文档库 最新最全的文档下载
当前位置:文档库 › 竹棍陀螺

竹棍陀螺

竹棍陀螺
竹棍陀螺

《竹棍陀螺》参考教案

一、教学目标:

1、了解重心与支点;

2、了解物体的平衡条件。

二、教学重点:知晓物体稳定平衡的条件并能说出本实验的原理。

三、教学过程:

1、知识点介绍

1)、重心:一个物体的各部分都要受到重力的作用。从效果上看,我们可以认为各部分受到的重力作用集中于一点,这一点叫做物体的重心。举例

并画出图形供小朋友理解:线段的重心就是线段的中点、平行四边形的

重心就是它两条对角线的交点等;

2)、支点:是支撑物体的那个点,本课中的中间竖棍较尖处与物体接触的点就称为支点。

2、制作过程:

1)、用竹棍和皮筋绑成如右图所示的结构

两端均不带尖的竹棍为横向的那根;

2)、把两侧带尖的竹棍插入球的孔中,以球掉不下来为宜;

3)、调试方法:首先要使两侧木棍与皮筋的交叉点到中间的竖棍间的距离相等,如果朝哪个方向歪,就将其向中间的竖棍调近,或者调远另一木棍与中间竖

棍的距离;其次,如果前后歪,则要调整最上面三根棍的位置,使中间的竖

棍夹在两侧棍的中间;第三,两侧的球越是低于支点,则越稳定。调试平衡

后,将陀螺放到装有适量水的瓶子等物体上,转动起来是不是更有成就感,

陀螺上面还可再放陀螺,看哪组放得更多。

3、物体平衡的条件:一是结构、质量分布要对称;二是支点要在重心之上。所以当本

陀螺只有在满足这以上两个条件时,才会更稳而不倒。

4、知识拓展:根据平衡的道理,走钢丝的杂技演员,始终要使自己身体重力作用线通

过支撑面,这支撑面就是钢丝。钢丝很细,给人的支撑面极小、使身体重心恰巧落

在钢丝绳上就很难,身体随时有倒下去的危险。生活的经验告诉我们,当身体摇晃

要倒下时,人们往往摆动两臂,使身体重新站稳。两臂的摆动,是在调整重心作用

线,使之通过支撑面,以恢复平衡。体操运动员在平衡木上,也常常有这样的动作。

杂技演员走钢丝,当然也必须伸开双臂左右摆动来掌握重心,保持平衡。他们手中

还常拿着长长的竹竿,或者花伞、彩扇等,这些物品起着“延长手臂”的作用,是帮

助身体平衡的辅助工具。

四、注意事项:

1、要学会缠皮筋的技巧,在对最上面的三根竹棍和两侧竹棍可采用直接缠绕方法,对

中间竖棍和横棍则在缠绕后挂在竖棍上即可;

2、请同学们保持一定的间距,更不可舞动竹棍,以免扎着其他同学;

3、本实验的调试过程一定要让同学们多体验才能知道其中的原理并享受由此带来的诸

多乐趣,相信同学们一定能成功的。

陀螺仪主要性能指标(优.选)

常见的陀螺仪性能指标与解释 零偏 零偏,又称为零位漂移或零位偏移或零偏稳定性,也可简称零漂或漂移率,英文中称为drift或bias drift。零偏应理解为陀螺仪的输出信号围绕其均值的起伏或波动,习惯上用标准差(σ)或均方根(RMS)表示,一般折算为等效输入角速率(°/ h)。在角速度输入为零时,陀螺仪的输出是一条复合白噪声信号缓慢变化的曲线,曲线的峰-峰值就是零偏值(drift),如图2-6所示。在整个性能指标集中,零偏是评价陀螺仪性能优劣的最重要指标。 分辨率 陀螺仪中的分辨率是用白噪声定义的,如图2-6 中所示,可以用角随机游走来表示,可以简化为一定带宽下测得的零偏稳定性与监测带宽的平方根之比,其单位为,或简化为。角度随机游走表征了长时间累积的角

度误差。角随机游动系数反映了陀螺在此处键入公式。的研制水平,也反映了陀螺可检测的最小角速率能力,并间接反映了与光子、电子的散粒噪声效应所限定的检测极限的距离。据此可推算出采用现有方案和元器件构成的陀螺是否还有提高性能的潜力。 标度因子 标度因子是陀螺仪输出量与输入角速率变化的比值,通常用某一特定的直线斜率表示,该斜率是根据整个正(或负)输入角速率范围内测得的输入/输出数据,通过最小二乘法拟合求出的直线斜率。对应于正输入和负输入有不同的刻度因子称为刻度因子不对称,其表明输入输出之间的斜率关系在零输入点不连续。一般用刻度因子稳定性来衡量刻度因子存在的误差特性,它是指陀螺在不同输入角速率情况下能够通过标称刻度因子获得精确输出的能力。非线性往往与刻度因子相关,是指由实际输入输出关系确定的实际刻度因子与标称刻度因子相比存在的非线性特征,有时还会采用线性度,其指陀螺输入输出曲线与标称直线的偏离程度,通常以满量程输出的百分比表示。 动态范围 陀螺在正、反方向能检测到的输入角速率的最大值表示了陀螺的测量范围。该最大值除以阀值即为陀螺的动态范围,该值越大表示陀螺敏感速率的能力越强。

什么是陀螺仪

什么是陀螺仪 陀螺仪简介 绕一个支点高速转动的刚体称为陀螺(top)。通常所说的陀螺是特指对称陀螺,它是一个质量均匀分布的、具有轴对称形状的刚体,其几何对称轴就是它的自转轴。由苍蝇后翅(特化为平衡棒)仿生得来。 在一定的初始条件和一定的外力矩在作用下,陀螺会在不停自转的同时,还绕着另一个固定的转轴不停 地旋转,这就是陀螺的旋进(precession),又称为回转效应(gyroscopic effect)。陀螺旋进是日常生活中常 见的现象,许多人小时候都玩过的陀螺就是一例。 人们利用陀螺的力学性质所制成的各种功能的陀螺装置称为陀螺仪(gyroscope),它在科学、技术、军事等各个领域有着广泛的应用。比如:回转罗盘、定向指示仪、炮弹的翻转、陀螺的章动、地球在太阳(月球)引力矩作用下的旋进(岁差)等。 陀螺仪的种类很多,按用途来分,它可以分为传感陀螺仪和指示陀螺仪。传感陀螺仪用于飞行体运动的 自动控制系统中,作为水平、垂直、俯仰、航向和角速度传感器。指示陀螺仪主要用于飞行状态的指示, 作为驾驶和领航仪表使用。 陀螺仪原理 陀螺仪的原理就是,一个旋转物体的旋转轴所指的方向在不受外力影响时,是不会改变的。人们根据这 个道理,用它来保持方向,制造出来的东西就叫陀螺仪。我们骑自行车其实也是利用了这个原理。轮子转 得越快越不容易倒,因为车轴有一股保持水平的力量。陀螺仪在工作时要给它一个力,使它快速旋转起来,一般能达到每分钟几十万转,可以工作很长时间。然后用多种方法读取轴所指示的方向,并自动将数据信 号传给控制系统。 现代陀螺仪 现代陀螺仪是一种能够精确地确定运动物体的方位的仪器,它是现代航空,航海,航天和国防工业中广 泛使用的一种惯性导航仪器,它的发展对一个国家的工业,国防和其它高科技的发展具有十分重要的战略 意义。传统的惯性陀螺仪主要是指机械式的陀螺仪,机械式的陀螺仪对工艺结构的要求很高,结构复杂, 它的精度受到了很多方面的制约。自从上个世纪七十年代以来,现代陀螺仪的发展已经进入了一个全新的 阶段。1976年等提出了现代光纤陀螺仪的基本设想,到八十年代以后,现代光纤陀螺仪就得到了非常迅 速的发展,与此同时激光谐振陀螺仪也有了很大的发展。由于光纤陀螺仪具有结构紧凑,灵敏度高,工作 可靠等等优点,所以目前光纤陀螺仪在很多的领域已经完全取代了机械式的传统的陀螺仪,成为现代导航 仪器中的关键部件。和光纤陀螺仪同时发展的除了环式激光陀螺仪外,还有现代集成式的振动陀螺仪,集 成式的振动陀螺仪具有更高的集成度,体积更小,也是现代陀螺仪的一个重要的发展方向。 现代光纤陀螺仪包括干涉式陀螺仪和谐振式陀螺仪两种,它们都是根据塞格尼克的理论发展起来的。塞 格尼克理论的要点是这样的:当光束在一个环形的通道中前进时,如果环形通道本身具有一个转动速度, 那么光线沿着通道转动的方向前进所需要的时间要比沿着这个通道转动相反的方向前进所需要的时间要多。也就是说当光学环路转动时,在不同的前进方向上,光学环路的光程相对于环路在静止时的光程都会产生 变化。利用这种光程的变化,如果使不同方向上前进的光之间产生干涉来测量环路的转动速度,就可以制 造出干涉式光纤陀螺仪,如果利用这种环路光程的变化来实现在环路中不断循环的光之间的干涉,也就是 通过调整光纤环路的光的谐振频率进而测量环路的转动速度,就可以制造出谐振式的光纤陀螺仪。从这个 简单的介绍可以看出,干涉式陀螺仪在实现干涉时的光程差小,所以它所要求的光源可以有较大的频谱宽度,而谐振式的陀螺仪在实现干涉时,它的光程差较大,所以它所要求的光源必须有很好的单色性。 编辑本段陀螺仪的用途 陀螺仪是一种既古老而又很有生命力的仪器,从第一台真正实用的陀螺仪器问世以来已有大半个世纪, 但直到现也,陀螺仪仍在吸引着人们对它进行研究,这是由于它本身具有的特性所决定的。陀螺仪最主要 的基本特性是它的稳定性和进动性。人们从儿童玩的地陀螺中早就发现高速旋转的陀螺可以竖直不倒而保

光纤陀螺仪指标 国军标

光纤陀螺仪测试方法 1范围 本标准规定了作为姿态控制系统、角位移测量系统和角速度测量系统中敏感器使用的单轴干涉性光纤陀螺仪(以下简称光纤陀螺仪)的性能测试方法。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注目期的引用文件,其随后所有的修改单(不包含勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB321-1980优先数和优先系数 CB998低压电器基本实验方法 GJB585A-1998惯性技术术语 GJB151军用设备和分系统电磁发射和敏感度要求 3术语、定义和符号 GJB585A-1998确立的以及下列术语、定义和符号适用于本标准。

3.1术语和定义 3.1.1干涉型光纤陀螺仪interferometric fiber optic gyroscope 仪萨格奈克(Sagnac)效应为基础,由光纤环圈构成的干涉仪型角速度测量装置。当绕其光纤环圈等效平面的垂线旋转时,在环圈中以相反方向传输出的两束相干光间产生相位差,其大小正比于该装置相对于惯性空间的旋转角速度,通过检测输出光干涉强度即反映出角速度的变化。 3.1.2陀螺输入轴input axis of gyro 垂直于光纤环圈等效平面的轴。当光纤陀螺仪绕该轴有旋转角速度输入时,产生光纤环圈相对于惯性空间输入角速度的输出信号。 3.1.3标度因数非线性度scale factor nonlinearity 在输入角速度范围内,光纤陀螺仪输出量相对于最小二乘法拟合直线的最大偏差值与最大输出量之比。 3.1.4零偏稳定性bias stability 当输入角速度为零时,衡量光纤陀螺仪输出量围绕其均值的离散程度。以规定时间内输出量的标准偏差相应的等效输入角速度表示,也可称为零漂。

最全的陀螺仪基础知识详解

最全的陀螺仪基础知识详解 陀螺仪,又叫角速度传感器,是用高速回转体的动量矩敏感壳体相对惯性空间绕正交于自转轴的一个或二个轴的角运动检测装置,同时,利用其他原理制成的角运动检测装置起同样功能的装置也称陀螺仪。 一、陀螺仪的名字由来 陀螺仪名字的来源具有悠久的历史。据考证,1850年法国的物理学家莱昂·傅科(J.Foucault)为了研究地球自转,首先发现高速转动中地的转子(rotor),由于它具有惯性,它的旋转轴永远指向一固定方向,因此傅科用希腊字gyro(旋转)和skopein(看)两字合为“gyroscopei”一字来命名该仪器仪表。 最早的陀螺仪的简易制作方式如下:即将一个高速旋转的陀螺放到一个万向支架上,靠陀螺的方向来计算角速度。 其中,中间金色的转子即为陀螺,它因为惯性作用是不会受到影响的,周边的三个“钢圈”则会因为设备的改变姿态而跟着改变,通过这样来检测设备当前的状态,而这三个“钢圈”所在的轴,也就是三轴陀螺仪里面的“三轴”,即X轴、y轴、Z轴,三个轴围成的立体空间联合检测各种动作,然后用多种方法读取轴所指示的方向,并自动将数据信号传给控制系统。因此一开始,陀螺仪的最主要的作用在于可以测量角速度。 二、陀螺仪的基本组成 当前,从力学的观点近似的分析陀螺的运动时,可以把它看成是一个刚体,刚体上有一个万向支点,而陀螺可以绕着这个支点作三个自由度的转动,所以陀螺的运动是属于刚体绕一个定点的转动运动,更确切地说,一个绕对称轴高速旋转的飞轮转子叫陀螺。将陀螺安装在框架装置上,使陀螺的自转轴有角转动的自由度,这种装置的总体叫做陀螺仪。 陀螺仪的基本部件有:陀螺转子(常采用同步电机、磁滞电机、三相交流电机等拖动方法来使陀螺转子绕自转轴高速旋转,并见其转速近似为常值);内、外框架(或称内、外环,它是使陀螺自转轴获得所需角转动自由度的结构);附件(是指力矩马达、信号传感器等)。 三、陀螺仪的工作原理 陀螺仪侦测的是角速度。其工作原理基于科里奥利力的原理:当一个物体在坐标系中直线移动时,假设坐标系做一个旋转,那么在旋转的过程中,物体会感受到一个垂直的力和垂直方向的加速度。 台风的形成就是基于这个原理,地球转动带动大气转动,如果大气转动时受到一个切向力,便容易形成台风,而北半球和南半球台风转动的方向是不一样的。用一个形象的比喻解释了科里奥利力的原理。

陀螺仪的详细介绍

陀螺仪 科技名词定义 中文名称:陀螺仪 英文名称:gyroscope 定义:利用高速回转体的动量矩敏感壳体相对惯性空间绕正交于自转轴的一个或二个轴的角运动检测装置。利用其他原理制成的角运动检测装置起同样功能的也称陀螺仪。 应用学科:船舶工程(一级学科);船舶通信导航(二级学科) 本内容由全国科学技术名词审定委员会审定公布 陀螺仪 用高速回转体的动量矩敏感壳体相对惯性空间绕正交于自转轴的一个或二个轴的角运动检测装置。利用其他原理制成的角运动检测装置起同样功能的也称陀螺仪。 目录

编辑本段

陀螺仪 结构 基本上陀螺仪是一种机械装置,其主要部分是一个对旋转轴以极高角速度旋转的转子,转子装在一支架内;在通过转子中心轴XX1上加一内环架,那么 陀螺仪就可环绕飞机两轴作自由运动;然后,在内环架外加上一外环架;这个陀螺仪有两个平衡环,可以环绕飞机三轴作自由运动,就是一个完整的太空陀螺仪(space gyro)。 历史 1850年法国的物理学家莱昂·傅科(J.Foucault)为了研究地球自转,首先发现高速转动中的转子(rotor),由于惯性作用它的旋转轴永远指向一固定方向,他用希腊字 gyro(旋转)和skopein(看)两字合为gyro scopei 一字来命名这种仪表。 陀螺仪是一种既古老而又很有生命力的仪器,从第一台真正实用的陀螺仪器问世以来已有大半个世纪,但直到现也,陀螺仪仍在吸引着人们对它进行研究,这是由于它本身具有的特性所决定的。陀螺仪最主要的基本特性是它的稳定性和进动性。人们从儿童玩的地陀螺中早就发现高速旋转的陀螺可以竖直不倒而保持与地面垂直,这就反映了陀螺的稳定性。研究陀螺仪运动特性的理论是绕定点运动刚体动力学的一个分支,它以物体的惯性为基础,研究旋转物体的动力学特性。 编辑本段陀螺仪原理 陀螺仪的原理就是,一个旋转物体的旋转轴所指的方向在不受外力影响时,是不会改变的。人们根据这个道理,用它来保持方向,制造出来的东西就叫陀螺仪。陀螺仪在工作时要给它一个力,使它快速旋转起来,一般能达到每分钟几十万转,可以工作很长时间。然后用多种方法读取轴所指示的方向,并自动将数据信号传给控制系统。 在现实生活中,陀螺仪发生的进给运动是在重力力矩的作用下发生的。

陀螺仪的基本特性

3.2 陀螺仪的基本特性 双自由度陀螺的两个基本特性是:进动性和定轴性。 3.2.1 陀螺仪的进动性 简单的说陀螺的进动性是指当陀螺受到外力矩的作用时,所产生的一种复合扭摆运动,其进动角速度的方向垂直于外力矩的方向,其进动角速度的大小正比与外力矩,或者说,陀螺进动的方向为角动量以最短距离导向外力矩的方向。 为了便于理解,我们以二自由度的框架陀螺为例,其进动表现为:外力矩如沿着内框轴作用时,则陀螺仪绕外框转动;若外力矩沿外框轴作用时,则陀螺绕内框转动。 3.2.2 陀螺仪的定轴性 陀螺的定轴性是指转子绕自转轴高速旋转时,如果不受外力矩的作用,自转轴将相对于惯性空间保持方向不变。换言之,双自由度陀螺具有抵抗干扰力矩,力图保持转子轴相对惯性空间的方位稳定的特性。 在实际的陀螺仪中,由于结构和工艺的不尽完善,总是不可避免的存在干扰力矩,因此,考查陀螺仪的定轴性,更有实际意义的是考查有干扰情况下,在有限的时间内,自转轴保持方位稳定的能力。由陀螺仪的进动性可以知道,在干扰力矩的作用下,陀螺将产生进动,使得自转轴偏离原有的方位,这种方位偏差就称为漂移。

一般说来,框架陀螺仪的漂移较大,从几度每小时到几十度每小时不等,这就是为什么框架式陀螺测斜仪在测量前要求标桩对北,测量结束后还必须校北的原因。 3.3 陀螺仪的表观进动 由于陀螺仪自转轴相对于惯性空间保持方位不变(当陀螺仪的漂移足够小;同地球自转引起的地球相对惯性空间方位变化比较,可近似的认为陀螺仪相对惯性空间的方位不变),而地球以其自转角速度绕极轴相对惯性空间转动,所示观察者若以地球为参考基准,将会看到陀螺仪自转轴相对地球转动,这种相对运动称为陀螺仪的表观运动。 表观运动的实质是陀螺仪可以跟踪测量地球自转角速度。例如在地球任意纬度处,放置一个高精度的二自由度陀螺仪,并使其自转轴处于当地垂线位置,如图所示,可以看到陀螺的自转轴将逐渐偏离当地的地垂线,而相对地球作圆锥面轨迹的表观进动,每24小时进动一周。若使得自转轴处于当地子午线位置,此时将看到陀螺仪自转轴逐渐偏离当地子午线,也相对地球作圆锥面轨迹的表观进动,每24小时一周。 3.4 坐标系

陀螺仪基本特性试验

陀螺仪基本特性试验一、实验目的 1.用实验的方法观察并验证陀螺仪的基本特性——定轴性,进动性和陀螺力矩效应。 2.学习使用陀螺实验用主要设备——转台。 3.利用线性回归方法进行数据处理。 二、实验设备 1.TZS-74陀螺仪表综合试验转台。 2.双自由度陀螺仪。 3.砝码。 4.实验用电源:交流220V,50~(转台用)36V,400~三相电源。 三、实验内容和步骤 (一)定轴性实验 1.陀螺马达不转时,开动转台,观察陀螺仪是否有定轴性。 2.接通电源,几下陀螺转子的转速方向,开动转台观察转子转 动时陀螺仪的定轴性。 (二)进动性实验

1.外加力矩,观察进动现象。根据进动规律判断角动量H的方 向,并和上面记下的转速方向做一比较。 2.测量进动角速度和外加力矩的关系: (1)在加力杆的前后标尺上分别加不同重量的砝码,记录进动的角度与实践,列表并计算出对应于每一外加力矩的 进动角速度值,画出实验曲线。 (2)根据进动规律x M ω=(H J=Ω)计算出对应于每一外加 H 力矩的进动角速度,画出理论曲线。 (3)将实验曲线与理论曲线进行比较并说明产生误差的原因。 (4)用线性回归的方法进行数据处理,并通过求回归系数的方法求出角动量H的值。 3.测量进动角速度和角动量的关系 在同一外力矩作用下,测量陀螺马达在额定转速下和断电一分钟后的进动角速度(断电一分钟后马达转速低于额定转速)。 根据实验结果说明进动角速度和角动量的关系。 (三)陀螺力矩实验 1.开动转台,使双自由度陀螺仪基座转动,观察有无陀螺力矩 效应,并说明原因。 2.观察双自由度陀螺仪在进动时的陀螺力矩效应。用手对内框 架加力矩,用手的感觉来测量陀螺力矩的大小和方向。说明陀螺力矩产生的原因。

陀螺特性(精)

玩具陀螺升级改装指南 虽然陀螺现象由来已久,并且已在广泛的领域获得了应用,但是,陀螺现象产生的真正原因,目前国际上还没有统一的理论可以解释。现在我们就从应用的角度, 来讨论一下玩具陀螺。 一.玩具陀螺的原理: 1. 玩具陀螺可以简化为下图所示的模型,其实这也是最古老的玩具陀螺的形 L 2圆锥部分。设这两部分的质量分别为m 1 ,则这两部分的转动惯量分别为:J 1= 21m 1 R 2 , 2 R 2。整个陀螺的总的转动惯量为:J=J 1+J 2=(21m 1 +103m 2)R 2。 2. 玩具陀螺在发射时,从发射者那儿获得一个初始角速度ω,于是就获得了一个旋转动能T 。(T=21J ω2) 3. 陀螺受力分析:在没有碰撞的情况下,陀螺会受到一个向下的重力,地面 对它向上的支持力以及地面与旋转陀螺间的摩擦力。陀螺在旋转的过程中,重力和支持力平衡,因此能量损耗只有摩擦力做功(忽略空气阻力),根据能量守恒定律,故陀螺的旋转动能最后全部会被摩擦力做功消耗掉。因此,陀螺在一个战斗盘中的旋转持续时间,就与陀尖和战斗盘间的的摩擦力大小成反比关系。摩擦力越大,持续时间越短。 决定摩擦力的因素有以下几点:(1)陀尖与战斗盘的接触面积。陀尖越平,与战斗盘接触的面积就越大,这样受到的摩擦力就越在,在战斗盘中旋转的速度也就越快。当然,能量的损耗也会越快。(2) 战斗盘的材料相对于陀尖的硬度。如果战斗盘

的硬度太硬,那么陀螺和战斗盘间的摩擦力就会很小,陀螺受到的驱动力也就小,移动速度慢,可玩性不强(比如在玻璃表面上)。如果战斗盘材料太软,陀尖压在战斗盘上后,战斗盘接触表面变形大,摩擦力就大,能量损耗快(如沙地里)。 4. 增大陀螺发射动能的方法:从公式T=21J ω2可以看出,要增大陀螺动能的 方法有两个:增大角速度ω和增大转动惯量J (1) 增大旋转角速度ω。从公式T=21J ω2可以看出,陀螺发射时获得的 动能和陀螺获得的角速度的平方成正比。对于一个特定的一个陀螺来 说,要增大它的转动角速度大致有三种途径:发射时加快抽动齿条的 速度、加长齿条、用带加速牙箱的发射器。其中,正常情况下,加快 抽动齿条的速度,可以获得平时两倍的动能;齿条加长一倍,也可以 获得平时两倍的动能(动画片里面木之宫龙就采用过这一招);如果 用加速牙箱,假设采用传动比2,那么可以获得平时四倍的动能。 (2) 增大陀螺的转动惯量J :这个方法主要是用来改装陀螺时用的。假如 陀螺的配重块如下图所示,质量为M,外径为R ,内径为r,那么,这 个配重块拥有的转动惯量就是J=21M (R 2 +r 2)。由此可知,要增大

陀螺仪实验 (3)

实验报告 88 数学系07级 姓名:宗艾俐 日期:08.11.15 学号:PB07025015 实验原理用自己的语言总结 实验题目:陀螺仪实验 实验目的: 1、通过测量角加速度确定陀螺仪的转动惯量; 2、通过测量陀螺仪的回转频率和进动频率确定陀螺仪的转动惯量; 3、观察和研究陀螺仪的进动频率与回转频率与外力矩的关系; 4、观察和研究陀螺仪的章动频率与回转频率的关系。 实验原理: 1、如图2用重物(砝码)落下的方法来使陀螺仪盘转动,这时陀螺仪盘的角加速度α为:α=d ωR /dt=M/I P (1) 式中ωR 为陀螺仪盘的角速度,I P 为陀螺仪盘的转动惯量。M=F .r 为使陀螺仪盘转动的力矩。由作用和反作用定律,作用力为: F=m(g-a) (2) 式中g 为重力加速度,a 为轨道加速度(或线加速度) 轨道加速度与角加速度的关系为: a=2h/t F 2; α=a/r (3) 式中h 为砝码下降的高度,r 如图1所示为转轴的半径,t F 为下落的时间。将(2)(3) 代入(1)可得:h mgr mr I t P F 2 2222+= (4) 测量多组t F 和h 的值用作图法或最小二乘法拟合数据求出陀螺仪盘的转动惯量。 2、如图3所示安装好陀螺仪,移动平衡物W 使陀螺仪AB 轴(X 轴)在水平位置平衡,用拉线的方法使陀螺仪盘绕X 轴转动(尽可能提高转速),此时陀螺仪具有常数的角动量L : L =I P .ωR (5) 当在陀螺仪的另一端挂上砝码m (50g )时就会产生一个附加的力矩M *,这将使原来的角动量发生改变: dL/dt =M *=m *gr * (6) 由于附加的力矩M *的方向垂直于原来的角动量的方向,将使角动量L 变化dL ,由图1可见: dL=Ld ? 图1 陀螺仪进动的矢量图

光纤陀螺技术规范

光纤陀螺技术规范 Q/AG L07 ×.××-2003 光纤陀螺技术岗位规范1 范围本规范规定了光纤陀螺岗位职责和岗位标准。。 本规范适用于光纤陀螺岗位的初级.中级.高级职务人员。 2 引用标准 Q/AG L071.1-2003职工政治思想和职业道德通用标准 3 岗位职责3.1负责光纤陀螺初样.正样.和定型产品研制的全部技术工作。 3.2严格贯彻执行国标.部标.企标及有关科研技术.质量管理和安全技术法规。 3.3负责项目.技术论证.可行性研究论证.技术经济分析和项目的申报工作。 3.4根据研制合同,制定阶段和年度工作计划,并组织实施。 3.5参加本专业及相关专业的技术会议,评审本专业范围内的科研成果。 3.6贯彻全面质量管理,负责对试验中出现的各种技术问题进行分析论证.改进设计。 3.7根据工程化的实际要求,改进光纤陀螺的性能.环境适应性,不断采用新技术.新工艺改制和研究新样机,以满足武器装备的新需求。 3.8根据项目进展情况,适时编写专题技术总结.专题研究报告和鉴定申请报告。

3.9负责技术转让,技术咨询,技术服务以及资料管理和完成技术资料归档工作。 4 岗位标准4.1 政治思想与职业道德执行Q/AG L071.1-2003职工政治思想与职业道德通用规范4.2 文化程度4.3 专业理论知识4.3.1 初级职务4.3.1.1具有高等数学.物理光学.模拟和数字电路等基础理论知识。 4.3.1.2具有光纤陀螺的原理及构成等专业理论知识。 4.3.1.3掌握光纤陀螺性能指标测试的流程和试验规范。 4.3.1.4懂得光纤陀螺技术参数的含义。 4.3.1.5了解光纤陀螺的研制过程和有关技术标准。 4.3.1.6初步掌握一门外语,并能查阅本专业书刊.资料。 4.3.2 中级职务4.3.2.1具有光纤技术.信号分析.自动控制.计算机接口等基础理论知识。 4.3.2.2熟悉各种相关光学和电子仪器设备的操作,精通电路图。 4.3.2.3熟悉光纤陀螺的组装.调试以及技术指标的采样测试。 4.3.2.4掌握光纤陀螺的研究现状及存在的问题,了解关键技术。 4.3.2.5熟悉光纤陀螺各种技术参数的形成原因和改进方向。 4.3.2.6掌握一门外语,并能较熟练的查阅本专业书刊.资料。

光纤陀螺的性能评价指标

国军标“光纤陀螺测试方法”(GJB2426—95)中对这几项参数都有明确的定义。 1. 标度因数K(scale factor) 陀螺仪输出量与输入角速度的比值,反映陀螺的灵敏度。它是用某一特定直线的斜率表示,该直线是根据整个输入角速率范围内测得的输入输出数据,用最小二乘法拟合求得。由于不同的检测系统有不同的输入 输出方式,很难有统一的标度因数的表达式。对I—FOG常用 作为理想标度因数的表达式。标度因数的稳定性及线性度直接影响测量值的精确性。战略级精密光纤陀螺的标度因数稳定性应≤1×106。 2. 标度因数非线性度Kn(scale factor nonlinearity) 在输入角速率范围内,陀螺仪输出量相对于最小二乘法拟合直线的最大偏差与最大输出量之比。 3. 标度因数重复性Kr(scale factor repeatability) 在同样条件下及规定间隔时间内,重复测量陀螺仪标度因数之间的一致程度。以各次测试所得标度因数的标准偏差与其平均值之比表示。 4. 零偏B。(bias) 当输入角速度为零时,陀螺仪的输出量。以规定时间内测得的输出量平均值相应的等效输入角速率表示。 5. 零偏稳定性Bs(bias stability) 当输入角速率为零时,衡量陀螺仪输出量围绕其均值的离散程度。以规定时间内输出量的标准偏差的等效输入角速率表示,也可称为零漂。 6. 零偏重复性Br(bias) 在同样条件下及规定间隔时问内,重复测量陀螺零偏之间的一致程度。以各次测试所得零偏的标准偏差表示。 7. 随机游走系数RWC(random walk coefficient) 由白噪声产生的随时间累积的陀螺仪输出误差系数。单位为o /h1/2。随机游走的主要误差源是光源输出功率振荡、探测器及信号处理电路的噪声引起的相对亮度噪声,散粒噪声、探测器、放大器及电路噪声,D/A 噪声等。

陀螺仪原理

英文名称:gyroscope 定义:利用高速回转体的动量矩敏感壳体相对惯性空间绕正交于自转轴的一个或二个轴的角运动检测装置。利用其他原理制成的角运动检测装置起同样功能的也称陀螺仪。 简介 绕一个支点高速转动的刚体称为陀螺(top)。通常所说的陀螺是特指对称陀螺,它是一个质量均匀分布的、具有轴对称形状的刚体,其几何对称轴就是它的自转轴。由苍蝇后翅(退化为平衡棒)仿生得来。 在一定的初始条件和一定的外在力矩作用下,陀螺会在不停自转的同时,还绕着另一个固定的转轴不停地旋转,这就是陀螺的旋进(precession),又称为回转效应(gyroscopic effect)。陀螺旋进是日常生活中常见的现象,许多人小时候都玩过的陀螺就是一例。 陀螺仪 人们利用陀螺的力学性质所制成的各种功能的陀螺装置称为陀螺仪(gyroscope),它在科学、技术、军事等各个领域有着广泛的应用。比如:回转罗盘、定向指示仪、炮弹的翻转、陀螺的章动、地球在太阳(月球)引力矩作用下的旋进(岁差)等。 陀螺仪的种类很多,按用途来分,它可以分为传感陀螺仪和指示陀螺仪。传感陀螺仪用于飞行体运动的自动控制系统中,作为水平、垂直、俯仰、航向和角速度传感器。指示陀螺仪主要用于飞行状态的指示,作为驾驶和领航仪表使用。 现在的陀螺仪分为,压电陀螺仪,微机械陀螺仪,光纤陀螺仪,激光陀螺仪,都是电子式的,可以和加速度计,磁阻芯片,GPS,做成惯性导航控制系统。 结构 基本上陀螺仪是一种机械装置,其主要部分是一个对旋转轴以极高角速度旋转的转子,转子装在一支架内;在通过转子中心轴XX1上加一内环架,那么陀螺仪就可环绕飞机两轴作自由运动;然后,在内环架外加上一外环架;这个陀螺仪有两个平衡环,可以环绕飞机三轴作自由运动,就是一个完整的太空陀螺仪(space gyro)。 历史 早于874年,中国陕西省法门寺供奉佛指舍利的贡品中,曾出现过用陀螺仪制作的香囊1850年法国的物理学家莱昂·傅科(J.Foucault)为了研究地球自转,首先发现高速转动中的转子(rotor),由于惯性作用它的旋转轴永远指向一固定方向,他用希腊字gyro(旋转)和skopein(看)两字合为gyro scopei 一字来命名这种仪表。 陀螺仪是一种既古老而又很有生命力的仪器,从第一台真正实用的陀螺仪器问世以来已有大半个世纪,但直到现在,陀螺仪仍在吸引着人们对它进行研究,这是由于它本身具有的特性所决定的。陀螺仪最主要的基本特性是它的稳定性和进动性。人们从儿童玩的地陀螺中早就发现高速旋转的陀螺可以竖直不倒而保持与地面垂直,这就反映了陀螺的稳定性。研究陀螺仪运动特性的理论是绕定点运动刚体动力学的一个分支,它以物体的惯性为基础,研究旋转物体的动力学特性。

陀螺仪实验报告

university of science and technology of china 96 jinzhai road, hefei anhui 230026,the people’s republic of china 陀螺仪实验实验报告 李方勇 pb05210284 sist-05010 周五下午第29组2号 2006.10.22 实验题目陀螺仪实验(演示实验) 实验目的 1、通过测量角加速度确定陀螺仪的转动惯量; 2、通过测量陀螺仪的回转频率和进动频率确定陀螺仪的转动惯量; 3、观察和研究陀螺 仪的进动频率与回转频率与外力矩的关系。 实验仪器 ①三轴回转仪;②计数光电门;③光电门用直流稳压电源(5伏);④陀螺仪平衡物;⑤ 数字秒表(1/100秒);⑥底座(2个);⑦支杆(2个);⑧砝码50克+10克(4个);⑨卷尺 或直尺。 实验原理 1、如图2用重物(砝码)落下的方法来使陀螺仪盘转动,这时陀螺仪盘的角加速度? 为:?=d?r/dt=m/ip (1) 式中?r为陀螺仪盘的角速度,ip为陀螺 仪盘的转动惯量。m=f.r为使陀螺仪盘转动的力矩。由作用和反作用定律,作用力为: f=m(g-a) (2) 式中g为重力加速度,a为轨道加速度(或线 加速度)轨道加速度与角加速度的关系为: a=2h/tf2; ?=a/r (3) 式中h为砝码下降的高度,r如图1所示为转轴的半径,tf为下落的时间。将(2)(3)代 入(1) 2ip?2mr2 t?h2 mgr可得: (4) 2 f 测量多组tf和h的值用作图法或最小二乘法拟合数据求出陀螺仪盘的转动惯量。 2、如图3所示安装好陀螺仪,移动平衡物w使陀螺仪ab轴(x轴)在水平位置平衡, 用拉线的方法使陀螺仪盘绕x轴转动(尽可能提高转速),此时陀螺仪具有常数的角动量l: l=ip.?r (5) 当在陀螺仪的另一端挂上砝码m(50g)时就会产生一个附加的力矩m*,这将使原来的角 动量发生改变: dl/dt=m*=m*gr* (6) 由于附加的力矩m*的方向垂直于原来的角动量的方向,将使角动量l变化dl,由图1 可见: dl=ld? 这时陀螺仪不会倾倒,在附加的力矩m*的作用下将会发生进动。进动的角速度.?p为 (?p=2?/tp,?r=2?/tr): d?1dl1dlm*gr* ?p???? dtldtip?rdtip?p(7) 所以可以得到以下关系式: ** 1mgr ?tp 2

陀螺旋转持久性能初探

陀螺旋转持久性能初探 前段时间,在小朋友中流行玩陀螺。我们的陀螺是一种市面上常见的玩具,一般用塑料及合金制成,分为战神盖、战神环、攻击环、中轴和陀尖五个部件,可以对这五个部件进行拆卸、再重新自由组装成一个陀螺。 我们的玩法一般是用各自的陀螺作比赛,看谁的陀螺能够转得最久。每个人都希望自己的陀螺是最棒的,我也希望自己的陀螺是“常胜将军”。为此,我对几种常见的陀螺进行了仔细的观察和简单的实验:首先,观察陀螺的外形,比较几种不同外形的陀螺旋转时间;其次,在不同的场地做实验,看看场地因素对陀螺的旋转时间有没有影响;最后,考虑不同部件组合对旋转时间的影响。 一、陀尖形状对陀螺持久性的影响 经过观察和分析,在陀螺的五个部件(战神盖、战神环、攻击环、中轴和陀尖)中,战神盖和战神环主要起着连接的作用;攻击环对攻击性能的影响最大;中轴既有连接的作用,又影响着陀螺的重心高低和稳定;而最下层的陀尖由于直接和地面接触,对陀螺的旋转和稳定起着最直接和重要的作用。所以我选择了不同的陀尖形状,观察他们对陀螺持久性能的影响。 陀螺的陀尖根据最顶端的形状大体可以分为平形、圆形和尖形三种,他们的表现如下: 平形(比如“火舞九天”陀螺的原装陀尖):由于底部是平的,与地面的接触面积大,摩擦力也大,不容易旋转,但一旦转动平稳就能够比较好地保持平衡。 圆形(比如“极地金盾”陀螺的原装陀尖):底部类似于半球形,与地面的直接接触面要比平形陀尖小,而且半球形结构使得陀尖对摆动有很好的适应性,

不容易摔倒,这对平衡、持久有很大的帮助。 尖形(比如“逆流战鞭”陀螺的原装的陀尖):尖尖的底部与地面的接触面积最小,产生的摩擦力也最小,能够最大限度地保持高速旋转,对小的摆动也有适应性,有利于旋转时间的增加。但是在受到大力攻击的情况下很容易摔倒,而且陀尖很容易磨损,磨多了持久性会下降。 总结:平形陀尖易摔,持久、平衡性弱;圆形陀尖比较持久、平衡性高;尖形陀尖能持久、平衡性一般。 二、不同场地条件下陀螺的持久性能 在不同的场地条件下,选择不同的陀尖形状,是不是会有不一样的结果呢?我试着做了下面的实验,实验工具是几个不同的陀螺、一个秒表和一个塑料陀螺盆(直径大约是43厘米)。实验的主要目的:测试不同中轴、不同攻击环和陀尖的陀螺在不同场地的持久度。 1、“寒冰震鼓”原装陀螺 实验场地旋转时间持久度结果分析 陀螺盆约16秒41 低(1)铁攻击环重,把陀螺压的很沉, 在狭小地方转不开(2)陀螺盆倾斜度 小,盆周完全是立着的,使陀螺无法 持久(场地问题)。 光滑水泥地面约1分04 秒 高(1)中轴高、大,重心稳,在平整地 面能够持久。(2)陀尖是尖的,前面 旋转稳定,后面摆动大了马上就摔倒。 不平的操场水泥地约37秒05 中尖形陀尖占地面积小,不容易碰到凸 的部分,找到一个旋转点以后就能够

陀螺仪的应用及原理

班级
姓名
学号
提交日期 2010/5/26
陀螺仪的原理及其应用
XXX
(常州工学院机械设计及其自动化系,江苏,常州,212300) 摘要 综述了陀螺仪对现代国防和科技的重要作用。主要阐述了陀螺仪的发展现状 和未来前景。说明了陀螺仪的各项基本特征、应用原理。也说明了现代陀螺仪的应用 范围及其功能分类。 关键词 基本特征 应用原理 功能分类 Abstract Reviews of national defence and science and technology gyroscope. Mainly expounds the development situation and future gyroscope. The gyroscope illustrates the basic characteristics, application principle. Also explains the application of modern gyroscope and functions. Keywords The basic principle characteristics application functions
0
引言
陀螺仪可算是非常复杂的物体,精度要求也相当高。因为它们以独特的方式运动,甚至 像在抵抗重力。 正是这些特殊属性使其在各个方面 (包括自行车和宇宙飞船上的先进导航系 统)都有极为重要的用途。一般的飞机要用约 10 多个陀螺仪,遍布在罗盘和自动驾驶仪等 各个地方。俄罗斯米尔空间站曾使用 11 个陀螺仪保持其方向对准太阳。哈勃太空望远镜也 安装了大量导航陀螺仪。同样,陀螺效应对溜溜球和飞盘等玩具也至关重要。
1
陀螺仪的原理特性
1.1 陀螺仪的特性 1 进 动 性 陀螺能在细线或手指上保持平衡; 能以非常奇妙的方式抵制自转轴运动; 但最有趣的陀 螺效应还数进动。这是陀螺仪抵抗重力的表现。 根据这一原理,回转的自行车轮能够像下 图所那样选在空中:
陀螺仪“抵抗重力”的能力
第1页

光纤陀螺仪测试规范

光纤陀螺仪测试规范 1范围 本方案规范了光纤陀螺的技术要求、质量保证和交货准备等方面的要求,以及相应的测试条件、测试项目、测试方法、测试程序,适用于在航海、航空、航天及陆用等惯性技术领域中应用的陀螺仪的设计、制造及检验。 2 测试条件与测试设备 2.1测试条件 2.1.1 环境条件 2.1.1.1 大气条件 标准大气条件如下: 环境温度:23℃±2℃ 相对湿度:20%~80% 大气压力:86KPa ~ 106KPa 5 测试主要项目 5.1.1 光纤陀螺在室温环境下性能 a) 标度因数; b) 标度因数非线性度; c) 标度因数不对称度; d) 标度因数重复性。 5.1.2 零偏 a) 零偏; b) 零偏稳定性; c) 零偏重复性(逐次、逐日)。 5.1.3 阈值 5.1.4 随机游走系数 5.2 振动环境性能 5.3 冲击试验 5.4 标度因数、零偏、零偏稳定性与环境温度项目综合测试 a) 标度因数温度灵敏度;

b) 零偏温度零敏度; c) 陀螺启动时间; d) 温度梯度对陀螺零偏的影响。 6 测试方法 6.1 标度因数 6.1.1 标度因数数值 6.1..1.1 测试设备 a) 具有角度输出的速率位置转台(速率平稳度优于5×10-3,测量范围大于±0.001°/s ~ ±500°/s ); b) 陀螺输出测试和记录装置; c) 陀螺测试专用工装夹具。 6.1.1.2 测试程序 陀螺仪通过安装夹具固定在速率转台上。在输入角速率范围内,按GB321规定的R5系列,适当圆整,均匀删除后选取输入角速率,在正转、反转方向输入角速率范围内,分别不能小于11个角速率档,包括最大输入角速率。当速率平稳时进行测试。程序如下: a) 转台加电,设定转台的转动角速度、速率值和转动方向,接通陀螺仪电源,预热一定时间。转台输入角速率按从小到大的顺序改变,转台正转测试陀螺仪输出,停转;转台反转,测试陀螺仪输出停转; b) 设定采样间隔时间为1S 及采样次数,测试陀螺仪测试陀螺仪输出量,求得该输入角速率下陀螺仪输出的平均值; 6.1.1.3 计算方法 设j F 为第j 个输入角速度时光纤陀螺仪输出的平均值,标度因数绝对值计算方法见公式: j F = 1 N 1 N jp p F =∑ (1) 式中: j F —陀螺仪第P 个输出值,N —采样次数。 转台静止时陀螺输出的平均值为: 1 ()2r s e F F F =+ (2) 式中: s F —测试开始时,陀螺仪输出的平均数值; e F —测试停止时,陀螺仪输出的平均数值。

MEMS激光陀螺仪综述详解

MEMS激光陀螺仪综述姓名:赵琬婷学号:22013305

1.陀螺仪的发展简史 陀螺仪器最早是用于航海导航,但随着科学技术的发展,它在航空和航天事业中也得到广泛的应用。自1910年首次用于船载指北陀螺罗经以来,陀螺已有近100年的发展史,发展过程大致分为4个阶段:第一阶段是滚珠轴承支承陀螺马达和框架的陀螺;第二阶段是20世纪40年代末到50年代初发展起来的液浮和气浮陀螺;第三阶段是20世纪60年代以后发展起来的干式动力挠性支承的转子陀螺;目前陀螺的发展已进入第四个阶段,即静电陀螺、激光陀螺、光纤陀螺和振动陀螺。 2、激光陀螺仪概述 现代陀螺仪是一种能够精确的定位运动物体的方位的仪器,它是现代航空,航海,航天和国防工业中广泛使用的一种惯性导航仪器,它的发展对一个国家的工业,国防和其它高科技的发展具有十分重要的战略意义。传统的惯性陀螺仪主要是指机械式的陀螺仪,机械式的陀螺仪对工艺结构的要求很高,结构复杂,它的精度受到了许多方面的制约。 3、激光陀螺仪的原理及分类 3.1激光陀螺仪的原理 激光陀螺仪的原理是利用光程差来测量旋转角速度( Sagnac 效应)。在闭合光路中,由同一光源发出的沿顺时针方向和反时针方向传输的两束光和光干涉,利用检测相位差或干涉条纹的变化,就可以测出闭合光路旋转角速度。激光陀螺仪的基本元件是环形激光器,环形激光器由三角形或正方形的石英制成的闭合光路组成,内有一个或几个装有混合气体(氦氖气体)的管子,两个不透明的反射和一个半透明镜。用高频电源或直流电源激发混合气体,产生单色激光。为维持路谐振,回路的周长应为光波波长的整数倍。用半透明镜将激光导出回路,经反射镜使两束相反传输的激光干涉,通过光电探测器和电路输入与输出角度成比例的数字信号。 3.2激光陀螺仪的分类 激光陀螺原理上根本不同于普通的机电式陀螺。常规机电转子陀螺依据普通的刚体力学原理按照机械储能方式工作,而激光陀螺是以双向行波的环形激光器为核心的

相关文档