文档库 最新最全的文档下载
当前位置:文档库 › 第八章红外光谱和核磁共振氢谱IRandHNMR

第八章红外光谱和核磁共振氢谱IRandHNMR

红外光谱、核磁共振谱.

红外光谱、核磁共振谱都是吸收光谱。 红外光谱可用来判断分子中有什么样的官能团。 核磁共振谱可用来判断分子中有哪几类氢原子,每类氢原子有多少个。 第一节红外光谱(IR) 一.基本原理 分子是由原子组成的。组成有机分子的原子之间主要是通过极性键和非极性键结合在一起的。成键原子间的运动形式可分为两大类:1.伸缩振动,用υ表示。2.弯曲振动(变形振动),用δ表示。 具有极性的键在振动过程中出现偶极矩的变化,在键的周围产生稳定的交变电场,与频率相同的辐射电磁波相互作用,从而吸收相应的能量使振动跃迁到激发态,得到振动光谱,即红外光谱。这种振动称为红外活性振动。 原子间的振动主要吸收波数为4000-400 cm-1的红外光。红外光谱的横坐标为波长(2.5~25μm)或波数(4000~400cm-1),纵坐标为透过率(0-100%)。 92页 123页 182页 223页

237页 253页 278页 310页 330页 362页 374页图4-16 正辛烷图4-17 1-辛烯图4-181-辛炔图4-192-辛炔图6-4 邻二甲苯图6-5 间二甲苯图6-6 对二甲苯图9-1 1-氯己烷图10-3 10-4 乙醇图10-5 乙醚图10-6 正丁醚图11-1 苯酚图10-3对甲苯酚图12-4 乙醛图12-5 苯乙酮图13-4 乙酸图13- 7 乙酸乙酯图15-1 硝基乙烷图15-2 硝基苯图15-6 苯胺第二节核磁共振谱(NMR) 一.基本原理自旋量子数不为零的原子核由于自旋会产生磁场,形成磁矩。磁矩在外磁场中出现不同取向的现象称为能级分裂。与外磁场同向的为低能级,反向的为高能级。当电磁波的能量等于高低能级间的能量差时,原子核吸收能量,产生核磁共振。用得最多的是氢原子核谱,简称氢谱(NMR-1H)。核磁共振谱中只有横坐标,代表化学位移。二. 化学位移原子核外有电子,电子的运动产生了对抗外磁场的感应磁场,使核实际感受到的有效磁场强度比外磁场强度低。核外电子产生的这种作用称为屏蔽效应,它的值用屏蔽常数σ表示。 分子中不同化学环境的氢核,受到不同的屏蔽作用,在一定外磁场的作用下,产生核磁共振所需要的照射频率也不同,即在谱图的不同位置出现吸收峰。 如CH3CH2OH中有三类氢原子。 裂分数=(n s d t q m 1+1)(n2+1)(n3+1) b 单峰双峰三重峰四重峰多重峰宽峰 五.积分曲线与峰面积 峰面积与质子数成正比。

红外光谱与核磁共振谱

《红外光谱与核磁共振谱》 【学习要求】 1、了解红外光谱与核磁共振谱基本原理及其有关的概念 2、了解红外吸收光谱产生的条件 3、了解红外吸收的强度、核磁共振谱中化学位移的概念 4、大致了解各类有机化合物红外吸收光谱和核磁共振谱特征 一、红外吸收光谱 (一)红外吸收光谱的基本原理 红外光波波长位于可见光波和微波波长之间0.75-1000 mm(1 mm = 10-4 cm) 其中: 远红外 0.75-2.5 mm 中红外 2.5-25 mm 4000-400 cm-1 近红外 25-1000 mm 红外光波的波长常用波数(cm-1)表示。波数的定义是:每1厘米范围内所含光波的数目。波数 = 104/l(mm)。因此,2.5 mm波长,相当于104/2.5 cm-1,即:4000 cm-1,而25 mm相当于400 cm-1。 1.分子的振动能级 引起分子振动能级跃迁的光谱称振动光谱,振动能级跃迁的同时伴有转动能级的跃迁。红外吸收光谱是分子的振动-转动光谱。用远红外光波照射分子时,只会引起分子中转动能级的跃迁,得到纯转动光谱。 2、基本振动的类型 一般把分子的振动方式分为两大类:化学键的伸缩振动和弯曲振动。 (1)伸缩振动 指成键原子沿着价键的方向来回地相对运动。在振动过程中, 键角并不发生改变,如碳氢单键,碳氧双键,碳氮三键之间的伸缩振动。伸缩振动又可分为对称伸缩振动和反对称伸缩振动。 (2)弯曲振动 弯曲振动又分为面内弯曲振动和面外弯曲振动,用d、g表示。如果弯曲振动的方向垂直于分子平面,则称面外弯曲振动,如果弯曲振动完全位于平面上,则称面内弯曲振动。剪式振动和平面摇摆振动为面内弯曲振动,面外摇摆振动和扭曲变形振动为面外弯曲振动。以-CH

核磁共振氢谱 解析图谱的步骤

核磁共振氢谱解析图谱的步骤 核磁共振氢谱 核磁共振技术发展较早,20世纪70年代以前,主要是核磁共振氢谱的研究和应用。70年代以后,随着傅里叶变换波谱仪的诞生,13C—NMR的研究迅速开展。由于1H—NMR的灵敏度高,而且积累的研究资料丰富,因此在结构解析方面1H—NMR的重要性仍强于13C—NMR。 解析图谱的步骤 1.先观察图谱是否符合要求;①四甲基硅烷的信号是否正常;②杂音大不大;③基线是否平;④积分曲线中没有吸收信号的地方是否平整。如果有问题,解析时要引起注意,最好重新测试图谱。 2.区分杂质峰、溶剂峰、旋转边峰(spinning side bands)、13C卫星峰(13C satellite peaks) (1)杂质峰:杂质含量相对样品比例很小,因此杂质峰的峰面积很小,且杂质峰与样品峰之间没有简单整数比的关系,容易区别。 (2)溶剂峰:氘代试剂不可能达到100%的同位素纯度(大部分试剂的氘代率为99-99.8%),因此谱图中往往呈现相应的溶剂峰,如CDCL3中的溶剂峰的δ值约为7.27 ppm处。 (3)旋转边峰:在测试样品时,样品管在1H-NMR仪中快速旋转,当仪器调节未达到良好工作状态时,会出现旋转边带,即以强谱线为中心,呈现出一对对称的弱峰,称为旋转边峰。 (4)13C卫星峰:13C具有磁距,可以与1H偶合产生裂分,称之为13C卫星峰,但由13C的天然丰度只为1.1%,只有氢的强峰才能观察到,一般不会对氢的谱图造成干扰。 3.根据积分曲线,观察各信号的相对高度,计算样品化合物分子式中的氢原子数目。可利用可靠的甲基信号或孤立的次甲基信号为标准计算各信号峰的质子数目。 4.先解析图中CH3O、CH3N、、CH3C=O、CH3C=C、CH3-C等孤立的甲基质子信号,然后再解析偶合的甲基质子信号。 5.解析羧基、醛基、分子内氢键等低磁场的质子信号。 6.解析芳香核上的质子信号。 7.比较滴加重水前后测定的图谱,观察有无信号峰消失的现象,了解分子结

《红外光谱与核磁共振谱》

《红外光谱与核磁共振谱》 《红外光谱与核磁共振谱》 【学习要求】 1、了解红外光谱与核磁共振谱基本原理及其有关的概念 2、了解红外吸收光谱产生的条件 3、了解红外吸收的强度、核磁共振谱中化学位移的概念 4、大致了解各类有机化合物红外吸收光谱和核磁共振谱特征 一、红外吸收光谱 (一)红外吸收光谱的基本原理 红外光波波长位于可见光波和微波波长之间0.75-1000 mm(1 mm = 10-4 cm) 其中: 远红外0.75-2.5 mm 中红外 2.5-25 mm 4000-400 cm-1 近红外25-1000 mm 红外光波的波长常用波数(cm-1)表示。波数的定义是:每1厘米范围内所含光波的数目。波数= 104/l(mm)。因此,2.5 mm波长,相当于104/2.5 cm-1,即:4000 cm-1,而25 mm相当于400 cm-1。 1.分子的振动能级

引起分子振动能级跃迁的光谱称振动光谱,振动能级跃迁的同时伴有转动能级的跃迁。红外吸收光谱是分子的振动-转动光谱。用远红外光波照射分子时,只会引起分子中转动能级的跃迁,得到纯转动光谱。 2、基本振动的类型 一般把分子的振动方式分为两大类:化学键的伸缩振动和弯曲振动。 (1)伸缩振动 指成键原子沿着价键的方向来回地相对运动。在振动过程中,键角并不发生改变,如碳氢单键,碳氧双键,碳氮三键之间的伸缩振动。伸缩振动又可分为对称伸缩振动和反对称伸缩振动。 (2)弯曲振动 弯曲振动又分为面内弯曲振动和面外弯曲振动,用d、g表示。如果弯曲振动的方向垂直于分子平面,则称面外弯曲振动,如果弯曲振动完全位于平面上,则称面内弯曲振动。剪式振动和平面摇摆振动为面内弯曲振动,面外摇摆振动和扭曲变形振动为面外弯曲振动。以-CH2-:剪式振动、平面摇摆振动、面外摇摆振动、扭曲变形振动 3、影响峰数减少的因素 (1)红外非活性振动 (2)分子结构对称,某些振动频率相同。 (3)强宽峰复盖频率相近的弱而窄的峰。 (4)在红外区域外的峰。

核磁共振氢谱解析方法

2.3 核磁共振氢谱解析方法 1、核磁共振氢谱谱图的解析方法 a.检查整个氢谱谱图的外形、信号对称性、分辨率、噪声、被 测样品的信号等。 b.应注意所使用溶剂的信号、旋转边带、C卫星峰、杂质峰等。 c.确定TMS的位置,若有偏移应对全部信号进行校正。 d.根据分子式计算不饱和度u。 e.从积分曲线计算质子数。 f.解析单峰。对照附图I 是否有-CH3-O- 、CHCOC3NH=、 CH3C、RCOC2CHl 、RO-CH2-Cl 等基团。 g.确定有无芳香族化合物。如果在 6.5-8.5 范围内有信号,则 表示有芳香族质子存在。如出现AA'BB'的谱形说明有芳香邻位 或对位二取代。 h.解析多重峰。按照一级谱的规律,根据各峰之间的相系关 系,确定有何种基团。如果峰的强度太小,可把局部峰进行放大测试,增大各峰的强度。 i.把图谱中所有吸收峰的化学位移值与附图I 相对照,确定是 何官能团,并预测质子的化学环境。 j.用重水交换确定有无活泼氢。 k.连接各基团,推出结构式,并用此结构式对照该谱图是否合 理。再对照已知化合物的标准谱图。

2、核磁共振氢谱谱图解析举例 例1:已知某化合物分子式为C3HNO。测定氢谱谱图如下所示, 推定其结构。 图3七0未知化合物C3H7NO3的图谱解析计算不饱和度u=1,可能存在双键,1.50和1.59ppm 有小峰,峰高不大于1个质子,故为杂质峰。经图谱可见有三种质 子,总积分值扣除杂质峰按7个质子分配。从低场向高场各峰群 的积分强度为2: 2:3,可能有一CH—、一CH—、一CH —基 团。各裂分峰的裂距(J),低场三重峰为7Hz,高场三重峰为 8Hz,所以这两个三峰没有偶合关系,但它们与中间六重峰有相互 作用。这六重峰的质子为2个,所以使两边信号各裂

核磁共振氢谱解析方法

2.3核磁共振氢谱解析方法 1、核磁共振氢谱谱图的解析方法 a.检查整个氢谱谱图的外形、信号对称性、分辨率、噪声、被测样品的信 号等。 b.应注意所使用溶剂的信号、旋转边带、C卫星峰、杂质峰等。 c.确定TMS的位置,若有偏移应对全部信号进行校正。 d.根据分子式计算不饱和度u。 e.从积分曲线计算质子数。 f.解析单峰。对照附图I是否有-CH 3-O-、CHCOCH 3 N=、CH 3 C、RCOCH 2 Cl、 RO-CH 2 -Cl等基团。 g.确定有无芳香族化合物。如果在6.5-8.5范围内有信号,则表示有芳香 族质子存在。如出现AA`BB`的谱形说明有芳香邻位或对位二取代。 h.解析多重峰。按照一级谱的规律,根据各峰之间的相系关系,确定有何 种基团。如果峰的强度太小,可把局部峰进行放大测试,增大各峰的强度。 i.把图谱中所有吸收峰的化学位移值与附图I相对照,确定是何官能团, 并预测质子的化学环境。 j.用重水交换确定有无活泼氢。 k.连接各基团,推出结构式,并用此结构式对照该谱图是否合理。再对照已知化合物的标准谱图。 2、核磁共振氢谱谱图解析举例 例1:已知某化合物分子式为C 3H 7 NO 2 。测定氢谱谱图如下所示,推定其结 构。

解析计算不饱和度u=1,可能存在双键,1.50和1.59ppm有小峰,峰高不大于1个质子,故为杂质峰。经图谱可见有三种质子,总积分值扣除杂质峰按7个质子分配。从低场向高场各峰群的积分强度为2:2:3, 可能有-CH 2-、-CH 2 -、-CH 3 -基团。各裂分峰的裂距(J),低场三 重峰为7Hz,高场三重峰为8Hz,所以这两个三峰没有偶合关系,但它们与中间六重峰有相互作用。这六重峰的质子为2个,所以使两边信号各裂 分为三重峰。则该化合物具有CH 3-CH 2 -CH 2 -结构单元。参考所给定的分 子式应为CH 3-CH 2 -CH 2 -NO 2 ,即1-硝基丙烷。 例2:已知某化合物分子式为C 7H 16 O 3 ,其氢谱谱图如下图所示,试求其结 构。

核磁共振氢谱解析图谱的步骤

核磁共振氢谱解析图 谱的步骤 -CAL-FENGHAI.-(YICAI)-Company One1

核磁共振氢谱解析图谱的步骤 核磁共振氢谱 核磁共振技术发展较早,20世纪70年代以前,主要是核磁共振氢谱的研究和应用。70年代以后,随着傅里叶变换波谱仪的诞生,13C—NMR的研究迅速开展。由于1H—NMR的灵敏度高,而且积累的研究资料丰富,因此在结构解析方面1H—NMR的重要性仍强于13C—NMR。 解析图谱的步骤 1.先观察图谱是否符合要求;①四甲基硅烷的信号是否正常;②杂音大不大;③基线是否平;④积分曲线中没有吸收信号的地方是否平整。如果有问题,解析时要引起注意,最好重新测试图谱。 2.区分杂质峰、溶剂峰、旋转边峰(spinning side bands)、13C卫星峰(13C satellite peaks) (1)杂质峰:杂质含量相对样品比例很小,因此杂质峰的峰面积很小,且杂质峰与样品峰之间没有简单整数比的关系,容易区别。 (2)溶剂峰:氘代试剂不可能达到100%的同位素纯度(大部分试剂的氘代率为%),因此谱图中往往呈现相应的溶剂峰,如CDCL3中的溶剂峰的δ值约为ppm处。 (3)旋转边峰:在测试样品时,样品管在1H-NMR仪中快速旋转,当仪器调节 未达到良好工作状态时,会出现旋转边带,即以强谱线为中心,呈现出一对对称的弱峰,称为旋转边峰。

(4)13C卫星峰:13C具有磁距,可以与1H偶合产生裂分,称之为13C卫星峰,但由13C的天然丰度只为%,只有氢的强峰才能观察到,一般不会对氢的谱图造成干扰。 3.根据积分曲线,观察各信号的相对高度,计算样品化合物分子式中的氢 原子数目。可利用可靠的甲基信号或孤立的次甲基信号为标准计算各信号峰的质子数目。 4.先解析图中CH3O、CH3N、、CH3C=O、CH3C=C、CH3-C等孤立的甲基质子信号,然后再解析偶合的甲基质子信号。 5.解析羧基、醛基、分子内氢键等低磁场的质子信号。 6.解析芳香核上的质子信号。 7.比较滴加重水前后测定的图谱,观察有无信号峰消失的现象,了解分子结构中所连活泼氢官能团。 8.根据图谱提供信号峰数目、化学位移和偶合常数,解析一级类型图谱。 9.解析高级类型图谱峰信号,如黄酮类化合物B环仅4,-位取代时,呈现 AA,BB,系统峰信号,二氢黄酮则呈现ABX系统峰信号。 10. 如果一维1H-NMR难以解析分子结构,可考虑测试二维核磁共振谱配合解析结构。 11. 组合可能的结构式,根据图谱的解析,组合几种可能的结构式。 12. 对推出的结构进行指认,即每个官能团上的氢在图谱中都应有相应的归属信号。

核磁共振氢谱(1H-NMR)

第二章核磁共振氢谱(1H-NMR) §1 概述 基本情况 1H 天然丰度:99.9844%, I=1/2, γ=26.752(107radT-1S-1) 共振频率:42.577 MHz/T δ: 0~20ppm §2 化学位移 1.影响δ值的因素 A.电子效应 (1)诱导效应 a电负性 电负性强的取代基使氢核外电子云密度降低,其共振吸收向低场位移,δ值增大 b.多取代有加和性 c.诱导效应通过成键电子传递,随着与电负性取代基距离的增大,诱导效应的影响逐渐减弱,通常相隔3个以上碳的影响可以忽略不计 (2).共轭效应 氮、氧等杂原子可与双键、苯环共轭。 苯环上的氢被推电子基取代,由于p-π共轭,使苯环电子云密度增大, δ值向高场移动苯环上的氢被吸电子基取代,由于p-π共轭或π-π共轭,使苯环电子云密度降低, δ值向低场移动 (3). 场效应 在某些刚性结构中,一些带杂原子的官能团可通过其电场对邻近氢核施加影响,使其化学

位移发生变化.这些通过电场发挥的作用称为场效应 (4). 范德华(Van der Waals)效应 在某些刚性结构中,当两个氢核在空间上非常接近,其外层电子云互相排斥使核外电子云不能很好地包围氢核,相当于核外电子云密度降低,δ值向低场移动 B.邻近基团的磁各向异性 某些化学键和基团可对空间不同空间位置上的质子施加不同的影响,即它们的屏蔽作用是有方向性的。磁各向异性产生的屏蔽作用通过空间传递,是远程的。 (1)芳环 在苯环的外周区域感应磁场的方向与外加磁场的方向相同(顺磁屏蔽),苯环质子处于此去屏蔽区,其所受磁场强度为外加磁场和感应磁场之和,δ值向低场移动。 (2)双键 >C=O, >C=C<的屏蔽作用与苯环类似。在其平面的上、下方各有一个锥形屏蔽区 (“+”),其它区域为去屏蔽区。 (3)三键 互相垂直的两个π键轨道电子绕σ键产生环电流,在外加磁场作用下产生与三键平行但方向与外加磁场相反的感应磁场。三键的两端位于屏蔽区(“+”),上、下方为去锥形屏蔽区(“-”)δ值比烯氢小。 (4)单键和环己烷 单键各向异性方向与双键相似,直立键质子的化学位移一般比平伏键小0.05-0.8 C.氢键 氢键的缔合作用减少了质子周围的电子云密度, δ值向低场移动。 氢键质子的δ值变化范围大,与缔合程度密切相关。 分子内氢键,质子的δ值与浓度无关 分子间氢键,质子的δ值与浓度有关,浓度大,缔合程度密切。 D.非结构因素 1.介质因素 2.浓度 3.温度 2.各类质子的化学位移 (1).sp3杂化(饱和烷烃) a.化学位移的范围 δ<-CH3 < CH2 < CH, 0-2ppm 与同碳上有强电子基团(O,N,CL,Br)相连, 或邻位有各项异性基团(=,=O,Ph),δ值上升,<5ppm b.化学位移的计算 1)-CH2- δ(CH2R1R2) =1.25+Σσ δ(CHR1R2R3) =1.50+Σσ

核磁共振波谱与紫外可见光谱及红外光谱的区别

核磁共振波谱与紫外可见光谱及红外光谱的区别 核磁共振波谱与紫外可见光谱及红外光谱的主要不同有两点: ①原理不同 紫外可见吸收光谱是分子吸收200~700nm的电磁波,吸收紫外光能量,引起分子中电子能级的跃迁,主要是引起最外层电子能级发生跃迁。 红外光谱是分子吸收2.5~50um(2500~50000nm)的电磁波,吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁。 核磁共振波谱则是在外磁场下,吸收60cm~300m 的电磁波,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁。 ②测定方法不同。 紫外和红外等一般光谱是通过测定不同波长下的透光率(T%=出射光强/入射光强)来获得物质的吸收光谱。这种方法只适用于透过光强度变化较大的能级跃迁。 60cm~300m的电磁波穿透力很弱,故核磁共振无法通过测定透光率来获得核磁共振光谱,它是通过“共振吸收法”来测定核

磁共振信号的。共振吸收法是指:在一定磁场强度下,原子核在一定频率的电磁波照射下发生自旋能级跃迁时引起核磁矩方向改变进而产生感应电流,通过放大、记录此感应电流便得到核磁共振信号。依次改变磁场强度(或电磁波的照射频率)使满足不同化学环境核的共振条件,收集共振引起的磁感应信号,经过数学处理,就获得核磁共振波谱图。 ③谱图的表示方法不同: 紫外谱图的表示方法:相对吸收光能量随吸收光波长的变化。 红外谱图的表示方法:相对透射光能量随透射光频率变化。 核磁谱图的表示方法:吸收光能量随化学位移的变化。 ④提供的信息不同: 紫外提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息。 红外提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率。 核磁提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息。 核磁共振谱的优缺点: 优点:

核磁共振氢谱解析方法

WOIRD格式 2.3核磁共振氢谱解析方法 1、核磁共振氢谱谱图的解析方法 a.检查整个氢谱谱图的外形、信号对称性、分辨率、噪声、被测样品的信 号等。 b.应注意所使用溶剂的信号、旋转边带、C卫星峰、杂质峰等。 c.确定TMS的位置,若有偏移应对全部信号进行校正。 d.根据分子式计算不饱和度u。 e.从积分曲线计算质子数。 f.解析单峰。对照附图I是否有-CH3-O-、CHCOC3N H=、CH3C、RCOC2H C l、 RO-CH2-Cl等基团。 g.确定有无芳香族化合物。如果在6.5-8.5范围内有信号,则表示有芳香 族质子存在。如出现AA`BB`的谱形说明有芳香邻位或对位二取代。 h.解析多重峰。按照一级谱的规律,根据各峰之间的相系关系,确定有何 种基团。如果峰的强度太小,可把局部峰进行放大测试,增大各峰的强度。 i.把图谱中所有吸收峰的化学位移值与附图I相对照,确定是何官能团, 并预测质子的化学环境。 j.用重水交换确定有无活泼氢。 k.连接各基团,推出结构式,并用此结构式对照该谱图是否合理。再对照 已知化合物的标准谱图。 2、核磁共振氢谱谱图解析举例 例1:已知某化合物分子式为C3H7NO2。测定氢谱谱图如下所示,推定其结 构。

解析计算不饱和度u=1,可能存在双键,1.50和 1.59ppm有小峰, 峰高不大于1个质子,故为杂质峰。经图谱可见有三种质子,总积分值扣除杂质峰按7个质子分配。从低场向高场各峰群的积分强度为2:2:3,可能有-CH2-、-CH2-、-CH3-基团。各裂分峰的裂距(J),低场三重峰为7Hz,高场三重峰为8Hz,所以这两个三峰没有偶合关系,但它们 与中间六重峰有相互作用。这六重峰的质子为2个,所以使两边信号各裂分为三重峰。则该化合物具有CH3-CH2-CH2-结构单元。参考所给定的分子式应为CH3-CH2-CH2-NO2,即1-硝基丙烷。 例2:已知某化合物分子式为C7H16O3,其氢谱谱图如下图所示,试求其结构。

核磁共振波谱与紫外可见光谱及红外光谱的区别(终审稿)

核磁共振波谱与紫外可见光谱及红外光谱的区 别 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

核磁共振波谱与紫外可见光谱及红外光谱的区别 核磁共振波谱与紫外可见光谱及红外光谱的主要不同有两点: ①原理不同 紫外可见吸收光谱是分子吸收200~700nm的电磁波,吸收紫外光能量,引起分子中电子能级的跃迁,主要是引起最外层电子能级发生跃迁。 红外光谱是分子吸收~50um(2500~50000nm)的电磁波,吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁。 核磁共振波谱则是在外磁场下,吸收60cm~300m的电磁波,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁。 ②测定方法不同。 紫外和红外等一般光谱是通过测定不同波长下的透光率(T%=出射光强/入射光强)来获得物质的吸收光谱。这种方法只适用于透过光强度变化较大的能级跃迁。 60cm~300m的电磁波穿透力很弱,故核磁共振无法通过测定透光率来获得核磁共振光谱,它是通过“共振吸收法”来测定核磁共振信号的。共振吸收法是指:在一定磁场强度下,原子核在一定频率的电磁波照射下发生自旋能级跃迁时引起核磁矩方向改变进而产生感应电流,通过放大、记录此感应电流便得到核磁共振信号。依次改变磁场强度(或电磁波的照射频率)使满足不同化学环境核的共振条件,收集共振引起的磁感应信号,经过数学处理,就获得核磁共振波谱图。 ③谱图的表示方法不同:

紫外谱图的表示方法:相对吸收光能量随吸收光波长的变化。 红外谱图的表示方法:相对透射光能量随透射光频率变化。 核磁谱图的表示方法:吸收光能量随化学位移的变化。 ④提供的信息不同: 紫外提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息。 红外提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率。 核磁提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息。 核磁共振谱的优缺点: 优点: (仪器的灵敏度和分辨率非常高,较容易解析NMR图 (随着计算机技术的应用,多脉冲激发的方法的采用及由此产生的二维谱图、多维谱图等许多新技术,是许多复杂化合物的结构测定引刃而解,NMR可以说是化学研究中最有力的武器之一。 (通过核磁共振谱可以方便快捷的得到与化合物分子结构相关的信息。 ④核磁共振测定过程中不破坏样品,一份样品可测多种数据。 缺点: 可能是仪器较贵,没有非常高的普及率,另外对于某些复杂的化学物质,核磁并不能提供较为准确的判断,且核磁图谱复杂,较难一个人完全掌握所有谱图,对个人能力要求比较高

第二章 核磁共振氢谱[优质文档]

第二章核磁共振氢谱[优质文档] 第二章核磁共振氢谱 1几乎所有的有机物分子中都含有氢,而且H在自然界的丰度 231达99.98,,远远大于其它两个同位素H和H。这样,H核磁共振最早和最广泛地应用,在20世纪70年代以前,核磁共振几乎就是指核磁共振氢谱。 核磁共振氢谱主要是通过测定有机物分子中氢原子的位置来推断有机物的结构的。从一张有机物的核磁共振氢谱图上,我们可得到有机物分子中氢原子的种类(根据化学位移δ值)和氢原子的数量(根据峰面积)。即核磁共振氢谱图上有多少个峰,就表明有机分子中有多少种类的氢,各个峰的面积积分比表示各种氢原子的数目的比例。 图2.2是1-苯基-2,2-二甲基丙烷的核磁共振氢谱图。图中横坐标为化学位移,图上有三个峰,则表明该有机物分子中的氢有三种类型:峰面积的积分比为 9:5:2,表明该化合物的三种不同氢的数 目分别是9、5和2;化学位移δ 7.2处的峰表示苯环上5个相同的氢,δ2.5处的峰表示亚甲基上的2个相同氢,而δ0.9处的峰则表示三个甲基上的9个相同的氢。这样,能够判断出有机物分子中氢的种类和数目就可以非常容易地推断出有机物的分子结构。

图2.2 1-苯基-2,2-二甲基丙烷的核磁共振氢谱 2.1 化学位移 化学位移是核磁共振最重要参数之一.前面我们已经讨论了影响化学位移的因素.这里不再讨论.根据上述各种影响氢核化学位移的因素和多年核磁共振测定有机物结构的经验,同样总结出了不同有机基团氢核的化学位移δ值。根据δ值,可以进行相应有机基团的推断,常见的一些有机基团的氢核的化学位移总结于表2.1中。 表2.1 常见有机基团的氢核化学位移 氢核类型示例化学位移δppm H环丙烷 0.2 H 伯烷 RCH 0.9 3 仲烷 RCH 1.3 22 叔烷 RCH 1.5 3 烯丙基取代 C,C,CH 1.7 3 碘取代 I,CH 2.0,4.0 3 酯基取代 HC,COOR 2.0,2.2 3 羧基取代 HC,COOH 2.0,2.6 3 酰基取代 HC,COR 2.0,2.7 3

第二章 核磁共振氢谱

第二章核磁共振氢谱 几乎所有的有机物分子中都含有氢,而且1H在自然界的丰度达99.98%,远远大于其它两个同位素2H和3H。这样,1H核磁共振最早和最广泛地应用,在20世纪70年代以前,核磁共振几乎就是指核磁共振氢谱。 核磁共振氢谱主要是通过测定有机物分子中氢原子的位置来推断有机物的结构的。从一张有机物的核磁共振氢谱图上,我们可得到有机物分子中氢原子的种类(根据化学位移δ值)和氢原子的数量(根据峰面积)。即核磁共振氢谱图上有多少个峰,就表明有机分子中有多少种类的氢,各个峰的面积积分比表示各种氢原子的数目的比例。 图2.2是1-苯基-2,2-二甲基丙烷的核磁共振氢谱图。图中横坐标为化学位移,图上有三个峰,则表明该有机物分子中的氢有三种类型:峰面积的积分比为9:5:2,表明该化合物的三种不同氢的数

目分别是9、5和2;化学位移δ 7.2处的峰表示苯环上5个相同的氢,δ2.5处的峰表示亚甲基上的2个相同氢,而δ0.9处的峰则表示三个甲基上的9个相同的氢。这样,能够判断出有机物分子中氢的种类和数目就可以非常容易地推断出有机物的分子结构。 图2.2 1-苯基-2,2-二甲基丙烷的核磁共振氢谱 2.1 化学位移 化学位移是核磁共振最重要参数之一.前面我们已经讨论了影响化学位移的因素.这里不再讨论.根据上述各种影响氢核化学位移的因素和多年核磁共振测定有机物结构的经验,同样总结出了不同有机基团氢核的化学位移δ值。根据δ值,可以进行相应有机基团的推断,常见的一些有机基团的氢核的化学位移总结于表2.1中。

表2.1 常见有机基团的氢核化学位移 氢核类型示例化学位移δppm 0.2 环丙烷H H 伯烷RCH30.9 仲烷R2CH2 1.3 叔烷R3CH 1.5 烯丙基取代C=C-CH3 1.7 碘取代I-CH3 2.0-4.0 酯基取代H3C-COOR 2.0-2.2 羧基取代H3C-COOH 2.0-2.6 酰基取代H3C-COR 2.0-2.7 炔C≡C-H 2.0-3.0 苯基取代CH3 2.2-3.0 醚基取代R-O-CH3 3.3-4.0 溴取代CH3Br 2.5-4.0 氯取代CH3Cl 3.0-4.0 羟基取代CH3OH 4.0-4.3 氟取代CH3F 4.0-4.5 酰氧基取代RCOO-CH3 3.7-4.1 胺RNH2 1.0-5.0 醇ROH 1.0-5.5 烯C=C-H 4.6-5.9

核磁共振氢谱解析方法

2、3核磁共振氢谱解析方法 1、核磁共振氢谱谱图得解析方法 a、检查整个氢谱谱图得外形、信号对称性、分辨率、噪声、被测样品得 信号等。 b、应注意所使用溶剂得信号、旋转边带、C卫星峰、杂质峰等。 c、确定TMS得位置,若有偏移应对全部信号进行校正。 d、根据分子式计算不饱与度u。 e、从积分曲线计算质子数。 f、解析单峰。对照附图I就是否有-CH 3-O-、CHCOCH 3 N=、CH 3 C、RCOCH 2 Cl、 RO-CH 2 -Cl等基团。 g、确定有无芳香族化合物。如果在6、5-8、5范围内有信号,则表示有芳 香族质子存在。如出现AA`BB`得谱形说明有芳香邻位或对位二取代。 h、解析多重峰。按照一级谱得规律,根据各峰之间得相系关系,确定有何 种基团。如果峰得强度太小,可把局部峰进行放大测试,增大各峰得强度。 i、把图谱中所有吸收峰得化学位移值与附图I相对照,确定就是何官能团, 并预测质子得化学环境。 j、用重水交换确定有无活泼氢。 k、连接各基团,推出结构式,并用此结构式对照该谱图就是否合理。再对 照已知化合物得标准谱图。 2、核磁共振氢谱谱图解析举例 例1:已知某化合物分子式为C 3H 7 NO 2 。测定氢谱谱图如下所示,推定其结构。

解析计算不饱与度u=1,可能存在双键,1、50与1、59ppm有小峰,峰高不大于1个质子,故为杂质峰。经图谱可见有三种质子,总积分值扣除杂质峰按7个质子分配。从低场向高场各峰群得积分强度为2:2:3,可能 有-CH 2-、-CH 2 -、-CH 3 -基团。各裂分峰得裂距(J),低场三重峰为7Hz, 高场三重峰为8Hz,所以这两个三峰没有偶合关系,但它们与中间六重峰有相互作用。这六重峰得质子为2个,所以使两边信号各裂分为三重峰。 则该化合物具有CH 3-CH 2 -CH 2 -结构单元。参考所给定得分子式应为CH 3 -CH 2-CH 2 -NO 2 ,即1-硝基丙烷。 例2:已知某化合物分子式为C 7H 16 O 3 ,其氢谱谱图如下图所示,试求其结构。

核磁共振氢谱解析方法

创作编号:BG7531400019813488897SX 创作者:别如克* 2.3核磁共振氢谱解析方法 1、核磁共振氢谱谱图的解析方法 a.检查整个氢谱谱图的外形、信号对称性、分辨率、噪声、被测样 品的信号等。 b.应注意所使用溶剂的信号、旋转边带、C卫星峰、杂质峰等。 c.确定TMS的位置,若有偏移应对全部信号进行校正。 d.根据分子式计算不饱和度u。 e.从积分曲线计算质子数。 f.解析单峰。对照附图I是否有-CH 3-O-、CHCOCH 3 N=、CH 3 C、RCOCH 2 Cl、 RO-CH 2 -Cl等基团。 g.确定有无芳香族化合物。如果在6.5-8.5范围内有信号,则表示 有芳香族质子存在。如出现AA`BB`的谱形说明有芳香邻位或对位二取代。 h.解析多重峰。按照一级谱的规律,根据各峰之间的相系关系,确 定有何种基团。如果峰的强度太小,可把局部峰进行放大测试,增 大各峰的强度。 i.把图谱中所有吸收峰的化学位移值与附图I相对照,确定是何官 能团,并预测质子的化学环境。 j.用重水交换确定有无活泼氢。 k.连接各基团,推出结构式,并用此结构式对照该谱图是否合理。 再对照已知化合物的标准谱图。 2、核磁共振氢谱谱图解析举例 例1:已知某化合物分子式为C 3H 7 NO 2 。测定氢谱谱图如下所示,推定 其结构。

解析计算不饱和度u=1,可能存在双键,1.50和1.59ppm有小峰,峰高不大于1个质子,故为杂质峰。经图谱可见有三种质子,总积分值扣除杂质峰按7个质子分配。从低场向高场各峰群的积分 强度为2:2:3,可能有-CH 2-、-CH 2 -、-CH 3 -基团。各裂分峰 的裂距(J),低场三重峰为7Hz,高场三重峰为8Hz,所以这两个三峰没有偶合关系,但它们与中间六重峰有相互作用。这六重峰的质子为2个,所以使两边信号各裂分为三重峰。则该化合物具有CH 3 -CH 2-CH 2 -结构单元。参考所给定的分子式应为CH 3 -CH 2 -CH 2 - NO 2 ,即1-硝基丙烷。 例2:已知某化合物分子式为C 7H 16 O 3 ,其氢谱谱图如下图所示,试求 其结构。

第二章核磁共振氢谱[优质文档]

第二章核磁共振氢谱[优质文档] 第二章核磁共振氢谱 1几乎所有的有机物分子中都含有氢,而且H在自然界的丰度 231达99.98,,远远大于其它两个同位素H和H。这样,H核磁共振最早和最广泛地应用,在20世纪70年代以前,核磁共振几乎就是指核磁共振氢谱。 核磁共振氢谱主要是通过测定有机物分子中氢原子的位置来推断有机物的结构的。从一张有机物的核磁共振氢谱图上,我们可得到有机物分子中氢原子的种类(根据化学位移S值)和 氢原子的数量(根据峰面积)。即核磁共振氢谱图上有多少个峰,就表明有机分子中有多少种类的氢,各个峰的面积积分比表示各种氢原子的 数目的比例。 图2.2是1-苯基-2,2-二甲基丙烷的核磁共振氢谱图。图中横坐标为化学位移, 图上有三个峰,则表明该有机物分子中的氢有三种类型:峰面积的积分比为9:5:2,表明该化合物的三种不同氢的数 目分别是9、5和2;化学位移S 7.2处的峰表示苯环上5个相同的氢,3 2.5 处的峰表示亚甲基上的2个相同氢,而3 0.9处的峰则表示三个甲基上的9个相同的氢。这样,能够判断出 有机物分子中氢的种类和数目就可以非常容易地推断出有机物的分子结构。 ZlQ C —CHi.

ppm"}图2.2 1-苯基-2,2-—甲基丙烷的核磁共振氢谱 2.1化学位移 化学位移是核磁共振最重要参数之一?前面我们已经讨论了影响化学位移的因素.这里不再讨论?根据上述各种影响氢核化学位移的因素和多年核磁共振测定有机物结构的经验,同样总结出了不同有机基团氢核的化学位移S值。根据S值,可 以进行相应有机基团的推断,常见的一些有机基团的氢核的化学位移总结于表 2.1 中。 表2.1常见有机基团的氢核化学位移 氢核类型示例化学位移S ppm H环丙烷0.2 H 伯烷RCH 0.9 3 仲烷RCH 1.3 22 叔烷RCH 1.5 3 烯丙基取代C,C,CH 1.7 3 碘取代I,CH 2.0,4.0 3 酯基取代HC,COOR 2.0,2.2 3 羧基取代HC,COOH 2.0,2.6 3 酰基取代HC,COR 2.0,2.7 3 炔C?C,H 2.0,3.0 CH3苯基取代2.2,3.0 醚基取代R,O,CH 3.3,4.0 3 溴取代CHBr 2.5,4.0 3

核磁共振氢谱

核磁共振氢谱 核磁共振(NuclearMagnetic Resonance,NMR)波谱学是一门发展非常迅速的科学。核磁共振是根据有磁的原子核,在磁场的作用下会引起能级分裂,若有相应的射频磁场作用时,在核能级之间将引起共振跃迁,从而得到化学结构信息的一门新技术。最早于1946年由哈佛大学的伯塞尔(E.M.Purcell)和斯坦福大学的布洛赫(F.Bloch)等人用实验所证实。两人由此共同分享了1952年诺贝尔物理学奖。核磁共振技术可以提供分子的化学结构和分子动力学的信息,已成为分子结构解析以及物质理化性质表征的常规技术手段,在物理、化学、生物、医药、食品等领域得到广泛应用,在化学中更是常规分析不可少的手段。从70年代开始,在磁共振频谱学和计算机断层技术等基础上,又发展起一项崭新的医学诊断技术,即核磁共振成像技术,并在医学临床上获得巨大成功。本文主要介绍了核磁共振技术及其在化学领域的应用进展。 利用H、C、P等核磁共振谱确定有机化合物分子结构和变化,原子的空间位置和相互间的关联。核磁共振技术发展得最成熟、应用最广泛的是氢核共振,可以提供化合物中氢原子化学位移,氢原子的相对数目等有关信息,为确定有机分子结构提供依据。迄今,利用高分辨核磁共振谱仪已测定了上万种有机化合物的核磁共振谱图,许多实验室都出版谱图集。分析一个化合物的结构时,一般仅需做个氢谱、碳谱、极化转移谱,更多时候除了一维谱还需要做一系列二维谱:氢-氢化学位移相关谱、碳-氢化学位移相关谱、远程化学位移相关谱或做氢检测的异核多键相关谱、氢检测的异核多量子相关谱等。对于简单分子的结构,根据以上谱图解析就能确定,对于全然未知物的结构,还需结合其它的一些数据,如:质谱、红外、元素分析等。 核磁共振谱图中横坐标是化学位移,用δ或τ表示。图谱的左边为低磁场,右边为高磁场(如图下部分所示)。谱图中有两条曲线,下面一条是乙醚中质子的共振线,其中右边的三重峰为乙基中化学环境相同的亚甲基质子的峰。δ=0的吸收峰是标准试样TMS的吸收峰。谱图上面的阶梯式曲线是积分线,它用来确定各基团的质子比。 从质子共振谱图上,可以得到如下信息:(1)吸收峰的组数,说明分子中化学环境不同的质子有几组。(2)质子吸收峰出现的频率,即化学位移,说明分子中的基团情况。(3)峰的分裂个数及偶合常数,说明基团间的连接关系。(4)阶梯式积分曲线高度,说明各基团的质子比。 共振谱图上吸收峰下面所包含的面积,与引起该吸收峰的氢核数目呈正比,吸收峰的密集,一般可用阶梯积分曲线表示。积分曲线的画法是由低磁场移向高磁场,而积分曲线的起点到终点的总高度(用小方格数或厘米表示),与分子中所有质子数目呈正比。当然,每一个阶梯的高度则与相应的质子数目呈正比。由此可以根据分子中质子的总数,确定每一组吸收峰质子的绝对个数。 化学位移是由于核外电子云产生的对抗磁场所引起的,因此,凡是使核外电子云密度改变的因素,都能影响化学位移。影响因素有内部的,如诱导效应、共轭效应和磁的各向异性效应等;外部的如溶剂效应、氢键的形成等。 一.诱导效应 如果被研究的1H核,附近有一个或几个拉电子的基团存在,则此1H核周围的电子云密度会降低,屏蔽效应也相应降低,去屏蔽效应增大,化学位移值增大(吸收峰左移)。相反,如有一个或几个推电子基团存在,则其周围的电子云密度增加,屏蔽效应也增加,去屏蔽效应减少,化学位移值减小(吸收峰右移)。在具有共轭效应的芳环体系中,也有同样的作用,如苯胺中,由于胺基的推电子作用,使苯环上不同位置的H具有不同的化学位移

氢谱谱图解析步骤

谱图的解析 NMR谱法一般经历如下的步骤进行谱图的解析: ★与IR法相同,首先尽可能了解清楚样品的一些自然情况,以便对样品有一些大概的认识; 通过元素分析获得化合物的化学式,计算不饱和度Ω; ★根据化学位移值确认可能的基团,一般先辨认孤立的,未偶合裂分的基团,即单峰,即不同基团的1H之间距离大于三个单键的基团及一些活泼氢基团,如甲基醚、甲基酮()、甲基叔胺()、甲基取代的苯等中的甲基质子及苯环上 的质子,活泼氢为―O―H,,-SH等;然后再确认偶合的基团。从有关图或表中的δ可以确认可能存在的基团,这时应注意考虑影响δ的各种因素如电负性原子或基团的诱导效应、共轭效应、磁的各向异性效应及形成氢键的影响等; ★根据偶合裂分峰的重数、偶合常数,判断基团的连接关系。先解析一级光谱,然后复杂光谱。 进行复杂光谱解析时,应先进行简化; ★根据积分高度确定出各基团中质子数比,印证偶合裂分多重峰所判断的基团连接关系; ★通过以上几个程序,一般可以初步推断出可能的一种或几种结构式。然后,反过来,从可能的结构式按照一般规律预测可能产生的NMR谱,与实际谱图对照,看其是否符合,从而可以推断出某种最可能的结构式。 例某化合物的化学式为,IR谱表明有一很强的吸收峰,NMR谱如下,试确定其结构。 解:

有三组峰,相对面积为2:1:3,若分别为2、1、3个,则总数为6,为分子式12个的一半,因此分子可能有对称性; IR显示~1750cm

-1有一强峰,应有存在,且分子中有4个O,则可能有2个; 处有一组三重峰,可能为-CH ,且受裂分,而处有一组四重峰,与 3 是典型的组分;而δ较大,可能为的组分;处有一单峰,相对面积为1,则是一个与碳基相连的孤立(不偶合)的,可能为 所以可能有 的结合。而此结合的、O的数目为分子式的一半,而C原子数一半多半个原子。因此可以推测出整个分子的中间C原子为对称的结构,可能为 验证:以炔可能结构,推测其NMR谱,与实验谱图比较,结果相符合。是否可能为 (请思考) (二)定量分析 NMR图谱中积分曲线的高度与引起该共振峰的氢核数成正比,这不仅是结构分析的重要参数,而且是定量分析的依据。 用NMR 技术进行定量分析的最大优点是,不需要有被测物质的纯物质作标准,也不必绘制校准曲线或引入校准因子,而只要与适当的标准参照物(不必是被测物质的纯物质)相对照就可得到被测物质的量,对标准物的基本要求是其NMR 谱的共振峰不会与试样峰重叠。 常用的标准物为有机硅化合物,其质子峰大多在高场,便于比较,为六用基环三硅氧烷和六甲基环三硅胺等。

相关文档