建筑,当高宽比大于7时,结构设计难度大,费用高)的宏观控制。6.结构设计应与建筑师密切合作优化建筑设计和结构布置。 采取必要的结构和施工措施尽量避免设置各类结构缝(伸缩缝、沉降缝、防震缝)。当必须设 置时,应符合现行规范有关缝的要求,并根据建筑使用要求、结构平面和竖向布置的情况、地 基情况、基础类型、结构刚度以及荷载、作用的差异、抗震要求等条件、综合考虑后确定。 各缝宜合并布置,并应按规范的规定采取可靠的构造措施和保证必要的缝宽,防止地震时发生 碰撞导致破坏。结构长度大于规范时, 应设置伸缩缝, 高层建筑结构伸缩缝的最大间距: 框架 结构为 55m, 剪力墙结构为 45m。 7.结构平面布置不规则问题

装配式建筑结构设计要点分析 韩庭军

装配式建筑结构设计要点分析韩庭军 发表时间:2019-09-18T15:54:09.677Z 来源:《建筑学研究前沿》2019年11期作者:韩庭军[导读] 在安装装配式预制构件时要严格按照技术要求进行施工,避免损伤装配式件的力学性能,在整体上提升使用的性能。身份证号码:23108419831124**** 摘要:目前,新建筑技术的发展趋势是向轻建筑系统发展,并正在努力将这种技术应用于多层建筑。装配式建筑顺应了这一发展趋势,同时也满足了“绿色建筑”的要求,这也是实现我国建筑行业可持续发展的必然选择。建筑结构设计是建筑工程项目重要组成部分,在设计过程中需要综合考虑项目要求、项目地附近地质条件等因素,将设计人员对建筑物的表达反映在设计图纸上。 关键词:装配式;建筑结构设计;要点分析 引言装配式建筑的使用具有较高的经济效益,因此,在使用的过程中,需要关注建筑本身所具有的结构要求。过对建筑工程中实践应用装配式结构的分析,本文总结了这种新型建筑结构与传统现浇混凝土模式存在的主要区别,并分析了装配式结构的设计要点。同时在实际的施工中,要充分掌握各种施工要点,同时要保证施工的质量,在安装装配式预制构件时要严格按照技术要求进行施工,避免损伤装配式件的力学性能,在整体上提升使用的性能。1装配式建筑简介所谓装配式建筑,简单来说就是指的预先制造好建筑结构中的各个构件,再统一将构件运送到施工场地,在施工现场用它们装配成形的建筑。早上个世纪初,人们就已经提出了装配式建筑的概念,但是最初由于装配式建筑的外表形式比较单一,所以未能得到广泛的推广和应用。而到了现代,随着建筑行业的不断发展及科技与材料的不断进步,装配式建筑的结构形式有了不断的改进,时至今日,装配式建筑结构已经变得非常灵活和多样。我们可以将整个装配式建筑的施工过程,比喻成为一项设备生产活动,先成批量地加工好零件,再用零件拼装成最终的产品。所以,相较于传统形式的建筑而言,装配式建筑的最大优点体现在其的施工速度快、施工效率高、施工质量好以及环保性能佳。就建筑行业的发展形势来看,装配式建筑将成为未来的主要发展趋势。2装配式建筑的基本原理装配式建筑的基本原理和现浇建筑基本类似,在建筑施工过程中,使用安全可靠的连接方式将一些结构连接,并利用一些特殊构造方式实现装配建筑的完工。装配式建筑也使用了很多的节点设计,结构的刚度差异对工程质量也会产生影响,为了增强整体的抗震能力,就需要根据实际情况对建筑节点进行可靠合理的设计。装配式建筑结构能有效地提升施工效率,还可以使设计与施工形成一种统一协调性。在进行实际的项目施工过程中,可以先通过提前进行有关构件的设计以及预制作,从而保证在进行施工作业时有足够的时间和精力同时进行其他施工作业,有效提升建设施工的工作效率。然后,使用装配式结构进行施工作业,能够极大提高建筑工程的工作效率,还能加强施工作业各步骤之间的配合度。而且,装配式的建筑结构属于标准化的建设技术,能够推动整个建筑行业向着标准化方向前进。由于社会科技的不断进步,材料科技日新月异,这使得装配式结构制作的必要构件从生产工艺上开始变得更加先进,精度变得更高,装配式结构工艺的标准化使得建设工程变得节能环保,返工浪费情况大大减少。最后,装配式建筑结的优越性,可以在保障安全可靠情况下极大的加快建设效率减少工程所用时间。进行实际的工程作业时,整个施工企业首先要对装配式结构用计算进行全面化的数据化处理分析,利用计算机技术对整个工程进行分析与完善。总而言之,使用装配式建筑结构进行建筑设计,不仅全方面地提高了工程质量,提高施工工作效率,而且在保障质量安全下对工程建设周期全面的优化与缩短。3装配式建筑设计要点3.1总设计图设计装配式建筑总设计图需要对整个建筑结构以及整体建筑设计过程进行总的概述,目的在于将装配式建筑设计理念概念化。对于预制的构件与建筑设计空间之间,必须确保满足这一空间设计中,构件与预制构件装配设计空间足够,减少重复提升吊装的次数,尽量保证一次性完成装配任务。对于装配式任务,最主要的在于保障施工现场机械能够在安全运转的基础上高效进行工作,在机械运转过程中,同样需要保护施工人员生命安全以及工作中相关器械以及与预制构件完整。同时有序整齐摆放预制构件,以保障在施工过程中,施工现场地面平整,降低因地面不规则而出现的施工隐患。并组织相关施工人员,定期进行工地现场清理,保护施工人员的生命安全。并且从总设计图中设计人员、施工工人能够较为直观分析建筑各个空间结构以及相应的预制构件、构件节点位置,提升了建筑施工效率。 3.2整体性的结构设计在高层的建筑设计中,需要对于整体性的机构建筑进行特别的关注,这是由于在整体性的结构设计中对于建筑整体的稳固性具有影响,在此基础上,建筑的不同细节设计部分都需要与整体的结构性设计相适应。为了使得建筑的整体结构具有的形式更为合理的分布形式,需要从整体的结构入手,对于建筑的设计进行规划。在应用的叠合板材料中,需要采单向的板材进行应用。此外,在建筑的过程中,需要结合建筑的内部的不同预留结构装置,对于整体的结构工作作出相应的预留,在开洞的位置中,需要规范化的对于受力钢筋进行应用。洞口位置所用的钢筋,需要根据其应用的位置以及应用的长度对于钢筋进行截断。在外面的收进楼层中,需要结合剪力墙的应用状况对于其后的钢筋设计进行浇筑的工作,并且使得墙体能够整体的平均接受力的分布。在楼层的剪力墙中,需要就其顶部的建筑状况对于其后的设计应用要点进行分析,水平式的后浇带存在着超过两根的后相连接钢筋,就能够保证整体的结构应用需求。 3.3平面、立面设计在装配式建筑设计中,平面、立面设计属于基础部分。在这一部分基础设计中,首先进行平面设计,设计中要与实际装配建筑具体情况相联系,并综合建筑各个部分与相关尺寸要求,科学布置内部空间,选择合适承重墙与管井具体位置,合理划分建筑内部各个空间大小,以便于发挥其空间作用。在这基础上保持建筑外观具有较高观赏价值。立体设计需要采用标准化、系统化与模块化相结合的设计实施方式。同时在对建筑外墙进行设计的时候,需要充分考录建筑整体的美观性,选择不同的外墙材料来进行搭配装饰,从而使得建筑美观性得到有效提高。此外还应当充分结合各种不同的组件,来提高建筑立面效果。结束语

房建结构设计的核心要点探析

房建结构设计的核心要点探析 发表时间:2017-06-16T09:49:45.220Z 来源:《基层建设》2017年5期作者:梁波[导读] 本文对建筑设计当中的技术要点进行了分析,并对可能出现的问题进行了相关的探讨,使建筑结构设计更加符合相关技术规范的要求。 身份证号码:45212819901218xxxx 摘要:一个建筑物质量的好坏,不仅仅体现在施工技术上面,更重要的是要做好建筑物的结构设计。建筑物的结构设计,主要体现在对钢筋、混凝土以及力学等参数进行合理的设置。只有做好了房屋建筑的结构设计,才能使后续的施工工作顺利开展。在这样的背景之下,本文对建筑设计当中的技术要点进行了分析,并对可能出现的问题进行了相关的探讨,使建筑结构设计更加符合相关技术规范的要 求。 关键词:建筑房屋;结构设计;技术核心;分析引言现阶段由于社会经济的发展,以及建筑施工技术的不断提高,现在大部分的房屋结构都是框架结构。和传统的砖混结构相比,框架结构有很多的优点,比如框架结构的自重更轻,同时框架结构建筑物的安全性与砖混结构相比有很大的提高。所以框架结构被广泛运用于我国的建筑结构设计以及施工当中。在对框架结构的建筑结构进行设计的过程当中,要充分考虑各种参数的配置,使建筑物的整体质量得到保障。 1基础设计技术分析基础使建筑设计当中最重要的部分之一。如果对基础设计没有达到相关的要求,对整个建筑物将会造成毁灭性的影响。对建筑房屋的基础进行设计的时候,要注意以下几点:一是在进行设计的时候要根据地质勘探报告的数据为前提,同时还要对地质勘探报告数据的可行性进行分析,根据房屋的特点以及具体的施工情况来分析工程的地质条件。二是合理选择基础类型,一般来说在建筑工程当中基础有两种类型,一种是条形基础,另一种是独立基础。根据房屋的高度、地质勘探的结果来选择合理的基础类型进行设计。如果建筑物的高度过高,或者是对施工技术的要求过高,要加大基础的设计强度和设计密度。基础设计完之后还要对基础相关的数据加以验算,使基础符合地质变形的要求和地表承载能力。三是符合了变形要求和地表的承载力后,地质条件相对简单的工程所在地,可以将天然的地基来作为浅基础,再根据建筑物的高度来对地基的持力层进行设计,同时还要全面分析建筑物的荷载情况以及建筑物可能对地质带来的变形情况,还要充分考虑到建筑物的稳定性、相关应力的分布情况以及地下水对基础的影响。第四点就是在对基础进行设计的过程当中,应当结合当地工程的施工经验,然后再根据地质勘探报告,进行基础的设计。 2稳定性设计技术分析我国是一个地质灾害频发的国家,所以对建筑结构的稳定性进行设计是建筑结构设计当中最重要的内容之一。为了提高建筑物的稳定性。设计人员在设计的过程当中要确保梁的高度,同时对梁的相关参数要进行客观正确的设置。如果在取值的时候选择性很大,或者是没有办法确定正确的值的时候,尽量采用最大的那个值。如果梁的值过小的话,在相关外力的作用下,就会导致梁出现抗弯安全储备过高,如果发生地震的话,就会出现不利的安全因素。在对梁的负筋进行设计的时候,设计人员应该尽可能选择比较小的值,这样才能提高梁的韧度。在设计的过程当中,设计人员还应该注意不能过多布置负筋,负筋的布置量不能超过需求量,同时还要对梁中钢筋的间隙进行合理设置。为了使在施工当中更加方便,钢筋差小于百分之五的梁,设计人员可以设计成一类钢筋配置。 3钢筋工程设计技术分析悬挑梁被广泛应用于建筑的结构当中,比如阳台以及飘窗的设计。所以在对悬挑梁进行设计的时候,要将其设置与框架梁的端部。这是因为悬挑梁和框架梁所承受的荷载是不一样的,这样就造成了框架梁和悬挑梁的横截面尺寸不一样。在现阶段的设计当中,一部分设计人员将框架梁的钢筋伸入到悬挑梁当中,可是悬挑梁的钢筋却无法深入到框架梁当中,这样的设计就会造成后续施工的困难,同时影响房屋结构的质量。所以设计人员在对框架梁和悬挑梁进行设计的时候,设计人员必须对框架梁和悬挑梁的受力情况进行合理分析,再根据计算出来的结果,对钢筋进行合理的配置,从而保证框架梁和悬挑梁受力均衡。框架柱对于框架梁的质量有着十分重要的影响。但是在实际的设计过程当中,框架柱钢筋数量的配置普遍比较低。如果受到地震的影响,框架柱所受到的外力就会比较大,这是因为框架柱不仅仅要承受地震给自己带来的压力,同时还要承受地震给框架梁所带来的压力。这是因为框架柱所受的压力不大,在相关力的作用下,就会损害框架柱的内柱。所以设计人员在对框架柱进行设计的时候,要考虑到地震给框架柱带应来的最坏的结果。在进行框架柱钢筋的配置时,应该从以下几个方面来考虑:一是如果设计的建筑物是建立在地质条件不稳定的基础上面,设计人员应当将框架柱的配筋数量加大。二是为了加大钢筋对混凝土的约束力,可以将钢筋的形状设置更为复杂一些,比如井字。三是如果发生地震,地震所产生的破坏力会对边柱和角柱造成很大的影响,所以针对建筑结构的墙角部分,要加大纵筋的布置数量。 4设计中出现问题的技术解决措施如果建筑物基础的预埋深度过大,可以利用基础连梁来降低底层柱的长度,同时还要在室外地坪以下设置基础连梁,从而组成强有力的框架结构。如果基础连梁受到的荷载力或者是压力过大的时候,应该增加10%的钢筋进行叠加,同时基础连梁的设置,要与框架梁的受力相一致。如果对结构设计有很高的要求,可以从两个方向来增加基础连梁的钢筋布置。如果选择的是独立基础,在进行设置的时候就要通过混凝土来连接它们的缝隙部分,混凝土填充的高度,要与独立基础的高度一致,然后再对基础连梁进行回土浇筑。如果框架柱在地面之上的形状是圆形的,就要尽可能将框架柱的地下部分设计为矩形柱,这样的好处就是可以减少施工当中的流程。一般情况下,圆柱的纵筋数量不能少于八根,同时对于圆形框架柱的箍筋选择也是有要求的,一般采用的是螺旋式的布置方式,这样可以极大提高框架柱的承载能力。矩形框架柱的钢筋布置可以将钢筋布置成井字形。如果有特别要求的,应该根据相关的实际情况来进行钢筋布置的设计。同时在一般情况下,框架柱的钢筋布置截面应该做好以下几点:一是不管是布置一级钢筋、二级钢筋还是三级钢筋,框架柱的横截面的长度必须大于400mm,如果对抗震要求比较高的建筑结构;框架柱的横截面的长度必须大于300mm;如果没有对框架柱进行抗震要求规定,横截面的长度必须要大于250mm。结语

第13讲 框剪结构设计

框剪结构设计 一.框剪结构的特点 1.框架—剪力墙结构,亦称框架—抗震墙结构,简称框剪结构。它是框架结构和剪力墙结构组成的结构体系,既能为建筑使用提供较大的平面空间,又具有较大的抗侧力刚度。框剪结构可应用于多种使用功能的高层房屋,如办公楼、饭店、公寓、住宅、教学楼、实验楼等等。其组成形式一般有: (1)框架与剪力墙(单片墙、联肢墙或较小井筒)分开布置; (2)在框架的若干跨内嵌入剪力墙(有边框剪力墙); (3)在单片抗侧力结构内连续布置框架和剪力墙; (4)上述两种或三种形式的混合。 2.框剪结构由框架和剪力墙两种不同的抗侧力结构组成。这两种结构的受力特点和变形性质是不同的。在水平力作用下,剪力墙是竖向悬臂弯曲结构,其变形曲线呈弯曲型,楼层越高水平位移增长速度越快,顶点水平位移值与高度是四次方关系: 均布荷载时 倒三角形荷载时 在一般剪力墙结构中,由于所有抗侧力结构都是剪力墙,在水平力作用下各道墙的侧向位移相类似,所以,楼层剪力在各道剪力墙之间是按其等效刚度EI eq 的比例进行分配。 框架在水平力作用下,其变形曲线为剪切型,楼层越高水平位移增长越慢,在纯框架结构中,各榀框架的变形曲线类似,所以,楼层剪力墙是按框架柱的抗推刚度D值比例进行分配。 框剪结构,既有框架,又有剪力墙,它们之间通过平面内刚度无限大的楼板连接在一起,使它们水平位移协调一致,不能各自自由变形,在不考虑扭转影响的情况下,在同一楼层的水平位移必须相同。因此,框剪结构在水平力作用下的变形曲线呈S形的弯剪型位移曲线。

图一.框剪结构变形特点 3.框剪结构在水平力作用下,由于框架与剪力墙协同工作,在下部楼层,因为剪力墙位移小,它拉着框架变形,使剪力墙承担了大部分剪力;上部楼层则相反,剪力墙的位移越来越大,而框架的变形则相对较小,所以,框架除负担水平力作用下的那部分剪力外,还要负担拉回剪力墙变形的附加剪力,因此,在上部楼层即使水平力产生的楼层剪力很小,而框架中仍有相当数值的剪力。 图二.框剪结构受力特点 典型框剪结构中的框架底部剪力一般接近为零,剪力控制部位在房屋高度的中部甚至上部,而纯框架最大剪力墙在底部。因此,对于带少量剪力墙的框架结构,仍须按框剪结构协同工作计算内力,不应仅按纯框架分析,以保证上部楼层的构件安全。 4.框剪结构在水平力作用下,水平位移是由楼层层间位移与层高之比Δu/h 控制,而不是顶点水平位移进行控制。框架结构的最大层间位移一般在底部,剪力墙结构的最大层间位移则出现在顶部(理想状态下),框剪结构的最大层间位移则介于两者之间,一般在(0.4~0.8)H范围内。

JSGF HYW 005-2014 密封结构设计技术规范

前言 本技术规范起草部门:技术与设计部 本技术规范起草人:何龙 本技术规范批准人:唐在兴 本技术规范文件版本:A0 本技术规范于2014年8月首次发布

密封结构设计技术规范 1适用范围 本技术规范适用于灯具外壳防护使用密封圈的静密封结构设计。包括气密性灯具密封结构设计。2引用标准或文件 GB/T 3452.1-2005 液压气动用O形橡胶密封圈第1部分:尺寸系列及公差 GB/T 3452.3-2005 液压气动用O形橡胶密封圈沟槽尺寸 GB/T 6612-2008 静密封、填料密封术语 JB/T 6659-2007 气动用0形橡胶密封圈尺寸系列和公差 JBT 7757.2-2006 机械密封用O形橡胶圈 JB/ZQ4609-2006 圆橡胶、圆橡胶管及沟槽尺寸 《静密封设计技术》(顾伯勤编著) 《橡胶类零部件(物料)设计规范》(在PLM中查阅) 3基本术语、定义 3.1密封:指机器、设备的连接处没有发生泄露的现象(该定义摘自《静密封设计技术》)。 3.2静密封: 相对静止的配合面间的密封。密封的功能是防止泄漏。 3.3泄漏: 通过密封的物质传递。造成密封泄漏的主要原因:(1)机械零件表面缺陷、尺寸加工误 差及装配误差形成的装配间隙;(2)密封件两侧存在压力差。减小或消除装配间隙是阻止泄漏的主要途径。 3.4接触型密封:借密封力使密封件与配合面相互压紧甚至嵌入,以减小或消除间隙的密封。 3.5密封力(或密封载荷):作用于接触型密封的密封件上的接触力。 3.6填料密封:填料作密封件的密封。 3.7接触压力:填料密封摩擦面间受到的力。 3.8密封垫片:置于配合面间几何形状符合要求的薄截面密封件。按材质分有:橡胶垫片,金属垫 片、纸质垫片、石绵垫片、塑料垫片、石墨垫片等。 3.9填料:在设备或机器上,装填在可动杆件和它所通过的孔之间,对介质起密封作用的零部件。 注:防爆产品电缆引入所指的填料在GB3836.1附录A2.2条中另有定义,指粘性液体粘接材料。 3.10 压紧式填料:质地柔软,在填料箱中经轴向压缩,产生径向弹性变形以堵塞间隙的填料。 3.11 密封圈:电缆引入装置或导管引入装置中,保证引入装置与电缆或导管与电缆之间的密封所使 用的环状物(该定义摘自GB3836.1第3.5.3条对防爆产品电缆密封圈的定义)。 3.12 衬垫:用于外壳接合处,起外壳防护作用的可压缩或弹性材料。(该定义摘自GB3836.1第6.5 条和GB3836.2第5.4条对防爆产品密封衬垫的定义)。 3.13 压缩率:密封圈装入密封槽内受挤压,其截面受压缩变形所产生的压缩变形率。也称作压缩比。注1:上述术语除3.1、3.11和3.12条外,其余均摘自《GB/T6612-2008静密封、填料密封术语》。

建筑结构设计中的抗震设计要点分析 郭冲

建筑结构设计中的抗震设计要点分析郭冲 发表时间:2019-09-11T15:54:04.173Z 来源:《建筑学研究前沿》2019年11期作者:郭冲 [导读] 地震带来的震荡可能会使建筑物变形,甚至是出现倒塌的现象,即便是经过地震没有很大的影响,其基本的抗震能力也会进一步降低。 河南中核五院研究设计有限公司 摘要:由于地震灾害的破坏力较大,特别是在一些地震频发的地区,提高建筑结构设计中的抗震设计至关重要。基于此,本文对建筑结构设计中的抗震设计面临的问题进行了总结,对建筑结构抗震设计原则和措施进行了分析,提出了常见结构的抗震设计要点,从而更好的提高建筑结构的抗震质量。 关键词:建筑结构;抗震设计;质量 一、抗震设计面临的问题 1、建筑高度的问题 随着人口的大量增加,我国的建筑物大多以高层建筑为主,对于高层建筑的钢筋混凝土有着一定的标准要求。但是有些开发商为了追求利益全然不顾设计标准,超过设计标准加建楼层,一旦发生地震,这些建筑物的抵抗力就会大大的降低,地震带来的震荡可能会使建筑物变形,甚至是出现倒塌的现象,即便是经过地震没有很大的影响,其基本的抗震能力也会进一步降低。 2、建筑位置问题 我国是人口大国,而且人口的数量仍旧在不断的增加,但是我国可实际应用的土地面积是有限的,相关开发商可能不会考虑建筑的地点是否适合建造房屋,对地理位置不能够进行合理的选择。建筑的地点需要具备开阔的基本性能,地理位置要平坦,土体要坚实,河流附近和山坡边缘都不是合适的建筑地带,在选择地址的时候应该考察泥石流发生的可能性和其他自然灾害发生的可能性,尽量避免在类似的地带建造房屋,对于地震活跃的地带和大陆板块的衔接地带都应该尽可能避免建造房屋,这样可以减少地震灾害带来的影响。 3、建筑材料问题 建筑的选材关系到建筑的质量,对于地震频发的地区,其建筑材料的选择更加有严格的要求,在我国的建筑过程中,其建筑结构主要由钢筋和混凝土组成,一旦发生侧移就会带动更大程度的位移,建筑结构中的钢框架一旦发生位移就会造成建筑结构的负载增加,相应的抗震性能就会减弱,应该选择适合的建筑材料。 二、建筑结构抗震设计原则 1、结构抗震设计的目标 抗震设计时,要保证发生小地震时安全,不会给住宅造成毁坏;当发生中级地震时,住宅所受的损坏不大,不会为居民带来安全威胁,并且住宅所损坏的结构可以修复并继续使用;当出现大地震时,不会倒塌,可以给人们空间、时间及时逃离。结构抗震设计目标总得来讲就是:小震安全可靠、中震损坏可修、大震高楼不倒。 2、结构抗震设计的原则 结构设计时要考虑几个方面的因素,以达到优化结构抗震设计的目的。首先,住宅结构设计要具备一定的刚性和弹塑性,在地震力影响住宅时不会因为刚性过硬或者弹塑性过大,使得其的结构发生无法修复的形变。其次,由于强震都伴随着不同程度的余震,这时就不允许住宅结构过度追求抗震能力,这会导致住宅刚性过大,而无法承受余震带来的压力,这就要求在抗震设计时既要抗住强震的破坏力,又要承受得了余震的多次侵扰。最后,为了避免刚性太小,导致住宅结构在余震攻击下变形过大而无法修复,所以要求建筑具备延性良好的分体系,防止住宅在强震中集体崩塌。 三、建筑结构设计中抗震设计的措施 建筑结构抗震性能的强弱与周边环境有着直接的关系,抗震能力弱的建筑会直接威胁到建筑结构内及周边行人的生命财产安全,同时对周边建筑和设施也会有一定的影响,因此,切实有效的提高建筑结构的抗震能力是一件刻不容缓的事情。经过多年的实践,提高建筑结构抗震能力主要通过以下方式:在建筑设计过程中谨慎选择建筑抗震结构、合理的布局减少地震带来的能量、建筑中设置多重抗震防线,确保建筑结构的抗震性能满足要求。 1、谨慎选择建筑抗震结构 谨慎的选择建筑抗震结构能够有效的提高建筑结构抗震性能,选择强度较优、刚度较高的建筑结构主体,能够有效的降低建筑结构的变形,同时能够确保建筑物的安全性。针对建筑中容易出现安全隐患的部位进行必须的措施,防止安全性问题的出现。 2、合理的布局减少地震带来的能量 在对建筑结构进行抗震设计中对建筑采取以位移为基点的结构设计和定量分析能有效的减少地震灾害的能量输入,增加建筑结构的抗震效果。在建筑进行施工中其地基要尽量的选择在比较坚硬的场地,同时要尽量的避开地震活跃范围,减少地震余震对建筑物造成的共振,减少地震对建筑物造成的破坏。 3、在建筑中设置多重抗震防线 在对建筑物进行抗震设计时要设置多重抗震防线,这样可以在最大限度上降低地震对建筑物造成的伤害。在对建筑进行设计时,可以将延展性好的构件加入到建筑物的抗震体系中,可以将其视为第一道防线,同时可以将一些其他的建筑构件作为第二、第三道防线,这样在地震发生时,第一道防线遭到破坏后,可以利用其他的防线进行抵抗地震的后续冲击力,以保证人们的生命财产安全。 4、常见结构的抗震设计要点 4.1防震缝的设计 在预防地震的基础原则上展开抗震结构的设计,对于一些没有符合标准要求的建筑,应该在一定的地点设置相关的防震缝,利用防震缝可以有效的分解建筑的内部结构,使得建筑内部结构呈现出独立的单元,缝隙的两侧应该预留出合适的宽度,这样可以使得防震缝同上层建筑物分开,当地震发生时,防震缝可以很好的减缓地震带来的波动程度,建筑的某一单元受到损害不会影响到其他部分。

探析建筑结构设计中的技术要点和原则 陈金晶

探析建筑结构设计中的技术要点和原则陈金晶 发表时间:2019-01-10T09:56:08.787Z 来源:《基层建设》2018年第35期作者:陈金晶[导读] 摘要:对于整个建筑来说,其自身建筑物的结构是整体的雇个构架,因此,对于建筑物来说,其自身的高度对其结构来说是密切相关的,无论是从美观以及实用性和安全性来说,建筑结构的价值都是非常重要的,尤其对于地震或者台风等自然灾害的时候,都需要对建筑结构进行严格化的检测和监督。 杭州九米建筑设计有限公司浙江省杭州市 310012 摘要:对于整个建筑来说,其自身建筑物的结构是整体的雇个构架,因此,对于建筑物来说,其自身的高度对其结构来说是密切相关的,无论是从美观以及实用性和安全性来说,建筑结构的价值都是非常重要的,尤其对于地震或者台风等自然灾害的时候,都需要对建筑结构进行严格化的检测和监督。因此,本文主要对建筑结构设计中的技术要点以及原则进行了合理的分析和研究。 关键词:建筑结构;设计;技术要点;原则 1建筑结构体系可靠程度 结构可靠度就是在具体使用的流程中,对于随机的流程转化未使用随机的变量进行表示的相关方式,之后充分将经验的检验功能发挥出来,同时使用失效概率作为度量方式。当如今,我国已经开始深入的对可靠度有关理论进行研究,同时也获取了一些成就。可是,一旦通过此种理论内容使用到实际结构设计当中来,就会在规划设计方面产生一定的问题。所以,结构规划设计工作者需要在结构规划设计中进行其各个方面的合理保证。不止如此,还要将平时正常以及非正常结构设计系统之间的界限出现的模糊问题进行纠正,这样保证有效的可靠性理论在结构设计当中得到合理有效的应用。 2建筑结构设计中存在的问题 2.1建筑基础结构设计不规范、不科学 根据现阶段建筑工程基础结构方面的调查资料显示,在设计工作中对基础结构的设计存在严重的不规范、不科学问题,不仅直接影响建筑基础的施工质量,而且影响上层建筑施工和整个建筑工程的质量安全。这是因为有些设计人员在基础设计中,在未开展大量地质调查工作之前就根据自己的经验开展设计工作,有的是根据施工方人员所提供的数据进行设计。由于这些经验和口头数据并不能保证精确性,所以在这种情况下设计出来的基础结构图无法满足设计标准要求,施工后的建筑基础质量肯定和预期有较大出入。此外,现在很多民用建筑在基础结构设计上并未对荷载情况严格规定,这也是民用建筑结构设计出现问题的原因之一,设计人员在基础结构设计中必须准确标明基础荷载数据,才能避免由于基础结构超负载而影响整个建筑质量。 2.2建筑框架设计不合理 建筑框架设计包括纵向和横向框架设计,是建筑结构设计中必不可少且需要互相协调配合的问题。但两者功能不同,纵向框架是为了抵抗地震波纵波的影响,而横向框架往往是为了保持建筑物平衡和整体协调性。在设计纵向框架时需要均匀配置箍筋的配筋和跨中纵筋,如果设计人员无法区分两者功能差异,则可能会在设计中出现失误。此外,设计人员在设计中为了便于进行建筑结构设计的受力分析,往往人为地将承重柱的截面高度设计降低,这种做法会导致整个建筑物存在安全隐患,甚至会引起建筑物坍塌。 2.3结构布置不合理 在建筑结构整体布置上,理应遵守相应的设计规则,这样才能使结构布置合理,比如建筑物的平立面外形尺寸的抗侧力、质量分布、承载力分布等。但由于在一些复杂的建筑物结构中,这些设计规则难以用定量指标进行限制,所以设计人员在设计时对这些技术规范和设计规则不是很了解,而且很难精确把握结构的规则性,从而导致设计出来的建筑结构往往缺乏规则性。 3建筑结构设计的原则 3.1刚柔度适合的原则 建筑结构设计过程中,保证坚持刚柔度适合的原则。一旦建筑结构设计过分柔,在多种自然灾害等外力条件的作用下比较容易出现大的变形,甚至导致楼体倒塌。一旦建筑结构设计过于刚,那么变形能力大幅度降低,一旦遭受非常大的瞬间作用的同时,建筑会因为柔韧度弱遭到彻底毁坏。 3.2抓重点,分清主次原则 可靠度需要坚持的另外一个原则就是将建筑结构设计的要点进行把控,将建筑结构设计的主次关系分清楚。主要是因为在设计实际流程中,对每一个不同组成构件起到的作用都是不同的。在设计当中设计人员需要将设计要点抓住,保证建筑结构设计更加合理科学。即便当建筑受到很大的外力作用的时,结构当中的各个部件都可以将自身作用充分发挥,合力将外力抵抗,从而保证建筑工程具备非常高的稳定性。比如设计建筑工程梁柱的过程中,因为柱结构需要承受比梁结构外力大,所以设计的同时满足柱强梁弱的标准。 4提高建筑结构设计质量的有效技术要低 4.1加强设计结构方案的合理性 对于相关规划设计工作者要对建筑物的总体结构以及各个部门之间进行合理的联系,对结构规划设计中的稳定性进行合理的把控,这主要和整个建筑结构体系的建设有着密切的联系,而且对于整个结构的建设分析等等都有着直接的关系,因此就要对结构的相关有利因素进行合理的创新,进而对各个构件之间的融合进行合理的改善和改正,对不利因素进行合理的消除,防止建筑结构规划的不合理性产生。 4.2把握剪力墙设计的可靠度 建筑主体主要结构形式有:框架结构,框架-剪力墙结构,剪力墙结构,框筒结构等。我们应根据建筑的使用性质,层数、高度选择合理的结构形式。为了减少占地,现阶段高层剪力墙结构大幅增加,优化墙体结构设计变的尤为重要。 为了确保建筑墙体结构的稳固性,优化墙体设计,必须做好两方面的工作,一方面,要注意加强墙体的混凝土结构,确保结构墙的强度与稳定性,优化混凝土材料,削弱混凝土的绝热升温性能,处理好建筑楼板之间的变形缝问题,科学控制混凝土的升温速度。在施工过程中,需要选用低热化水泥或者中热化水泥,为混凝土加入足量的粉煤灰,以此缓解混凝土墙体的开裂风险。除此之外,施工技术人员应该严格控制施工动态,对后续浇筑的温度予以科学控制以避免出现裂缝。在浇筑混凝土墙体时,要处理好混凝土上下层之间的接缝,清除衔接处所夹带的杂物,并借助钻机钻孔灌注混凝土技术来修复封闭漏洞。 4.3大力加强与深入研究天然地基设计力度

相关文档
相关文档 最新文档