文档库 最新最全的文档下载
当前位置:文档库 › 阵列碳纳米管薄膜厚度调控研究

阵列碳纳米管薄膜厚度调控研究

阵列碳纳米管薄膜厚度调控研究
阵列碳纳米管薄膜厚度调控研究

碳纳米管纳米材料的应用要点

碳纳米管及其复合材料在储能电池中的应用摘要碳纳米管具有良好的机械性能和导电性、高化学稳定性、大表面积以及独特的一维结构,选择合适的方法制备出碳纳米管复合材料,可以使其各种物理化学性能得到增强,因而在很多领域有着极大的应用前景,尤其是在储能电池中的应用。本文分析了碳纳米管及其复合材料的特点,总结了碳纳米管的储锂机理,对其发展趋势作了展望。 关键词碳纳米管复合材料储能电池应用 Abstract carb on nano tubes(CNTs) are nano meter-sized carb on materials with the characteristics of unique one-dimensional geometric structure large surface area high electrical conductivity,elevated mechanical strength and strong chemical inertn ess. Selecti ng appropriate methods to prepare carb on nano tube composites can enhance physical and chemical properties , and these composites have a great future in many areas especially in energy storage batteries . In this paper, based on the analysis and comparis on of the adva ntages and disadva ntages of carb on nano tube composites the enhan ceme nt mecha ni sms of the CNTs catalysts are in troduced. Afterwardthe lithium ion storage properties are summarized according to the preparation methods of composite materials. Finally, the prospects and challenge for these composite materials are also discussed. Keywords carb on nano tube; composite; en ergy storage batteries; applicati on 1引言 碳纳米管(CNTs)在2004年被人们发现,是一种具有特殊结构的一维量子材料,它 的径向尺寸可达到纳米级,轴向尺寸为微米级,管的两端一般都封口,因此它有很大的强度,同时巨大的长径比有望使其制作成韧性极好的碳纤维。碳纳米管由于其独特的一维纳米形貌被作为锂离子电池负极材料广泛研究,通过对碳纳米管进行剪切,官能化及掺杂等方法进行改性处理,能有效的减少碳纳米管的首次不可逆容量,增加可逆的储锂比容量。此外,碳纳米管的中空结构也成为抑制高容量金属及金属氧化物体积膨胀理想复合基体。本文中,我们研究了碳纳米管的储锂性能,考察了碳纳米管作为锡类复合材料基体,其内部限域空间对高容量金属及金属氧化物的储锂性能促进的具体原因。该研究结果为碳纳米管以及其他具有限域空间的结构在锂离子电池中的应用提供了参考。 2碳纳米管的储锂机理和应用 相比广泛应用的石墨类材料,碳纳米管在锂离子电池负极材料中有其独特的应用优势。首先,碳纳米管的尺寸在纳米级,管内及间隙空间也都处于纳米尺寸级,因而具有纳米材料的小尺寸效应,能有效的增加锂离子在化学电源中的反应活性空间;其次,碳纳米管的比表面积较大,能增加锂离子的反应活性位,并且随着碳纳米管的管径减小其表现出非化学平衡或整数配位数的化合价,储锂的容量增大;第三,碳纳米管具有良好的导

宏量可控制备碳纳米管阵列

附件2 论文中英文摘要格式 作者姓名:张强 论文题目:宏量可控制备碳纳米管阵列 作者简介:张强,男,1984年3月出生,2004年9月师从于清华大学魏飞教授,于2009年7月获博士学位。 中文摘要 化学工程为现代高新技术产业的发展提供了最基本的生产手段与技术。近年来,纳米技术的蓬勃发展为新型工业开拓了科学和工程技术应用空间。作为一种具有一维管状结构的纳米材料,碳纳米管在力学、热学、电学、光学、声学等方面表现出优异的性能,成为纳米领域中最受关注的对象之一。随着应用研究的深入,人们发现,相互缠绕的聚团状碳纳米管往往作为一种化工原材料添加到最终产品中,这样就难以充分发挥碳纳米管的优异性能。相关研究表明,碳纳米管的取向和排列可以显著影响其作为宏观材料的性能。如果能够将碳纳米管做成高度规整的定向阵列结构,那么阵列本身就是带有功能的产品——超级弹簧、定向薄膜、过滤器、电池电极、场发射体等;碳纳米管阵列也可以经进一步加工形成人工合成的超强纤维、电子器件、高性能复合材料,从而极大地提高材料的性能;由于碳纳米管阵列的易分散性,即使破坏碳纳米管阵列的排列,将其单分散后应用于导电、导热、力学增强复合材料时仍表现出比聚团状单壁和多壁碳纳米管更为优异的性能。所以,碳纳米管阵列是诸多类型碳纳米管材料中的高端产品。 虽然高度规整的碳纳米管阵列已经开发出很多应用。但是,时至今日,基于碳纳米管阵列的所有应用还不能够看到明确的实用前景。其重要原因是可控、大规模宏量制备应用研究所需的宏量规模的定向碳纳米管阵列样品仍然非常困难。众多研究者采用高纯硅片作为基板,每批次仅获得几毫克碳纳米管阵列样品。碳纳米管阵列的市售价格可高达2000美元/片硅片。因此,要实现纳米技术为人类造福的目标,首要的问题就是能够探索出可在工业规模上大量生产碳纳米管阵列的方法。而探索宏量可控制备碳纳米管阵列的科学以及开发工业生产碳纳米管阵列的技术是化学工程发展中的新问题。本文研究了碳纳米管阵列所涉及到的各个尺度上的科学问题,并应用纳米过程工程的基本方法分析了碳纳米管阵列的宏量制备,探索制备过程中的技术和控制手段,为碳纳米管阵列的宏量制备提供一个切实可行的技术路线,进而为碳纳米管阵列的实用化铺平道路。 本文在理解碳纳米管团聚结构特点的基础上,对碳纳米管阵列的生长机理进行了探索。采用时空分析方法,指出在原子/分子层次上,碳纳米管的生长遵循气液固生长机制。此模型较好地解释单根碳纳米管如何在纳米金属催化剂生长,以及碳纳米管的直径控制,但是并未解释碳纳米管如何有效组装形成有序阵列。我们通过催化剂标记的方法,发现在单根尺度上,碳纳米管阵列遵循底部生长机制,即碳纳米管的生长点在其与基板结合的根部,但没有解释

TiO2阵列薄膜

TiO2和HfTiO4薄膜在微电子中应用与表征研究 摘要:研究掺TiO2阵列基透明氧化物半导体在微电子的应用,通过低压集中热 反应磁控溅射法制备TiO 2和掺Hf的TiO 2 薄膜,沉积在(100)方向的硅基板上,沉 积后在空气中1000K进行退火处理4小时。通过X衍射(XRD),原子显微镜(AFM),X 射线光电子能谱(XPS)研究薄膜阵列的性质。XRD分析表明经热处理后将增强薄 膜的结晶,TiO 2和斜方HfTiO 2 薄膜出现形状规则的金红石相。AFM图分析表明该 纳米薄膜显示高度有序,整个样品表面上晶粒的尺寸和排列时均匀的。薄膜的化学计量比可以通过XPS检测来确定。 关键字:TiO2 薄膜 HfTiO4阵列透明氧化物半导体 Abstract:We study the possible microelectronics applications of transparent oxide semiconductors based on TiO2-doped matrix. TiO2 and Hf-doped TiO2 thin films were prepared by low pressure hot target reactive magnetron sputtering (LP HTRS) and deposited onto monocrystalline (100) silicon substrate. After deposition thin films were additionally annealed in air for 4 hours at 1000 K. Properties of the thinfilms matrixes were studied by means of X-ray diffraction(XRD), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). XRD investigations have shown that heat treatment enhances the crystallity of the thin films. Well-shaped lines of the rutile phase for TiO2 and the orthorhombic HfIiO4 have appeared. AFM images showed that the nanocrystalline thin films exhibit the high ordering grade. The dimension and arrangement of grains were homogenous on the whole sample surface. The stoichiometry of manufactured thin films was confirmed by XPS examinations. Keywords:TiO2 thin films HfTiO4 matrix transparent oxide semiconductors 1 引言 TiO2是一种重要的无机功能材料,因有氧空位存在而呈N型,二氧化钛有锐钛矿、金红石和板钛矿3 种晶型,可用于制备染料敏化太阳能电池[1]、气敏传感器[2]、光催化薄膜[3]、电介质材料、光裂解水[4]、无机涂料等,应用于水或空气的净化,水分解制氢,无机薄膜太阳能电池等能源与环境领域。1991年,Gr?tzel等[1]利用具有大比表面积TiO2纳米晶多孔薄膜作为光阳极材料制备了电池器件,获得的能量转换效率高达7.1%,这种Gr?tzel电池因其制备简单、材料易得和成本低廉等优点而备受关注。近年来,利用半导体材料降解环境中的污染物已越来越受到人们的关注。TiO2的禁带宽度仅为3.2eV,只能吸收波长小于387.5 nm 的紫外光(约占太阳光的4.5%),而可见光占太阳光的45%,严重限制了其实际应用。而且,在光催化反应中,纯相TiO2产生的光生电子和空穴易在光催化剂体相内和表面快速复合,极大地降低了其量子效率[5–6]。因此,有必要寻找有效的方法来提高其可见光活性和光生载流子的分离效率。TiO2这种半导体材料的光催化性能自上世纪70年代开始受到人们的重视,其中,TiO2是一种理想的半导体光催化剂材料,因为它拥有较宽的禁带宽度,光催化活性高,催化简单有机物彻底,良好的化学稳定性,不会引起二次污染等优势。因此,它被广泛应用于杀菌、除臭、污水处理、空气净化等方面。将TiO2与窄带半导体复合形成异质结可有效解决上面的两个问题,Sun 等[7]制备了CdS/TiO2纳米管阵列,其光电效应是TiO2 纳米管阵列的35 倍;Zhang 等[8]将CdSe 沉积到TiO2纳米管中,显著提高了其可见光下的光电流;Hou等[9]将Cu2O 与TiO2纳米管复合后有效提高了其可见光光催化活性。在可见光照射下,从这些窄带半导体上激

碳纳米管阵列超双疏性质的发现_翟锦

碳纳米管阵列超双疏性质的发现 * 翟 锦 李欢军 李英顺 李书宏 江 雷 - (中国科学院化学研究所 北京 100080) 摘 要 用高温裂解酞菁金属络合物方法制备了几种具有不同形貌的阵列碳纳米管膜,并对其超疏水和超双疏性质进行了研究.对于具有均匀长度和外径的阵列碳纳米管膜,文章作者发现,在未经任何处理时,其表现出超疏水和超亲油性质,与水的接触角为15815?115b ,与油的接触角为0?110b .经氟化处理后,则表现出超双疏性质,与水和油的接触角分别为171?015b 和161?110b .对具有类荷叶结构的阵列碳纳米管膜,其表面形貌与荷叶的十分接近,且在未经任何处理时所表现出的超疏水性也与荷叶的非常接近,与水的接触角为166b ,滚动角为8b .这种超疏水和超双疏性质是由表面的纳米结构以及微米结构和纳米结构的结合产生的.这一发现为无氟超疏水表面P 界面材料的研究提供了新的思路. 关键词 阵列碳纳米管膜,超疏水,超双疏 DISC OVERY OF SUPER-AMPHIPHOBIC PROPERTIES OF ALIGNED CARBON NA NOTUBE FILMS Z HAI Jin LI Huan -Jun LI Ying -Shun LI Shu -Hong JI ANG Lei - (Institu te o f Che mistry ,Chin ese Aca de my o f Scien ces ,Be ijin g 100080,Ch ina ) Abstract Several kinds of aligned ca rbon nanotube(ACN T )films with different morphologie s were prepared by pyrolysis of me tal phthalocyanines.Supe r -hydrophobic and supe r -amphiphobic prope rties were studied in detail.The ACN T films with fairly uniform length and external diame ter sho wed supe r -hydrophobic and super -oileophilic prope r -ties,with contact angle s(CAs)of 15815?115b and 0?110b for wate r and rape seed oil respectively.After fluorina -tion trea tment,the se angles beca me 171?015b and 161?110b ,respec tively,showing both super -hydrophobic and super -oileophobic properties,typical of a super -a mphiphobic surface.For ACN T films wi th lotus -like structures,not only wa s the morphology close to tha t of lotus leave s,but their supe r -hydrophobic properties we re almost the same a-l so.The CA and sliding angle for wate r of this kind of films were 166b and 8b ,respectively.These super -hydrophobic and super -amphiphobic properties are caused by the nanostructures and the c ombina t ion of nanostructures and mic ro -structures on the surface.This discove ry may provide a ne w method to study supe r -hydrophobic surface P interface ma -terials without fluorine. Key words aligned c arbon nanotube films,super -hydrophobic,super -amphiphobic * 国家重点基础研究项目(批准号:G1999064504),国家自然科学 基金重大项目(批准号:29992530)2001-12-21收到 - 通讯联系人.E -mail:ji anglei@https://www.wendangku.net/doc/5811433336.html, 在降雨之后的荷塘里,我们常常可以看到许多 水滴漂浮在荷叶上.这种现象是由于在荷叶的表面上有许多微小的乳突,这些乳突上含有疏水的蜡状物质,使得水滴不能渗入到荷叶中而引起的.这类疏水效果非常好的表面与水的接触角都比较大.最近,我们提出了双疏表面和超双疏表面的概念[1] ,即,既疏水又疏油的表面为双疏表面,而与水和油的接触角都大于150b 的表面为超双疏表面.超疏水和超双疏界面材料在工农业生产上和人们的日常生活中都有非常广阔的应用前景.例如,超疏水界面材料用在室外天线上,可以防积雪从而保证高质量地接收信 号;超双疏界面材料可涂在轮船的外壳和燃料储备箱上,可以达到防污、防腐的效果;在将它应用于石油管道的运输过程中,可以防止石油对管道壁粘附,从而减少运输过程中的损耗,并防止管道堵塞;将它用于水中运输工具或水下核潜艇上,可以减少水的阻力,提高行驶速度;用于微量注射器针尖上,可以完全消除昂贵的药品在针尖上的黏附及由此带来的

浅谈碳纳米管

浅谈碳纳米管 摘要:就对于碳纳米管的优良性质,以及将来在许多的领域的应用,不可避免的说到碳纳米管可能作为某些材料的替代产品,碳纳米管的缺陷和如何改进等问题。 关键词:碳纳米管优良性能 前言:随着科学技术的发展,很多材料和能源都已经快到达它们物理性能的极限了,由于人们对纳米材料的不断探索,终于发现了许多纳米材料所具有的其他材料没有的优良性能,那么我们就来浅谈谈碳纳米管为什么具有这么多的优良性能,和这些优良性能的前景。 正文:正如人们都知道的纳米材料由于具备尺寸小,比表面积大,表面能高等特点,表现出许多特有的物理效应如表面效应小尺寸效应,量子效应和介电限域效应等。从而使纳米材料具有传统材料所不具备的异或反常的物理特性。 碳纳米管由于由于其中碳原子采取SP2杂化,相比SP3杂化,SP2杂化中S轨道成分比较大,使碳纳米管具有高模量和高强度。从而使其表现出良好的力学性能,碳纳米管的抗拉强度达到50~200GPa,是钢的100倍,密度却只有钢的1/6,至少比常规石墨纤维高一个数量级;它的弹性模量可达1TPa,与金刚石的弹性模量相当,约为钢的5倍。碳纳米管的导电性也是可观的,由于碳纳米管的碳原子之间构成六边形,必然就会有一个孤对电子环绕在每个碳原子周围,从

而使其有具有相当好的导电性。理论预测其导电性能取决于其管径和管壁的螺旋角。当碳纳米管的管径大于6nm时,导电性能下降;当管径小于6nm时,碳纳米管可以被看成具有良好导电性能的一维量子导线。有报道有人通过计算认为直径为0.7nm的碳纳米管具有超导性,尽管其超导转变温度只有1.5×10-4K,但是预示着碳纳米管在超导领域的应用前景。当然碳纳米管也具有优良的导热性碳纳米管具有非常大的长径比,因而其沿着长度方向的热交换性能很高,相对的其垂直方向的热交换性能较低,通过合适的取向,碳纳米管可以合成高各向异性的热传导材料。另外,碳纳米管有着较高的热导率,只要在复合材料中掺杂微量的碳纳米管 ,该复合材料的热导率将会可能得到很大的改善。其他性能,碳纳米管还具有光学和储氢等其他良好的性能,正是这些优良的性质使得碳纳米管被认为是理想的聚合物复合材料的增强材料。 对于碳纳米管的应用前景那是可观的,随着化石原料的逐渐枯竭,人们正在寻找清洁能源,目前被人们所看重的莫过于氢能和太阳能了。不管它们中的哪一种能源,目前都陷于瓶颈之中,氢能怎么制取,怎么存储到现在还是问题,至于太阳能我想不必多少,太阳能虽然总量巨大,但是利用率很低,至今还在探索,但是我想说碳纳米管的研究可能就可以解决这些问题,从而解决现在的能源危机。

相关文档