文档库 最新最全的文档下载
当前位置:文档库 › 知识讲解 对数函数及其性质 基础

知识讲解 对数函数及其性质 基础

对数函数及其性质

【学习目标】

1.理解对数函数的概念,体会对数函数是一类很重要的函数模型;

2.探索对数函数的单调性与特殊点,掌握对数函数的性质,会进行同底对数和不同底对数大小的比较;

3.了解反函数的概念,知道指数函数x ya?与对数函数log a yx?互为反函数

??0,1aa??.

【要点梳理】

要点一、对数函数的概念

1.函数y=log a x(a>0,a≠1)叫做对数函数.其中x是自变量,函数的定义域是??0,??,值域为R.

2.判断一个函数是对数函数是形如log(0,1)a yxaa???且的形式,即必须满足以下

条件:

(1)系数为1;

(2)底数为大于0且不等于1的常数;

(3)对数的真数仅有自变量x.

要点诠释:

(1)只有形如y=log a x(a>0,a≠1)的函数才叫做对数函数,像

log(1),2log,log3aaa yxyxyx?????等函数,它们是由对数函数变化得到的,都不

是对数函数。

(2)求对数函数的定义域时应注意:①对数函数的真数要求大于零,底数大于零且不等于1;②对含有字母的式子要注意分类讨论。

要点二、对数函数的图象与性

1

1

图象

性质定义域:(0,+值域:R

过定点(1,0),即x=1时,y=0 在(0,+∞)上增函数在(0,+∞)上是减当0<x<1时,y<0,

当x≥1时,y≥0 当0<x<1时,y>0,

当x≥1时,y≤0

要点诠释:

关于对数式log a N的符问题,既受a的制约又受N的制约,两种因素交织在一起,应用时经常出错.下面介绍一种简单记忆方法,供同学们学习时参考.

以1为分界点,当a,N同侧时,log a N>0;当a,N异侧时,log a N<0.

要点三、底数对对数函数图象的影响

1.底数制约着图象的升降.

如图

要点诠释:

由于底数的取值范围制约着对数函数图象的升降(即函数的单调性),因此在解与对数函数单调性有关的问题时,必须考虑底数是大于1还是小于1,不要忽略.

2.底数变化与图象变化的规律

在同一坐标系内,当a>1时,随a的增大,对数函数的图像愈靠近x轴;当0

)

要点四、反函数

1.反函数的定义

设,AB分别为函数()yfx?的定义域和值域,如果由函数()yfx?所解得的()xy??也是一个函数(即对任意的一个yB?,都有唯一的xA?与之对应),那么就称函数()xy??是函数()yfx?的反函数,记作1()xfy??,在1()xfy??中,y是自变量,x是y的函数,习惯上改写成1()yfx??(,xByA??)的形式.函数1()xfy??(,yBxA??)与函数1()yfx??(,xByA??)为同一函数,因为自变量的取值范围即定义域都是B,对应法则都为1f?.

由定义可以看出,函数()yfx?的定义域A正好是它的反函数1()yfx??的值域;函数()yfx?的值域B正好是它的反函数1()yfx??的定义域.

要点诠释:

并不是每个函数都有反函数,有些函数没有反函数,如2yx?.一般说来,单调函数有

反函数.

2.反函数的性质

(1)互为反函数的两个函数的图象关于直线yx?对称.

(2)若函数()yfx?图象上有一点??,ab,则??,ba必在其反函数图象上,反之,若??,ba在反函数

图象上,则??,ab必在原函数图象上.

【典型例题】

类型一、对数函数的概念

例1.下列函数中,哪些是对数函数?

(1)log(0,1)a yxaa???;

(2)2log2;yx??

(3)28log(1)yx??;

(4)log6(0,1)x yxx???;

(5)6logyx?.

【答案】(5)

【解析】(1)中真数不是自变量x,不是对数函数.

(2)中对数式后加2,所以不是对数函数.

(3)中真数为1x?,不是x,系数不为1,故不是对数函数.

(4)中底数是自变量x,二非常数,所以不是对数函数.

(5)中底数是6,真数为x,符合对数函数的定义,故是对数函数.

【总结升华】已知所给函数中有些形似对数函数,解答本题需根据对数函数的定义寻找满足的条件.

类型二、对数函数的定义域

求含有对数函数的复合函数的定义域、值域,其方法与一般函数的定义域、值域的求法类似,但要注意对数函数本身的性质(如定义域、值域及单调性)在解题中的重要作用. 例2. 求下列函数的定义域:

(1)2log a yx?; (2)log(4-)(01)a yxaa???且.

【答案】(1){|0}xx?;(2){|4}xx?.

【解析】由对数函数的定义知:20x?,40x??,解出不等式就可求出定义域.

(1)因为20x?,即0x?,所以函数2log{|0}a yxxx??的定义域为;

(2)因为40x??,即4x?,所以函数log(4-){|4}a yxxx??的定义域为.

【总结升华】与对数函数有关的复合函数的定义域:求定义域时,要考虑到真数大于0,底数大于0,且不等于1.若底数和真数中都含有变量,或式子中含有分式、根式等,

在解答问题时需要保证各个方面都有意义.一般地,判断类似于log()a yfx?的定义域时,应首先保证()0fx?.

举一反三:

【变式1】求函数33121log(1)1xyx????的定义域. 【答案】(1,23)?(23,2] 【解析】因为

121210log(1)0log(1)1xxx???????????????,所以101132xxx????????????,所以函数的定义域为(1,23)?(23,2].

类型三、对数函数的单调性及其应用

利用函数的单调性可以:①比较大小;②解不等式;③判断单调性;④求单调区间;⑤求值域和最值.要求同学们:一是牢固掌握对数函数的单调性;二是理解和掌握复合函

数的单调性规律;三是树立定义域优先的观念.

例3. 比较下列各组数中的两个值大小:

(1)33log3.6,log8.9;

(2)0.20.2log1.9,log3.5;

(3)2log5与7log5;

(4) 3log5与6log4.

(5)log4.2,log4.8aa(01aa??且).

【思路点拨】利用函数的单调性比较函数值大小。

【答案】(1)< ;(2) <;(3) >;(4) >;(5) 略.

【解析】由数形结合的方法或利用函数的单调性来完成.

(1)解法1:画出对数函数3logyx?的图象,横坐标为3.6的点在横坐标为8.9的点的下方,所以,33log3.6log8.9?;

解法2:由函数3logyx?在R+上是单调增函数,且3.6<8.9,所以33log3.6log8.9?;

(2)与第(1)小题类似,0.2logyx?在R+上是单调减函数,且1.9<3.5,所以

0.20.2log1.9log3.5?;

(3)函数2logyx?和7logyx?的图象如图所示.当1x?时,2logyx?的图象在

7logyx?的图象上方,这里5x?,27log5log5??.

(4)

3366log5log31log6log4,????

36log5log4??

(5) 注:底数是常数,但要分类讨论a的范围,再由函数单调性判断大小.

解法1:当1a?时,log a yx?在(0,+∞)上是增函数,且4.2<4.8,所以,

log4.2log4.8aa?

当01a??时,y=log a x在(0,+∞)上是减函数,且4.2<4.8,所以,log4.2log4.8aa?

解法2:转化为指数函数,再由指数函数的单调性判断大小,

令1log4.2a b?,则1b a=4.2,令2log4.8a b?,则24.8b a?,

当1a?时,x ya?在R上是增函数,且4.2<4.8,

所以,b1

当时01a??,x ya?在R上是减函数,且4.2<4.8 所以,b1>b2,即aa log4.2>log4.8.

【总结升华】比较两个对数值的大小的基本方法是:

(1)比较同底的两个对数值的大小,常利用对数函数的单调性.

(2)比较同真数的两个对数值的大小,常有两种方法:①先利用对数换底公式化为同底的对数,再利用对数函数的单调性和倒数关系比较大小;②利用对数函数图象的互相位置关系比较大小.

(3)若底数与真数都不同,则通过一个恰当的中间量来比较大小.

【高清课堂:对数函数369070 例1】

例4.利用对数函数的性质比较0.23、3log2、5log4的大小.

【答案】0.235log4??3log2

【解析】0.231?,3log21?,5log41?,?只需比较3log2与5log4的大小即可

3222952222log2log5log5log5log51log4log3log42log3log9?????

?3log2?5log4

?0.235log4??3log2

【总结升华】本题也可以使用一个常用的结论:类似于12342345???的一个结论,2345log1log2log3log4???,得出三个数的大小.

举一反三:

【变式1】设13log2a?,12log3b?,0.31()3c?,则()

A. a<b<c B. a<c<b C. b<c<a D. b<a<c

【思路点拨】直接判断对数值的范围,利用对数函数的单调性比较即可.

【答案】D

【解析】∵13log20a??,12log30b??,

111322log2log2log3,??

0.31()03c??.

∴b<a<c.

故选:D.

【总结升华】本题考查对数函数的单调性,对数值的大小比较,用单调性比较大小是函数单调性的一个重要应用.

例5.已知函数22()log(3)fxxaxa???在区间[2,+∞)上递增,则实数a的取值

范围是()

A.(-∞,4) B.(-4,4] C.(-∞,-4)∪[2,+∞) D. [-4,2)

【思路点拨】由题意知函数22()log(3)fxxaxa???是由2logyt?和

2()3txxaxa???复合而来,由复合函数单调性结论,只要t(x)在区间[2,+∞)上单调递增且f(x)>0即可.

【答案】B

【解析】令2()3txxaxa???,由题意知:

t(x)在区间[2,+∞)上单调递增且t(x)>0

22(2)4230ataa??????????又a∈R+解得:-4<a≤4

则实数a的取值范围是(-4,4] 故选B.

【总结升华】本题主要考查复合函数的单调性和一元二次方程根的分布,换元法是解决本类问题的根本.

举一反三:

【变式1】求函数??22log4yx??的值域和单调区间.

【答案】??2,??;减区间为??,0??,增区间为??0,??.

【解析】设24tx??,则244tx???,∵ y=2logt为增函数,

2222loglog(4)log42tx?????

??22log4yx???的值域为??2,??.

知识讲解-函数的单调性-基础

函数的单调性 【学习目标】 1.理解函数的单调性定义; 2.会判断函数的单调区间、证明函数在给定区间上的单调性; 3.学会运用单调性的定义求函数的最大(小)值。 【要点梳理】 要点一、函数的单调性 1.增函数、减函数的概念 一般地,设函数f(x)的定义域为A ,区间D A ?: 如果对于D 内的任意两个自变量的值x 1、x 2,当x 1f(x 2),那么就说f(x)在区间D 上 是减函数. 要点诠释: (1)属于定义域A 内某个区间上; (2)任意两个自变量12,x x 且12x x <; (3)都有1212()()(()())f x f x f x f x <>或;

(4)图象特征:在单调区间上增函数的图象从左向右是上升的,减函数的图象从左向右是下降的. 2.单调性与单调区间 (1)单调区间的定义 如果函数f(x)在区间D 上是增函数或减函数,那么就说函数f(x)在区间D 上具有单调性,D 称为函 数f(x)的单调区间. 函数的单调性是函数在某个区间上的性质. 要点诠释: ①单调区间与定义域的关系----单调区间可以是整个定义域,也可以是定义域的真子集; ②单调性是通过函数值变化与自变量的变化方向是否一致来描述函数性质的; ③不能随意合并两个单调区间; ④有的函数不具有单调性. (2)已知解析式,如何判断一个函数在所给区间上的单调性? 3.证明函数单调性的步骤 (1)取值.设12x x ,是()f x 定义域内一个区间上的任意两个量,且12x x ; (2)变形.作差变形(变形方法:因式分解、配方、有理化等)或作商变形; (3)定号.判断差的正负或商与1的大小关系; (4)得出结论. 4.函数单调性的判断方法

专题:对数函数知识点总结及类型题归纳

专题:对数函数知识点总结 1.对数函数的定义: 一般地,函数 x y a log =( )叫做对数函数 .定义域是 2. 对数函数的性质为 思考:函数log a y x =与函数x y a =)10(≠>a a 且的定义域、值域之间有什么关系? ___________________________________________________________________________ 对数函数的图象与指数函数的图象关于_______________对称。 一般的,函数y=a x 与y=log a x (a>0且a ≠1)互称相对应的反函数,它们的图象关于直线y=x 对称 y=f(x)存在反函数,一般将反函数记作y=f -1 (x) 如:f(x)=2x ,则f -1 (x)=log 2x,二者的定义域与值域对调,且图象关 于直线y=x 对称 函数与其反函数的定义域与值域对调,且它们的图象关于直线y=x 对称 专题应用练习 一、求下列函数的定义域

(1)0.2log (4);y x =-; (2)log 1a y x =- (0,1).a a >≠; (3)2(21)log (23)x y x x -=-++ (4)2log (43)y x =- (5) y=lg 1 1 -x (6) y=x 3log =log(5x-1)(7x-2)的定义域是________________ = )8lg(2x - 的定义域是_______________ 3.求函数2log (21)y x =+的定义域___________ 4.函数y=13 log (21)x -的定义域是 5.函数y =log 2(32-4x )的定义域是 ,值域是 . 6.函数5log (23)x y x -=-的定义域____________ 7.求函数2 log ()(0,1)a y x x a a =->≠的定义域和值域。 8.求下列函数的定义域、值域: (1)2log (3)y x =+; (2)2 2log (3)y x =-; (3)2log (47)a y x x =-+(0a >且1a ≠). 9.函数f (x )=x 1 ln (432322+--++-x x x x )定义域 10.设f(x)=lg x x -+22,则f )2 ()2(x f x +的定义域为 11.函数f(x)=)1(lo g 1 |2|2---x x 的定义域为 12.函数f(x)= 2 29)2(1x x x g --的定义域为 ; 13.函数f (x )= x 1 ln (432322+--++-x x x x )的定义域为 14 2 2 2 log log log y x =的定义域是 1. 设f (x )=lg(ax 2 -2x +a ), (1) 如果f (x )的定义域是(-∞, +∞),求a 的取值围; (2) 如果f (x )的值域是(-∞, +∞),求a 的取值围. 15.已知函数)32(log )(22 1+-=ax x x f (1)若函数的定义域为R ,数a 的取值围 (2)若函数的值域为R ,数a 的取值围

对数函数知识点总结(供参考)

对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数,记作:N x a log =(a — 底数,N — 真数,N a log — 对数式) 说明:○1 注意底数的限制0>a ,且1≠a ; ○2 x N N a a x =?=log ; ○3 注意对数的书写格式. 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . (二)对数的运算性质 如果0>a ,且1≠a ,0>M ,0>N ,那么: ○ 1 M a (log ·=)N M a log +N a log ; ○ 2 =N M a log M a log -N a log ; ○ 3 n a M log n =M a log )(R n ∈. 注意:换底公式 a b b c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ;0>b ). 利用换底公式推导下面的结论 (1)b m n b a n a m log log = ; (2)a b b a log 1log =. (二)对数函数 1、对数函数的概念:函数0(log >=a x y a ,且)1≠a 叫做对数函 数,其中x 是自变量,函数的定义域是(0,+∞). 注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。如:x y 2log 2=,5 log 5x y = 都不是对数函数,而只能称 其为对数型函数. ○ 2 对数函数对底数的限制:0(>a ,且)1≠a . 对数函数·例题解析 例1.求下列函数的定义域: (1)2log x y a =; (2))4(log x y a -=; (3))9(log 2 x y a -=.

函数基础知识及注意点

函数一章基础知识 一、映射与函数: (1)映射的概念: (2)一一映射:(3)函数的概念: 如:若 }4,3,2,1{=A ,},,{c b a B =;问:A 到B 的映射有 个,B 到A 的映射有 个;A 到B 的函数有 个,若}3,2,1{=A ,则A 到B 的一一映射有 个。 函数 )(x y ?=的图象与直线a x =交点的个数为 个。 二、函数的三要素: , , 。 相同函数的判断方法:① ;② (两点必须同时具备) (1)函数解析式的求法: ①定义法(拼凑):②换元法:③待定系数法:④赋值法: (2)函数定义域的求法: ① ) ()(x g x f y = ,则 ; ②)()(* 2N n x f y n ∈=则 ; ③ 0)]([x f y =,则 ; ④如:)(log )(x g y x f =,则 ; ⑤含参问题的定义域要分类讨论; 如:已知函数 )(x f y =的定义域是]1,0[,求)()()(a x f a x f x -++=?的定义域。 ⑥对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。如:已知扇形的周长为20,半径为r ,扇形面积为S ,则==)(r f S ;定义域为 。 (3)函数值域的求法: ①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如:) ,(,)(2n m x c bx ax x f ∈++=的形式; ②逆求法(反求法):通过反解,用y 来表示x ,再由x 的取值范围,通过解不等式,得出y 的取值范围;常 用来解,型如: ),(,n m x d cx b ax y ∈++= ; ④换元法:通过变量代换转化为能求值域的函数,化归思想; ⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域; ⑥基本不等式法:转化成型如: )0(>+ =k x k x y ,利用平均值不等式公式来求值域; ⑦单调性法:函数为单调函数,可根据函数的单调性求值域。 ⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。 求下列函数的值域:① ])1,1[,,0,0(-∈>>>-+= x b a b a bx a bx a y (2种方法); ②)0,(,32-∞∈+-=x x x x y (2种方法);③)0,(,1 3 2-∞∈-+-=x x x x y (2种方法); 三、函数的性质: 函数的单调性、奇偶性、周期性

知识讲解_指数函数及其性质_基础

指数函数及其性质 编稿:丁会敏 审稿:王静伟 【学习目标】 1.掌握指数函数的概念,了解对底数的限制条件的合理性,明确指数函数的定义域; 2.掌握指数函数图象: (1)能在基本性质的指导下,用列表描点法画出指数函数的图象,能从数形两方面认识指数函数的性质; (2)掌握底数对指数函数图象的影响; (3)从图象上体会指数增长与直线上升的区别. 3.学会利用指数函数单调性来比较大小,包括较为复杂的含字母讨论的类型; 4.通过对指数函数的概念、图象、性质的学习,培养观察、分析归纳的能力,进一步体会数形结合的思想方法; 5.通过对指数函数的研究,要认识到数学的应用价值,更善于从现实生活中发现问题,解决问题. 【要点梳理】 要点一、指数函数的概念: 函数y=a x (a>0且a ≠1)叫做指数函数,其中x 是自变量,a 为常数,函数定义域为R. 要点诠释: (1)形式上的严格性:只有形如y=a x (a>0且a ≠1)的函数才是指数函数.像23x y =?,12x y =, 31x y =+等函数都不是指数函数. (2)为什么规定底数a 大于零且不等于1: ①如果0a =,则000x x ?>??≤??x x 时,a 恒等于, 时,a 无意义. ②如果0a <,则对于一些函数,比如(4)x y =-,当11 ,,24 x x = =???时,在实数范围内函数值不存在. ③如果1a =,则11x y ==是个常量,就没研究的必要了. 要点诠释:

(1)当底数大小不定时,必须分“1a >”和“01a <<”两种情形讨论。 (2)当01a <<时,,0x y →+∞→;当1a >时,0x y →-∞→。 当1a >时,a 的值越大,图象越靠近y 轴,递增速度越快。 当01a <<时,a 的值越小,图象越靠近y 轴,递减的速度越快。 (3)指数函数x y a =与1 x y a ?? = ??? 的图象关于y 轴对称。 要点三、指数函数底数变化与图像分布规律 (1) ① x y a = ②x y b = ③x y c = ④x y d = 则:0<b <a <1<d <c 又即:x ∈(0,+∞)时,x x x x b a d c <<< (底大幂大) x ∈(-∞,0)时,x x x x b a d c >>> (2)特殊函数 11 2,3, (), ()23 x x x x y y y y ====的图像: 要点四、指数式大小比较方法 (1)单调性法:化为同底数指数式,利用指数函数的单调性进行比较. (2)中间量法 (3)分类讨论法 (4)比较法 比较法有作差比较与作商比较两种,其原理分别为: ①若0A B A B ->?>;0A B A B -,或1A B <即可. 【典型例题】 类型一、指数函数的概念 例1.函数2 (33)x y a a a =-+是指数函数,求a 的值. 【答案】2 【解析】由2 (33)x y a a a =-+是指数函数, 可得2331,0,1, a a a a ?-+=?>≠?且解得12, 01,a a a a ==??>≠?或且,所以2a =. 【总结升华】判断一个函数是否为指数函数: (1)切入点:利用指数函数的定义来判断;

专题:对数函数知识点总结及类型题归纳

专题:对数函数知识点总结 1.对数函数的定义: 一般地,函数 x y a log =( )叫做对数函数 .定义域是 2. 对数函数的性质为 思考:函数log a y x =与函数x y a =)10(≠>a a 且的定义域、值域之间有什么关系? ___________________________________________________________________________ 对数函数的图象与指数函数的图象关于_______________对称。 |

一般的,函数y=a x 与y=log a x (a>0且a ≠1)互称相对应的反函数,它们的图象关于直线y=x 对称 y=f(x)存在反函数,一般将反函数记作y=f -1 (x) 如:f(x)=2x ,则f -1 (x)=log 2x,二者的定义域与值域对调,且图象关 于直线y=x 对称 函数与其反函数的定义域与值域对调,且它们的图象关于直线y=x 对称 专题应用练习 一、求下列函数的定义域 (1)0.2log (4);y x =-; (2 )log a y =(0,1).a a >≠; (3)2 (21)log (23)x y x x -=-++ (4 )y = ? (5) y=lg 1 1 -x (6) y=x 3log =log(5x-1)(7x-2)的定义域是________________ = )8lg(2x - 的定义域是_______________ 3.求函数2log (21)y x =+的定义域___________ 4.函数 的定义域是 5.函数y =log 2(32-4x )的定义域是 ,值域是 . 6.函数5log (23)x y x -=-的定义域____________ { 7.求函数2 log ()(0,1)a y x x a a =->≠的定义域和值域。 8.求下列函数的定义域、值域: (1)2log (3)y x =+; (2)2 2log (3)y x =-; (3)2log (47)a y x x =-+(0a >且1a ≠). 9.函数f (x )=x 1 ln (432322+--++-x x x x )定义域 10.设f(x)=lg x x -+22,则f )2 ()2(x f x +的定义域为

对数函数知识点及典型例题讲解

对数函数知识点及典型例题讲解 1.对数: (1) 定义:如果,那么称为,记作,其中称为对数的底,N称为真数. ①以10为底的对数称为常用对数,记作___________. ②以无理数为底的对数称为自然对数,记作_________. (2) 基本性质: ①真数N为 (负数和零无对数);②;③; ④对数恒等式:. (3) 运算性质: ① log a(MN)=___________________________; ② log a=____________________________; ③ log a M n= (n∈R). ④换底公式:log a N= (a>0,a≠1,m>0,m≠1,N>0) ⑤ . 2.对数函数: ①定义:函数称为对数函数,1) 函数的定义域为( ;2) 函数的值域为; 3) 当______时,函数为减函数,当______时为增函数; 4) 函数与函数互为反函数. ② 1) 图象经过点( ),图象在;2) 对数函数以为渐近线(当时,图象向上无限接近y轴;当时,图象向下无限接近y轴); 4) 函数y=log a x与的图象关于x轴对称. ③函数值的变化特征: ①②③①②③ 例1 计算:(1) (2)2(lg)2+lg·lg5+; (3)lg-lg+lg. 解:(1)方法一利用对数定义求值设=x,则(2+)x=2-==(2+)-1,∴x=-1.方法二利用对数的运算性质求解 = =(2+)-1=-1.

(2)原式=lg(2lg+lg5)+=lg(lg2+lg5)+|lg-1| =lg+(1-lg)=1. (3)原式=(lg32-lg49)-lg8+lg245 = (5lg2-2lg7)-×+ (2lg7+lg5) =lg2-lg7-2lg2+lg7+lg5=lg2+lg5 =lg(2×5)= lg10=. 变式训练1:化简求值. (1)log2+log212-log242-1; (2)(lg2)2+lg2·lg50+lg25; (3)(log32+log92)·(log43+log83). 解:(1)原式=log2+log212-log2-log22=log2 (2)原式=lg2(lg2+lg50)+lg25=2lg2+lg25=lg100=2. (3)原式=( 例2 比较下列各组数的大小. (1)log3与log5;(2)log1.10.7与(3)已知logb<loga<logc,比较2b,2a,2c的大小关系.解:(1)∵log3<log31=0,而log5>log51=0,∴log3<log5. (2)方法一∵0<<1,<,∴0>, ∴, 即由换底公式可得log1.10.7<方法二作出y=与y=的图象. 如图所示两图象与x=相交可知log1.10.7<为减函数,且, ∴b>a>c,而y=2x是增函数,∴2b>2a>2c. 变式训练2:已知0<a<1,b>1,ab>1,则log a的大小关系是() B. C. D. 解: C 例3已知函数f(x)=log a x(a>0,a≠1),如果对于任意x∈[3,+∞)都有|f(x)|≥1成立,试求a的取值范围. 解:当a>1时,对于任意x∈[3,+∞),都有f(x)>0. 所以,|f(x)|=f(x),而f(x)=log a x在[3,+∞)上为增函数, ∴对于任意x∈[3,+∞),有f(x)≥log a3. 因此,要使|f(x)|≥1对于任意x∈[3,+∞)都成立. 只要log a3≥1=log a a即可,∴1<a≤3. 当0<a<1时,对于x∈[3,+∞),有f(x)<0, ∴|f(x)|=-f(x). ∵f(x)=log a x在[3,+∞)上为减函数, ∴-f(x)在[3,+∞)上为增函数. ∴对于任意x∈[3,+∞)都有

(完整版)函数的基本性质详细知识点及题型分类(含课后作业)

《函数的基本性质》专题复习 (一)函数的单调性与最值 ★知识梳理 一、函数的单调性 1、定义: 设函数的定义域为,区间 如果对于区间内的任意两个值,,当时,都有,那么就说在区间上是 ,称为的 。 如果对于区间内的任意两个值,,当时,都有,那么就说在区间上是 ,称为的 。 2、单调性的简单性质: ①奇函数在其对称区间上的单调性相同; ②偶函数在其对称区间上的单调性相反; ③在公共定义域内: 增函数+)(x f 增函数)(x g 是增函数; 减函数+)(x f 减函数)(x g 是减函数; 增函数-)(x f 减函数)(x g 是增函数; 减函数-)(x f 增函数)(x g 是减函数。 3、判断函数单调性的方法步骤: 利用定义证明函数f (x )在给定的区间D 上的单调性的一般步骤: ○ 1 任取x 1,x 2∈D ,且x 1)(x f y =I I )(x f y =

16.变量与函数知识讲解

变量与函数 责编:赵炜 【学习目标】 1.知道现实生活中存在变量和常量,变量在变化的过程中有其固有的范围(即变量的取值范围); 2.能初步理解函数的概念;能初步掌握确定常见简单函数的自变量取值范围的基本方法;给出自变量的一个值,会求出相应的函数值. 3.对函数关系的表示法(如解析法、列表法、图象法)有初步认识. 4. 理解函数图象上的点的坐标与其解析式之间的关系,会判断一个点是否在函数的图象上,明确交点坐标反映到函数上的含义. 5. 初步理解函数的图象的概念,掌握用“描点法”画一个函数的图象的一般步骤,对已知图象能读图、识图,从图象解释函数变化的关系. 【要点梳理】 【高清课堂:389341 变量与函数,知识要点】 要点一、变量、常量的概念 在一个变化过程中,我们称数值发生变化的量为变量.数值保持不变的量叫做常量. 要点诠释:一般地,常量是不发生变化的量,变量是发生变化的量,这些都是针对某个变化过程而言的.例如,60s t =,速度60千米/时是常量,时间t 和里程s 为变量. 要点二、函数的定义 一般地,在一个变化过程中. 如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说 x 是自变量,y 是x 的函数. 要点诠释:对于函数的定义,应从以下几个方面去理解: (1)函数的实质,揭示了两个变量之间的对应关系; (2)对于自变量x 的取值,必须要使代数式有实际意义; (3)判断两个变量之间是否有函数关系,要看对于x 允许取的每一个值,y 是否 都有唯一确定的值与它相对应. (4)两个函数是同一函数至少具备两个条件: ①函数关系式相同(或变形后相同); ②自变量x 的取值范围相同. 否则,就不是相同的函数.而其中函数关系式相同与否比较容易注意到,自变 量x 的取值范围有时容易忽视,这点应注意. 要点三、函数值 y 是x 的函数,如果当x =a 时y =b ,那么b 叫做当自变量为a 时的函数值. 要点诠释:对于每个确定的自变量值,函数值是唯一的,但反过来,可以不唯一,即一个函数值对应的自变量可以是多个.比如:2 y x =中,当函数值为4时,自变量x 的值为±2. 要点四、自变量取值范围的确定 使函数有意义的自变量的取值的全体实数叫自变量的取值范围. 要点诠释:自变量的取值范围的确定方法: 首先,要考虑自变量的取值必须使解析式有意义: (1)当解析式是整式时,自变量的取值范围是全体实数; (2)当解析式是分式时,自变量的取值范围是使分母不为零的实数;

对数函数知识点

对数函数知识点 1 ?对数函数的概念 形如y =log a x(a . 0且a = 1)的函数叫做对数函数. 说明:(1) 一个函数为对数函数的条件是: ①系数为1 ; ②底数为大于0且不等于1的正常数; ③自变量为真数? 对数型函数的定义域: 特别应注意的是:真数大于零、底数大于零且不等于1。 2、由对数的定义容易知道对数函数y二log a x(a ? 0,a = 1)是指数函数y=a x(a .0,a=1)的反函数。 反函数及其性质 ①互为反函数的两个函数的图象关于直线y=x对称。 ②若函数y = f(x)上有一点(a,b),则(b,a)必在其反函数图象上,反之若(b, a)在反函数图象上,则(a,b)必在原函数图象上。 ③利用反函数的性质,由指数函数y二a x(a .0,a")的定义域x R,值域y?0, 容易得到对数函数y"og a x(a .0,a=1)的定义域为x 0,值域为R,利用上节学过的 对数概念,也可得出这一点。 3 4

要牢记y = 2X, y =(1)x, y = 10x, y = (£)x的反函数 y =log2X, y =log! x, y =lg x, y =log ! x的图象,并由此归纳出表中结论。 2 10 5、比较大小 比较对数的大小,一般遵循以下几条原则: ①如果两对数的底数相同,则由对数函数的单调性(底数a -1为增;0 :::a :::1为减)比较。 ②如果两对数的底数和真数均不相同,通常引入中间变量进行比较。 ③如果两对数的底数不同而真数相同,女口y = log ai x与y = log a2x的比较(a 0,印=1, a2 0,a2 = 1). 当a, a2 ? 1时,曲线y1比y的图象(在第一象限内)上升得慢,即当x 1时,m;当0:::x”:1时,y1 y2.而在第一象限内,图象越靠近x轴对数函数的底数越大(同[考题2]的含义)当0 ::: a? ::? <1时,曲线y比月2的图象(在第四象限内)下降得快,即当x 1时, y ■■■ y ;当0 ”:x ::: 1时,y1 y即在第四象限内,图象越靠近x轴的对数函数的底数越小。 6、求参数范围 凡是涉及对数的底含参数的问题,要注意对对数的底数的分析,需要分类讨论时,一定 要分类讨论。

函数基础知识知识点

函数基础知识知识点 一、选择题 1.甲、乙两车同时从A地出发,各自都以自己的速度匀速向B地行驶,甲车先到B地,停车1小时后按原速匀速返回,直到两车相遇.已知,乙车的速度是60千米/时,如图是两车之间的距离y(千米)与乙车行驶的时间x(小时)之间的函数图象,则下列说法不正确的是() A.A、B两地之间的距离是450千米 B.乙车从出发到与甲车返回时相遇所用的时间是6.6小时 C.甲车的速度是80千米/时 D.点M的坐标是(6,90) 【答案】C 【解析】 【分析】 A.仔细观察图象可知:两车行驶5小时后,两车相距150千米,据此可得两车的速度差,进而得出甲车的速度,从而得出A、B两地之间的距离; B.根据路程,时间与速度的关系解答即可; C.由A的解答过程可得结论; D.根据题意列式计算即可得出点M的纵坐标.. 【详解】 ∵根据题意,观察图象可知5小时后两车相距150千米,故甲车比乙车每小时多走30千米,∴甲车的速度为90千米/时; ∴A、B两地之间的距离为:90×5=450千米. 故选项A不合题意; 设乙车从出发到与甲车返回时相遇所用的时间是x小时,根据题意得: 60x+90(x﹣6)=450,解得x=6.6, ∴乙车从出发到与甲车返回时相遇所用的时间是6.6小时. 故选项B不合题意; ∵甲车的速度为90千米/时. 故选项C符合题意; 点M的纵坐标为:90×5﹣60×6=90,故选项D不合题意. 故选:C. 【点睛】 本题主要考查根据函数图象的信息,解决实际问题,理解x,y的实际意义,根据函数图象

上点的坐标的实际意义,求出甲,乙车的速度和A ,B 两地之间的距离是解题的关键. 2.如图,在Rt ABC ?中,点D 为AC 边中点,动点P 从点D 出发,沿着D A B →→的路径以每秒1个单位长度的速度运动到B 点,在此过程中线段CP 的长度y 随着运动时间x 的函数关系如图2所示,则BC 的长为( ) A .1323 B .43 C .45511 D .1453 【答案】C 【解析】 【分析】 根据图象和图形的对应关系即可求出CD 的长,从而求出AD 和AC ,然后根据图象和图形的对应关系和垂线段最短即可求出CP ⊥AB 时AP 的长,然后证出△APC ∽△ACB ,列出比例式即可求出AB ,最后用勾股定理即可求出BC . 【详解】 解:∵动点P 从点D 出发,线段CP 的长度为y ,运动时间为x 的,根据图象可知,当x =0时,y=2 ∴CD=2 ∵点D 为AC 边中点, ∴AD=CD=2,CA=2CD=4 由图象可知,当运动时间x=()211s +时,y 最小,即CP 最小 根据垂线段最短 ∴此时CP ⊥AB ,如下图所示,此时点P 运动的路程DA +AP=()() 1211211?+=+ 所以此时AP=(21111AD -=∵∠A=∠A ,∠APC=∠ACB=90° ∴△APC ∽△ACB ∴ AP AC AC AB = 即1144AB =

初中函数知识点专题讲解

知识点1函数及其相关概念 1、变量与常量 在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。 一般地,在某一变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一确定的值与它对应,那么就说x 是自变量,y 是x 的函数。 2、函数解析式 用来表示函数关系的数学式子叫做函数解析式或函数关系式。 使函数有意义的自变量的取值的全体,叫做自变量的取值范围。 3、函数的三种表示法及其优缺点 (1)解析法 两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。 (2)列表法 把自变量x 的一系列值和函数y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法。 (3)图像法 用图像表示函数关系的方法叫做图像法。 4、由函数解析式画其图像的一般步骤 (1)列表:列表给出自变量与函数的一些对应值 (2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点 (3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。 知识点四,正比例函数和一次函数 1、正比例函数和一次函数的概念 一般地,如果b kx y +=(k ,b 是常数,k ≠0),那么y 叫做x 的一次函数。 特别地,当一次函数b kx y +=中的b 为0时,kx y =(k 为常数,k ≠0)。这时,y 叫做x 的正比例函数。 2、一次函数的图像 所有一次函数的图像都是一条直线 3、一次函数、正比例函数图像的主要特征: 一次函数b kx y +=的图像是经过点(0,b )的直线;正比例函数kx y =的图像是经过原点(0,0)的直线。

高一数学必修一对数及对数函数知识点总结

高一数学必修一对数及对数函数知识点总 结 数学是学习和研究现代科学技术必不可少的基本工具。以下是查字典数学网为大家整理的高一数学必修一对数及 对数函数知识点,希望可以解决您所遇到的相关问题,加油,查字典数学网一直陪伴您。 对数定义 如果a的x次方等于N(a>0,且a不等于1),那么数x叫做以a为底N的对数,记作x=logaN。其中,a叫做对数的底数,N叫做真数。 注: 1.以10为底的对数叫做常用对数,并记为lg。 2.称以无理数e(e=2.71828...)为底的对数称为自然对数,并记为ln。 3.零没有对数。 4.在实数范围内,负数无对数。在复数范围内,负数是有对数的。 对数公式 0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。/p p其中x 是自变量,函数的定义域是(0,+∞)。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,

同样适用于对数函数。/p p对数函数性质/p p align=" center="" img="" /> 定义域求解:对数函数y=logax的定义域是{x丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1和2x-1>0,得到x>1/2且x≠1,即其定义域为{x丨x>1/2且x≠1} 值域:实数集R,显然对数函数无界。 定点:函数图像恒过定点(1,0)。 单调性:a>1时,在定义域上为单调增函数; 奇偶性:非奇非偶函数 周期性:不是周期函数 对称性:无 最值:无 零点:x=1 注意:负数和0没有对数。 两句经典话:底真同对数正,底真异对数负。 要练说,得练听。听是说的前提,听得准确,才有条件正确模仿,才能不断地掌握高一级水平的语言。我在教学中,注意听说结合,训练幼儿听的能力,课堂上,我特别重视教师的语言,我对幼儿说话,注意声音清楚,高低起伏,抑扬有致,富有吸引力,这样能引起幼儿的注意。当我发现有的幼

对数函数知识点

对数函数知识点 1.对数函数的概念 形如 y log a x( a 0且 a 1) 的函数叫做对数函数 . 说明:( 1)一个函数为对数函数的条件是: ①系数为 1; ②底数为大于 0 且不等于 1 的正常数; ③自变量为真数 . 对数型函数的定义域: 特别应注意的是:真数大于零、底数大于零且不等于 1。 2 、 由 对 数 的 定 义 容 易 知 道 对 数 函 数 y log a x (a 0, a 1) 是指数函数 y a x (a 0, a 1) 的反函数。 反函数及其性质 ①互为反函数的两个函数的图象关于直线 y x 对称。 ②若函数 y f ( x) 上有一点 (a, b ) ,则 (b, a) 必在其反函数图象上, 反之若 (b, a) 在反函 数图象上,则 ( a, b) 必在原函数图象上。 ③利用反函数的性质,由指数函数 y a x (a 0, a 1) 的定义域 x R ,值域 y 0 , 容易得到对数函数 y log a x(a 0, a 1) 的定义域为 x 0 ,值域为 R ,利用上节学过的 对数概念,也可得出这一点。 3、.对数函数的图象和性质 定义 y log a x (a 0且 a 1) 底数 a 1 0 a 1 图象 定义域 (0, ) 值域 R 单调性 增函数 减函数 共点性 图象过点 (1,0) ,即 log a 1 函数值x (0,1) y ( ,0); x [1, ) x (0,1) y (0, ); x [1, ) 特征 y [0, ) y ( ,0] 对称性 函数 y log a x 与 y log 1 x 的图象关于 x 轴对称 a 4.对数函数与指数函数的比较 名称 指数函数 对数函数 一般形式 y a x (a 0, a 1) y log a x (a 0, a 1)

(完整版)基本初等函数知识点

指数函数及其性质 一、指数与指数幂的运算 (一)根式的概念 1、如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次方根用符号n 是偶数时,正数a 的正的n 表示,负的n 次方根用符号0的n 次方根是0;负数a 没有n 次方根. 2 n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥. 3、根式的性质 :n a =;当n 为奇数时 , a =;当n 为偶数时, (0) || (0) a a a a a ≥?==? -∈且1)n >.0的正分数指数幂等于0. 2 、正数的负分数指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数. 3、a 0=1 (a ≠0) a -p = 1/a p (a ≠0;p ∈N *) 4、指数幂的运算性质 (0,,)r s r s a a a a r s R +?=>∈ ()(0,,)r s rs a a a r s R =>∈ ()(0,0,)r r r ab a b a b r R =>>∈ 5、0的正分数指数幂等于0,0的负分数指数幂无意义。 二、指数函数的概念 一般地,函数)1a ,0a (a y x ≠>=且叫做指数函数,其中x 是自变量,函数的定义域为R . 注意:○ 1 指数函数的定义是一个形式定义; ○ 2 注意指数函数的底数的取值范围不能是负数、零和1.

变量与函数 知识讲解

变量与函数 【学习目标】 1.知道现实生活中存在变量和常量,变量在变化的过程中有其固有的范围(即变量的取值范围); 2.能初步理解函数的概念;能初步掌握确定常见简单函数的自变量取值范围的基本方法;给出自变量的一个值,会求出相应的函数值. 3. 理解函数图象上的点的坐标与其解析式之间的关系,会判断一个点是否在函数的图象上,明确交点坐标反映到函数上的含义. 4. 初步理解函数的图象的概念,掌握用“描点法”画一个函数的图象的一般步骤,对已知图象能读图、识图,从图象解释函数变化的关系. 【要点梳理】 要点一、变量、常量的概念 在一个变化过程中,我们称数值发生变化的量为变量.数值保持不变的量叫做常量. 要点诠释:一般地,常量是不发生变化的量,变量是发生变化的量,这些都是针对某个变化过程而言的.例如,60s t =,速度60千米/时是常量,时间t 和里程s 为变量. 要点二、函数的定义 一般地,在一个变化过程中. 如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说 x 是自变量,y 是x 的函数. 要点诠释:对于函数的定义,应从以下几个方面去理解: (1)函数的实质,揭示了两个变量之间的对应关系; (2)对于自变量x 的取值,必须要使代数式有实际意义; (3)判断两个变量之间是否有函数关系,要看对于x 允许取的每一个值,y 是否 都有唯一确定的值与它相对应. (4)两个函数是同一函数至少具备两个条件: ①函数关系式相同(或变形后相同); ②自变量x 的取值范围相同. 否则,就不是相同的函数.而其中函数关系式相同与否比较容易注意到,自变 量x 的取值范围有时容易忽视,这点应注意. 要点三、函数的定义域与函数值 函数的自变量允许取值的范围,叫做这个函数的定义域. 要点诠释:考虑自变量的取值必须使解析式有意义。 (1)当解析式是整式时,自变量的取值范围是全体实数; (2)当解析式是分式时,自变量的取值范围是使分母不为零的实数; (3)当解析式是二次根式时,自变量的取值范围是使被开方数不小于零的实数; (4)当解析式中含有零指数幂或负整数指数幂时,自变量的取值应使相应的底数 不为零; (5)当解析式表示实际问题时,自变量的取值必须使实际问题有意义. y 是x 的函数,如果当x =a 时y =b ,那么b 叫做当自变量为a 时的函数值.在函数用记号()y f x =表示时,()f a 表示当x a =时的函数值. 要点诠释: 对于每个确定的自变量值,函数值是唯一的,但反过来,可以不唯一,即一个函数值对

对数及对数函数知识点总结及题型分析

对数及对数函数 1、对数的基本概念 (1)一般地,如果a (1,0≠>a a )的b 次幂等于N ,就是N a b =,那么数b 叫做以a 为底N 的对 数, 记作b N a =log ,其中a 叫做对数的底数,N 叫做真数,式子N a log 叫做对数式 (2)常用对数:N 10log ,记作N lg ; 自然对数N e log (e =2.71828…),记作N ln . (3)指数式与对数式的关系:log x a a N x N =?=(0>a ,且1≠a ,0N >) (4)对数恒等式: 2、对数的性质 (1)负数和零没有对数,即0>N ; (2)1的对数是零,即01log =a ; (3)底的对数等于1,即1log =a a 3、对数的运算性质 (1)如果a >0,a ≠1,M >0,N >0,那么 ①N M MN a a a log log )(log +=; ②N M N M a a a log log log -=; ③M n M a n a log log = (2)换底公式: 推论:① b N N b log 1log = ; ② ; ③ 1log log =?a b b a 4、对数函数的定义: 函数 叫做对数函数,其中x 是自变量 (1)研究对数函数的图象与性质: 由于对数函数 与指数函数 互为反函数,所以 的图像和 的图像关于直线 对称。 (2)复习)10(≠>=a a a y x 且的图象和性质 ()010log >≠>=N a a N a N a ,且b N N a a b log log log = b m n b a n a m log log =a y log x =(a 0a 1)>≠且a y log x =x y a =a y log x =x y a =y x =

高中数学函数知识点总结

高中数学函数知识点总结 1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。 2 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况 注重借助于数轴和文氏图解集合问题。 空集是一切集合的子集,是一切非空集合的真子集。 {} {}如:集合,A x x x B x ax =--===||2 2301 若,则实数的值构成的集合为B A a ? 3. 注意下列性质: {}()集合,,……,的所有子集的个数是;1212a a a n n 要知道它的来历:若B 为A 的子集,则对于元素a 1来说,有2种选择(在或者不在)。同样,对于元素a 2, a 3,……a n ,都有2种选择,所以,总共有2n 种选择, 即集合A 有2n 个子集。 当然,我们也要注意到,这2n 种情况之中,包含了这n 个元素全部在何全部不在的情况,故真子集个数为21n -,非空真子集个数为22n - ()若,;2A B A B A A B B ??== (3)德摩根定律: ()()()()()()C C C C C C U U U U U U A B A B A B A B ==, 有些版本可能是这种写法,遇到后要能够看懂 4. 你会用补集思想解决问题吗?(排除法、间接法) 如:已知关于的不等式 的解集为,若且,求实数x ax x a M M M a --<∈?5 0352 的取值范围。 7. 对映射的概念了解吗?映射f :A →B ,是否注意到A 中元素的任意性和B 中与之对应元素的唯一性,哪几种对应能构成映射? (一对一,多对一,允许B 中有元素无原象。) 注意映射个数的求法。如集合A 中有m 个元素,集合B 中有n 个元素,则从A 到B 的映射个数有n m 个。 如:若}4,3,2,1{=A ,},,{c b a B =;问:A 到B 的映射有 个,B 到A 的映射有 个;A 到B 的函数有 个,若}3,2,1{=A ,则A 到B 的一一映射有 个。 函数)(x y ?=的图象与直线a x =交点的个数为 个。 8. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域) 相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备) 9. 求函数的定义域有哪些常见类型?

相关文档
相关文档 最新文档