文档库 最新最全的文档下载
当前位置:文档库 › 有限元课程设计(简单弧形闸门建模分析)

有限元课程设计(简单弧形闸门建模分析)

有限元课程设计(简单弧形闸门建模分析)
有限元课程设计(简单弧形闸门建模分析)

有限元课程设计

题目:弧形门有限元静力分析

几何:面板: R=16m t=0.12m 所对圆心角56°;水平主梁工字形截面: W1=0.3m W2=0.6m W3=1m t1=t2=0.016m t3=0.02m ;水平次梁、竖梁工字形截面: W1=0.1m W2=0.1m W3=0.2m ,t1=t2=0.01m t3=0.012m ;大臂空心矩形截面: 0.4m ×0.6m ,壁厚0.02 m ;

载荷: 1. 静水压力,沿主法线方向作用于板面;水平面高度等于门高的0.9倍 2. 自重. 约束: O 1 O 2两点除绕z 轴转动自由度外全部约束,底边各节点约束Y 方向移动自由度。

材料: E=2.1e11 Pa , μ=0.3,ρ=7800kg/m 3

要求: 提交手写纸质报告, 内容包括:1. 问题描述; 2. 求解大致过程:单位制选择,单元类型选择, 板梁元的建立,梁方向的调整,约束的给定,载荷的施加,梁端自由度的释放,板梁形心的偏移等;3. 结果分析:应力和变形分布情况及最大值,结论。结果可附 综合变形分布图和V onMises 应力云图。 另外,每个同学都要答辩,答辩问题就是答辩提纲上的16道题,随机抽2-3道。

时间: 地点: 自己定

注意:每个同学的弧门半径为16米加上自己学号后三位的小数,例如某同学学号961010111,则R=16.111m

ANSYS 环境下上机提示

1. 起动ANSYS :开始→程序→ANASYS57→RUNINTERACTIVE ; O 2

A

C D B z

56°

14m

14m

y

x z ’ x ’

O 1

x ’

y ’ O 0.12 板与加强筋连接形式示意图 支铰高h3 x O y O 1 门高h1

h2

R -30° 26° M

N

液面高

弦长2sin

2MN R θ= 门高h1=MNcos2° 液面高h2=0.9 h1 支铰高 3sin(2)2h R θ=+? 弧门一些几何尺寸的计算

2.Utility Menu-File-Change Job name-给出自己的文件名;

3.主菜单Main Menu,预先设置Preference,分析类型 Structural;

采用国际单位制,长度m、力N、弹性模量Pa、密度kg/m3、静水压力载荷梯度N/m3、加速度m/s2。单位制自己掌握。

4.前处理Preprocessor,定义单元类型Element Type-Add/Edit/Delete,定义板单元和梁单元:Structural-Shell93,Beam189两种。

5.定义实常数Real Constant-Add给出板单元厚度0.12。

6.定义材料:Main Menu-Preprocessor-Material- Material Models-左窗口Material Model Number 1, 右窗口Structural-Linear-Elastic-Isotropic给出弹性模量和泊松比及密度

7.定义梁截面Section-Beam-Common Sections-Sub Type选择工字型:W1=0.3m W2=0.6m W3=1m t1=t2=0.016m t3=0.02m截面形心位置偏移以便与板接合Offset To Location Z= -0.06,这是第一种截面,取名Main Beam,截面号1;改截面号2,取名Beam2,Sub Type选择工字型:W1=0.1m W2=0.1m W3=0.2m t1=t2=0.01m t3=0.012m,偏移Offset To Location Z= -0.06;改截面号3,取名Big Arm,Sub Type选择空心矩形:W1=0.4m W2=0.6m t1=t2= t3=t4=0.02m。

8.创建板面及竖梁几何模型,先将坐标平面移到轴线端点:Utility Menu-Working Plane –Offset WP By Increment (0,8,0);创建部分圆柱体Main Menu-Preprocessor-Modeling-Create- V olume-Cylinder-Partial Cylinder –圆心(0,0)内半径0,外半径16,起始角度-30°,终了角度16°,高14;删除体和没用的面,Delete –Volume、Area Only;复制弧线Copy-Lines-选中母本,沿z方向复制7次,步长2;9.创建水平梁几何模型:建立圆柱局部坐标系Utility Menu-Working Plane –Local Coordinate system-Create Local CS-At WP Original- 给出坐标系号11,类型1= Cylinder ,将当前坐标系改为圆柱局部坐标系Utility Menu-Working Plane –Change Active CS To –Special Local CS-给出坐标系号11。复制水平直线最为水平梁的几何模型Copy-Lines选中最底下边作为母本,沿圆弧方向复制8次,步长(0,7°,0)。

将当前坐标系改为正体坐标系Change Active CS To –Global Cartesian。注意随时保存模型。

10.网格剖分:剖分面单元Main Menu-Preprocessor-Meshing Tools-,选Element Attributes下拉表中的Areas单击Set,弹出面特性设置对话框,材料MAT=1,实常数REAL=1,单元类型TYPE=1,截面SECT= ,再控制剖分单元数,选Size Control-Lines轴向边线7等分,弧线边线8等分。Mesh Areas。

注意随时保存模型。

11.剖分水平主梁,选Element Attributes下拉表中的Lines单击Set,弹出线特性设置对话框,材料MAT=1,实常数REAL= ,单元类型号TYPE=2,截面SECT=1,选择方向点Pick Orientation Key Point 设为Yes,选原点处的关键点作为方向参考点,再控制剖分单元数,选Size Control-Lines轴向边线7等分,Mesh Lines。

12.剖分水平次梁,线特性设置, MAT=1, REAL= , TYPE=2, SECT=2,选原点处的关键点作为方向参考点,再控制剖分单元数,选Size Control-Lines轴向边线7等分,Mesh Lines。

13.剖分竖直方向梁,先在原点与关键点(0,0,14)之间创建6个关键点:Main Menu- Preprocessor-Modeling-Create-Key Point-Fill Between N1 N2。线特性设置, MAT=1, REAL= , TYPE=2,SECT=2,选各线对应的关键点作为方向参考点,再控制剖分单元数,选Size Control-Lines竖直方向梁弧线8等分,Mesh Lines。

14.合并重合节点,使梁与板节点结合在一起,Main Menu- Preprocessor-Numbering Control-Merge Items-Node给定重合容差Range of coincidence=0.5。

15.建立大臂模型,在A、B、C、D处建立关键点Create-Key point On Nodes,生成线Create-Lines-Straight Lines,剖分材料MAT=1,实常数REAL= ,单元类型TYPE=2,截面SECT=3,选择方向点Pick Orientation Key Point设为Yes,选A、B、C、D处关键点作为方向参考点,再控制剖分单元数,选Size Control-Lines 8等分,Mesh Lines

16.再次合并重合节点,使大臂梁与板节点结合在一起。保存模型。

17.以实体方式显示单元,查看板梁接合情况是否正常,Utility Menu-Plot Ctrl-Style-Size And Shape ,将Display of Element设置为打开状态(On),OK;若不对修改Offset值。

18.进入求解器:Main Menu-Solution-Analysis Type-New Analysis Static, OK;

19.施加约束:Main Menu-Solution-Loads-Apply-Structural-Displacement-On Lines,选择底边施加y方向固定约束Dy=0,选择大臂支点,除绕z轴转动外约束所有其他自由度Displacement-On Node,Dx,Dy,Dz,Rx,Ry;

20.施加载荷,静水压力载荷设置:-Loads-Settings-For Surface Ld-Gradient- 载荷梯度Slope Value= -9800 , 方向Slidir=Y, 零压力面坐标SlZER=12,坐标系SLKCN=0 ,OK 。Loads -Apply-

Structural-Pressure-On Elements,选择下面六排单元施加静水压力载荷,VALUE=0。施加重力加速度:Main Menu-Solution-Loads- Apply- Structural-Gravity-. Y方向+9.8,OK

21.显示静水压力Utility Menu-Plot Ctrl-Symbols弹出对话框,在Surface Load Symbols列表中选择Pressure,Show Pres and convent as列表中选择Arrows,单击OK;若方向错,删除重加,面号给2。22.选择所有实体,Utility Menu-Select Everything,实体显示。

23.求解:Main Menu-Solution-Solve- Current LS

24.进入后处理:Main Menu-Post Processor-Read Results-First Set, -Post Processor-Plot Results-Nodal Solution- 显示总变形,相当应力;制作总体变形动画,Utility Menu- Plot Ctrl-Animate-Deformed Results

八、一块尺寸为12m×3m,厚度为0.01m的钢板焊接到一刚架上,刚架四边外框尺寸为12m×3m,为0.1m ×0.1m×0.01m方形截面型钢,在横向等间距设置两条纵向L型截面型钢:0.1m×0.12m×0.01m,已知材料的弹性模量和泊松比分别为E=210GPa,μ=0.3,密度ρ=7800kg/m3。面板上承受250Pa的均布压力,型钢框架短边一侧为固定铰支,另一侧为可动铰支,计算结构的应力与变形,确定型钢的弯矩与轴力。

报告要求:

1.简述建模及分析过程;

2.空间梁的局部坐标系是如何建立的?

3.梁单元和板单元是如何连接的?

4.说说梁单元和板单元的类型选择。

5.观察变形和应力情况。

提示:

1.起动ANSYS:开始→程序→ANASYS57→

RUNINTERACTIVE;或清除内存:Utility

Menu-File-Clear & Start New , OK;

2.更换工作文件名:Utility Menu-File-Change Job name-给出自己的文件名;

3.定义标题:Utility Menu-File-Change Title, 给出题目的标题;

4.进入前处理器,定义单元类型:Main Menu-Preprocessor-Element Type-Add/Edit/Delete- Structural

Shell-Elastic- 8Node 93,Apply;Structural Beam- 3Node 189, OK.

5.定义实常数: Main Menu-Preprocessor-Real Constant- Add/Edit/Delete-, 板壳厚度0.01m.

6.定义型钢截面:-Preprocessor-Sections-Beam-Common Section- 1号截面,ID=1,Sub-Type=矩形,

w1=w2=0.1,t1=t2=t3=t4=0.01, Apply ; 2号截面,ID=2,Sub-Type=L形,w1= 0.12, w2=0.1, t1=t2=0.01, OK.

7.定义材料:Main Menu-Preprocessor-Material Props-Material Models-左窗口Material Model Number 1, 右

窗口Structural>Linear>Elastic>Isotropic,给出弹性模量和泊松比:1号材料:E=2.0e11,μ=0.3;2号材料:E=2.1e11,μ=0.3。

8.创建几何模型:创建12个关键点Main Menu-Preprocessor-Modeling-Create-Key Points-In Active CS-

(0,0,0),(0,1,0),(0,2,0),(0,3,0),(12,0,0),(12,1,0),(12,2,0),(12,3,0),(0,0,1),(0,1,1),(0,2,1), (12,3,1), 创建3个面Create Areas-Arbitrary Through KPs-1,5,6,2/ 2,6,7,3/ 3,7,8,4.

9.打开线的编号并同时绘制所有点、线、面图形:Utility Menu-Plot Control-Numbering, 选Key Points

Numbers 和Line Numbers 设置为ON,将Numbering shown with 设置为Colors & numbers,OK,Utility Menu-Plot-Multi-Plots, 绘制所有图形对象。

10.给四周的边框线分配梁单元属性:Main Menu-Preprocessor-Meshing Tools-,选Element Attributes下拉

列表中的Lines,然后单击Set,

★拾取线1,4,7,10,OK,弹出Line Attributes对话框,MA T=2,REAL=1,TYPE=2,SECT=1,并选中Pick Orientation Key point(s)即设置为Yes,OK,拾取方向关键点9,Apply;

★拾取线2,5,8,9,OK,弹出Line Attributes对话框,MAT=2,REAL=1,TYPE=2,SECT=1,并选中Pick Orientation Key point(s)即设置为Yes,OK,拾取方向关键点12,OK;

11.给中间的两条纵向线分配梁单元属性:Main Menu-Preprocessor-Meshing Tools-,选Element Attributes

下拉列表中的Lines,然后单击Set,

★拾取线3,OK,弹出Line Attributes对话框,MA T=2,REAL=1,TYPE=2,SECT=2,并选中Pick Orientation Key point(s)即设置为Yes,OK,拾取方向关键点10,Apply;

★拾取线6,OK,弹出Line Attributes对话框,MA T=2,REAL=1,TYPE=2,SECT=2,并选中Pick Orientation Key point(s)即设置为Yes,OK,拾取方向关键点11,OK。

12.控制所有线的单元分数:Meshing Tools-Size Control-Lines, 单击Set, Pick All 选所有的线,将Size设置

为0.5, Ok.

13.划分线单元网格:Meshing Tools-Mesh Lines-,Pick All。

1.打开单元形状开关:Utility Menu-Plot Control-Style-Size & Shape, 将Display of element 设置为打开状

态(ON),OK.

2.给面分配单元属性:Main Menu-Preprocessor-Meshing Tools-,选Element Attributes下拉列表中的Areas,

然后单击Set,Pick All 选所有的面, 弹出Areas Attributes对话框,MA T=1,REAL=1,TYPE=1,SECT=0,OK.

3.控制面上的单元尺寸:Meshing Tools-Size Control-Areas单击Set, Pick All 选所有的面,将Size设置为

0.5, Ok.

4.选择单元形状和网格划分器, 执行网格划分操作:Quad, Free. Mesh , Pick All.

5.修改所有BOX-SECT梁单元网格,调整其位置:Main Menu-Preprocessor- Sections-Beam- Common

Sections, 弹出Beam Tool 对话框,在Offset To后下拉列表中选择Location,将其下的Offset-Y设置为0,Offset-Z设置为0.105,其他项保持不变,OK。Utility Menu-Plot –Elements, 观察位置是否正确。6.通过颠倒3号线的方向改变L截面的Y方向:Main Menu-Preprocessor-Modeling- Move/Modify-Reverse

Normal -of Lines-, Pick 3, OK.

7.修改所有L-SECT梁单元网格,调整其位置:Main Menu-Preprocessor- Sections-Beam- Common Sections,

弹出Beam Tool 对话框,将ID号修改为2,在Offset To后下拉列表中选择Location,将其下的Offset-Y 设置为0,Offset-Z设置为0.1,其他项保持不变,OK。Utility Menu-Plot –Elements, 观察位置是否正确。

8.颠倒面与壳单元的法向:首先打开面的法向箭头符号,Utility Menu-Plot Control-Symbols, 将Area

Direction选中,OK;Utility Menu-Plot-Areas; 然后Main Menu-Preprocessor- Modeling

-Move/Modify-Reverse Normal -of Areas-, Pick All, OK.注意随时保存模型。

9.进入求解器:Main Menu-Solution-Analysis Type-New Analysis Static, OK;

10.施加约束:Main Menu-Solution-Loads Apply-Structural-Displacement-On Key Points-, 选1,4号关键点,

施加UX,UY,UZ约束。在5,8号关键点,施加UZ约束。

11.施加载荷:Main Menu-Solution-Loads Apply-Structural- Pressure-On Area, Pick All, 在所有面上施加均布

压力250Pa。

12.求解:Utility Menu-Select-Everything, Main Menu-Solution-Solve- Current LS - OK

13.进入后处理:-Post Processor-Read Results-First Set, Plot Results-Nodal Solution-;

14.制作总体变形动画片:Utility Menu- Plot Control-Animate-Deformed Results, 10,0.1,Stress, Von Meses

SEQV ,OK.

15.通过单元表处理梁的轴力和弯矩:Main Menu-General Post Processor-Element Table-Define Table,

FX-I, Item=By sequence, Comp=SMISC, 1 ,Apply; FX-J, ……, 14 , Apply;

MY-I, ……, 2 , Apply;MY-J, ……, 15 , Apply;

MZ-I, ……, 3 , Apply;MZ-J, ……, 16 , Apply;

16.列表显示各梁的内力:Main Menu-General Post Processor- Element Table-List Element Table-或图形显示

各梁的内力:Main Menu-General Post Processor-Plot Results-Contour Plot-Line Element Results , 将LabI 与LabJ分别设置为FX-I和FX-J,或MY-I,MY-J,MZ-I,MZ-J,OK。

平面三角形单元有限元程序设计

. 一、题目 如图1所示,一个厚度均匀的三角形薄板,在顶点作用沿板厚方向均匀分布的竖向载荷。已知:P=150N/m ,E=200GPa ,=0.25,t=0.1m ,忽略自重。试计算薄板的位移及应力分布。 要求: 1. 编写有限元计算机程序,计算节点位移及单元应力。(划分三角形 单元,单元数不得少于30个); 2. 采用有限元软件分析该问题(有限元软件网格与程序设计网格必 须一致),详细给出有限元软件每一步的操作过程,并将结果与程序计算结果进行对比(任选取三个点,对比位移值); 3. 提交程序编写过程的详细报告及计算机程序; 4. 所有同学参加答辩,并演示有限元计算程序。 有限元法中三节点三角形分析结构的步骤如下: 1)整理原始数据,如材料性质、荷载条件、约束条件等,离散结构并进行单元编码、结点编码、结点位移编码、选取坐标系。 2)单元分析,建立单元刚度矩阵。 3)整体分析,建立总刚矩阵。 4)建立整体结构的等效节点荷载和总荷载矩阵 5)边界条件处理。 6)解方程,求出节点位移。 7)求出各单元的单元应力。 8)计算结果整理。 一、程序设计 网格划分 如图,将薄板如图划分为6行,并建立坐标系,则

刚度矩阵的集成 建立与总刚度矩阵等维数的空矩阵,已变单元刚度矩阵的集成。 由单元分析已知节点、单元的排布规律,继而通过循环计算求得每个单元对应的节点序号。 通过循环逐个计算:(1)每个单元对应2种单元刚度矩阵中的哪一种; (2)该单元对应总刚度矩阵的那几行哪几列 (3)将该单元的单元刚度矩阵加入总刚度矩阵的对应行列 循环又分为3层循环:(1)最外层:逐行计算 (2)中间层:该行逐个计算 (3)最里层:区分为第 奇/偶 数个计算 单元刚度的集成:[ ][][][][][]' '''''215656665656266256561661e Z e e e Z e Z e e e e k k k K k k k k k k +?++=? =?==?==?=?????? 边界约束的处理:划0置1法 X Y P X Y P

有限元课程设计

一.问题描述 如图所示的平面矩形结构,设E=1,NU=0.25,h=1,考虑以下约束和外载: 位移边界条件BC(u):U A=0,V A=0,U D=0, 力边界条件BC(p):在CD边上有均布载荷q=1, 建模情形:使用四个四节点矩形单元, 试在该建模情形下,求各节点的位移以及各个单元的应力分布。

二.Matlab程序 (1).函数定义: function k= Quad2D4Node_Stiffness(E,NU,h,xi,yi,xj,yj,xm,ym,xp,yp,ID) syms s t; a = (yi*(s-1)+yj*(-1-s)+ym*(1+s)+yp*(1-s))/4; b = (yi*(t-1)+yj*(1-t)+ym*(1+t)+yp*(-1-t))/4; c = (xi*(t-1)+xj*(1-t)+xm*(1+t)+xp*(-1-t))/4; d = (xi*(s-1)+xj*(-1-s)+xm*(1+s)+xp*(1-s))/4; B1 = [a*(t-1)/4-b*(s-1)/4 0 ; 0 c*(s-1)/4-d*(t-1)/4 ; c*(s-1)/4-d*(t-1)/4 a*(t-1)/4-b*(s-1)/4]; B2 = [a*(1-t)/4-b*(-1-s)/4 0 ; 0 c*(-1-s)/4-d*(1-t)/4 ; c*(-1-s)/4-d*(1-t)/4 a*(1-t)/4-b*(-1-s)/4]; B3 = [a*(t+1)/4-b*(s+1)/4 0 ; 0 c*(s+1)/4-d*(t+1)/4 ; c*(s+1)/4-d*(t+1)/4 a*(t+1)/4-b*(s+1)/4]; B4 = [a*(-1-t)/4-b*(1-s)/4 0 ; 0 c*(1-s)/4-d*(-1-t)/4 ; c*(1-s)/4-d*(-1-t)/4 a*(-1-t)/4-b*(1-s)/4]; Bfirst = [B1 B2 B3 B4]; Jfirst = [0 1-t t-s s-1 ; t-1 0 s+1 -s-t ; s-t -s-1 0 t+1 ; 1-s s+t -t-1 0]; J = [xi xjxmxp]*Jfirst*[yi ;yj ; ym ; yp]/8; B = Bfirst/J; if ID == 1 D = (E/(1-NU*NU))*[1 NU 0 ; NU 1 0 ; 0 0 (1-NU)/2]; elseif ID == 2 D = (E/(1+NU)/(1-2*NU))*[1-NU NU 0 ; NU 1-NU 0 ; 0 0 (1-2*NU)/2]; end BD = J*transpose(B)*D*B; r = int(int(BD, t, -1, 1), s, -1, 1); z = h*r; k = double(z); end function z = Quad2D4Node_Assembly(KK,k,i,j,m,p) DOF(1)=2*i-1; DOF(2)=2*i; DOF(3)=2*j-1; DOF(4)=2*j; DOF(5)=2*m-1; DOF(6)=2*m; DOF(7)=2*p-1; DOF(8)=2*p; for n1=1:8

有限元分析程序设计

结构有限元分析程序设计 绪论 §0.1 开设“有限元程序设计”课程的意义和目的 §0.2 课程特点 §0.3 课程安排 §0.4 课程要求 §0.5 基本方法复习 $0.1 意义和目的 1.有限元数值分析技术本身要求工程设计研究人员掌握 1). 有限元数值分析技术的完善标志着现代计算力学的真正成熟和实用化,已在各种 力学中得到了广泛的应用。比如:,已杨为工程结构分析中最得以收敛的技术手段,现代功用大致有: a). 现代结构论证。对结构设计从内力,位移等方面进行优劣评定,从而进 行结构优化设计。 b)可取代部份实验,局部实验+有限元分析,是现代工程设计研究方法的一大 特点。 c)结构的各种功能分析(疲劳断裂,可靠性分析等)都以有限元分析工具作为 核心的计算工具。 2). 有限元数值分析本身包括着理论+技术实现(本身功用所绝定的) 有限元数值分析本身包括着泛函理论+分片插值函数+程序设计 2. 有限元分析的技术实现(近十佘年的事)更依赖于计算机程序设计 有限元分析的技术取得的巨大的成就,从某种意义上说,得益于计算机硬件技术的发展和程序设计技术的发展,这两者的依赖性在当代表现得更加突出。(如可视化技术) 3.从学习的角度,不仅要学习理论,而且要从程序设计设计角度对这些理论的技术实现有 一个深入的了解,应当致力于掌握这些技术实现能力,从而开发它,发展它。(理论本身还有待于进一步完美相应的程序设计必须去开发) 4.程序设计不仅是实现有限元数值分析的工具和桥梁,而且在以下诸方面也有意义: 1). 精通基本概念,深化理论认识; 2). 锻炼实际工程分析,实际动手的能力; 3). 获得以后工作中必备的工具。(作业+老师给元素库) 目的:通过讲述有限元程序设计的技术与技巧,便能达到自编自读的能力。 §0.2 课程特点 总描述:理论+算法+数据结构(程序设计的意义) 理论:有限元算法,构造,步骤,解的等外性,收敛性,稳定性,误差分析 算法;指求解过程的技术方法,含两方面的含义;a. 有限元数值分析算法,b, 与数据结构有关的算法(总刚稀疏存贮,提取,节点优化编号等) 数据结构:指各向量矩阵存贮管理与实现,辅助管理结构(指针,数据记录等) 具体特点: 理论性强:能量泛函理论+有限元构造算法+数据结构构造算法 内容繁杂:理论方法+技术方法+技术技巧 技巧性强:排序,管理结构(指针生成,整型运算等)

abaqus有限元分析过程

一、有限单元法的基本原理 有限单元法(The Finite Element Method)简称有限元(FEM),它是利用电子计算机进行的一种数值分析方法。它在工程技术领域中的应用十分广泛,几乎所有的弹塑性结构静力学和动力学问题都可用它求得满意的数值结果。 有限元方法的基本思路是:化整为零,积零为整。即应用有限元法求解任意连续体时,应把连续的求解区域分割成有限个单元,并在每个单元上指定有限个结点,假设一个简单的函数(称插值函数)近似地表示其位移分布规律,再利用弹塑性理论中的变分原理或其他方法,建立单元结点的力和位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程组,从而求解结点的位移分量. 进而利用插值函数确定单元集合体上的场函数。由位移求出应变, 由应变求出应力 二、ABAQUS有限元分析过程 有限元分析过程可以分为以下几个阶段 1.建模阶段: 建模阶段是根据结构实际形状和实际工况条件建立有限元分析的计算模型――有限元模型,从而为有限元数值计算提供必要的输入数据。有限元建模的中心任务是结构离散,即划分网格。但是还是要处理许多与之相关的工作:如结构形式处理、集合模型建立、单元特性定义、单元质量检查、编号顺序以及模型边界条件的定义等。

2.计算阶段:计算阶段的任务是完成有限元方法有关的数值计算。 由于这一步运算量非常大,所以这部分工作由有限元分析软件控制并在计算机上自动完成 3.后处理阶段: 它的任务是对计算输出的结果惊醒必要的处理, 并按一定方式显示或打印出来,以便对结构性能的好坏或设计的合理性进行评估,并作为相应的改进或优化,这是惊醒结构有限元分析的目的所在。 下列的功能模块在ABAQUS/CAE操作整个过程中常常见到,这个表简明地描述了建立模型过程中要调用的每个功能模块。 “Part(部件) 用户在Part模块里生成单个部件,可以直接在ABAQUS/CAE环境下用图形工具生成部件的几何形状,也可以从其它的图形软件输入部件。 Property(特性) 截面(Section)的定义包括了部件特性或部件区域类信息,如区域的相关材料定义和横截面形状信息。在Property模块中,用户生成截面和材料定义,并把它们赋于(Assign)部件。 Assembly(装配件) 所生成的部件存在于自己的坐标系里,独立于模型中的其它部件。用户可使用Assembly模块生成部件的副本(instance),并且在整体坐标里把各部件的副本相互定位,从而生成一个装配件。 一个ABAQUS模型只包含一个装配件。

有限元程序课程设计

重庆大学本科学生课程设计任务书 课程设计题目有限元程序设计 学院资源及环境科学学院专业工程力学年级2010级 已知参数和设计要求: 1.独立完成有限元程序设计。 2.独立选择计算算例,并能通过算例判断程序的正确性。 3.独立完成程序设计报告,报告内容包括理论公式、程序框图、程序本 体、计算算例,算例结果分析、结论等。 学生应完成的工作: 1.复习掌握有限单元法的基本原理。 2.掌握弹性力学平面问题3节点三角形单元或4节点等参单元有限元方法 的计算流程,以及单元刚度矩阵、等效节点载荷、节点应变、节点应力 和高斯积分等的计算公式。 3.用Fortran语言编写弹性力学平面问题3节点三角形单元或4节点等参 单元的有限元程序。 4.在Visual Fortran 程序集成开发环境中完成有限元程序的编辑和调试 工作。 5.利用编写的有限元程序,计算算例,分析计算结果。 6.撰写课程设计报告。 目前资料收集情况(含指定参考资料): 1.王勖成,有限单元法,北京:高等教育出版社,2002。 2.O.C. Zienkiewicz, R. L. Taylor, Finite Element Method, 5th Eition, McGraw-Hall Book Company Limited, 2000。 3.张汝清,董明,结构计算程序设计,重庆:重庆大学出版社,1988。 课程设计的工作计划: 1.第1周星期一上午:教师讲解程序设计方法,程序设计要求和任务安 排。 2.第1周星期一至星期二完成程序框图设计。 3.第1周星期三至第2周星期四完成程序设计。 4.第2周星期五完成课程设计报告。 任务下达日期 2013 年 6 月 6 日完成日期 2013 年 07 月 03 日 指导教师(签名) 学生(签名)

《有限单元法》编程作业

湖南大学 《有限单元法》编程大作业 专业:土木工程 姓名: 学号: 2013年12月

目录 程序作业题目: (3) 1、程序编制总说明 (3) 2、Matlab程序编制流程图 (3) 3、程序主要标示符及变量说明 (4) 4、理论基础和求解过程 (5) 4.1、构造插值函数 (5) 4.2位移插值函数及应变应力求解 (5) 5.程序的验证 (6) 附录:程序代码 (15)

程序作业题目: 完成一个包含以下所列部分的完整的有限元程序( Project) 须提供如下内容的文字材料(1500字以上): ①程序编制说明; ②方法的基本理论和基本公式; ③程序功能说明; ④程序所用主要标识符说明及主要流程框图; ⑤ 1~3 个考题:考题来源、输出结果、与他人成果的对比结果(误差百分比); ⑥对程序的评价和结论(包括正确性、适用范围、优缺点及其他心得等)。 须提供源程序、可执行程序和算例的电子文档或文字材料。选题可根据各自的论文选题等决定。 1、程序编制总说明 a.该程序采用平面三角形等参单元,能解决弹性力学的平面应力、平面应变问题。 b.能计算单元受集中力的作用。 c.能计算结点的位移和单元应力。 d.考题计算结果与理论计算结果比较,并给出误差分析。 e.程序采用MATLAB R2008a编制而成。 2、Matlab程序编制流程图

图1 整个程序流程图 3、程序主要标示符及变量说明 1、变量说明: Node ------- 节点定义 gElement ---- 单元定义 gMaterial --- 材料定义,包括弹性模量,泊松比和厚度 gBC1 -------- 约束条件 gNF --------- 集中力 gk------------总刚 gDelta-------结点位移 输入结构控制参数 输入其它数据 形成整体刚度阵 引入支承条件 解方程,输出位移 求应力,输出应力 形成节点荷载向量 开始 结束 1 单元面积 求弹性矩阵 单元刚度矩阵 位移-应变矩阵 6 7 8 9 10 2 3 4 5

(完整版)有限元大作业matlab---课程设计例子

有限元大作业程序设计 学校:天津大学 院系:建筑工程与力学学院 专业:01级工程力学 姓名:刘秀 学号:\\\\\\\\\\\ 指导老师:

连续体平面问题的有限元程序分析 [题目]: 如图所示的正方形薄板四周受均匀载荷的作用,该结构在边界 上受正向分布压力, m kN p 1=,同时在沿对角线y 轴上受一对集中压 力,载荷为2KN ,若取板厚1=t ,泊松比0=v 。 [分析过程]: 由于连续平板的对称性,只需要取其在第一象限的四分之一部分参加分析,然后人为作出一些辅助线将平板“分割”成若干部分,再为每个部分选择分析单元。采用将此模型化分为4个全等的直角三角型单元。利用其对称性,四分之一部分的边界约束,载荷可等效如图所示。

[程序原理及实现]: 用FORTRAN程序的实现。由节点信息文件NODE.IN和单元信息文件ELEMENT.IN,经过计算分析后输出一个一般性的文件DATA.OUT。模型基本信息由文件为BASIC.IN生成。 该程序的特点如下: 问题类型:可用于计算弹性力学平面问题和平面应变问题 单元类型:采用常应变三角形单元 位移模式:用用线性位移模式 载荷类型:节点载荷,非节点载荷应先换算为等效节点载荷 材料性质:弹性体由单一的均匀材料组成 约束方式:为“0”位移固定约束,为保证无刚体位移,弹性体至少应有对三个自由度的独立约束 方程求解:针对半带宽刚度方程的Gauss消元法

输入文件:由手工生成节点信息文件NODE.IN,和单元信息文件ELEMENT.IN 结果文件:输出一般的结果文件DATA.OUT 程序的原理如框图:

有限元课程设计

有限元法分析与建模课程设计报告 学院:机械电子工程学院 专业:机械电子工程 指导教师:杜平安 学生:乔林 学号:201221080212 2012-12-10

摘要 摘要 连杆的作用是将活塞的往复运动变成曲轴的旋转运动, 并把活塞上的力传 给曲轴连杆工作的小端做往复运动, 大端作旋转运动, 杆身做复杂的平面运动。本文用Pro/E建立连杆的三维模型,并运用ANSYS强大的有限元分析和优化功能来实现连杆的分析ANSYS 是一款极其强大的有限元分析软件。通过数据接口,ANSYS 可以方便的实现从CAD 软件中导入实体模型。因此,将Pro/E强大的 建模功能与ANSYS 优越的有限元分析功能结合在一起可以极大地满足设计者 在设计过程中对建模与分析的需求。 关键词:连杆,有限元,Pro/E,ANSYS

ABSTRACT ABSTRACT The role oftheconnecting rodisthesmall end ofthereciprocation of the pistonintoarotational movementofthecrankshaft, and to transmittheforceon the pistontothecrankshaft connecting rodreciprocates, thebig endfor pivotal movement, Shaftdo complexplanar motion. The establishment ofalinkageof thethree-dimensionalmodelusingPro / E, thepowerfulANSYSfinite elementanalysis andoptimization capabilitiestoachievetheconnecting rodfatigueanalysisANSYSisan extremelypowerfulfinite element analysis software. Throughthedata interface, ANSYS canfacilitate the realization ofsolid modelsimportedfromCAD software. Therefore,thesuperiorpowerfulmodeling capabilitiesofPro / Eand ANSYSfinite elementanalysis capabilitiestogethercanmeetthedesignersin the design processmodelingand analysis. Keywords:rod, finite element, Pro / E, ANSYS

有限元分析软件比较分析

有限元分析软件 有限元分析是对于结构力学分析迅速发展起来的一种现代计算方法。它是50 年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。 有限元分析软件目前最流行的有:ANSYS、ADINA、ABAQUS、MSC 四个比较知名比较大的公司,其中ADINA、ABAQUS 在非线性分析方面有较强的能力目前是业内最认可的两款有限元分析软件,ANSYS、MSC 进入中国比较早所以在国内知名度高应用广泛。目前在多物理场耦合方面几大公司都可以做到结构、流体、热的耦合分析,但是除ADINA 以外其它三个必须与别的软件搭配进行迭代分析,唯一能做到真正流固耦合的软件只有ADINA。ANSYS是商业化比较早的一个软件,目前公司收购了很多其他软件在旗下。ABAQUS专注结构分析目前没有流体模块。MSC是比较老的一款软件目前更新速度比较慢。ADINA是在同一体系下开发有结构、流体、热分析的一款软件,功能强大但进入中国时间比较晚市场还没有完全铺开。 结构分析能力排名:ABAQUS、ADINA、MSC、ANSYS 流体分析能力排名:ANSYS、ADINA、MSC、ABAQUS 耦合分析能力排名:ADINA、ANSYS、MSC、ABAQUS 性价比排名:最好的是ADINA,其次ABAQUS、再次ANSYS、最后MSC ABAQUS 软件与ANSYS 软件的对比分析: 1.在世界范围内的知名度:两种软件同为国际知名的有限元分析软件,在世界范围内具有各自广泛的用户群。ANSYS 软件在致力于线性分析的用户中具有很好的声誉,它在计算机资源的利用,用户界面开发等方面也做出了较大的贡献。ABAQUS软件则致力于更复杂和深入的工程问题,其强大的非线性分析功能在设计和研究的高端用户群中得到了广泛的认可。由于ANSYS 产品进入中国市场早于ABAQUS,并且在五年前ANSYS 的界面是当时最好的界面之一,所以在中国,ANSYS 软件在用户数量和市场推广度方面要高于ABAQUS。但随着ABAQUS北京办事处的成立,ABAQUS软件的用户数目和市场占有率正在大幅度和稳步提高,并可望在今后的几年内赶上和超过ANSYS。 2.应用领域:ANSYS 软件注重应用领域的拓展,目前已覆盖流体、电磁场和多物理场耦合等十分广泛的研究领域。ABAQUS 则集中于结构力学和相关领域研究,致力于解决该领域的深层次实际问题。 3.性价比:ANSYS 软件由于价格政策灵活,具有多种销售方案,在解决常规的

有限元课程设计1

目录一. 前言 二.有限元设计部分 1 问题阐述 2 解析法求解 3 模型简化 4 ANSYS软件应用说明 5 结果分析 三.机械优化设计部分 1 问题阐述 2 解析算法 3 黄金分割法顺序流程图 4 C语言源程序代码 5 结果分析 四.设计心得 五. 参考文 一.前言

二.有限元设计部分 1、问题阐述 外伸梁上均布载荷的集中度为q=3kN/m,集中力偶矩M e=3kN·m列出剪力方程和弯矩方程,并绘制剪力图。材料力学Ι(刘鸿文第四版)P121

图2-1 外伸梁简化图 2、解析法求解 由梁的平衡方程,求出支反力为 F RA=14.5kN,F RB=3.5kN 梁的C A、AD、DB等三段内,剪力和弯矩都不能有同一个方程来表示,所以应分为三段考虑。对每一段都可以用同一个方法计算,列出剪力方程和弯矩方程,方程中x以m为单位,Fs(x)以kN为单位,M(x)以kN为单位。 在CA段内: Fs(x)=-qx=-3x(0<=x<2m) (g) M(x)=-(3/2)X2(0<x<=2m) (h)

在AD段内: Fs(x)=F RA-qx=14.5-3x(2m<x<=6m) (i) M(x)=F RA(x-2)-(1/2)X2=14.5(x-2)- (3/2)X 2 (j) (2m< x6m) M(x)是x的二次函数,根据极值条件dM(x)/d(x)=0,得 14.5-3x=0 由此解出x=4.83m,亦即在那这一截面上,弯矩为极值。 代入(j) 式得AD段内的最大弯矩为 M=6.04kN·m 当截面取在DB段,用截面右侧的外力计算剪力和弯矩比较方

(完整word版)有限元分析软件的比较

有限元分析软件的比较(购买必看)-转贴 随着现代科学技术的发展,人们正在不断建造更为快速的交通工具、更大规模的建筑物、更大跨度的桥梁、更大功率的发电机组和更为精密的机械设备。这一切都要求工程师在设计阶段就能精确地预测出产品和工程的技术性能,需要对结构的静、动力强度以及温度场、流场、电磁场和渗流等技术参数进行分析计算。例如分析计算高层建筑和大跨度桥梁在地震时所受到的影响,看看是否会发生破坏性事故;分析计算核反应堆的温度场,确定传热和冷却系统是否合理;分析涡轮机叶片内的流体动力学参数,以提高其运转效率。这些都可归结为求解物理问题的控制偏微分方程式,这些问题的解析计算往往是不现实的。近年来在计算机技术和数值分析方法支持下发展起来的有限元分析(FEA,Finite Element A nalysis)方法则为解决这些复杂的工程分析计算问题提供了有效的途径。在工程实践中,有限元分析软件与CAD系统的集成应用使设计水平发生了质的飞跃,主要表现在以下几个方面: 增加设计功能,减少设计成本; 缩短设计和分析的循环周期; 增加产品和工程的可靠性; 采用优化设计,降低材料的消耗或成本; 在产品制造或工程施工前预先发现潜在的问题; 模拟各种试验方案,减少试验时间和经费; 进行机械事故分析,查找事故原因。 在大力推广CAD技术的今天,从自行车到航天飞机,所有的设计制造都离不开有限元分析计算,FEA在工程设计和分析中将得到越来越广泛的重视。国际上早20世纪在50年代末、60年代初就投入大量的人力和物力开发具有强大功能的有限元分析程序。其中最为著名的是由美国国家宇航局(NASA)在1965年委托美国计算科学公司和贝尔航空系统公司开发的NASTRAN有限元分析系统。该系统发展至今已有几十个版本,是目前世界上规模最大、功能最强的有限元分析系统。从那时到现在,世界各地的研究机构和大学也发展了一批规模较小但使用灵活、价格较低的专用或通用有限元分析软件,主要有德国的ASKA、英国的PA FEC、法国的SYSTUS、美国的ABQUS、ADINA、ANSYS、BERSAFE、BOSOR、COSMOS、ELAS、MARC和STARDYNE等公司的产品。 以下对一些常用的软件进行一些比较分析: 1. LSTC公司的LS-DYNA系列软件

课程设计ANSYS有限元分析(最完整)

有限元法分析与建模课程设计报告 学院:机电学院 专业:机械制造及其自动化指导教师:**** 学生:* *** 学号:2012011**** 2015-12-31

摘要 本文通过ANSYS10.0建立了标准光盘的离心力分析模型,采用有限元方法对高速旋转的光盘引起的应力及其应变进行分析,同时运用经典弹性力学知识来介绍ANSYS10.0中关于平面应力问题分析的基本过程和注意事项。力求较为真实地反映光盘在光驱中实际应力和应变分布情况,为人们进行合理的标准光盘结构设计和制造工艺提供理论依据。 关键词:ANSYS10.0;光盘;应力;应变。

目录 第一章引言 (3) 1.1 引言 (3) 第二章问题描述 (4) 2.1有限元法及其基本思想 (4) 2.2 问题描述 (4) 第三章力学模型的建立和求解 (5) 3.1设定分析作业名和标题 (5) 3.2定义单元类型 (6) 3.3定义实常数 (9) 3.4定义材料属性 (12) 3.5建立盘面模型 (14) 3.6对盘面划分网格 (22) 3.7施加位移边界 (27) 3.8施加转速惯性载荷并求解 (30) 第四章结果分析 (32) 4.1 旋转结果坐标系 (32) 4.2查看变形 (33) 4.3查看应力 (35) 总结 (38) 参考文献 (39)

第一章引言 1.1 引言 光盘业是我国信息化建设中发展迅速的产业之一,认真研究光盘产业的规律和发展趋势,是一件非常迫切的工作。光盘产业发展的整体性强,宏观调控要求高,因此,对于光盘产业的总体部署、合理布局和有序发展等问题,包括节目制作、软件开发、硬件制造、节目生产、技术标准等。 在高速光盘驱动器中,光盘片会产生应力和应变,在用ANSYS分析时,要施加盘片高速旋转引起的惯性载荷,即可以施加角速度。需要注意的是,利用ANSYS施加边界条件时,要将内孔边缘节点的周向位移固定,为施加周向位移,而且还需要将节点坐标系旋转到柱坐标系下。 本文通过ANSYS10.0建立了标准光盘的离心力分析模型,采用有限元方法对高速旋转的光盘引起的应力及其应变进行分析,同时运用经典弹性力学知识来介绍ANSYS10.0中关于平面应力问题分析的基本过程和注意事项。

有限元分析过程

有限元分析过程可以分为以下三个阶段: 1.建模阶段: 建模阶段是根据结构实际形状和实际工况条件建立有限元分析的计算模型——有限元模型,从而为有限元数值计算提供必要的输入数据。有限元建模的中心任务是结构离散,即划分网格。但是还是要处理许多与之相关的工作:如结构形式处理、集合模型建立、单元特性定义、单元质量检查、编号顺序以及模型边界条件的定义等。 2.计算阶段: 计算阶段的任务是完成有限元方法有关的数值计算。由于这一步运算量非常大,所以这部分工作由有限元分析软件控制并在计算机上自动完成。 3.后处理阶段: 它的任务是对计算输出的结果惊醒必要的处理,并按一定方式显示或打印出来,以便对结构性能的好坏或设计的合理性进行评估,并作为相应的改进或优化,这是惊醒结构有限元分析的目的所在。 注意:在上述三个阶段中,建立有限元模型是整个有限分析过程的关键。首先,有限元模型为计算提供所以原始数据,这些输入数据的误差将直接决定计算结果的精度;其次,有限元模型的形式将对计算过程产生很大的影响,合理的模型既能保证计算结构的精度,又不致使计算量太大和对计算机存储容量的要求太高;再次,由于结构形状和工况条件的复杂性,要建立一个符合实际的有限元模型并非易事,它要考虑的综合因素很多,对分析人员提出了较高的要求;最后,建模所花费的时间在整个分析过程中占有相当大的比重,约占整个分析时间的70%,因此,把主要精力放在模型的建立上以及提高建模速度是缩短整个分析周期的关键。 原始数据的计算模型,模型中一般包括以下三类数据: 1.节点数据: 包括每个节点的编号、坐标值等; 2.单元数据: a.单元编号和组成单元的节点编号;b.单元材料特性,如弹性模量、泊松比、密度等;c.单元物理特征值,如弹簧单元的刚度系数、单元厚度、曲率半径等;d.一维单元的截面特征值,如截面面积、惯性矩等;e.相关几何数据 3.边界条件数据:a.位移约束数据;b.载荷条件数据;c.热边界条件数据;d.其他边界数据. 建立有限元模型的一般过程: 1.分析问题定义 在进行有限元分析之前,首先应对结果的形状、尺寸、工况条件等进行仔细分析,只有正确掌握了分析结构的具体特征才能建立合理的几何模型。总的来说,要定义一个有限元分析问题时,应明确以下几点: a.结构类型; b.分析类型; c.分析内容; d.计算精度要求; e.模型规模; f.计算数据的大致规律 2.几何模型建立 几何模型是从结构实际形状中抽象出来的,并不是完全照搬结构的实际形状,而是需要根据结构的具体特征对结构进行必要的简化、变化和处理,以适应有限元分析的特点。 3.单元类型选择 划分网格前首先要确定采用哪种类型的单元,包括单元的形状和阶次。单元类型选择应根据结构的类型、形状特征、应力和变形特点、精度要求和硬件条件等因素综合进行考虑。

有限元编程的c++实现算例

有限元编程的c++实现算例 1. #include<> 2. #include<> 3. 4. 5. #define ne 3 #define nj 4 #define nz 6 #define npj 0 #define npf 1 #define nj3 1 2 #define dd 6 #define e0 #define a0 #define i0 #define pi 16. 17. 18. int jm[ne+1][3]={{0,0,0},{0,1,2},{0,2,3},{0,4,3}}; /*gghjghg*/ 19. double gc[ne+1]={,,,}; 20. double gj[ne+1]={,,,}; 21. double mj[ne+1]={,a0,a0,a0}; 22. double gx[ne+1]={,i0,i0,i0}; 23. int zc[nz+1]={0,1,2,3,10,11,12}; 24. double pj[npj+1][3]={{,,}}; 25. double pf[npf+1][5]={{0,0,0,0,0},{0,-20,,,}}; 26. double kz[nj3+1][dd+1],p[nj3+1]; 27. double pe[7],f[7],f0[7],t[7][7]; 28. double ke[7][7],kd[7][7]; 29. 30. 31. 36. void jdugd(int); 38. void zb(int); 39. void gdnl(int); 40. void dugd(int);

有限元分析步骤

有限元建模与分析 有限元分析(FEA)是一种预测结构的偏移与其它应力影响的过程,有限元建模(FEM)将这个结构分割成单元网格以形成实际结构的模型,每个单元具有简单形态(如正方形或三角形)。这样有限元程序就有了可写出在刚度矩阵结构中控制方程方面的信息。每个单元上的未知量就是在节点上的位移,这个点就是单元元的连接点。有限元程序将这些单个单元的刚度矩阵组合起来以形成整个模型的总刚度矩阵,并给予已知力和边界条件来求解该刚度矩阵以得出未知位移,从节点上位移的变化就可以计算出每个单元中的应力。 有限单元由假定的应变方程式导出,有些单元可假设其应变是常量,而另外一些可采用更高阶的函数。利用给定单元的这些方程和实际几何体,则可以写出外力和节点位移之间的平衡方程。对于单元的每个节点来说,每个自由度就有一个方程,这些方程被十分便利地写成矩阵的形式以用于计算机的演算中,这个系数的矩阵就变成了一个显示出力对位移的关系的刚度矩阵:{F}=[K]、{d} 尽管求知量处于离散的自由度,内部方程仍被写成表述为连续集的应变函数。这就意味着如果选择了正确单元的话,纵然这个有限元模型有一组离散的方程,只要用有限的节点和单元也可以收敛出正确的答案。 有限元模型是解决全部结构问题的完全理想的模型。这些问题包括节点的定位,单元,物理的和材料的特性,载荷和边界条件,根据分析类型的不同,如静态结构载荷,动态的或热力分析,这个模型就确定得不同。 一个有限元模型常常由不止一种单元类型来建立,有限元模型是以结构的偏移来建立成数学模型,而不只是在外观上象原结构。也许某个零件用梁单元最好,而另外的零件则可能用薄壳单元最理想。 对于给定的问题来讲,求解结果的准确性将取决于结构建模的好坏,负载和边界条件的确定,以及所用单元的精度。 一般来讲,如模型细分更小的单元,则求解将更准确。了解你在最终的求解结果上有充分收敛的唯一确信的方法是用更细网格的单元来建立更多的模型,以检查求解结果的收敛性。 新的有限元用户经常产生想象上的错误,即建立一个有限元模型的目的是建立一个看起来象这种结构的模型。有限元建模的目的是建立一个从数学意义是“相似”的模型,而不是一个外观相似的模型。一个有经验的使用者学会了怎样选择单元的正确类型,和在模型的不同区域中怎样来细分网格。 一个经常忽略的错误根源是在一个模型中的负载和边界条件上进行了错误的假设。同时也很轻易地相信一个有限元模型的每个十进位的结果。以及忘掉了在负载和边界条件上粗糙的假设。如果有一个关于怎样建立边界条件模型的问题的话,宁可用你的模型以不同的方法去测试其灵敏度,而不是仅遵循一种方法,得出一种答案,

有限元编程的c++实现算例

有限元编程的c++实现算例 1.#include 2.#include 3. 4. 5.#definene3 //单元数 6.#definenj4 //节点数 7.#definenz6 //支撑数 8.#definenpj0 //节点载荷数 9.#definenpf1 //非节点载荷数 10.#definenj312 //节点位移总数 11.#definedd6 //半带宽 12.#definee02.1E8 //弹性模量 13.#definea00.008 //截面积 14.#definei01.22E-4 //单元惯性距 15.#definepi 16. 17. 18.intjm[ne+1][3]={{0,0,0},{0,1,2},{0,2,3},{0,4,3}}; /*gghjghg*/ 19.doublegc[ne+1]={0.0,1.0,2.0,1.0}; 20.doublegj[ne+1]={0.0,90.0,0.0,90.0}; 21.doublemj[ne+1]={0.0,a0,a0,a0}; 22.doublegx[ne+1]={0.0,i0,i0,i0}; 23.intzc[nz+1]={0,1,2,3,10,11,12}; 24.doublepj[npj+1][3]={{0.0,0.0,0.0}}; 25.doublepf[npf+1][5]={{0,0,0,0,0},{0,-20,1.0,2.0,2.0}}; 26.doublekz[nj3+1][dd+1],p[nj3+1]; 27.doublepe[7],f[7],f0[7],t[7][7]; 28.doubleke[7][7],kd[7][7]; 29. 30. 31.//**kz[][]—整体刚度矩阵 32.//**ke[][]—整体坐标下的单元刚度矩阵

有限元课程设计(0001)

有限元课程设计

目录 0.前言 (3) 1.问题阐述 (4) 2.有限元分析 (5) 2.1.梁的参数设定 (5) 2.2.材料参数 (5) 2.3.单元选择 (5) 2.4.梁的边界条件 (6) 2.5.梁所受的载荷 (6) 2.6.ANSYS软件应用说明 (6) 3.交互式的求解过程 (7) 3.1创建梁的各个节点 (7) 3.2定义单元类型、材料特性和梁的横截面几何参数 (10) 3.3创建单元 (12) 4.施加约束和载荷 (13) 4.1节点自由度约束 (13) 4.2施加节点13处的弯矩m。 (14) 4.3施加单元1到单元12上的的分布载荷q。 (15) 5.求解 (15) 5.1定义分析类型 (15) 5.2求解 (15) 6.后处理 (16) 6.1绘制梁的Y方向变形图 (16) 6.2建立单元结果表 (17) 6.3结果显示 (19) 退出程序 (21) 心得体会 (22) 参考文献 (22)

0.前言 目前,几乎所有高校的力学、土木、机械、航空、航天、船舶、水利、交通、桥梁等理工科专业,都为高年级本科生开设了《有限元方法》基础课程,为研究生开设了《非线性有限元方法》学位课程。学生在学习完有限元课程之后,还必须熟练掌握相关有限元软件的使用,才能将有限元基本理论有效地应用到实际工程问题分析中去。为此,部分有条件的高校也开设了有限元软件应用课程(课程名称可能会因学校及专业的不同而有所差异,但都是以讲解有限元软件ANSYS或其他软件为主)。哈尔滨工业大学航天学院工程力学专业20世纪90年代末即开设了该类课程《应用软件工程--ANSYS》,作者从2003年开始接手讲授该门课程。虽然市面上的ANSYS书籍很多,但却难以找出一本非常适合做教材的书籍,因此作者参考多本书籍自主编写了校内讲稿。经过6年多的试用,目前已基本成型,现将多年的校内讲稿和心得体会完善成书,以期与开设该类课程的兄弟院校分享、共勉,同时也供从事相关科研与工程项目的人员参考阅读。 ANSYS软件是目前国际上最著名的大型通用有限元分析软件,经过三十年的发展,已形成融结构、热、流体、电磁、声学及多物理场耦合为一体的大型通用有限元分析软件,广泛应用于航空航天、石油、化工、汽车、造船、铁道、电子、机械制造、地矿能源、水利、核能、生物、医学、土木工程、轻工、一般工业及科学研究等各个领域,其极强的分析功能覆盖了几乎所有的工程问题。作为世界最具权威的有限元产品和工业化分析标准,目前几乎所有的CAD/CAE/CAM软件都竞相开发了与ANSYS的专用接口,实现数据的共享和交换,如Pro/Engineer、NASTRAN、Alogor、I-DEAS及AutoCAD等。ANSYS软件在Linux 和Windows下均有版本,并同时有32位和64位版本,目前最新的版本为12.0。 本书以ANSYS 12.0版本为依据,以Windows NT为操作平台,将结构有限元分析的基本理论与ANSYS实践操作紧密结合,通过大量精心筛选的具有实际工程应用背景的原创性分析实例,以图形用户界面和命令流两种方式向读者全面介绍了ANSYS结构有限元分析方法。

有限元课程设计

成绩评定表

课程设计任务书

目录 一、前言 (2) 二、平面梁结构的静力学分析 (3) 1. 问题阐述 (3) 2. 物理参数与几何参数 (3) 三、交互式的求解过程 (3) 1. 创建节点 (3) 2. 定义单元类型和材料特性 (6) 3. 创建单元 (7) 4. 施加约束和载荷 (8) 5. 求解 (10) 6. 后处理 (11) 7. 退出程序 (15) 参考文献 (15)

前言 有限元分析(FEA,Finite Element Analysis)的基本概念是用较简单的问题代替复杂问题后再求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。 有限元是那些集合在一起能够表示实际连续域的离散单元。有限元的概念早在几个世纪前就已产生并得到了应用,例如用多边形(有限个直线单元)逼近圆来求得圆的周长,但作为一种方法而被提出,则是最近的事。有限元法最初被称为矩阵近似方法,应用于航空器的结构强度计算,并由于其方便性、实用性和有效性而引起从事力学研究的科学家的浓厚兴趣。经过短短数十年的努力,随着计算机技术的快速发展和普及,有限元方法迅速从结构工程强度分析计算扩展到几乎所有的科学技术领域,成为一种丰富多彩、应用广泛并且实用高效的数值分析方法。 有限元方法与其他求解边值问题近似方法的根本区别在于它的近似性仅限于相对小的子域中。20世纪60年代初首次提出结构力学计算有限元概念的克拉夫(Clough)教授形象地将其描绘为:“有限元法=Rayleigh Ritz法+分片函数”,即有限元法是Rayleigh Ritz法的一种局部化情况。有限元法将函数定义在简单几何形状的单元域上,且不考虑整个定义域的复杂边界条件,这是有限元法优于其他近似方法的原因之一。 随着市场竞争的加剧,产品更新周期愈来愈短,企业对新技术的需求更加迫切,而有限元数值模拟技术是提升产品质量、缩短设计周期、提高产品竞争力的一项有效手段,所以,随着计算机技术和计算方法的发展,有限元法在工程设计和科研领域得到了越来越广泛的重视和应用,已经成为解决复杂工程分析计算问题的有效途径,从汽车到航天飞机几乎所有的设计制造都已离不开有限元分析计算,其在机械制造、材料加工、航空航天、汽车、土木建筑、电子电器、国防军工、船舶、铁道、石化、能源和科学研究等各个领域的广泛使用已使设计水平发生了质的飞跃。

平面三角形单元有限元程序设计

P 9 m 9 m 一、题目 如图1所示,一个厚度均匀的三角形薄板,在顶点作用沿板厚方向均匀分布的竖向载荷。已知:P=150N/m,E=200GPa,=,t=,忽略自重。试计算薄板的位移及应力分布。 要求: 1.编写有限元计算机程序,计算节点位移及单元应力。(划分三角形 单元,单元数不得少于30个); 2.采用有限元软件分析该问题(有限元软件网格与程序设计网格必 须一致),详细给出有限元软件每一步的操作过程,并将结果与程序计算结果进行对比(任选取三个点,对比位移值); 3.提交程序编写过程的详细报告及计算机程序; 4.所有同学参加答辩,并演示有限元计算程序。 有限元法中三节点三角形分析结构的步骤如下: 1)整理原始数据,如材料性质、荷载条件、约束条件等,离散结构并进行单元编码、结点编码、结点位移编码、选取坐标系。 2)单元分析,建立单元刚度矩阵。 3)整体分析,建立总刚矩阵。 4)建立整体结构的等效节点荷载和总荷载矩阵 5)边界条件处理。 6)解方程,求出节点位移。 7)求出各单元的单元应力。 8)计算结果整理。 一、程序设计

网格划分 如图,将薄板如图划分为6行,并建立坐标系,则 X Y P X Y P 节点编号 单元编号

刚度矩阵的集成 建立与总刚度矩阵等维数的空矩阵,已变单元刚度矩阵的集成。 由单元分析已知节点、单元的排布规律,继而通过循环计算求得每个单元对应的节点序号。 通过循环逐个计算:(1)每个单元对应2种单元刚度矩阵中的哪一种; (2)该单元对应总刚度矩阵的那几行哪几列 (3)将该单元的单元刚度矩阵加入总刚度矩阵的对应行列 循环又分为3层循环:(1)最外层:逐行计算 (2)中间层:该行逐个计算 (3)最里层:区分为第奇/偶数个计算 单元刚度的集成: [][] [][] [][] ' ' ' ' ' ' 2 1 56 56 6 6 56 56 2 6 6 2 56 56 1 6 6 1 e Z e e e Z e Z e e e e k k k K k k k k k k + ? + + = ? = ? = = ? = = ? = ? ? ? ? ? ? 边界约束的处理:划0置1法 适用:这种方法适用于边界节点位移分量为已知(含为0)的各种约束。 做法: (1)将总刚矩阵〔K〕中相应于已知位移行主对角线元素置1,其他元素改为零;同 时将载荷列阵{R}中相应元素用已知位移置换。 ◎这样,由该方程求得的此位移值一定等于已知量。 (2)将〔K〕中已知位移相应的列的非主对角成元素也置0,以保持〔K〕的对称性。 ◎当然,在已知位移分量不为零的情况下,这样做就改变了方程左端的数值,为 保证方程成立,须在方程右端减去已知位移对该方程的贡献——已知位移和相应总刚元素的乘积。◎若约束为零位移约束时,此步则可省去。 特点: (1)经以上处理同样可以消除刚性位移(约束足够的前提下),去掉未知约束反力。 (2)但这种方法不改变方程阶数,利于存贮。

相关文档
相关文档 最新文档