文档库 最新最全的文档下载
当前位置:文档库 › 气体燃料发动机供气形式及特点参考文本

气体燃料发动机供气形式及特点参考文本

气体燃料发动机供气形式及特点参考文本
气体燃料发动机供气形式及特点参考文本

气体燃料发动机供气形式及特点参考文本

In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each

Link To Achieve Risk Control And Planning

某某管理中心

XX年XX月

气体燃料发动机供气形式及特点参考文

使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。

一、进气道混合器预混合供气方式

进气道混合器预混合供气方式是应用较早的方案,现

在仍然被广泛应用,由于它具有汽油机的供气特征,以及

供气装置简单,在点燃式发动机和压燃式天然气一柴油双

燃料发动机上得以应用。但是该供气方式具有明显的不足

之处,进气道混合器预混合供气方式由于天然气占据空气

充量一般可达10%~15%,影响发动机燃烧过程及其升功

率。图9-1所示进气道混合器预混合供气方式示意图。二、缸外进气阀处喷射供气方式

缸外进气阀处喷射是一种较进气道混合器预混合供气方式更进一步的供气方式,该供气方法是将气体喷射器布置在各缸进气道进气阀处,可实现对每一缸的定时定量供气,通常称之为电控多点气体喷气系统。它可以减轻和消除由于气门重叠角存在造成的燃气直接逸出、恶化排放和燃料浪费的不良影响。进气阀处喷射由于可以由软件严格控制气体燃料喷射时间与进排气门及活塞运动的相位关系,易于实现定时定量供气和层状进气。可根据发动机转速和负荷,更准确地控制对发动机功率、效率和废气排放有重要影响的空燃比指标,实现稀薄混合气燃烧,更进一步提高发动机的动力性、经济性,以及更进一步改善排放特性。缸外进气阀处喷射虽然可以降低供气对空气充量的影响,但这种影响仍然在一定程度上存在着。进气阀处喷射的高速电磁阀是其基本部件,同时配置有电控单元ECU 实施控制。往往该控制部分要延伸至整个发动机的控制系

统中去,控制主体是根据转速和负荷的变化调节燃料量和燃料配比(双燃料过程),达到优化的发动机性能。图9-2是缸外进气阀处喷射的本田(Honda)天然气发动机的供气系统示意图。三、缸内气体燃料喷射供气方式

90年代以来,人们开始研制开发缸内供气方式。缸内供气方式有缸内高压喷射和低压喷射两种。其中低压喷射主要用在压缩比较低的点燃式气体燃料发动机上;高压喷射主要用在压缩比较高和压缩终点喷射的气体燃料发动机上。对于大型发动机和高速发动机,往往采用高压喷射达到较高的燃料供给量及延续较短的供气喷射时刻。缸内气体喷射完全实现了燃料供给的质调节,对空气充量几乎没有影响,为进一步完善发动机各项性能提供有利条件。缸内气体喷射仍具有缸外进气阀处喷射的所有优点,但结构复杂,对技术要求高。现在只有美国、日本、德国等少数国家在开发及应用该项技术,还没能广泛应用于汽车发动

机上。不过在德国MAN—B&W公司的28/32型柴油机、美国DDC公司的DDC6V—92TA柴油机和日本本田(Honda)的CIVIC天然气汽车汽油发动机等上开发应用电控喷气技术。在国内,吉林工业大学内燃机研究所首先开展天然气发动机缸内喷气技术的研究工作,并已实现点燃式内燃机机型的天然气和液化石油气的电控缸外进气阀处电控喷射和电控缸内喷气。

综上所述,电控喷气技术是气体燃料发动机最具优越性的供气方法,不论气体燃料的缸外喷气,还是缸内喷气,都将比进气道混合器预混合供气方式具有显著优点。特别是电控缸内喷气技术,尽管该技术实施比较复杂,技术难度大,但它优良的气体燃料发动机工作性能和优越的

排放性能,必将随着汽车工业的发展而被气体燃料发动机普遍应用。

归纳缸内喷气技术的主要特点如下:

①对气体燃料节流无影响,供气特性稳定;

②点燃式和压燃式(天然气一柴油双燃料过程),完全实现质调节;

③大幅度降低或消除燃料供气对空气充量的影响j对于点燃式机型甚至可以提高空气充量;

④有利于使用蒸发类(LPG、LNG)气体燃料;

⑤易于实现稀薄燃烧和对燃烧过程的控制,便于完善和优化发动机的工作性能;

⑥消除由于气门重叠角存在造成的气体燃料直接逸出,便于增压机型的应用。

请在此位置输入品牌名/标语/slogan

Please Enter The Brand Name / Slogan / Slogan In This Position, Such As Foonsion

柴油发动机的燃烧解读

柴油发动机的燃烧解读

项目四柴油机混合气形成与燃烧 学习目标: 掌握柴油机两种混合气的形成方式及特点,掌握直接喷射式和分隔式两大类柴油机燃烧室的结构及性能特点;了解柴油机供油系统的组成和喷射过程,掌握柴油机的燃烧过程及影响因素,掌握电控柴油喷身系统的组成、分类、电子控制功能,并在学习过程中随时注意对柴油机和汽油机进行比较。 任务一柴油机混合气形成 与汽油机工作原理相比,只有一个行程即作功行程中,柴油机由于用的柴油粘度比汽油大、不易蒸发,且自然温度又较汽油低,所以采用的是压缩自燃式点火。 任务二柴油机的燃烧过程

柴油机燃烧过程非常复杂,为了便于分析和揭示燃烧过程的规律,通常将这一连续的燃烧过程分为四个阶段,即着火延迟期(又称为滞燃期)、速燃期、缓燃期和补燃期,如图所示。 (一)着火延迟期 从柴油开始喷入气缸起到着火开始为止的这一段时期称为着火延迟期。 着火延迟期内,燃烧室内的混合气进行着物理和化学准备过程。 物理准备过程:燃油的粉碎分散、蒸发汽化和混合。 化学准备过程:混合气的先期化学反应直至开始自燃。 特点:压力没有偏离压缩线。

影响着火延迟期长短的主要因素是: 喷油时缸内的温度和压力越高,则着火延迟期越短。 柴油的自燃性较好(十六值较高),着火延迟期较短。 燃烧室的形状和壁温等。 喷油提前角:开始喷油到活塞到达上止点所对应的曲轴转角为喷油提前角。 (二)速燃期 速燃期:从开始着火(即压力偏离压缩线)到出现最高压力. 特点:压力急剧上升,压力达到最高(有可能达到13MPa以上)

一般用压力升高率λp〔kPa/(o)曲轴〕表示压力急剧上升的程度。 式中:△p——速燃期始点和终点的气体压力差(kPa); △θ——速燃期始点和终点相对于上止点的曲轴转角差(CAo)。 特点: (1)压力升高率很高,接近等容燃烧,工作粗暴。 (2)达到最高压力(6~9MPa)。 (3)继续喷油。 压力升高率过大,则柴油机工作粗暴,燃烧噪音大;同时运动零件承受较大的冲击负荷,影响其工作可靠性和使用寿 命; 压力升高率大,燃烧迅速,柴油机的经济性和动力性会较好。 压力升高率应限制在一定的范围之内,柴油机的压力升高率一般应不大于0.4~0.5 MPa/(o)曲轴。与汽油机相比,柴油机的压力升高率较大。 控制压力升高率的措施: 减小在着火延迟期内准备好的可燃混合气的量

气体燃料发动机供气形式及特点示范文本

文件编号:RHD-QB-K9078 (安全管理范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 气体燃料发动机供气形式及特点示范文本

气体燃料发动机供气形式及特点示 范文本 操作指导:该安全管理文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时进行更好的判断与管理。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 一、进气道混合器预混合供气方式 进气道混合器预混合供气方式是应用较早的方案,现在仍然被广泛应用,由于它具有汽油机的供气特征,以及供气装置简单,在点燃式发动机和压燃式天然气一柴油双燃料发动机上得以应用。但是该供气方式具有明显的不足之处,进气道混合器预混合供气方式由于天然气占据空气充量一般可达10%~15%,影响发动机燃烧过程及其升功率。图9-1所示进气道混合器预混合供气方式示意图。

二、缸外进气阀处喷射供气方式 缸外进气阀处喷射是一种较进气道混合器预混合供气方式更进一步的供气方式,该供气方法是将气体喷射器布置在各缸进气道进气阀处,可实现对每一缸的定时定量供气,通常称之为电控多点气体喷气系统。它可以减轻和消除由于气门重叠角存在造成的燃气直接逸出、恶化排放和燃料浪费的不良影响。进气阀处喷射由于可以由软件严格控制气体燃料喷射时间与进排气门及活塞运动的相位关系,易于实现定时定量供气和层状进气。可根据发动机转速和负荷,更准确地控制对发动机功率、效率和废气排放有重要影响的空燃比指标,实现稀薄混合气燃烧,更进一步提高发动机的动力性、经济性,以及更进一步改善排放特性。缸外进气阀处喷射虽然可以降低供气对空气充量

发动机爆震燃烧的现象分析

发动机特别是在高温状态下和总行程较高时,经 常会突发一种清脆的爆炸声,这就是发动机的爆震燃烧现象。现就使用因素对该现象的成因和防止措施作一分析。 一、发动机的正常燃烧 汽油发动机一般是在气缸外部使燃油与空气混合,进入气缸到压缩终了时已形成大体均匀的混合气,之后依靠电火花强制点火形成火焰中心并向未燃混合气体传播,最后完成燃烧。如果燃烧由定时的电火花点火,首先使火花塞电极间隙内的混合气体形成微小火焰核,同时火焰具有向相邻的混合气以30m~50m/s 的速度连续传播的能力,进而把火焰传遍整个燃烧室,这称为发动机的正常燃烧。 汽油发动机的燃烧过程分为着火延迟期、急燃期、后燃期3个过程。 第一阶段为着火延迟期,指从电火花跳火到点燃混合气形成火焰中心为止的一段时间。 第二阶段为急燃期,指火焰由火焰中心传遍整个燃烧室的阶段。亦称火焰传播阶段。它是汽油机燃烧 的主要时期。 第三阶段为后燃期,指急燃期终点到燃油基本完全燃烧为止期间的燃烧。在后燃期中,主要是火 焰前锋后未及时燃烧的燃油再燃烧,及粘附在气缸壁上的未燃混合气层的继续燃烧。 二、发动机不正常燃烧 汽油发动机在某种条件下,如温度过高、压缩比过高等,发动机的燃烧会出现不正常现象,压力曲线出现了高频大振幅波动,上止点附近的dp/dt 值急剧变动,此时火焰传播速度和火焰形状均发生急剧变化,该现象称为爆燃燃烧。 爆燃产生的机理为电火花点火后,火焰以30m~80m/s 的正常速度向前传播,终燃混合气(指最后燃烧位置上的那部分混合气)因受燃烧气体的压缩和热辐射影响,其压力、温度升高,从而加速了燃烧先期的化学反应并放出热量,使其本身的温度不断升高。如果在正常火焰前锋面尚未到达之前,部分终燃混合气的先期化学反应已经完成,产生了一个或多个新火焰中心,并从这些中心以100m~300m/s(轻微爆燃)直到800m~1000m/s 或更高(强烈爆燃)的速度传播,终燃混合气将被迅速燃烧完毕。因此,发动机爆燃现象就是终燃混合气的自燃现象。 三、爆震燃烧的外部特征及危害 发动机爆震燃烧有较明显的外部特征,具体表现为: 1、发出清脆的金属敲缸声,也即前面所述的爆炸声。

低速双燃料发动机技术数据

Engine room and performance data for 9S50ME-C8.5-GI (methane) with low load exhaust gas bypass tuning Light running margin (LRM) is 7%. Recommended value is 4-10%. The LRM should be evaluated for each ship project depending on: In-service increase of vessel resistance, ship manoeuvring requirements and requirements related to a possible barred speed range (short passing time). Further reading: https://www.wendangku.net/doc/5813114307.html,/Papers/Basic_Principles_Of_Ship_Propulsion p.20-29

Specified main engine and other parameters Turbocharger specifications Fuel consumption and gas figures SGC: Specific Gas Consumption (LCV: 50,000 kJ/kg) The consumption of the engine, when running on fuel oil, is equal to that of the fuel oil engine with high load tuning.

双燃料发动机技术浅析

双燃料发动机技术浅析 发表时间:2018-08-09T15:52:39.380Z 来源:《科技中国》2018年7期作者:王健[导读] 摘要:对柴油/天然气双燃料发动机的基本燃烧过程及工作特点:换气短路损失,高压缩比,小负荷工作等作了介绍,并对双燃料发动机的两种典型结构预燃室双燃料发动机、直喷式双燃料发动机以及双燃料发动机未来主要的发展趋势作了阐述。 摘要:对柴油/天然气双燃料发动机的基本燃烧过程及工作特点:换气短路损失,高压缩比,小负荷工作等作了介绍,并对双燃料发动机的两种典型结构预燃室双燃料发动机、直喷式双燃料发动机以及双燃料发动机未来主要的发展趋势作了阐述。 关键词:发动机;天然气;柴油 引言 随着石油资源的逐渐紧缺,寻找发动机替代能源成为各国政府和相关研究机构共同关注的问题。天然气(NG)的主要成份是CH。,它是一种清洁燃料。和石油资源相比,中国拥有比较丰富的天然气资源,从能源供应结构出发,中国政府首先鼓励和支持天然气汽车的发展。双燃料发动机(一般指柴油/天然气发动机),以天然气为主要燃料,可以克服柴油机NO 和PM高排放的缺点,使发动机在整个工作过程中几乎可以无烟运行,并且与中国现阶段的天然气供应状况相适应,因此具有良好的发展前景。 1 双燃料发动机技术 由于天然气在常温下为气体,因此作为车用燃料时必须压缩(CNG)或液化(I NG)。表1是天然气的燃料特性与其它车用燃料特性的对比。从天然气的特性可以看出,天然气具有比较高的单位质量热量,比较高的辛烷值(RON),正是因为这种特殊性质,天然气既可以作为压燃式发动机燃料,在柴油/天然气双燃料发动机中使用,也可以作为单一燃料点燃式发动机的燃料 J。 1.1燃烧特性 双燃料发动机的主要燃料天然气,在进入缸内时存在不同程度的均相混合过程,缸内的可燃混合气是在上止点附近通过喷射少量柴油引燃,与柴油机点火方式类似,高压喷射进入缸内的引燃柴油雾化并依靠高温的压缩空气加热着火,着火的引燃柴油再将混合气点燃。双燃料发动机工作时同时燃烧柴油和天然气,天然气是主要做功燃料,柴油仅用于引燃天然气。由于2种燃料的不同物理性质,使得双燃料发动机燃烧过程类似于柴油机,其主要燃烧特点是: a.天然气十六烷值很低,可燃性能差,因此发动机的最高燃烧压力和温度较低,表现为发动机工作柔和,NO 排放比柴油机低。图1为双燃料发动机的着火延迟与燃料当量比的关系 j,CH 的着火延迟比柴油大许多,这导致燃烧拖后,热效率降低;另外,发动机随负荷的增大,着火延迟期缩短,最佳点火喷油时刻推后,而天然气的着火延迟期在小负荷时随负荷增加而增大,在中大负荷时随负荷增加而减小。 b.天然气的RON为130,具有较高的抗爆震性能,但由于应用于双燃料发动机时发动机的压缩比没有改变,发动机存在爆震倾向,因此改装后的双燃料发动机的喷油提前角应适当推迟。 C.虽然天然气的可燃极限范围较宽,但在发动机上由于燃烧时间有限,在小负荷时双燃料发动机存在一定程度的不完全燃烧或失火现象,使小负荷时发动机的经济性降低,HC 和CO排放增加。 1.2基本工作特点 双燃料发动机同时使用天然气和柴油,因此具有两种不同的燃料供给系统,一般天然气通过进气管混合后以混合气方式在扫气过程进入燃烧室,而柴油则通过高压油嘴喷射进入燃烧室。 a.换气短路损失。现在使用的双燃料发动机都是在现有的柴油机基础上直接改装的,天然气/空气的混合气多数是在缸外混合后进人缸内,在扫气过程中不可避免导致部分天然气没有燃烧直接排出燃烧室,造成HC和CO排放增加。 b.高压缩比。常规的柴油发动机为了得到较高的功率和好的冷起动性能,压缩比在13-19:1 范围内。改装为双燃料发动机时,发动机的压缩比一般不必改变,这是因为双燃料发动机的混合气是靠柴油点燃的,在缸内分布广阔的柴油能够使混合气快速燃烧;另一方面,天然气的RON为130,具有良好的抗爆震性能。 C.小负荷工作。小负荷工作特性是双燃料发动机一个重要的特性,这主要是因为其在小负荷时混合气浓度过稀,燃烧过程进行缓慢,不完全,降低了发动机的经济性和动力性,同时发动机的排放也增加。 2 典型的双燃料发动机 双燃料发动机的非甲烷HC排放比汽油机低9o%,而甲烷排放则高出9倍,CO排放约为汽油机的20%-80%,而NO 排放差异较大,这主要与发动机引燃柴油的喷射量和混合气的燃烧过程有关。 2.1预燃室双燃料发动机 采用预燃室能够提高发动机的抗爆震性能,有利于增加发动机的平均有效压力。如Cooper 公司的Cleanburn双燃料LSVB系列双燃料发动机,其标定功率为6 102.9 kW,Cleanburn系统减小了引燃柴油量,使烟度几乎不存在,标定点的NO 排放比原机减少了92%,为1.21 g /kW·h 。 2.2直喷式双燃料发动机 采用预混合方式提供天然气,不可避免地要降低发动机充气效率,存在一定程度的换气损失,发动机有爆震倾向,这导致发动机的功率减低,油耗增大,采用天然气缸内直接喷射可以消除这些不利因素,提高发动机的性能。目前存在的主要问题还是直喷式系统的成本过高,系统的可靠性还有待进一步检验。

氢气发动机的发展和现状教材

课程结业论文 题目:氢气发动机的发展和现状 学生姓名: 学生学号: 专业班级: 课程名称:现代汽车新技术概论 所属院部: 指导教师: 2013——2014学年第 1 学期

目录 第一章绪论 (1) 1.1氢气发动机的历史 (1) 1.2 氢动力汽车的现状 (2) 1.3氢动力汽车的研究发展方向 (3) 1.4发展氢动力汽车的必要性 (3) 第二章氢气能源性质 (4) 2.1 氢的特征 (4) 2.2氢气与传统燃料的性质对比 (5) 2.3 氢能的开发和利用 (6) 2.3.1 氢能的开发 (6) 2.3.2氢能的应用 (8) 第三章氢气的存储 (10) 3.1高压气瓶储氢 (10) 3.2液氢储氢 (11) 3.3金属氢化物储氢 (11) 3.4 浆液储氢技术 (12) 第四章氢气发动机的发展前景 (13)

现代汽车新技术概论 氢气发动机的发展和现状 第一章绪论 1.1氢气发动机的历史 随着“汽车社会”的逐渐形成,汽车保有量不断地上升,而石油等资源却捉襟见肘,同时,消耗大量汽油的车辆不断排放有害气体和污染物质,对环境造成严重的危害。这一问题的解决之道当然不是限制汽车产业的发展,而是开发替代石油的新能源—氢能。氢作为内燃机的燃料并是人类最近的发明。在内燃机中使用氢气已有相当长的历史。 人类历史上第一款氢气内燃机的历史可以上溯到 1807 年,瑞士人伊萨克·代·李瓦茨制成了单缸氢气内燃机。他把氢气充进气缸,氢气在气缸内燃烧,最终推动活塞往复运动。该项发明在 1807 年 1 月 30 日获得法国专利,这是第一个关于汽车产品的专利。但由于受当时的技术水平所限,制造和使用氢气远比使用蒸汽和汽油等资源复杂,氢气内燃机于是被蒸汽机、柴油机以及汽油机“淹没”。 早在十九世纪中期,人们就开始对使用氢气作为内燃机燃料产生了兴趣。1841 年英国颁发了第一个用氢气和氧气的混合气体工作的内燃机专利证。1852 年,慕尼黑的宫廷钟表技师制成一台用氢气-空气混合气体工作的内燃机。 在氢内燃机的历史上,德国一直占有很重要的地位。德国的 Rudolph Erren 尝试在氢内燃机中采用内部混气的方式。在他的研究工作中,穿过内燃机的冷水套的管道,氢气被一些小喷嘴直接喷入气缸内进行混合。氢喷入的质量和时间由燃料分配器控制,这种方案可以用任何燃料或是采用双燃料的方式让发动机工作。他还提出氢氧内燃机构想,并据此设计了实验,用到潜艇上。德国的奔驰公司开发组建的氢动力车队是世界首个用氢气作为内燃机燃料的车队,该车队在柏林已经试运行多年。氢气输送管道,加氢站也是最先在德国兴建的。现在,空中客车公司德国分部,奔驰航空公司也都正在努力开发装备氢动力内燃机的空中飞机。德国的其他汽车公司如宝马等都在大力发展氢动力汽车。 1.2 氢动力汽车的现状 日本自 1984 年实施“阳光计划”,投入示范运行氢动力车,仅日本武藏工业大学就有多达九辆的氢动力车投入试验,且型号各不相同;日本各大汽车公司,如马自达,本田等,也都在积极加入氢动力车行列;马自达公司推出了第一款氢动力概念车 HR-X,金属氢化物储氢罐储氢,

气体燃料汽车的特点

编号:SM-ZD-98837 气体燃料汽车的特点Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives 编制:____________________ 审核:____________________ 时间:____________________ 本文档下载后可任意修改

气体燃料汽车的特点 简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查 和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目 标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 一、各种气体燃料在汽车上的应用分析 目前所说的气体燃料按化学成分主要有H?、CH?~C?H10、和CO。按来源形式分氢气、天然气、液化石油气、煤气和沼气等。汽车用燃料应具备以下主要条件:①燃料的资源要极大丰富;②燃料的经济性要好;③燃料的携带要方便; ④燃料燃烧后排气污染要小;⑤燃料的安全性。 表3-3是作者对上述气体燃料进行的对比分析结果。其具体分析如下: (1) 资源从长远观点看,天然气、液化石油气、煤气都是可耗尽能源,氢气是由水制取并能实现能源形式的及时转化,因此可以说是取之不尽,用之不绝的;沼气则是由各种有机物中制取出来的,只要人类生存下去,其来源就不会断绝。

(2) 经济性这里的经济性包含两层含义,一是燃料本身的价格或生产成本,二是将其应用于汽车时所需设备的附加成本。从生产成本上看,天然气最经济,液化石油气次之,沼气的制取需要大型设备,如果只从沼气生产角度看,其造价太高,但从城市和工业废物综合治理上看,这些投资才有价值。氢气需利用电能制取,它实际上成为一种能量载体,它在燃烧时所释放的能量要由更多的电能转化而来。因此,氢气只是未来其它能源形式消耗殆尽时的主要燃料。从燃料的应用性看,由于液化石油气在低压常温下就可液化,其运输、存储、携带方便,因而经济性最好。其它气体由于液化极困难,因此这方面的附加成本较高。 (3) 携带性由于汽车是移动式工作的,其燃料是否方便携带是很重要的。除液化石油气可以液态携带较为方便外,天然气、沼气、煤气、氢气都很难液化,如以压缩气态存储,根据它们的标态体积热值可知在同样压力,同样容积下所能带的能量数额。 (4) 排污从汽车尾气排放来看,氢气燃烧后生成水,是最清洁的燃料。天然气等由于是气态进入汽车发动机缸内,

发动机自动熄火的诊断分析毕业论文

文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。 摘要 汽车是当代必不可少的一种交能工具,汽车的发动机是汽车的核心元件。随着社会的发展趋势汽车在全球的数量将越来越多,但现实的世界储存燃料已经越来越少,有科学家推算世界燃料只能用20年。那么20年后我们用什么来维持呢?没有了汽车这个交通工具世界经济将会是怎么样的一个现像,可想而知。那么我们就要研究出更能节省能源,也能适用新能源的汽车。只有这样才能让我们的经济保持并发展。 另一方面随着社会的发展经济的强大,汽车将要普及每家每户,中国的汽车产量已排名世界第三位就是最好的一个证明。那么我们需要人们懂得这些道理,假若发动机出现了问题也能自行解决。为我们提供为便,也能节省那么的时间和能源。在汽车技术日新月异的今天,电脑控制技术已经应用到车的各个系统,各种新结构、新技术的不断涌现,使汽车维修人员面临着更大的挑战。汽车维修已从以前的那种修理工最好当,怎么拆装怎么装的状况转变成一个技术含量高、难度大的工种。现代的修理技术的特征表现为“七分诊断,三分维修”。发动机的故障的具体方法是多种多样的,关键是如何找出规律,积累经验,把感性认识上升到理性认识,再用理性认识指导维修实践。 【关键词】发动机的原理和构造发动机故障现象诊断与分析自动熄火

目录 第一章绪论.............................................................................. 错误!未定义书签。 1.1 研究课题的目的与意义.............................................. 错误!未定义书签。第二章发动机的原理和构造............................................................... 错误!未定义书签。 2.1 发动机的原理和构造...................... 错误!未定义书签。 2.1.1 曲柄连杆机构....................... 错误!未定义书签。 2.1.2 配气机构........................... 错误!未定义书签。 2.1.3 燃料供给系统....................... 错误!未定义书签。 2.1.4 润滑系统........................... 错误!未定义书签。 2.1.5 冷却系统 (4) 2.1.6 点火系统........................... 错误!未定义书签。 2.1.7 起动系统........................... 错误!未定义书签。第三章常见的故障原因.................................................................... 错误!未定义书签。 3.1 真空进气管.............................. 错误!未定义书签。 3.2 废气再循环装置的检查.................... 错误!未定义书签。 3.3 空气流量计的检测........................ 错误!未定义书签。 3.4 氧传感器的检测.......................... 错误!未定义书签。 3.5 冷却水温度传感器的检测 (10) 3.6 故障诊断的一般步骤...................... 错误!未定义书签。 3.7 故障诊断相关要点........................ 错误!未定义书签。 3.8 检验方法................................ 错误!未定义书签。第四章故障实例............................................................................ 错误!未定义书签。

低速双燃料发动机技术分析

低速双燃料发动机技术分析 随着全球油价持续走高以及越来越严格的排放限制,船东越来越重视船舶的 经济性和清洁环保。虽然市场上也能看到燃料电池、氢燃料动力、混合动力等技术,但目前最为成熟和具有经济性的替代能源无疑仍然是天然气。《国际气体 动力船舶规则》(IGF Code)的日趋成熟,使天然气燃料动力船越来越受关注,不仅在渡轮、拖轮等短程小船中得到应用,在国际航行的天然气运输船、集装箱船、油船、大型矿砂船等领域也得以推广。天然气作为船舶燃料起初主要用于沿海 渡轮等小型船舶,这一方面是由于燃料舱尺寸限制了双燃料发动机在远洋船的使用,另一方面也是因为远洋船所用的电力推进效率低于低速柴油机,不具备经济性。随着油价和天然气价格差扩大及排放限制,MANDiesel & Turbo已推出ME-GI 系列低速双燃料发动机,Wartsila公司也推出Flex-DF低速发动机,两大垄断厂商的重磅产品的推出,将会在低速柴油机主宰的远洋船舶市场上取得明显的竞争优势,改变当前双燃料发动机的市场格局,使气体动力船走向远洋成为可能。本文介绍了气体燃料动力系统发展的趋势,以第三方视角,对比高低压低速双燃料发动机的特点和优劣,分析其经济性和应用前景,供船东选型参考。 低速双燃料发动机前景 1、天然气燃料的安全性和经济性安全性和经济性是决定清洁能源技术能否广为应用的最关键的两个方面。首先,气体燃料的使用已经有几十年的经验, 人们不断摸索完善燃气在船上安全应用的方案,各大船级社制定了自己的规范。 IMO也在MSC285(86临时导则的基础上修订了IGC Code并将很快推出IGF Code, 双燃料动力装置的安全性已得到认可。另一方面,风险分析和模拟技术的使用,使燃气动力系统得到了适当的简化,单一气体发动机也得以使用。但对于大型远洋船舶,风险分析表明动力系统的可靠性非常重要,在一定时期内,双燃料系统 仍将是不可替代的。其次,在经济性方面,燃气和燃油的价格差是影响气体燃料动力装置经济性的关键因素。由于我国天然气价格和燃料油价格相差不大,普 通船舶使用液化天然气代替燃料油目前还不具备经济性。但美国天然气价格不到我国的 1/3,因此美国船东已开始建造气体燃料的大型船舶。2006年至2014 年能源价格走势表明,燃油价格上升快于天然气,可随着天然气的应用增加,这种趋势是否会持续并不确定。随着硫氧化物排放控制提高到0.1%的标准,通常 只有MGC才能达到。即使天然气价格上涨,但和昂贵的低硫燃油相比仍有优势。影响天然气推广应用的另一个重要因素是排放控制区的多少。 图1燃料价格走势

气体燃料发动机

气体燃料发动机概述 天然气发动机发展现状 天然气主要由甲烷组成,有气田气和油田伴生气两类。作为燃料,天然气有以下特点:(1)天然气的体积热值和质量热值略高于汽油,但理论混合气热值要比汽油低,甲烷含量越高,相差越大。纯甲烷的理论混合气热值比汽油低10%左右。 (2)抗爆震性能好。天然气的主要成分是甲烷,甲烷的辛烷值为130,具有高抗爆震性能。天然气专用发动机的合理压缩比为12,允许压缩比最高可达到15,具有采用提高压缩比来提高发动机动力性、经济性的潜力。 (3)混合气发火界限宽。天然气混合气具有很宽的发火界限,过量空气系数的变化范围为0.6-1.8,可采用稀薄燃烧技术来提高汽车的经济性和环保效益。 (4)天然气的着火温度高,火焰传播速度慢,因此需要更高的点火能量。 (5)天然气是清洁燃料。由于燃烧温度低,NOX生成少,天然气为气态,混合均匀,燃烧较完全,微粒排放极低。 天然气在发动机上应用有多种形式,根据不同分类方法,可分为很多种。 (1)按点火方式可分为电火花点火、柴油引燃和掺加其它气体燃料直接压燃。 (2)按供气方式可分为缸外预混合和缸内直接喷气。缸外预混合供气又分为混合器式、单点喷射式和多点喷射式,缸内直接喷气又分为低压喷射和高压喷射。 (3)按燃烧方式可分为均质预混燃烧、扩散燃烧和HCCI燃烧方式。 (4)按燃料的使用方式可分为单一燃料发动机、两用燃料发动机和双燃料发动机。 (5)按控制方式可分为机械控制式、机电控制式和电子控制式。 目前使用的天然气发动机主要由传统发动机改装而成,柴油机改装能利用柴油机的高压缩比,是一种有潜力的改装方式。柴油/天然气双燃料发动机是以少量喷入缸内的柴油作为引燃燃料,天然气作为主要燃料。其优点是:既可用柴油引燃天然气工作,也可用100%柴油燃料工作。这对于那些因环境和经济等因素想利用天然气,但天然气供应又不能充分保证的区域特别有价值。它的另一个突出优点是适合在各种功率的柴油机上进行改装,只需增加一套供气系统,就能用天然气代替大量的柴油(80%以上),且保留了柴油机在动力性和经济性方面的优势。在技术层面上,柴油/天然气双燃料发动机的技术主要随着天然气供气方式的改进而发展的。 进气道混合器预混合供气方式是应用较早,也是应用最为广泛的方案。研究发现,在原机改动很小的情况下,柴油/天然气双燃料发动机的最大功率略有下降,烟度排放大幅降低,NOX 略有下降,发动机的排温和噪声也有所下降,但HC和CO有所上升。这种供气方式的装置简单、成本低,在我国应用较为广泛,国内研究者也对其进行了详细研究。 清华大学的欧阳明高教授研究了供油系统参数(如供油提前角、引燃油量、喷油器参数、针阀开启压力)对柴油/天然气双燃料发动机燃烧特性、动力性、经济性和排放性等的影响,提出了改善双燃料发动机引燃柴油供给系统参数的措施。 采用进气道混合器预混合供气,很难精确控制天然气的进气量,各缸的燃料分配不均匀。随

气体燃料发动机供气形式及特点参考文本

气体燃料发动机供气形式及特点参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

气体燃料发动机供气形式及特点参考文 本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 一、进气道混合器预混合供气方式 进气道混合器预混合供气方式是应用较早的方案,现 在仍然被广泛应用,由于它具有汽油机的供气特征,以及 供气装置简单,在点燃式发动机和压燃式天然气一柴油双 燃料发动机上得以应用。但是该供气方式具有明显的不足 之处,进气道混合器预混合供气方式由于天然气占据空气 充量一般可达10%~15%,影响发动机燃烧过程及其升功 率。图9-1所示进气道混合器预混合供气方式示意图。二、缸外进气阀处喷射供气方式

缸外进气阀处喷射是一种较进气道混合器预混合供气方式更进一步的供气方式,该供气方法是将气体喷射器布置在各缸进气道进气阀处,可实现对每一缸的定时定量供气,通常称之为电控多点气体喷气系统。它可以减轻和消除由于气门重叠角存在造成的燃气直接逸出、恶化排放和燃料浪费的不良影响。进气阀处喷射由于可以由软件严格控制气体燃料喷射时间与进排气门及活塞运动的相位关系,易于实现定时定量供气和层状进气。可根据发动机转速和负荷,更准确地控制对发动机功率、效率和废气排放有重要影响的空燃比指标,实现稀薄混合气燃烧,更进一步提高发动机的动力性、经济性,以及更进一步改善排放特性。缸外进气阀处喷射虽然可以降低供气对空气充量的影响,但这种影响仍然在一定程度上存在着。进气阀处喷射的高速电磁阀是其基本部件,同时配置有电控单元ECU 实施控制。往往该控制部分要延伸至整个发动机的控制系

发动机燃烧质量分析(1)

发动机燃烧质量分析 发动机的工作原理:下图为一单缸发动机示意图 与发动机的燃烧质量有关的一些参数,以及它们对燃烧质量的影响及改进措施 一、燃烧速度

燃烧速度指单位时间燃挠的混合气量,是衡量发动机性能的指标之一,可以表达为: 式中: U —火焰传播速度; T A —火焰前锋面积; T ρT—未燃混合气密度。 要想使燃挠迅速、及时完成,需要有较高的燃烧速度且合理变化。燃烧速度的大小主要取决于火焰传播速度、火焰前锋面积及未燃混合气密度。 (一)火焰传播速度U T 火焰传播速度取决于燃烧室中气体紊流运动,混合气成分和混合气初始温度。气体紊流强度与火焰速度比之间为一直线关系。紊流强度u指各点速度的均方根值;火馅速度比是紊流火馅传播与层流火焰传播速度之比。因此,加强燃烧室的紊流,是提高火焰传播速度的主要手段。采用过量空气系数A t =0.85-0.95时的混合气,可以提高混合气初始温度,有助于加速火焰传播。 “有条不紊的线状运动,彼此不相混掺,为层流流动。随机运动,每个质点的轨迹都是混乱的,在其前进过程中向横向发生混掺,流动,示出很多涡旋,时而消灭时而发生,是为紊流流动。”

(二)火焰前锋面积A T 燃烧室形状与火花塞位置配合情况,对火焰前锋面分布规律有很大影响。图5-8所示为不同燃烧室火焰前锋面积变化情况。

因此,合理设计燃烧室形状及合理布置火花塞的位置,可以改变不同时期火焰前锋扫过的面积,使明显燃烧期相对曲轴转角的位置及压力升高率在合适的范围内。

(三)可燃混合气密度ρT 增大未燃混合气的密度,可以提高进气压力和压缩比,从而提高混合气的燃烧速度。 二、混合气成分 改变化油器主量孔的大小或改变通过断面可以改变混合气成分。若使用不当也很容易造成混合气成分改变。例如,空气滤清器堵塞,化油器空气量孔堵塞,会使混合气过浓。化油器浮子室油面调整过低,会使混合气体过稀等。混合气浓度的改变对发动机的动力性、燃油经济性及爆燃倾向有很大影响,因此,分析混合气成分对燃烧过程的影响是非常重要的。 燃料能否及时燃烧,取决于火焰传播速度。影响火焰传播速度的主要因素是混合气成分,火焰传播速度随过量空气系数的变化如图5-9所示。

气体燃料发动机供气形式及特点

安全管理编号:LX-FS-A44375 气体燃料发动机供气形式及特点 In the daily work environment, plan the important work to be done in the future, and require the personnel to jointly abide by the corresponding procedures and code of conduct, so that the overall behavior or activity reaches the specified standard 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

气体燃料发动机供气形式及特点 使用说明:本安全管理资料适用于日常工作环境中对安全相关工作进行具有统筹性,导向性的规划,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 一、进气道混合器预混合供气方式 进气道混合器预混合供气方式是应用较早的方案,现在仍然被广泛应用,由于它具有汽油机的供气特征,以及供气装置简单,在点燃式发动机和压燃式天然气一柴油双燃料发动机上得以应用。但是该供气方式具有明显的不足之处,进气道混合器预混合供气方式由于天然气占据空气充量一般可达10%~15%,影响发动机燃烧过程及其升功率。图9-1所示进气道混合器预混合供气方式示意图。

双燃料技术发展史

双燃料系统的发展史 一、国外双燃料的发展 1 车用天然气双燃料发动机的研究 双燃料系统的开发最早是从车用发动机开始的,从上世纪八十年代开始美国能源转换公司(ECI)协助开发了一种新型的双燃料系统,并把两台高速柴油机改装成为双燃料发动机:一台是美国卡特皮勒公司的3208型柴油机,另一台日本五十铃公司的6BD I型柴油机。 1994年,GM公司开始研究二冲程和四冲程双燃料发动机,澳大利亚、日本、德国等也在进行天然气发动机的研制工作。 乌克兰科学院天然气研究所和基辅汽车公路研究所研制的BE3IA3548AFYl双燃料汽车,该车采用由M3240H1柴油机改装成的M3240HFJ-I双燃料发动机,天然气与柴油采用联动控制机构,试验表明天然气替代了45%的柴油。 另外美国CleanAirPartner公司与加拿大阿尔伯达州卡尔加里市代用燃料系统(AFS)公司联营,共同开发出多点喷射的双燃料控制系统,并应用在10.3L卡特彼勒3176B重型发动机上,在发动机压缩比不变的情况下,两种燃料均采用电子控制,燃用的天然气可达燃料总量的60%-90%,发动机根据需要能转换为100%燃用柴油。 目前,国外主要采用两种方式提高双燃料发动机的性能: (1)高压天然气的缸内直喷技术; (2)微引燃技术条件下的多点电喷射技术。 美国BKM公司研究了具有先进水平的“微引燃”双燃料系统,用接近1%的引燃柴油为天然气发动机提供所需要的点火能量。这一系统的核心是采用Servojet电控液压泵喷嘴控制点火油量、天然气多点电子控制顺序喷射装置以及专用的计算机软件,同时也采用了断缸、增压空气旁路、废气再循环及优化引燃油的喷射正时等措施。这大大降低了小负荷时的未燃HC排放也提高天然气替代柴油的百分率,从而在所有工况范围内使天然气在所消耗的燃料总量中超过了95%。 康明斯公司和Clean Air Power公司是在车用双燃料系统的研发与应用领域居于国际领先地位的代表性企业。

内燃机燃烧放热分析计算及其与燃烧分析仪的嵌入集成

1绪论 1.1课题背景及意义 1.2国内外研究现状 1.3本文研究内容 2燃烧分析的数据采集、信号分析的原理与方法2.1燃烧分析数据采集方法 2.1.1示功图的概念及用途 2.1.2气缸压力测量方法 2.1.3压力测量精度的主要影响因素及修正方法2.2气缸压力数据预处理 2.3燃烧放热计算原理 2.3.1燃烧放热计算的假设条件 2.3.2基本微分方程 2.3.3燃烧放热率计算步骤 3燃烧放热计算程序 3.1内燃机燃烧放热计算的需求分析 3.2程序设计平台的选择 3.3程序结构和流程 3.4程序的数据结构及变量说明 3.5输出量 3.6图形化界面 4燃烧放热计算结果分析 4.1实验条件 4.2计算结果 4.3误差分析 4.4敏感参数分析 4.5 MA TLAB与FORTRAN计算结果的对比 5与燃烧分析仪的嵌入集成的研究 5.1硬件系统 5.2 LabView简介 5.3算法与燃烧分析仪的嵌入集成 6结论与展望 6.1全文总结 6.2展望

1.1课题背景及意义 近年来,汽车工业已成为全球最大的制造业,年生产能力已达到6500万辆,全球汽车保有量已达9亿辆。由于内燃机是目前燃烧效率最高的热力发动机,故广泛的应用于国民经济的各个领域和国防部门,它所发出的总功率占全世界所有动力装置总功率的90%,它所排出的有害物质又是环境污染的最大源泉,全世界的汽车交通占温室气体排放的20%,全球机动车数量的高速增长给气候带来了严重的问题。因此为了节约能源和降低污染,各工业发达国家十分重视内燃机气缸内燃烧的研究工作。 为了降低内燃机的排放,必须从缸内工作过程着手,分析污染物产生的原因,内燃机数据采集和分析已成为内燃机生产和性能研究工作中必不可少的一个环节。随着内燃机应用的范围在不断扩大,品种和数量在不断增长,对内燃机中各系统零件的性能、使用寿命等技术指标的要求也愈来愈高。因此,对内燃机的工作过程、燃料及扩大燃料的品种、新型结构的研究以及设计和研制合乎要求的产品并对原有产品的分析改造,以满足各种用途的需要,自然就成为内燃机动力工程技术人员的重要任务。在内燃机试验中,除了要定性地观察一些物理和化学现象以外,更重要地是对运行过程中许多有关地物理量和化学量进行精确地定量的测定,如果没有先进的测量方法和测试设备,包括先进的数据处理方法和相应的设备,也就没有先进的内燃机检测技术。所以,若要设计性能更加优良的内燃机,优化燃烧,提高排放的要求,就需要对内燃机各方面的性能进行深入的研究。影响内燃机各方面性能的因素虽然是多种多样的,但燃烧过程具有举足轻重的地位。内燃机的动力性、经济性及排放特性与燃烧过程有着密切的关系。内燃机燃烧过程与其主要工作特性、功率、效率和排放以及部分的机械和热负荷、噪音、振动等都直接紧密地相耦合,所以要改进和完善内燃机的总体性能和某些局部特性,都必须首先在燃烧过程的改善和优化方面下功夫,对燃烧放热过程的深入分析是对发动机性能研究和改善的有效手段。由于内燃机的燃烧过程所占的时间极短,所处的空间很小,更重要的是内燃机的燃烧反应物是很不均匀的,并且经常是流动和扰动的反应物和燃烧产物处于同一容积。这一切就构成内燃机的燃烧过程是一个十分复杂多变的物理-化学过程。但是现在借助微机系统高性能数据采集卡各种传感器(压力传感器、针阀升程传感器、滤波器和电荷放大器等)就能够将大量的燃烧过程物理信息测量记录处理与显示。从这些信息和图形可以比较可靠地分析研究内燃机燃烧过程的完善程度,为进一步改善燃烧过程提供了科学的依据。 气缸压力分析是分析发动机燃烧状况的重要方法。气缸压力携带了内燃机工作过程的大量有用信息,并且与内燃机工作过程的评价参数和性能指标有着密切的关系。各缸的工作参数、排放指标、性能指标等的差异都全部或部分地反映在气缸压力上。在内燃机的状态监测和故障诊断中,气缸压力是表征内燃机运行状态的最好指标之一,内燃机的工作状态及故障大都可以通过气缸压力随时间(或曲轴转角)的变化曲线反映出来。因此采集气缸内压力并对其进行统计或热力学分析是内燃机产品设计、改进或研究的重要方法。内燃机气缸气体压力曲线(示功图)是深入研究内燃机工作过程及动力性能指标的重要内容。通过对示功图分析可得出工作过程的最高燃烧压力和其所在的曲轴转角位置等重要参数。示功图既是内燃机性能参数计算和放热规律分析的依据,又是内燃机燃烧过程数学模拟精确程度的评价标准。利用实测示功图,可以计算内燃机的燃烧放热规律,对实际内燃机的燃烧过程进行分析,可以研究内燃机的循环变动。并且,可以借助示功图进行内燃机最佳状态调整及故障诊断,故国内外对其研究较多。因此,内燃机数据采集与燃烧分析技术得到了迅速的发展。 1.2国内外研究现状 现在,国内外己研究出许多发动机数据采集和分析用的仪器设备,并随着微电子技术和

燃料电池及燃料电池发动机研究

燃料电池及燃料电池发动机研究 原作者:宋珂同济大学中德学院 燃料电池主要由阳极、阴极、电解质组成是一种将氢、氧的化学能通过催化反应直接转化成电能的装置。其最大特点是清洁、高效,被视为石油等生化能源的替代品。燃料电池种类较多,其中质子交换膜燃料电池在电动汽车上用运最广泛。燃料电池发动机是电动汽车的关键部件,具有自身的比较优势及缺点。 燃料电池(FuelCell)是一种将氢,氧的化学能通过催化反应直接转换成电能的装置。其最大特点在于反应过程不涉及燃烧和热机(日eatengine),不受卡诺循环(Carnotcycle)的限制,因此能量转换效率可高达60%~70%实际使用效率是普通内燃机的2倍左右。质子交换膜燃料电池(Proton Exchange Membrane Fuel Cell PEMFC)是燃料电池的一种因为具备了低温快速启动,无电解液腐蚀溢漏问题等运输动力所必须具备的特点,而被认为是今后燃料电池汽车上最理想的。 一、燃料电池的历史 燃料电池的起源可以追溯到19世纪初,欧洲的两位科学家CFSchbnbein教授与WilliamRGrove 爵士,他们分别是燃料电池原理的发现者和燃料电池的发明者。 一般认为燃料电池最早是诞生于1839年Grove的气体电池(Gas voltaic cbattery)实验,然而比较严谨的说法是Schdnbein在1838年首度发现了燃料电池的电化学效应,而第二年Grove 发明了燃料电池。Schonbein发现氢气与铂电极上的氯气或氧气所进行的化学反应过程中能够产生电流,Schonbein将这种现象解释为极化效应(Polarisationeffect),这便是后来被称做燃料电池的起源。Grove的气体电池基本构想源自于水的电解实验。水电解过程是用电将水分解成为氢气和氧气,反过来,Grove认为将氧气和氢气反应就有可能逆转电解过程而产生电。为了验证这一理论,他将两条铂分别放入两个密封的瓶中,一个瓶中充满氢气,另一个瓶中充满氧气,当这两个密封的瓶浸入稀硫酸溶液时,电流便开始在两个电极之间流动,装有氧气的瓶中产生了水,而为了提高整个装置所产生的电压,Grove将四组这种装置串联起来,他将这种电池称做“气体电池”,这个装置就是后来被公认的全世界第一个燃料电池。而“燃料电池”(FuelCell)一词直到1889年才由LMond和https://www.wendangku.net/doc/5813114307.html,nger两位化学家所提出。然而在19世纪,要将燃料电池商业化存在着很多无法克服的障碍如铂的来源,氢气的制备等等。因此Grove的发明并未引起大家的关注。到了19世纪末,更由于内燃机技术的崛起与快速发展,同时配合大规模化石燃料的开发与利用,使得燃料电池应用变得遥遥无期。

相关文档
相关文档 最新文档