文档库 最新最全的文档下载
当前位置:文档库 › 炼钢车间2×60T转炉三次除尘技术方案.

炼钢车间2×60T转炉三次除尘技术方案.

炼钢车间2×60T转炉三次除尘技术方案.
炼钢车间2×60T转炉三次除尘技术方案.

秦皇岛宏兴钢铁有限公司

炼钢车间2×60T转炉三次除尘项目

张家口市宣化天洁环保科技有限公司

2016年5月

1.序言

秦皇岛宏兴钢铁有限公司技改炼钢车间三次除尘项目尘源点包括2×60t转炉两座加料跨配顶吸罩,600T混铁炉一座配顶吸罩,散装料上料系统一套配集中除尘。我公司根据秦皇岛宏兴钢铁有限公司提供的资料,编制了本方案,其目的在于为该除尘提供成套的、优化的、建设性的解决方案,确保符合国家环保要求,达标排放的前提下降低投资及运行成本。

2.尘源点概述

2.1需治理的扬尘点

本方案治理的尘源点配套除尘罩范围如下:

1)、2×60T转炉加料跨顶吸罩;

2)、600T混铁炉兑铁口、出铁口工位除尘罩;

3)、散装料地坑料仓卸料口除尘罩;

4)、散装料皮带机机头、机尾除尘罩;

5)、转运站皮带机头除尘罩、振动筛除尘罩;

6)、通廊皮带机头、皮带机尾除尘罩;

7)、高跨散装料仓皮带布料口除尘罩。

3.设计原则及依据

3.1设计原则

●达标排放,保证除尘效果;

●不影响冶炼操作工艺;

●最大限度地降低运行费用及一次投资;

●利于维护管理,长期、有效、稳定地运行。

3.2 设计依据

●国家有关环保要求及环境指标:(获县以上环保部门的验收)

排放浓度≤15mg/Nm3

岗位粉尘浓度≤10mg/Nm3(扣除背景值)

三次除尘捕集率≥95%(屋顶不冒黄烟),混铁炉捕捉率≥60%

除尘效率≥99%。

●国家有关设计规范

4.除尘工艺流程及设计说明

4.1除尘工艺流程

本套系统采用低阻、大流量系统工艺原则,其目的在于以最低的系统阻力,控制系统管道流速(18~20m/s),通过选取管道经济流速,尽量降低系统阻力损失从而能明显降低长期电耗。换言之,追求的是在相同电机的情况下,最大限度地取得处理风量,提高捕集率。在相同风量满足捕集效果的前提下,尽可能少地消耗电能,降低运行费,并合理组织烟气,使系统长期、可靠、稳定地运行在既不烧滤袋又不易于结露的中温状态。烟气捕集是本系统的关键所在,设备其生产工艺不同、设备布置各异,因此,选用何种捕集罩型式成为本次方案的重点。

4.2除尘罩设计说明

1)、2×60T转炉加料跨顶吸罩:

60T转炉的烟尘基本处于持续产生过程,大量高温烟气受热膨胀和特抬升力影响从炉前二次除尘罩逃逸冲上加料跨车间顶部,由于现有车间全部密封,烟气淤积在车间顶部无法流通,必须在尘源上方利用现有厂房结构设置高悬伞形罩,捕集加料和兑铁水以及冶炼过程产生的三次烟气,被捕集的烟气通过系统管网汇合后进入低压脉冲除尘器进行过滤,最后满足排放达标的烟气通过引风机排入大气。

2)、600T混铁炉烟尘顶吸罩:

600T混铁炉产生的烟气基本处于间断产生过程,主要是混铁炉兑铁水、出铁水及铁包倒罐工位产生的大量烟尘。

混铁炉是贮存从高炉运来供炼钢转炉用的铁水,当混铁炉兑铁水和混铁炉向铁水罐倒铁水时在一定温度下部分碳析成石墨粉尘,混杂着氧化铁粉末随热气流扩散到车间内,大量高温烟气受热膨胀和特抬升力影响从炉前二次除尘罩逃逸冲上加料跨车间顶部,由于现有车间全部密封,烟气淤积在车间顶部无法流通,必须在尘源上方利用现有厂房结构设置高悬伞形罩。

由于石墨粉尘非常轻,在随热气流上升的过程中就受到车间横向野风的影响飘散到车间各个角落,因此采取高悬伞形罩的形式捕捉此类粉尘的话想对转炉三次除尘顶吸罩效率较低。

建议应该在最靠近尘源点的位置设计低悬伞形罩或者尘源点侧吸罩进行有效捕捉才能明显提高集尘效果。

3)、散装料上料系统除尘罩

散装料上料除尘系统主要包括地坑料仓下料除尘罩;皮带输送机头、机尾除尘罩;转运站振筛除尘罩以及转炉高位料仓皮带布料除尘罩几个部位。

此处烟气属于常温烟气必须采用封闭式除尘罩,尽量把尘源点烟气控制在最小范围内进行集中收集效果最佳。因此需要对送料皮带加设导料槽进行封闭,振动筛需要从新加设软密封措施确保振动筛本体漏风率满足除尘要求,皮带机头部分采用半封闭顶吸罩同合理的风量设计,选取恰当的控制风速,保证皮带机头半封闭罩的烟气捕捉率。高位料仓受现场因素影响应采取整体封闭形式,在整体封闭罩安装检修门及除尘管道接入口,每个接口管道安装电动阀门,通过布料车移动限位信号控制每个料仓位接口管道的开启和关闭。

5.除尘系统风量设计及划分

5.1除尘工艺划分的原则

按工艺设备在车间内就近布置的原则,优先考虑以上设备除尘系统的合建;优先考虑生产作业的周期性比较一致的设备合建为一套除尘系统;考虑将烟尘特性(成分、温度、粒径等)接近的扬尘点合建为一套除尘系统;综合均衡一套大系统和多套小系统在工艺、投资及管理上各自的优缺点,确定系统划分。

5.2除尘点风量设计(表1-1)

5.3风量设计说明

1)、表1-1中加料跨每个尘源点均加设电动蝶阀控制开/关(3个),其中加料跨2台转炉顶吸罩以及1台混铁炉顶吸罩同阀门切换实现加料跨始终有2个顶吸罩开启,通过岗位工作台上增设电动蝶阀开/关按钮,实现3个阀门之间开关/切换。

2)、表1-1中散装料高位料仓及散装料地坑下料口每个尘源点均加设电动蝶阀控制开/关(16+6=22个),其它尘源点均加设手动阀门(7个),用于调节系统阻力平衡。

6.除尘设计方案

6.1方案一分析

除尘总设计风量780000m3/h,系统风压6500Pa,加料跨尘源点和散装料尘源点共用一台除尘器,此方案投资费用较小。

由于散装料地坑下料以及1#转运站尘源点还在渣跨西南侧10~20m处,而除尘器位置在钢坯精整跨北侧靠东部位置,管线布置太远,阻力平衡基本无法实现控制,即风机满负荷状态下,加料跨2个顶吸罩打开后,远端散装料地坑下料以及1#转运站尘源点除尘风量会明显降低,因此我方建议把加料跨除尘系统和散装料除尘系统分开新建两套除尘系统较为合理。

6.2方案二分析

加料跨除尘系统总设计风量600000m3/h,系统风压5500Pa;

散装料除尘系统总设计风量180000m3/h,系统风压5500Pa;

此方案可以保证两套除尘系统每个尘源点的除尘风量,其中加料跨除尘系统风机常开满负荷运行;而散装料除尘系统风机通过变频调速控制,实现工况满负荷和低速运行两种状态。

6.3两个方案对比分析

此方案相对方案一投资费用相对较高,需要新建2套除尘系统,单对散装料系统除尘效果会明显高于方案一的设计方式。我方建议贵方采用方案二。

7.主要设备选型

7.1除尘器选型

1)、加料跨除尘系统所述风量计算:600000m3/h

根据系统总风量及系统烟气粉尘特性,除尘器选用我公司成熟的LCMD-12000低压脉冲布袋除尘器。(技术参数表见附表1-2)

2)、散装料除尘系统要所述风量计算:180000m3/h

根据系统总风量及系统烟气粉尘特性,除尘器选用我公司成熟的LCMD-3800低压脉冲布袋除尘器。(技术参数表见附表1-3)

8.设备工作原理及结构介绍

8.1工作原理

LCM-D型离线清灰低压脉冲袋式除尘器的气体净化方式为外滤式,含尘气体由导流管进入各单元过滤室并通过设备于灰斗中的烟气导流装置;由于设计中袋底离进风口上口垂直距离有足够、合理的净空,气流通过适当导流和自然流向分布,达到整个过滤室内气流分布均匀;含尘气体中的颗粒粉尘通过自然沉降分离后直接落入灰斗、其余粉尘在导流系统的引导下,随气流进入中箱体过滤区,吸附在滤袋外表面。过滤后的洁净气体透过滤袋经上箱体,经过离线蝶阀由排风管排出。

滤袋采用压缩空气进行喷吹清灰,清灰机构由气包、喷吹管和电磁脉冲控制阀等组成。过滤室内每排滤袋出口顶部装配有一根喷吹管,喷吹管下侧正对滤袋中心设有喷吹口,每根喷吹管上均设有一个脉冲阀并与压缩空气气包相通。清灰时,电磁阀打开脉冲阀,压缩空气经喷口喷向滤袋,与其引射的周围气体一起射入滤袋内部,引发滤袋全面抖动并形成由里向外的反吹气流作用,清除附着在滤袋外表面的粉尘,达到清灰的目的。

随着过滤工况的进行,当滤袋表面积尘达到一定量时,由清灰控制装置(差压或定时、手动控制)按设定程序打开电磁脉冲阀喷吹,压缩空气以极短促的时间顺序通过各个脉冲阀经喷吹管上的喷嘴诱导数倍于喷射气量的空气进入滤袋,形成空气波,使滤袋由袋口至底部产生急剧的膨胀和冲击振动,造成很强的清灰作用,抖落滤袋上的粉尘。

落入灰斗中的粉尘经由卸灰阀排出后,经由输灰系统输出。

除尘器配有先进的离线蝶阀,具有在线、离线二状态清灰功能和离线检修功能。阻力减小,气流通畅。除尘器设置有差压、料位等在线监测装置。

除尘器的控制(包括清灰控制等)采用PLC控制。整套除尘系统的控制实行自动化无人值守控制,并可向工厂大系统反馈信息、接受工厂大系统远程控制。

所有的检修维护工作在除尘器净气室及机外执行,无须进入除尘器顶部。

8.2除尘器主要结构、特点

①设计合理的灰斗导流技术解决了一般布袋除尘器常产生的各分室气流不均匀的

现象。

②设计了特殊大储量的脉冲阀贮气包既可满足用户提供的高压(G型)气源时使用,亦可满足低压(D型)气源时使用。

③滤袋上端采用弹簧涨圈型式,不但密封性能好,而且在维修更换布袋时快捷简单,实现机外换袋。

④在袋笼上端的结构设计上可按不同工况有多种结构型式(八角型、圆型等)的选择,对袋笼的制造有严格的要求,本公司的袋笼是在引进国外技术合作生产的自动化生产线上加工,其各项指标较行业标准提高50%左右。

⑤袋笼标准长度6米,如用户场地有限,还可根据需要增长1-2米,从而在处理相同风量时,该设备较其它反吹风除尘器和常规脉冲除尘器占地面积最小,可节省30-50%,设备重量亦能减少40%左右。

⑥离线阀升降式提升阀结构,降低了设备阻力,使用出风顺畅。

9. LCM-D型长袋低压脉冲除尘器的制造技术

9.1除尘器的阻力控制

除尘器的阻力分为两部分。

本设备的设计总阻力为≤1500Pa。

除尘器的阻力一部分是设备的固有阻力(即原始阻力),这是由设备的各个烟气流通途径造成的。

除尘器进出风方式、进风管道各部位的尘气流速选择是否妥当;除尘器各仓室进风的均匀度;导流系统设计是否合理;进风口距离滤袋底部的水平高度导致的含尘气体稳流空间是否足够;滤袋直径和滤袋间距决定的滤袋间烟气抬升速度的合理性;出口管道风速的合理选定等都将影响除尘器的固有阻力值。

为此,我公司设计的布袋除尘器采用平进平出的进出风方式;进风总管和导流系统的设计保证各仓室进风不均匀度在5%以下;进风口距离滤袋底部的水平高度保证含尘气体获得稳流空间;滤袋直径采用160mm且滤袋间距的选定,保证过滤区内滤袋内的净气空间和滤袋外的含尘气体空间比,以保证滤袋间的尘气抬升。

从以往我公司设计生产的除尘器来看,设备的原始阻力都在350Pa左右。

第二部分是设备的运行阻力。

设备的运行阻力是由除尘器在运行过程中滤袋表面形成的挂灰层的厚度导致的一

个循环值。

一般我们对这个值的上限设定在1000-1200Pa,在设备达到这个阻力值时,系统启动清灰,将设备阻力回复到原始阻力,进入下一个循环。这个循环时间的长短,取决于烟气含尘浓度、滤料的品种规格等。

从我公司设计生产的已经投运的布袋除尘器的运行记录显示,该循环时间均在60-120min之间。

9.2导流系统

我们对除尘器各烟气流经途径中的管道风速进行了分段化设计,除尘器的进风采用了气体导流系统并充分利用了气体的自然分配原理,保证了单元进风的均匀、和顺,以提高过滤面积利用率。

含尘气体由中部进风口通过进风通道进入各单元过滤室,由于设计中袋底离进风口上口垂直距离有足够合理的净空,滤袋间距亦进地了专门设计,气流通过设置于灰斗中的进风分配系统导流后,依靠阻力分配原理自然分布,达到整个过滤室内气流以及各空间阻力的分布均匀,保证合理的烟气抬升速度,最大限度地减少紊流、防止二次扬尘。

设计合理的进风导流系统将箱体、过滤室和系统的阻力降至最小并尽可能地减少进风系统中的灰尘沉降现象,避免了滤袋的晃动、碰撞、磨擦,延长了系统及滤袋的使用寿命。

气流分配系统的设计保证各单元室入口流量不均匀度<5%。

9.3花板、滤袋和笼骨

花板是除尘器本体中重要部分,花板厚度为6mm,为保证花板孔的大小及孔距的精度,用冲孔模具压力机床冲孔,然后由铆工对花板在平台上进行校平,这些孔具有良好的通用性和互换性,花板表面平整,花板周围无毛刺、夹角,否则损坏滤袋。

对于整台布袋除尘器而言,滤袋是其核心部件。滤料质量直接影响除尘器的除尘效率,滤袋的寿命又直接影响到除尘器的运行费用。

因而,本案滤料我们根据除尘器运行环境和介质情况并根据贵方招标文件的规定采用φ160×6000mm标准规格,采用550g加厚覆膜针刺毡。

此滤料清灰彻底,减少了粉尘在滤袋表面形成布粉层后板结的可能;滤料寿命长,加上我们在除尘器结构方面的改进,保证了滤料>24个月的正常使用寿命。

布袋底部采用三层包边缝制,无毛边裸露,底部采用加强环布,滤袋合理剪裁,尽量减少拼缝。拼接处,重叠搭接宽度不小于10mm,提高袋底强度和抗冲刷能力。

滤袋上端采用了弹簧圈形式,密封性能好、安装可靠性高,换袋快捷。仅需1-2人就能通过机顶便掀式顶盖进行换袋操作。滤袋的装入和取出均在净气室进行,无须进入除尘器过滤室。

袋笼采用圆型结构,袋笼的纵筋和反撑环分布均匀,并有足够的强度和刚度,防止损坏和变形(纵筋直径≥φ4,加强反撑环φ4、间距200,φ155×5950mm),顶部加装“η”形冷冲压短管,用于保证袋笼的垂直及保护滤袋口在喷吹时的安全。

笼骨材料采用20#型钢,使用笼骨生产线一次成型,保证笼骨的直线度和扭曲度,滤袋框架碰焊后光滑、无毛刺,并且有足够的强度不脱焊,无脱焊、虚焊和漏焊现象。

袋笼采用有热镀锌技术,镀层牢固、耐磨、耐腐,避免了除尘器工作一段时间后笼骨表面锈蚀与滤袋黏结,保证了换袋顺利,同时减少了换袋过程中对布袋的损坏。

9.4清灰系统

除尘器的清灰采用压缩空气低压脉冲清灰。

除尘器采用离线清灰方式,清灰功能的实现是通过PLC利用差压(定阻)、定时或手动功能启动脉冲喷吹阀喷吹,使滤袋径向变形,抖落灰尘。

清灰系统设计合理,脉冲阀动作灵活可靠;在设备出厂前,对清灰系统等主要部件进行了预组装,以保证质量。

清灰用的喷吹管采用无缝管,借助校直机进行直线度校正,喷吹短管(又称喷嘴)与喷吹管的焊接采用了工装模具,二氧化碳保护焊接,减少变形,保证喷吹短管间的形位公差,喷吹管借助支架固定在上箱体中,并设置了定位销,方便每次拆装后的准确复位。

采用文氏管对压缩空气进行导流,有助于压缩气流方向的稳定。

清灰系统设置储气罐和分气包、精密过滤器(除油、水、尘),保证供气的压力和气量和品质,清灰力度和清灰气量能满足各种运行工况下的清灰需求。

为减少清灰对滤袋的损伤,清灰气源应具有减少氧含量及温差等对滤袋不利影响的措施。

9.5电磁脉冲阀

清灰系统的关键设备是电磁脉冲阀,它的选用关系到除尘器的造价及清灰效果。

我们为LCM-D型长袋低压脉冲反吹布袋除尘器选用的电磁脉冲阀为中美合资产品,DC24V,YM-3″,膜片经久耐用,寿命2年,满足了脉冲电磁阀的高效运行要求、极大

地减少了维护工作量。

9.6本体和灰斗

1)、除尘器顶部设置防雨设施

除尘器采用设有防雨棚、排水设施、检修用起吊装置、检修扶梯平台;各项设施的设计采用人性化理念,保护除尘器顶部装置、方便人员检修、使用和客理。

2)、除尘器顶盖采用剪冲封顶盖,重量、大小适合人工开启,所有孔、门制作及装配结束后,进行密封试验,确保无变形、无泄漏。

3)、除尘器的灰斗能承受长期的温度、湿度变化的振动,并考虑防腐性能。灰斗设检修门,所有检修门、人孔采用快开式,开启灵活,密封严密。为避免烟气短路带灰,灰斗斜侧壁与水平方向的交角不小于60°,以保证灰的自由流动。

除尘器第一和最后一个灰斗上分别设置高、低(电容式)料位计。在每个灰斗口出口附近设计安装捅灰孔;灰斗及排灰口的设计保证灰能自由流动排出灰斗;灰斗出灰口处设仓壁振动器,避免了灰尘搭桥,影响排灰。

4)、我们为设备和仪表等配置了必要的扶梯和平台,满足运行、维护、检修的要求。扶梯倾角一般为45°,特殊条件下不大于60°,步道和平台的宽度不大于700mm,扶梯栏杆高度不小于1.2m,安全护板不低于100mm,平台与步道采用刚性良好的防滑格栅平台和防滑格栅板,必要的部位采用花纹钢板。平台荷载不小于4kN/㎡,步道荷载不小于2kN/㎡。

9.7材质

1)、除尘器采用型钢、钢板结构,材质为Q235A(国标)。箱体所用的型钢、钢板进厂后应首先进行喷砂、除锈,以备制作降尘器用。

2)、除尘器本体壁板厚5mm、花板厚6mm,筋板厚度6mm,进出风管壁厚度8mm,配对法兰厚度10mm。易磨损、易腐蚀部位如风管弯头等处采用耐磨损、耐腐蚀的锰钢等材料。

9.8表面整理和涂装

除尘器除锈采用钢板预处理技术有关要求,或采用手工、动力工具除锈,满足GB8923中的St3级。

对于设备金属渣、碎布、碎石及其它异物将从设备内清除。所有的铁屑、铁锈、油、油脂、粉笔、蜡笔、油漆符号及其它有害的东西都从设备内部、外表上除去。

10.电气配置

10.1 系统控制工艺

10.1.1系统说明

本系统为全自动除尘系统,下位机采用PLC可编程控制器,上位机采用工控机及CRT 加图形软件监控,除尘器运行可靠,操作简单,设定参数方便,采用计算机自动跟踪记录及自动故障保护。

系统由SIEMENS公司的S7-300系列PLC(CPU314)和一台工控机及CRT构成。上位机主要完成:在人机交互界面上对每一台动力设备和气动阀进行控制,对电磁阀的点动控制,物理设备的运行状态和过程的动态模拟显示;报警信号的记录;参数的设定和修改;温度、压力、压差曲线的显示及风机各数据的监控。PC必须在PLC正常运行的情况才能可靠运行。

所有设备均采用自动和手动控制两种方式,自动时由PLC根据操作员设定的参数及现场反馈的数据自动完成所有操作,手动控制则由操作员根据现场情况通过现场手动箱或上位机上的控件人工进行操作。

现场各仪表的数据采集和逻辑分析均采用PLC控制处理,上位机进行显示、数据归档并根据所设定的上下限进行报警及故障处理。

(1)除尘系统与各设备开关信号连锁,设备全部无尘时风机低速运转,当有设备发出除尘信号时,系统自动打开除尘点阀门,除尘风机自动提高到设定速度(设定速度以满取除尘效果为准),当全部设备需要除尘时风机提高到最高速满足除尘效果。

(2)除尘器在总出口及总入口设有压差检测,当清灰系统根据设定的压差上限和时间自动运行进行反吹。

(3)在灰仓都设有灰位计,当设定时间或灰位达到上限时,各灰仓进行卸灰,通过输灰机送入储灰仓,当储灰仓达到灰位时发出报警,通知操作工,在运灰车到达后加湿运走。

(4)系统与高压进行联锁,当电机温度、轴承温度等达到设定的数值时发出报警和停机信号;并可对风机相关的参数进行显示和归档。

10.1.2控制过程

依次合上低压柜电源开关,控制电源开关,PLC柜上控制电源指示灯亮,按下操作台“启动”按扭,启动UPS电源,打开上位机,系统自动过入主画面,点击“清尘启动”

及“卸灰启动”按钮,自动模式开始工作。

(1)除尘部分:

系统根据设定的参数从各仓顺序开始工作,工作完一个周期,停顿一个间隔,又开始循环工作。在主画面里可观测设备状态。若检修和手动操作某一箱体时,可将其设备旁手动开关打开,此仓自动停止,程序越位执行,可进行检修或手动操作某一喷吹阀或停风阀等。

(2)输送部分

在系统启动后,系统按顺序开始工作,刮板机1→刮板机2延时→集合刮板机,根据设定参数,各箱体顺序工作。工作一个周期后自动停止。在自动循环过程中,上一级出现故障,下级均不工作,如刮板机故障,则卸料器、振打电机等立即停机,待故障设备恢复正常后,又顺序启动下级设备。

延时停止。启动顺序同上。

卸料器工作时,其上的振打电机根据设定间隔和时间振打清灰。

手动卸灰时,将机旁手动钮打开,可任意操作某卸灰电机。

为避免因操作失误使输灰系统积灰过多,导致卸料器过载等故障,手动时应注意开机顺序:刮板机1—刮板机2—集合刮板机。禁止两个或两个以上灰斗同时卸料。停机时顺序反之!在任何时候,按下“紧急停车”按钮,系统复位,所有设备立即停止运行!

(3)报警功能

一旦系统产生故障信号,立即发出报警,并有详细的故障类型和产生时间。故障信号的类型有:

刮板机、卸料器等电机不能正常工作;

除尘器入口温度过高;

压差过高;

风机温度、振动等数值偏高。

10.1.3关机过程

(1)点击“清尘停止”及“卸灰停止”按扭

(2)关闭UPS电源

(3)关闭系统控制电源

(4)关闭系统总电源

设计180吨转炉计算

180t转炉炼钢车间i 学号: 课程设计说明书设计题目:设计180t的转炉炼钢车间 学生姓名: 专业班级: 学院: 指导教师: 2012年12月25日

目录 1 设备计算 1.1转炉设计 .1.1.1炉型设计------------------------------------------------------------1 2.1 氧枪设计 2.1.1氧枪喷头设计------------------------------------------------6 2.1.2氧枪枪身设计------------------------------------------------8 3.1 烟气净化系统设备设计与计算 --------------------------------------------------------------12 注:装配图 1.图1. 180t转炉炉型图--------------------------------------------------6 2.图2. 枪管横截面--------------------------------------------------------8 3. 图3.180t氧枪喷头与枪身装配图12---------------------------------12

1 设备计算 1.1转炉设计 1.1.1炉型设计 1、原始条件 炉子平均出钢量为180吨钢水,钢水收得率取90%,最大废钢比取10%,采用废钢矿石法冷却。 铁水采用P08低磷生铁 (ω(Si)≤0.85%,ω(P)≤0.2%,ω(S)≤0.05%)。 氧枪采用3孔拉瓦尔型喷头,设计氧压为1.0MPa 2、炉型选择:根据原始条件采用筒球形炉型作为本设计炉型。 3、炉容比 取V/T=0.95 4、熔池尺寸的计算 A.熔池直径的计算 t K D G = 确定初期金属装入量G :取B=18%则 ()t 18290.01 18218021B 2T 2G =?+?=?+= %金η () 3m 4.268 .6182 G V == = 金 金ρ 确定吹氧时间:根据生产实践,吨钢耗氧量,一般低磷铁水约为50~57m 3/t (钢),高磷铁水约为62~69m 3/t (钢),本设计采用低磷铁水,故取吨钢耗氧量为57m 3/t (钢),并取吹氧时间为18min 。则 ()[] min t /m 1.318 56 3?=== 吹氧时间吨钢耗氧量供氧强度 取K=1.70则 ()m 46.518 182 70 .1D == B.熔池深度的计算 筒球型熔池深度的计算公式为: ()m 458.1406 .579.0406.5046.04.26D 70.0D 0363.0V h 2 3 2 3 =??+=+= 金

炼钢除尘的技术要求

炼钢除尘的技术要求 摘要:介绍了炼钢除尘需要的技术设备和流程;并谈到了以后钢铁的发展趋势 关键词:除尘环保环境污染 作者: 工作地点: 联系电话: STEEL-MAKING DUSTER SKILL REQUIRE Abstract:Introduces the steelmaking dust need of technology equipment and process and talked about the future development trend of steel hinge word: duster environmentalist pollution of the environment scribe: working place: relation phone: 我国转炉除尘现有技术、存在问题及发展方向 一、概述 我国现有600多座转炉,年产钢超过4亿吨,绝大多数转炉除尘采用湿法,是钢铁工业节能减排的薄弱环节。主要表现在以下几点: 1. 环保:部分的转炉达不到、或不能稳定达到排放控制标准100、50、或10毫克/立方米; 2. 节水:吨钢新水0.5立方米,全国年消耗新水~2亿立方米,年循环水量超过8000亿吨; 3. 节能:吨钢除尘电耗15度,全国年耗电60亿度,浪费严重; 4. 煤气净化和岗位卫生:回收煤气粉尘浓度标准是15毫克/立方米、岗位粉尘浓度标准是5毫克/立方米,一方面有的转炉达不到;能达到的往往能源消耗和浪费高; 5. 煤气回收利用:转炉煤气回收量平均仅50立方米/吨钢,只有国外、或国内先进水平的50%,并且放散多。与先进水平比,相当于全国每年少回收200亿立方米(相当于4亿吨动力煤); 6. 蒸汽回收利用:转炉平均吨钢回收蒸汽50千克/吨钢,只有国外、或国内的先进水平的50%,相当于全国每年少回收2000万吨蒸汽; 可见,研究转炉除尘的现有技术、弄清楚存在问题和原因、确定正确的改造和发展方向是有意义的。 二、现有技术 经过几十年的发展,如今我国转炉除尘现有技术有:

炼钢车间×T转炉三次除尘技术方案

秦皇岛宏兴钢铁有限公司 炼钢车间2×60T转炉三次除尘项目 技 术 方 案 张家口市宣化天洁环保科技有限公司 2016年5月

1.序言 秦皇岛宏兴钢铁有限公司技改炼钢车间三次除尘项目尘源点包括2×60t转炉两座加料跨配顶吸罩,600T混铁炉一座配顶吸罩,散装料上料系统一套配集中除尘。我公司根据秦皇岛宏兴钢铁有限公司提供的资料,编制了本方案,其目的在于为该除尘提供成套的、优化的、建设性的解决方案,确保符合国家环保要求,达标排放的前提下降低投资及运行成本。 2.尘源点概述 2.1需治理的扬尘点 本方案治理的尘源点配套除尘罩范围如下: 1)、2×60T转炉加料跨顶吸罩; 2)、600T混铁炉兑铁口、出铁口工位除尘罩; 3)、散装料地坑料仓卸料口除尘罩; 4)、散装料皮带机机头、机尾除尘罩; 5)、转运站皮带机头除尘罩、振动筛除尘罩; 6)、通廊皮带机头、皮带机尾除尘罩; 7)、高跨散装料仓皮带布料口除尘罩。 3.设计原则及依据 3.1设计原则 ●达标排放,保证除尘效果; ●不影响冶炼操作工艺; ●最大限度地降低运行费用及一次投资; ●利于维护管理,长期、有效、稳定地运行。 3.2 设计依据 ●国家有关环保要求及环境指标:(获县以上环保部门的验收) 排放浓度≤15mg/Nm3 岗位粉尘浓度≤10mg/Nm3(扣除背景值) 三次除尘捕集率≥95%(屋顶不冒黄烟),混铁炉捕捉率≥60% 除尘效率≥99%。 ●国家有关设计规范

4.除尘工艺流程及设计说明 4.1除尘工艺流程 本套系统采用低阻、大流量系统工艺原则,其目的在于以最低的系统阻力,控制系统管道流速(18~20m/s),通过选取管道经济流速,尽量降低系统阻力损失从而能明显降低长期电耗。换言之,追求的是在相同电机的情况下,最大限度地取得处理风量,提高捕集率。在相同风量满足捕集效果的前提下,尽可能少地消耗电能,降低运行费,并合理组织烟气,使系统长期、可靠、稳定地运行在既不烧滤袋又不易于结露的中温状态。烟气捕集是本系统的关键所在,设备其生产工艺不同、设备布置各异,因此,选用何种捕集罩型式成为本次方案的重点。 4.2除尘罩设计说明 1)、2×60T转炉加料跨顶吸罩: 60T转炉的烟尘基本处于持续产生过程,大量高温烟气受热膨胀和特抬升力影响从炉前二次除尘罩逃逸冲上加料跨车间顶部,由于现有车间全部密封,烟气淤积在车间顶部无法流通,必须在尘源上方利用现有厂房结构设置高悬伞形罩,捕集加料和兑铁水以及冶炼过程产生的三次烟气,被捕集的烟气通过系统管网汇合后进入低压脉冲除尘器进行过滤,最后满足排放达标的烟气通过引风机排入大气。 2)、600T混铁炉烟尘顶吸罩: 600T混铁炉产生的烟气基本处于间断产生过程,主要是混铁炉兑铁水、出铁水及铁包倒罐工位产生的大量烟尘。 混铁炉是贮存从高炉运来供炼钢转炉用的铁水,当混铁炉兑铁水和混铁炉向铁水罐倒铁水时在一定温度下部分碳析成石墨粉尘,混杂着氧化铁粉末随热气流扩散到车间内,大量高温烟气受热膨胀和特抬升力影响从炉前二次除尘罩逃逸冲上加料跨车间顶部,由于现有车间全部密封,烟气淤积在车间顶部无法流通,必须在尘源上方利用现有厂房结构设置高悬伞形罩。 由于石墨粉尘非常轻,在随热气流上升的过程中就受到车间横向野风的影响飘散到车间各个角落,因此采取高悬伞形罩的形式捕捉此类粉尘的话想对转炉三次除尘顶吸罩效率较低。 建议应该在最靠近尘源点的位置设计低悬伞形罩或者尘源点侧吸罩进行有效捕捉才能明显提高集尘效果。 3)、散装料上料系统除尘罩

环境工程专业本科课程设计模板

辽宁科技学院 (20 级) 本科课程设计题目: 专业:班级: 姓名:学号: 指导教师: 说明书页,图纸张

课程设计评语

炼钢转炉除尘废水处理工艺设计 摘要 本设计中,主要采用混凝沉淀的方法来处理除尘废水。处理构筑物主要有粗颗粒沉淀池、浓缩池、冷却塔等。该系统可在构筑物中对悬浮物进行高效的去除,使水体温度得到大幅降低。该系统具有高效,节能的特点,且工艺可靠,出水水质好。 本设计经过详细论证工艺,对工艺过程的设备和构筑物进行了参数选择、设计计算和选型。进行了平面布置、高程布置等方面的设计,污水经过处理后可作为循环冷却水继续使用。 关键词:污水处理,浓缩池,混凝沉淀

The Process Design Of Steelmaking Converter Dedusting Wastewater Treatment Abstract In this design, mainly adopts the method of coagulation deposition to handle dedusting wastewater.Mainly processing structures are Coarse particle settling basin,Concentrated tank, cooling tower, etc。The system can be efficient removal of suspended solids in the structure, make the water temperature reduced greatly . The characteristics of the system has high efficiency, energy saving, and reliable technology, good effluent water quality Through detailed demonstration of our design process, process equipment, and design of structure parameter selection, calculation and https://www.wendangku.net/doc/589171431.html,yout, vertical layout and other aspects of design,After treatment,sewage may continue to use as cooling water Key words: sewage disposal, thickener, coagulation sedimentation

年产330万吨转炉炼钢车间设计

年产330万吨全连铸坯的转炉炼钢车间工艺设计 专业:冶金工程 姓名:朱江江 指导老师:折媛 摘要 本设计的主要任务是设计一座年产330万吨方坯的转炉炼钢车间。本设计从基础的物料平衡和热平衡计算开始,主要包括以下几部分:转炉炉型设计、氧枪设计、转炉车间设计、连铸设备的选型及计算、以及炼钢操作制度和工艺制度,其中,转炉炼钢车间设计是本设计的重点与核心。 本设计设有转炉两座,转炉大小均为150t,平均吹氧时间为38min,纯吹氧时间为 18min,转炉作业率为80%,转炉的原料主要有铁水、废钢以及其它一些辅助原料。连铸坯的 收得率为98%,另外本车间炉外精炼主要采用了喂丝以及真空脱气手段。本车间的浇注方式为全连铸。车间的最终产品为方坯。 此次的设计任务更加巩固了我所学的专业知识,与此同时也更加了解了转炉炼钢车间的各道工艺流程,为以后的工作打下了良好的基础。 关键词:顶底复吹转炉炼钢车间精炼连铸 Abstact The main task of this design is designing a plant wich perduce 3.3 million tons of steel per year. It is become the foundation of the material and thermal calculation, mainly include the following parts: the bof model designing, oxygen lance designing, equipment selection and calculation of continuous caster ,besides,also including operating and process system of steelmaking ,the core of the design is ing This design has two 150t converter for steelmaking, the average time of oxygen applying is 38min ,pure oxygen applying time is 18min, the efficient of the bof is 80% , scrap metal and other auxiliary materials. The rate of casting billet is 98%, in addition , refining mainly adopts wire feeding and vacuum deairing, The final product is billet. The design more strengthened my major knowledge, at the same time also understand more about the converter steelmaking of each process , laiding a good foundation for the work of future. Keywords: converter steelmaking refining casting

炼钢厂除尘改造系统招标技术要求

附件一: 炼钢厂除尘系统改造 招 标 技 术 要 求 XXXX钢铁有限责任公司炼钢厂

2018年4月 目录 第一章:工程概况 (3) 1.1简介 (3) 1.2改造原因 (3) 1.3改造目标 (4) 第二章:设计要求 (4) 2.1设计范围 (4) 2.2设计原则 (4) 2.3设计依据 (5) 第三章:除尘系统设计 (5) 3.1除尘点风量设计 (6) 3.2系统除尘点分布及风量分配 (6) 3.3新增除尘系统设计参数 (7) 3.4新增除尘系统风机、电机、变频器选型 (8) 3.5系统管网设计 (8) 3.6 其他 (9) 第四章:除尘点捕集罩的描述 (10) 第五章:电气及自动化 (10) 第六章:双方责任、质量及功能考核、其它 (11) 6.1责任分界 (11) 6.2系统功能保证值 (12) 6.3其他 (12)

第一章:工程概况 1.1简介 ?主要设备 1座600t混铁炉,2座50t顶底复吹转炉(实际出钢量55吨),2台连铸机共9机 9流(其中1#机:4机4流、2#机:5机5流),3台布袋除尘设备(其中1#、2#转炉二 次除尘各1台、混铁炉除尘和倒罐站共用1台)。除尘设备具体参数见下表 ?运行周期 转炉冶炼周期约25分钟,具体模式见下表 混铁炉运行周期约10.5分钟(48吨/包),具体模式见下表 1.2改造原因 1、当转炉兑铁阶段,特别是在高节奏生产或加入含有碳氢化合物杂质的低质废钢时,二次烟气捕集罩不能瞬间捕集此部分烟尘;另外,当转炉兑铁结束时,剩余在铁水包内 的铁水将进行新一轮的氧化反应,而转炉二次除尘却无法捕集到这部分烟气。因此,需 要增加三次除尘和优化二次除尘设备。 2、混铁炉本体设计不合理,野风大,再加上转炉冶炼节奏快,混铁炉出铁只能用行 车吊着铁水包出铁,导致混铁炉进出铁时烟气捕集困难,除尘效果差,现只用屋顶除尘。因此,需对混铁炉除尘进行改造。 3、氧枪口、吹氩工位、钢包热修包工位、钢包冷修包工位、中间包打包倾翻工位、 中间包修砌工位、合金下料系统、七楼卸料系统、废钢切割工位、连铸火焰切割等均会 产生大量的烟尘,目前我厂未设除尘设施,不符合国家环保要求。因此,需新增除尘设备。

120T转炉炼钢课设

学号:201230090 河北联合大学成人教育 毕业设计说明书 论文题目:120转炉炼钢设计 学院:河北联合大学继续教育学院 专业:大专 班级:12冶金 姓名:张强

指导教师:刘增勋 2014 年11 月20 日 目录 目录 (1) 序言 (2) 120T 转炉炉型设计 (2) 1.设计步骤 (2) 2.炉型设计与计算 (2) 3.炉衬简介 (5) 120T 转炉氧枪喷头设计 (7) 1.原始数据 (7) 2.计算氧流量 (7) 3.选用喷孔参数 (7) 4.设计工况氧压 (7) 5.设计炉喉直径 (8) 6.计算 (8) 7.计算扩张段长度 (8) 8.收缩段长度 (8) 9.装配图 (8) 120T 转炉氧枪枪身设计 (9) 1.原始数据 (9) 2.中心氧管管径的确定 (9) 3.中层套管管径的确定 (10) 4.外层套管管径的确定 (10) 5.中层套管下沿至喷头面间隙的计算 (10) 6.氧枪总长度和行程确定 (11) 7.氧枪热平衡计算 (11) 8.氧枪冷却水阻力计算 (11) 结束语 (13) 参考文献 (14)

致谢 (15) 序言 现在钢铁联合企业包括炼铁,炼钢,轧钢三大主要生产厂。炼钢厂则起着承上启下的作用,它既是高炉所生产铁水的用户,又是供给轧钢厂坯料的基地,炼钢车间的生产正常与否,对整个钢铁联合企业有着重大影响。目前,氧气转炉炼钢设备的大型化,生产的连续化和高速化,达到了很高的生产率,这就需要足够的设备来共同完成,而这些设备的布置和车间内各种物料的运输流程必须合理,才能够使生产顺利进行。 转炉是炼钢车间的核心设备,设计一座炉型合理满足工艺需求的转炉是保证车间正常生产的前提,而炉型设计又是整个转炉设计的关键。 120T 转炉炉型设计 1. 设计步骤 1.1 列出原始条件:公称容量,铁水条件。废钢比,氧枪类型以及吹氧时间等。 1.2 根据条件选炉型 1.3 确定炉容比 1.4 计算熔池直径,熔池深度等尺寸 1.5 计算炉帽尺寸 1.6 计算炉身尺寸 1.7 计算出钢口尺寸 1.8 确定炉衬厚度 1.9 确定炉壳厚度 1.10 校核 H/D 1.11 绘制炉型图 2. 炉型设计与计算 2.1 本次设计任务:设计 120T 转炉炉型

顶吹转炉

太原科技大学 课程设计说明书 设计题目: 50t 氧气顶吹转炉设计 设计人:郭晓琴 指导老师:杨晓蓉 专业:冶金工程 班级:冶金工程081401 学号: 200814070105 材料科学与工程学院 2011年12月30 日

目录 摘要................................................ 错误!未定义书签。第一章绪论................................................ 错误!未定义书签。 1.1 氧气顶吹转炉炼钢的发展概况......................... 错误!未定义书签。 1.2 氧气顶吹转炉炼钢的优点............................. 错误!未定义书签。 1.3 转炉炼钢生产技术发展趋势........................... 错误!未定义书签。第二章炉型尺寸计算........................................ 错误!未定义书签。 2.1转炉炉型及其选择.................................... 错误!未定义书签。 2.2转炉炉型尺寸计算.................................... 错误!未定义书签。 2.2.1 熔池尺寸...................................... 错误!未定义书签。 2.2.2 炉容比(容积比).............................. 错误!未定义书签。 2.2.3炉帽尺寸...................................... 错误!未定义书签。 2.2.4炉身尺寸...................................... 错误!未定义书签。 2.2.5出钢口尺寸.................................... 错误!未定义书签。第三章氧气顶吹转炉耐火材料................................ 错误!未定义书签。 3.1 炉衬的组成和材质的选择............................. 错误!未定义书签。 3.2炉衬厚度的确定...................................... 错误!未定义书签。第四章氧气顶吹转炉金属构件的确定.......................... 错误!未定义书签。 4.1炉壳组成及结构形成................................. 错误!未定义书签。 4.2炉壳钢板材质与厚度的确定 (7) 4.3支撑装置 (7) 4.3.1 托圈......................................... 错误!未定义书签。 4.3.2炉衬的组成和材质的选择....................... 错误!未定义书签。 4.3.3耳轴及其轴承................................. 错误!未定义书签。 4.4倾动机构........................................... 错误!未定义书签。 4.5高径比的核定....................................... 错误!未定义书签。参考文献.............................................................. - 12 -

转炉工作原理及结构设计要点

攀枝花学院本科课程设计 转炉工作原理及结构设计 学生姓名: 学生学号: 院(系): 年级专业: 指导教师: 二〇一三年十二月

转炉工作原理及结构设计 1.1 前言 1964年,我国第一座30t氧气顶吹转炉炼钢车间在首钢建成投产。其后,上钢一厂三转炉车间、上钢三厂二转炉车间等相继将原侧吹转炉改为氧气顶吹转炉。20世纪60年代中后期,我国又自行设计、建设了攀枝花120t大型氧气顶吹转炉炼钢厂,并于1971年建成投产。进入20世纪80年代后,在改革开放方针策的指引下,我国氧气转炉炼钢进入大发展时期,由于氧气转炉炼钢和连铸的迅速发展,至1996年我国钢产量首次突破1亿t,成为世界第一产钢大国。 1.2 转炉概述 转炉(converter)炉体可转动,用于吹炼钢或吹炼锍的冶金炉。转炉炉体用钢板制成,呈圆筒形,内衬耐火材料,吹炼时靠化学反应热加热,不需外加热源,是最重要的炼钢设备,也可用于铜、镍冶炼。转炉按炉衬的耐火材料性质分为碱性(用镁砂或白云石为内衬)和酸性(用硅质材料为内衬)转炉;按气体吹入炉内的部位分为底吹、顶吹和侧吹转炉;按吹炼采用的气体,分为空气转炉和氧气转炉。转炉炼钢主要是以液态生铁为原料的炼钢方法。其主要特点是:靠转炉内液态生铁的物理热和生铁内各组分(如碳、锰、硅、磷等)与送入炉内的氧进行化学反应所产生的热量,使金属达到出钢要求的成分和温度。炉料主要为铁水和造渣料(如石灰、石英、萤石等),为调整温度,可加入废钢及少量的冷生铁块和矿石等。 1.2.1 转炉分类 1.2.1.1 炼钢转炉 早期的贝塞麦转炉炼钢法和托马斯转炉炼钢法都用空气通过底部风嘴鼓入钢水进行吹炼。侧吹转炉容量一般较小,从炉墙侧面吹入空气。炼钢转炉按不同需要用酸性或碱性耐火材料作炉衬。直立式圆筒形的炉体,通过托圈、耳轴架置于支座轴承上,操作时用机械倾动装置使炉体围绕横轴转动。 50年代发展起来的氧气转炉仍保持直立式圆筒形,随着技术改进,发展成顶吹喷氧枪供氧,因而得名氧气顶吹转炉,即L-D转炉(见氧气顶吹转炉炼钢);用带吹冷却剂的炉底喷嘴的,称为氧气底吹转炉(见氧气底吹转炉炼钢)。

设计一座公称容量为3215;200t吨的氧气转炉炼钢车间毕业设计

设计一座公称容量为3×200t吨的氧气转炉炼钢车间毕业设计 目录 摘要.............................................. 错误!未定义书签。ABSTRACT ............................................ 错误!未定义书签。引言. (1) 1 设计方案的选择即确定 (2) 1.1车间生产规模、转炉容量及座数的确定 (2) 1.2车间各主要系统所用方案的比较及确定 (2) 1.2.1 转炉冶炼工艺及控制 (2) 1.2.2 铁水供应系统 (2) 1.2.3 铁水预处理系统 (3) 1.2.4 废钢供应系统 (4) 1.2.5 散装料供应系统 (4) 1.2.6 转炉烟气净化及回收工艺流程 (6) 1.2.7 铁合金供应系统 (7) 1.2.8 炉外精炼系统 (7) 1.2.9 钢水浇注系统 (8) 1.2.10 炉渣处理系统 (10) 1.3炼钢车间工艺布置 (11) 1.3.1 车间跨数的确定 (11) 1.3.2 各跨的工艺布置 (12) 1.4车间工艺流程简介 (12) 1.5原材料供应 (15) 1.5.1 铁水供应 (15) 1.5.2 废钢供应 (15) 1.5.3 散装料和铁合金供应 (15) 2设备计算 (16) 2.1转炉计算 (16)

2.1.2 转炉空炉重心及倾动力矩 (22) 2.2氧抢设计 (24) 2.2.1 技术说明 (24) 2.2.2 喷头设计 (25) 2.2.3 枪身设计 (27) 2.3净化及回收系统设计与计算 (33) 2.3.1吹炼条件 (33) 2.3.2参数计算 (34) 2.3.3流程简介 (36) 2.3.4 主要设备的设计和选择 (36) 2.3.5 计算资料综合 (39) 2.4炉外精练设备的选取及主要参数 (39) 2.4.1主要设计及其特点 (39) 2.4.2 主要工艺设备技术性能 (40) 3车间计算 (50) 3.1原材料供应系统 (50) 3.1.1 铁水供应系统 (50) 3.1.2 废钢场和废钢斗计算 (51) 3.1.3 散状料供应系统 (52) 3.1.4 合金料供应系统 (54) 3.2浇铸系统设备计算 (55) 3.2.1钢包及钢包车 (55) 3.2.2连铸机 (56) 3.3渣包的确定 (64) 3.4车间尺寸计算 (67) 3.4.1 炉子跨 (67) 3.4.2 其余各跨跨度 (62) 3.5天车 (63) 4 新技术和先进工艺、设备的应用 (64) 4.1铁水预处理脱硫 (64)

钢铁厂专用除尘器

一、钢铁厂用除尘器除尘系统流程及主要技术参数 1.1除尘系统流程 钢铁厂炼钢电炉除尘器采用炉内排烟和炉外排烟相结合的排烟方式,净化更加彻底。炉外排烟由密闭罩和屋顶罩组成,两者可互换使用,加料、出钢过程中主要使用屋顶罩,冶炼过程中则主要使用大密闭罩。 钢铁厂炼钢电炉除尘的除尘系统主要由排烟装置、水冷密排管、强制吹风冷却器、内排烟风机、埋刮板输送机、斗式提升机、储灰仓、主排烟风机、消声器等几部分组成,结构合理,性能稳定。 二、钢铁厂除尘设备的介绍 1、特点 目前国内处理电炉烟尘一般都采用钢铁厂炼钢电炉除尘器,通明除尘根据电炉烟尘细且粘的特点,为了保证袋式除尘器在适当的阻力水平下正常工作,要求袋式除尘器应具有较强的清灰能力,选用LCM长袋低压大型脉冲袋式除尘器。该种设备已在电炉炼钢、高炉喷煤、烧结、耐火、碳黑、水泥等行业中广泛应用,取得了良好效果。其主要特点如下: (1)清灰能力非常强。其清灰强度达到60~200g,是机械振打袋式除尘器的几倍甚至几十倍,对细而粘的粉尘,也能获得良好的清灰效果。 (2)过滤负荷较高,过滤风速高达1.5m/min。 (3)滤袋可长达6m,是传统脉冲袋式除尘器的2~3倍,占地面积更小。 (4)喷吹装置配备了“双薄膜片快速脉冲阀”,启闭迅速,阻力更小,能

以较低的喷吹压力获得更强的清灰能力。 (5)维修工作量更小。 (6)更换和安装滤袋方便。由于滤袋靠缝在袋口的弹性涨圈嵌在花板上,因而不需绑扎,也不需螺栓等联接件紧固,换袋时在花板以上的净气侧进行,人与尘袋接触短暂,大大减轻了换袋时操作人员的劳动强度。 (7)配备了通明除尘设备有限公司研制的TM系列脉冲控制仪。可靠性高、功能齐全,对供电电压波动、环境温度变化、粉尘影响等因素的抗干扰能力强,已在多座电炉除尘系统中应用,至今工作正常。 2、主体结构 (1)除尘器划分为24个仓室,布置成两列,中间为进风和出风总风道。仓室之间有隔板严密分隔,以实现离线清灰。 (2)各仓室进风口与滤袋之间设挡风板,在箱体内部取上进风方式。 (3)各仓室进口设手动蝶阀,出口设气动停风阀。可实现离线清灰以及除尘器在不停机状态下实现单个仓室的检修和每个仓室的风量分配。 (4)每个仓室设216条滤袋,滤袋尺寸为120mm×6000mm。24个仓室共计5184条,总过滤面积为11716m2。 (5)滤袋框架采用八角星形断面,与圆形断面相比,可增强清灰效果,减少滤袋与框架之间的磨损,有助于延长滤袋寿命,便于滤袋框架的抽出与插入。 (6)滤袋材质选用涤纶针刺毡。 (7)采用停风脉冲清灰方式,每仓室设一套喷吹装置,喷吹管与脉冲阀出口采取插接方式便于拆装。喷吹管上喷嘴具有不同的孔径,使喷吹时进入滤袋的气量均匀。 (8)电磁脉冲阀为TMF直通式电磁脉冲阀,其压力输出口为双扭线结构。 (9)上箱体顶部设有落水坡度(20:1)和落水槽,以防止顶盖积水。 (10)每个仓室设一个灰斗,设有一台仓壁振动器和一个人孔门。 (11)灰斗下口设有手动插板阀和星形卸灰阀,前者供检修星型卸料器时用。 (12)每个仓室设有一个“U”型压力计,以观察各仓室滤袋两端的阻力。 3、除尘器的控制 除尘器的控制采用泊头市通明除尘设备有限公司研制的PLC脉冲控制柜。 3.1 控制内容 控制内容包括:袋式除尘器清灰控制;监测和显示除尘器进出口压差,超限报警;监测和显示除尘器进出口烟气温度,超限报警;停风阀阀位监视,故障报警;清灰周期显示;清灰时脉冲阀阀号及停风阀阀号显示。 3.2 控制方式 在除尘器进、出口总管上的压力变送器连续监测除尘器进出口总压差。当总压差值达到设定值(1800Pa)时,电脑控制系统启动清灰程序,除尘器喷吹系统开始工作。清灰控制方式有定时、定压差和单仓清灰三种,正常生产时,选择定压差方式,在设备检修阶段,可选择定时或单仓清灰方式。 停风阀设手动、自动两种控制方式,自动控制由电脑控制,手动控制可在控制面板上操作,也可在现场操作箱上操作。 控制柜面板上设有检修仓选择开关及指示灯,当除尘器某一仓室需检修时,闭合该仓的检修开关,该仓自动退出清灰程序,待检修完毕后切断检修开关,该仓恢复自动运行。

人力资源年度工作计划表【五篇】

人力资源年度工作计划表【五篇】 人力资源年度工作计划表【五篇】 【第一篇】 一、指导思想针对员工适应潜力、创新潜力、改善潜力薄弱的现象,结合公司""总体发展战略,大力推进员工素质提升工程,突出高技能、高技术人才培养及专业技术力量储备培训,为公司建立具有永续竞争力的卓越企业带给适宜的人力资源。 二、编制原则(一)战略性培训与适用性培训、提高性培训相结合。 (二)面向全员,突出重点。 (三)集中管理,统筹安排,职责明确。 (四)盘活资源,注重实效。 三、培训的主要任务(一)结合公司新工艺、新设备、新流程,以职业生涯发展为动力,以技能鉴定为手段,以技能培训、技术比武与导师带徒为载体,大力推进高技能人才培养。 1、开办精炼、连铸、轧钢、焊工、仪表工等个专业工种技师(含高级技师、技师、内定技师)培训班,共培训名;开展焊工、仪表工、锅炉、汽机等个工种高级工培训班,共培训名。 2、高标准、严要求,切实抓好公司钳工、天车工等通用工种及部分行业工种青工技能比武培训,培养公司级技术能手名。同

时根据国家、省及行业要求,组织相关工种技能大赛参赛人员的选拔与培训,培养省级以上技术能手2名。 3、大力实施技能人才""培养工程。 各单位从实际出发,为经验丰富、掌握绝活的优秀技能人才(特级技师、职责技师等)配备1名理论丰富、文字表达潜力强的员工做助手,构成1名优秀技能人才加1名高学历助手的高技能人才团队,导师向助手传授实践经验,助手帮忙导师提高理论知识,整理操作经验、诀窍、心得等,培养一批知识型与复合型的高技能人才。 4、选送公司球团竖炉、高炉、转炉、连铸、精炼、轧制等方面的操作骨干50名,到相关同类企业现场跟班培训,学习、了解先进的操作技术与方法。 (二)充分利用内外资源,大力开展专业技术人员的继续教育与技术提升培训。 1、发挥培训中心作用,分层次开办计算机应用提高、计算机三维制图、液压技术、变频技术、、英语等培训班。 2、结合新产品开发,有计划聘请内外专家讲授""知识,开展技术专题讲座次;结合现场工艺与设备,从设备厂家聘请专家来公司开展高层次的液压技术、变频技术、特殊仪表等专业的现场培训,促进新技术、新工艺的传播。 3、加大送外培训力度,有计划地选拔名优秀的专业技术人员到公司等国外先进企业进行对口岗位培训,派遣名优秀的专业技

设计年产300万吨合格铸坯的转炉炼钢车间指导书

毕业设计指导书 指导教师孔辉学生姓名 ## 班级冶081 一、设计(论文)的题目: 设计一个年产300万吨合格铸坯的转炉炼钢车间 二、设计(论文)的目的: 进行钢铁厂设计需要花费大量精力和时间,且独立性强,因此对提高学生的综合能力(查阅文献能力、独立设计选型与计算能力、Autocad制图能力等)很有帮助。通过教师制定每一阶段的明确目标,在督促学生完成任务的同时,与学生共同商讨,共同学习有教学相长的作用。 三、设计(论文)的内容及要求: 1、文献调研及生产现场考察。 要求查阅近年相关文献20篇以上,其中外文资料不少于3篇,一篇外文译成中文。2、设计说明书内容: (1)设计原则和依据 (2)产品大纲的制定 (3)工艺流程的选择与论证 (4)物料平衡与热平衡计算 (5)车间主体设备的计算与选择 (6)车间工艺布置 (7)车间厂房的布置 (8)采用新工艺说明 3、工程制图: (1)车间工艺平面布置图一张 (2)车间横剖视图一张 (3)转炉炉体图一张,为CAD制图。 四、时间安排: 第1周:查阅设计资料及生产调研,了解不同钢种的成分、用处、生产要点;了解本单位的设备条件及工艺过程 第2-4周:设计方案的确定与论证 第5-6周:转炉冶炼典型钢种的物料平衡和热平衡计算 第7-9周:车间主体设备的设计

第10-11周:车间主厂房的设计 第12-14周:用计算机绘制车间平面布置图、剖面图及炉体本体图 第15-16周:编写设计说明书 第17周:准备答辩 五、推荐参考文献: [1] 冯聚合.艾立群,刘建华.铁水预处理和炉外精炼.冶金工业出版社,2006; [2] 张树勋.钢铁厂设计原理. 冶金工业出版社,2005年第一版; [3] 胡会军.田正宏. 宝钢分公司炼钢厂:上海,2009;

课程设计方案任务书转炉炼钢

一、炉型设计计算 炉型设计的主要任务是确定所选炉型各部分主要参数和尺寸,据此再绘制出工程图。 1、原始条件 3,铁水收得率为92%。炉子平均出钢量为90t,铁水密度7.20g/cm 2、炉型选择 顶底复吹转炉的炉型基本上与顶吹和底吹转炉相似;它介于顶吹转炉和底吹转炉之间。为了满足顶底复吹的要求炉型趋于矮胖型,由于在炉底上设置底吹喷嘴,炉底为平底,所以根据原始数据,为了便于设置底部供气构件,选择截锥形炉型。 3、炉容比 3/t>。VV/T(m系炉帽、炉身和熔池三与公称容量炉容比指转炉有效容积VT之比值ttt个内腔容积之和。公称容量以转炉炉役期的平均出钢量表示,这种表示方法不受操作方法和浇注方法的影响。本设计取炉容比1.05。 4、熔池尺寸的计算 1)熔池直径D:熔池直径通常指熔池处于平静状态时金属液面的直径。 D=K ×=1.5 =3.67m 式中G ——炉子公称容量,t; t ——平均每炉钢纯吹氧时间,取15分钟; K——比例系数,取1.5。 2)熔池深度h:熔池深度系指熔池处于平衡状态时从金属液面到炉底最低处的距离。 1 / 15 h= ==12.5mV==1.62m h=炉帽尺寸的确定。顶吹转炉一般都用正口炉帽,其主要尺寸有炉帽倾角、炉口直径 3.和炉帽高度。设计时应考虑到以下因素:确保其稳定性;便于兑铁水和加废钢;减少热损失;避免出钢时钢渣混出或从炉口流渣;减少喷溅。:倾角过小,炉帽,内衬不稳定性增加,容易倒塌;过大时出钢时容θ 1)炉帽倾角θ°,因为大炉口的炉口直径相对来说要小些。易钢渣混出或从炉口流渣。本炉子取60 °=60:一般来说,在满足兑铁水和加废钢的前提下,应适当减小炉口直d2)炉口直径径,以利于减少热损失,减少空气进入炉内影响炉衬寿命和改善炉前操作条件。实践表48%=2.94m ×较为适宜。本设计取d=6.12明,取炉口直径为熔池直径的43-53% :)炉帽高度H3帽 tanθ-d) H tan60 =2.75m

转炉炼钢

转炉炼钢文献综述

内蒙古科技大学毕业设计说明书(毕业论文) 摘要 根据炼钢厂设计要求及设计任务书的要求,本设计阐述了230万吨合格铸坯的转炉车间的设计工艺,并且介绍了近年来国内外转炉炼钢的现状和发展。本设计主要对转炉炼钢生产的生产规模、产品方案、工艺流程、车间组成和车间布置进行设计,并对120吨转炉炉型、原料供应系统进行了详细计算。对厂房各跨宽度,长度进行了估算。此外,对转炉车间的一些主要的附属设备进行了选择并对其技术性能进行讲解。 随着现代炼钢技术的发展,新建转炉炼钢车间要求炼钢过程洁净、高效、负能耗、设备可靠等等。设计中为实现上述目标,借鉴了国内外大中型转炉炼钢厂的一系列先进且成熟的技术,同时参阅了大量的文献资料。设计的炼钢车间理论上能够生产绝大多数钢种,但是结合实际考虑经济效益,主要生产重轨钢和一部分高附加值的碳素结构钢及合金结构钢等,以满足230万吨合格铸坯全连铸炼钢厂的匹配。 关键词:转炉炼钢重轨钢冶炼

文献综述 1.1 引言 21世纪钢铁工业的发展面临着机遇和挑战。根据市场预测:至2010年发达国家钢材消费年均增长量为0.7%;而发展中国家将达到3.8%;太平洋地区的增长为4.57%。世界钢材市场消费量的缓慢增长,为钢铁工业发展,特别是太平洋地区发展中国钢铁工业发展提供了良好的机遇。 21 世纪国际钢铁工业发展面临的严峻挑战, 主要来自三个方面: (1)钢铁生产能力过剩,残酷的市场竞争将使一些落后的钢铁厂倒闭; (2)环境保护对钢铁工业发展产生巨大压力,一些污染严重的落后工艺将被强制淘汰;(3)世界钢材价格呈下降趋势。 进入21 世纪, 面对机遇和挑战,钢铁企业必须努力发展高效生产工艺,降低生产成本,提高产品质量和减轻对环境的污染,才可能立于不败之地[1]。 1.2 我国转炉炼钢的发展及现状 1.2.1我国钢产量 作为转炉炼钢主要炉料的生铁逐年增长, 为转炉炼钢钢产量的大幅度增长提供了良好而充裕的原料条件, 与世界各主要产钢国家相比, 我国铁钢比较高, 近年来我国生铁产量及铁钢比如表1.1所示。

炼钢厂设备简介

炼钢厂主体设备简介 一、电炉区域 本厂电炉炼钢主体设备为两台70吨高功率三相交流电弧炉,两座容量为3.5MVA变压器,设计年产量为100万吨,电炉本体采用偏心底(EBT)出钢技术,有效的控制了钢水的质量,炉壁采用分段式的水冷炉壁,大大提高了电弧炉的使用寿命,并且维修方便,效率高,大大降低了炉衬耐材成本,为了加强冶炼,缩短冶炼周期,采用了先进的炉内供氧系统,即每座炉配备了一支水冷液压机械手炉门氧枪,三支固定的炉壁氧枪,大大缩短了冶炼周期,从原来冶炼周期4小时左右,缩短到目前的1.5小时,电炉配备了一套喷碳粉系统,可以快速的造好泡沫渣,有效降低各类消耗,每台电炉各配置一套独立的上料系统,操作人员可以根据炉内情况,及时加入石灰,减轻了工人劳动强度。 二、精炼区域 本厂精炼主体设备为一座70吨LF精炼炉,采用三相交流变压器,变压器容量为1MVA,双工位冶炼,采用水冷大炉盖和集心圆小炉盖(耐火材料),大大提高了炉盖使用寿命,并且炉盖更换方便,缩短维修时间,精炼配备了两台先进的喂丝机,提高了钢水质量,同时增加了精炼可以冶炼的钢种,提高经济效益,LF 精炼炉配备了钢包底吹氩气系统,均匀了钢水成分和温度,大大缩短了冶炼周期,提高了钢水质量,同时还配置了合金上料系统,合金回收率稳定,大大降低了工人劳动强度。 三、连铸区域 本厂连铸机由武汉大西洋提供及安装两机两流R6.5m直弧型板坯连铸机。其主要参数及性能:连铸机机型,链式引锭杆、直弧型;半径:6.5m(连续弯曲、连续矫直)、铸坯断面:180*(450~~700)m;铸坯定尺长度:6m。水—气水二次冷却;平均拉速0.6~(1.2~1.4)M/min、最大拉速:1.8M/min;配置有涡流传感器液面检测、塞棒自动控制(伺服电动缸驱动);浇铸钢种:普碳钢:Q195、Q235、20#等,合金钢:20G、16Mn、45#等;平均连续炉数:16炉;收得率:99%;年作业率:85%;年产能力:合金钢:~70Wt、普钢:~100Wt。 四、除尘系统 本厂除尘系统由江苏新中环保股份有限公司设计施工,采用电炉四孔+导流罩+顶吸罩捕集形式进行烟尘收集,两套电炉独立进行烟气处理,同时引入1台70吨LF炉烟气处理,分别进入两套系统中。 四孔抽烟:在电炉冶炼时,会对电炉内进行鼓氧冶炼,产生大量的烟气,电炉内烟气温度在1200~1400℃,烟气通过电炉四孔吸入水冷密排管,在与电炉四孔对接处进行一次混入冷风,将混风后的温度控制在1000℃左右,由于吸风段的流速很高,炉内的较大颗粒粉尘很容量被抽起,在吸风管下部设有一沉降室,将大颗粒粉尘进行分离,以防止这些粉尘堆积于管道中,影响水冷密排管的换热效果。 高温烟气经过水冷密排管的降温到550℃以下,然后再将进一步对烟气进行强制冷却,采用的方案是用最稳定可靠的板式机力风冷器,将烟气温度控制在

设计一座公称容量为80吨的转炉和氧枪

辽宁科技学院 课程实践报告 课程实践名称:设计一座公称容量为X吨的转炉和氧枪指导教师: 班级:姓名: 2011年7 月12 日

课程设计(论文)任务书题目:设计一座公称容量为80吨的转炉和氧枪系别:冶金工程系 专业:冶金技术班级: 学生姓名:学号: 指导教师(签字):2011年 6 月 27日 一、课程设计的主要任务与内容 一、氧气转炉设计 1.1氧气顶吹转炉炉型设计 1.2氧气转炉炉衬设计 1.3转炉炉体金属构件设计 二转炉氧枪设计 2.1 氧枪喷头尺寸计算 2. 2氧枪枪身和氧枪水冷系统设计 2.3升降机构与更换装置设计 2.4氧气转炉炼钢车间供氧 二、设计(论文)的基本要求 1、说明书符合规范,要求打印成册。 2、独立按时完成设计任务,遵守纪律。 3、选取参数合理,要有计算过程。 4、制图符合制图规范。

三、推荐参考文献(一般4~6篇,其中外文文献至少1篇) 期刊:[序号] 作者.题名[J].期刊名称.出版年月,卷号(期号):起止页码。 书籍:[序号] 著者.书写[M].编者.版次(第一版应省略).出版地:出版者,出版年月:起止页码 论文集:[序号] 著者.题名[C].编者. 论文集名,出版地:出版者,出版年月:起止页码 学位论文:[序号] 作者.题名[D].保存地:保存单位,年份 专利文献:[序号] 专利所有者.专利题名[P].专利国别:专利号,发布日期 国际、国家标准:[序号] 标准代号,标准名称[S].出版地:出版者,出版年月 电子文献:[序号] 作者.电子文献题名[文献类型/载体类型].电子文献的出版或可获得地址,发表或更新日期/引用日期 报纸:[序号]作者.文名[N].报纸名称,出版日期(版次) 四、进度要求 序号时间要求应完成的内容(任务)提要 1 2011年6月27日-2011年6月29日调研、搜集资料 2 2011年6月30日-2011年7月2日论证、开题 3 2011年7月3日-2011年7月5日中期检查 4 2011年7月6日-2011年7月7日提交初稿 5 2011年7月8日-2011年7月10日修改 6 2011年7月11日-2011年7月12日定稿、打印 7 2011年7月13日-2011年7月15日答辩

相关文档
相关文档 最新文档