文档库 最新最全的文档下载
当前位置:文档库 › 氧氮仪

氧氮仪

氧氮仪
氧氮仪

3.4低氧铜杆氧含量检验规程

3.4.1测试意义:

通过检测低氧铜杆的含氧量,调整燃气的CO值,控制低氧铜杆的氧含量来达到控制产品品质的目的。

3.4.2测试原理:

被检测的样品放置在密闭的充满惰性气体的碳容器(碳坩埚)内。通过低电压高电流使碳容器产生2000℃的高温,加热融化样品。样品中的氧和碳在高温下化合形成一氧化碳。将要化合后的气体通过红外热导池(NDIR),一氧化碳会吸收池子内的红外线。通过检测红外线的强度来计算出一氧化碳的浓度从而计算出氧元素的含量。除以被测试式样的总质量即可计算出试验中氧的含量。

3.4.3.测试方法:

3.4.3.1开机过程:

1、打开稳压器电源。

2、打开炉子单元总电源(后部)及前面板的POWER拨到“ON”位置。

3、氮气阀开到0.4Mpa,氦气阀开到0.35Mpa。用肥皂水检查接口是否漏气。

4、启动计算机,运行桌面上的EMGA-W程序,出现Maint Count界面,点击按钮即可出现测试的主界面。此时系统会发出报警声,按Alarm Clear键或键盘上的Shift+F4键,即可确认及消除大部分报警。

5、温机20分钟后,按炉子单元前面的READY按钮。此时绿灯会亮,再次按Alarm Clear键或键盘上的Shift+F4键将可清除所有报警。

6、在测试的主界面点击按钮出现维护界面,点击按键进行漏气检查。若发现漏气及可判定为漏气,此时应查明漏气原因,若不漏气,即可以认为开机成功,即可进行正常的测试。

3.4.3.2关机步骤:

1、关闭炉子单元的READY键,将POWER开关关闭。

2、退出测试程序,关闭计算机。

3、关闭氮气阀和氦气阀。

4、关闭炉子单元总电源(后面)及稳压器电源。(一般情况需24小时连续检查分析,该步骤可不进行)。

3.4.3.3 测试步骤:

1、SCR生产线正常时按照4件/次的评论对低氧铜杆的氧含量进行检测。

2、使用断线钳在取样铜杆中截取1±0.1mg铜颗粒样品。

3、将截取的样品用杯子承好,放入氧氮仪称重天平中进行称量,待读数稳定后(数字前的”O”形状符号消失),按下键盘的回车键将要称量数据录入检测软件。

4、按下start(F12)键开始测试。此时上料仓的盖板打开,将要测试样品倒入上料仓,合好盖板。再次按下F12键开始自动测试过程。

3.4.3.4校正维护:

1、设备校正:

取粒标准样品进行含氧分析,测试分析并读取其数值。若该数值与其标称数值不大者可判定为合格;反之则需进行如下步骤校正其数值。

2、取该标准样品3粒进行含氧分析。

3、在测试的主界面中点击(F4)键打开系统菜单,点击

输入密码后将可以的到改变系统的授权。

4、回到主测试界面点击(F6)键,出现历史数据界面。

5、选中复选框。

6、分别选择前面所做标准样品的

历史数据,弹出右图所示对话框。在O

Std.Valu中输入该样品氧的标称值。

在N Std.Valu中输入该样品氮的标称

值。

7、选择Calc菜单的Calibration选项。在弹出的Calubration对

话框中点击(F3)保存。同时点击 (F11)打印校正的数据。

3.4.3.5维护:

1、开机前确认电源、气压、循环冷却水在规定范围内。

2、分析前进行机械检查与泄漏检查。

3、定期更换各类试剂,(更换氧化器及净化器试剂,必须在关闭电源一小时后进行,以防烫伤)每三个月清洗一次空气过滤器,每年更换一次循环冷却水(只能用纯净水或离子交换水)。

4、更换电极时,排空冷却水。

5、用硅酮润滑脂润滑O型环。

6、拆卸试管前关闭气体阀门。

7、操作结束的具体要求

8、每分析一次试样必须使用铜丝刷对上、下电极进行清理,用柔软、洁净的面巾纸擦拭上、下电极内壁残留的碳粉。

1 报警信息表

报警提示会造成程序的中断

警示报警

警示报警不会使测试程序中断,但却是提醒我们需进行维护。

故障排除

1.出现“Low Ope.gas Pressure”或者“Low Carrier.gas Pressure”的报警:供气用光时会出现此报警,检查供气;

2.出现“Current Over”的报警:a.确认坩埚没有损坏;b.确认电源电压正常;

3.出现“Current Open”的报警:a.确认坩埚没有损坏;b.确认坩埚是否正确安放;c.确认熔炉内没有堆积灰尘;

4.氧含量分析值不稳定:a.确认试样的预处理是否正确进行;b.确认是否彻底清理分离熔炉;c.确认分析不是在过高的电功率和温度条件下进行的;d.确认积分时间是否充分;e.确认流量是否正常;

5.电源没有接通:a.确认线路是否正常连接;b.确认保险丝没有烧断;

6.系统内部过热:a.确认风扇是否正常工作;b.确认位于侧板处的过滤器是否干净。

气体分析仪使用说明书

HZX-FX-Y020 气体分析仪使用说明书 汇众翔环保科技河北有限公司

目录 一、用户需知 (1) 二、简介及应用领域 (1) 简介 (1) 基本形式 (1) 仪器特点: (1) 仪器结构 (2) 仪器内部气路图 (2) 仪器面板按键 (3) 仪器后面板图 (3) 仪器外形尺寸 (4) 仪器信号输出插头接点说明 (4) 应用领域 (5) 三、工作原理 (6) 红外测量原理 (6) 氧测量原理 (6) 主要技术参数 (7) 技术参数 (7) 氧气测量技术参数 (7) 仪表参数 (8) 四、仪器的安装 (8) 开箱检查 (8) 仪器的安装 (8) 五、仪器启动 (8) 启动运行步骤 (8) 操作面板及说明 (9) 显示画面的概要 (9) 基本操作 (10) 六、设定及校正 (10) 量程切换 (10) 量程切换方法的设定 (10) 手动量程的切换 (11) 校正设定 (11) 报警设定 (11) 报警值的设定 (11) 滞后的设定 (12) 自动校正的设定 (12) 自动校正 (12) 自动校正的强制执行及中止 (12) 简易零点校正的设定 (13) 简易零点校正 (13) 简易零点校正的强制执行及中止 (13)

参数的设定 (13) 设定项目的说明: (13) 设定范围 (14) 保持动作 (14) 设定值的意义 (14) 设定项目的说明 (15) 响应速度 (15) 平均时间设定 (15) 平均值复位 (15) 显示灯熄灭 (15) 对比度 (16) 维护模式 (16) 维护模式 (16) 校正 (19) 零点校正 (19) 量程校正 (19) 七、维护 (20) 日常检查 (20) 日常检查维护要领 (21) 关于长期维护品 (21) 试样气室的清洁 (22) 分析部的保险丝更换方法 (23) 八.故障信息 (23) 发生故障时的处理方法 (24) 发生故障时的画面显示及操作 (25) 故障记录文件 (26)

氮氧化物

氮氧化物(NOx)的生成机理 燃料燃烧生成的NOx主要有NO和NO2,另外还有少量的N2O。在燃料的燃烧过程中,NOx的生成量和排放量与燃烧方式(特别是燃烧温度和过量空气系数等)密切相关,在燃烧过程中,NOx的产生按生成机理分为以下三类:(1)在高温燃烧时,空气中的N2和O2在燃烧中形成的NOx,称为热力型NOx;(2)燃料中有机氮经过化学反应而生成的NOx,称为燃料型NOx;(3)在火焰边缘形成的快速型NOx。其中燃料型NOx占70%~95%。 热力型NOx是燃烧时空气中的N2和02在高温条件下反应生成的NOx。温度对热力型NOx的生成具有决定性的作用,其生成速度和温度的关系符合阿伦尼乌斯定律,随着温度的升高,热力型NOx的生成速度按指数规律迅速增长。实验表明,当温度达到1500℃时,温度每提高100℃,反应速度将增加6-7倍。除了反应温度外,热力型NOx还和N2、O2浓度及停留时间有关,也就是说,燃烧设备的过量空气系数和烟气停留时间对热力型NOx的生成也有较大的影响。因此,要降低热力型NOx的生成,需要降低燃烧温度,避免产生局部高温区,缩短烟气在炉内高温区的停留时间和降低烟气中O2的浓度。 燃料型NOx是燃料中的氮化合物经热分解再和空气中的氧进行反应生成。燃料中的氮一般以氮原子的形态与各种碳氢化合物结合,形成氮的环状或链状化合物,而氮在燃料中的含量一般在0.5%-2.5%左右。燃料型NOx的生成机理和还原过程非常复杂,它们有多种可能的反应途径。燃料型NOx不仅和燃料的特性、结构、挥发份氮的比例有关,而且还和燃烧条件密切相关。 快速型NOx主要是燃料中碳氢化合物在燃料浓度较高的区域燃烧时所产生的烃与空气中的N2反应,形成的CN和HCN等化合物继续被氧化而生成的NOx。在燃煤锅炉中,其生成量很小,一般在燃用不含氮的碳氢燃料时才予以考虑。 目前,国家相关标准规范中推荐的脱硝方式有低氮燃烧(LNB)技术、选择性非催化还原(SNCR)脱硝技术、选择性催化还原(SCR)脱硝技术。

几种重要的气体检测仪详细功能说明与使用

气体检测仪中重要的部分是气体传感器,用于检测气体成份和浓度的传感器都称作气体传感器,不管它是用物理方法,还是用化学方法。比如,检测气体流量的传感器不被看作气体传感器,但是热导式气体分析仪却属于重要的气体传感器,尽管它们有时使用大体一致的检测原理。 市场上目前流行的气体传感器/气体检测仪有如下种类: 一、催化燃烧式气体传感器 催化燃烧式气体传感器选择性地检测可燃性气体:凡是可以燃烧的,都能够检测到;凡是不能燃烧的,传感器都没有任何响应。 这种传感器是在白金电阻的表面制备耐高温的催化剂层,在一定的温度下,可燃性气体在其表面催化燃烧,燃烧是白金电阻温度升高,电阻变化,变化值是可燃性气体浓度的函数。 催化燃烧式气体传感器计量准确,响应快速,寿命较长。传感器的输出与环境的爆炸危险直接相关,在安全检测领域是一类主导地位的传感器。 缺点:在可燃性气体范围内,无选择性。暗火工作,有引燃爆炸的危险。大部分元素有机蒸汽对传感器都有中毒作用。 目前这种传感器的主要供应商在中国、日本、英国(发明国)。目前中国是这种传感器的最大用户(煤矿行业),也拥有最佳的传感器生产技术。 二、热导池式气体传感器 每一种气体,都有自己特定的热导率,当两个和多个气体的热导率差别较大时,可以利用热导元件,分辨其中一个组分的含量。这种传感器已经传感器地用于氢气的检测、二氧化碳的检测、高浓度甲烷的检测。 三、半导体式气体传感器 半导体式气体传感器可以有效地用于:甲烷、乙烷、丙烷、丁烷、酒精、甲醛、一氧化碳、二氧化碳、乙烯、乙炔、氯乙烯、苯乙烯、丙烯酸等很多气体地检测。尤其是,这种传感器成本低廉,适宜于民用气体检测的需求。 它是利用一些金属氧化物半导体材料,在一定温度下,电导率随着环境气体成份的变化而变化的原理制造的。比如,酒精传感器,就是利用二氧化锡在高温下遇到酒精气体时,电阻会急剧减小的原理制备的。 缺点:稳定性较差,受环境影响较大;尤其,每一种传感器的选择性都不是唯一的,输出参数也不能确定。因此,不宜应用于计量准确要求的场所。 目前这种传感器的主要供应商在日本(发明者),其次是中国,韩国及美国等其他国家也有类似的产品,但是始终没有汇入主流。中国在这个领域投入的人力和时间都不亚于日本,但是由于多年来国家政策导向以及社会信息闭塞等原因,我国流行于市场的半导体式气体传感器性能质量都远逊于日本产品,随着市场进步,中国产的半导体式气体传感器达到和超越日本水平已经指日可待

氮氧化物废气的处理..

氮氧化物废气的处理 姓名:贺佳萌 学号:1505110107 专业班级:应化1101 指导老师:曾冬铭

氮氧化物废气的处理 摘要:氮氧化物是主要的大气污染物之一,本文介绍了含氮氧化物废气的产生原因及处理方法。 关键词:氮氧化物;处理技术; 前言 氮氧化物是指一系列由氮元索和氧元素组成的化合物,包括有N2O、NO、N2O3 、NO2、N2O4、N2O5,通常用分子式NO x 来统一表示。大气中NO x主要以NO、NO2的形式存在。 NO x的危害早已被人们所认识到,主要体现在: (1)氮氧化物对人体的危害很大,可直接导致人体的呼吸道损伤,而且是一种致癌物。 (2)氮氧化物会使植物受损伤甚至死亡。 (3)在阳光的催化作用下,氮氧化物易与碳氢化物发生复杂的光化反应,产生光化学烟雾,导致严重的大气污染。 (4)氮氧化物会导致臭氧层的破坏。 (5)氮氧化物也易与水气结合成为含有硝酸成分的酸雨川。 以上光化学烟雾、酸雨及臭氧问题,近年来有逐渐恶化的趋势,已经成为政府及社会公众非常关心的问题。 氮氧化物的产生主要来自于两个方面:自然界本身和人类活动。据统计,由自然界本身变化规律产生的NOx每年约500×106t,人类活动产生的NOx每年约50×106t。从数据来看,虽然人类活动产生的NOx较自然界本身产生的NOx少得多,但由于人类活动产生的NOx往往比较集中,浓度较高,且大多在人类活动环境区域内,因而其危害性更大。 人类活动产生的氮氧化物主要来源于两个方面: (1)含氮化合物的燃烧; (2)亚硝酸、硝酸及其盐类的工业生产及使用。据美国环保局估计,99%的NOx产生于含氮化合物的燃烧,如火力电厂煤燃烧产生的烟气、汽车尾气等。在亚硝酸、硝酸及其盐类的工业生产及使用过程中,由于它们的还原分解,会放出大量的NOx,其局部浓度很高,处理困难,危害大。 在含NOx废气中,对自然环境和人类生存危害最大的主要是NO和NO2。NO为无色、无味、无臭气体,微溶于水,可溶于乙醇和硝酸,在空气中可缓慢氧化为NO2,与氧化剂反应生成NO2,与还原剂反应生成N2。NO2溶于水和硝酸,和水反应生成HNO3和HNO2,和碱及强碱弱酸盐反应生成硝酸盐和亚硝酸盐,和还原剂反应还原为N2。

气体检测仪分类

气体检测仪分类 气体检测仪是一种气体泄露浓度检测的仪器仪表工具,主要是指便携式/手持式气体检测仪。主要利用气体传感器来检测环境中存在的气体种类,气体传感器是用来检测气体的成份和含量的传感器。一般认为,气体传感器的定义是以检测目标为分类基础的,也就是说,凡是用于检测气体成份和浓度的传感器都称作气体传感器,不管它是用物理方法,还是用化学方法。比如,检测气体流量的传感器不被看作气体传感器,但是热导式气体分析仪却属于重要的气体传感器,尽管它们有时使用大体一致的检测原理。 气体检测仪分类按检测对象分类,有可燃性气体(含甲烷)检测报警仪、有毒气体检测报警仪、氧气检测报警仪。按检测原理分类,可燃性气体检测有催化燃烧型、半导体型、热导型和红外线吸收型等;有毒气体检测有电化学型、半导体型等;氧气检测有电化学型等。按使用方式分类,有便携式和固定式。按使用场所分类,有常规型和防爆型。按功能分类,有气体检测仪、气体报警仪和气体检测报警仪。按采样方式分类,有扩散式和泵吸式。 气体检测仪中的0-100% LEL与0-n PPM (1)“LEL"是指爆炸下限。可燃气体在空气中遇明火种爆炸的最低浓度,称为爆炸下限—简称%LEL。英文:Lower Explosion Limited。可燃气体在空气中遇明火种爆炸的最高浓度,称为爆炸上限—简称%UEL。英文:Upper Explosion Limited。那么什么是爆炸下限?可燃性气体的浓度过低或过高它是没有危险的,它只有与空气混合形成混合气或更确切地说遇到氧气形成一定比例的混合气才会发生燃烧或爆炸。燃烧是伴有发光发热的激烈氧化反应,它必须具备三个要素:a、可燃物(燃气);b、助燃物(氧气);c、点火源(温度)。可燃气的燃烧可以分为两类,一类是扩散燃烧,即挥发的或从设备中喷出、泄漏的可燃气,遇到点火源混合燃烧。另一类燃烧,是可燃气与空气混合着火燃烧,这种燃烧反应激烈而速度快,一般会产生巨大的压力和声响,又称之为爆炸。燃烧与爆炸没有严格的区分。有关权威部门和专家已经对目前发现的可燃气作了燃烧爆炸分析,制定出了可燃性气体的爆炸极限,它分为爆炸上限(英文upper explode limit的简写UEL)和爆炸下限(英文lower explode limit的简写LEL)。低于爆炸下限,混合气中的可燃气的含量不足,不能引起燃烧或爆炸,高于上限混合气中的氧气的含量不足,也不能引起燃烧或爆炸。另外,可燃气的燃烧与爆炸还与气体的压力、温度、点火能量等因素有关。爆炸极限一般用体积百分比浓度表示。爆炸极限是爆炸下限、爆炸上限的总称,可燃气体在空气中的浓度只有在爆炸下限、爆炸上限之间才会发生爆炸。低于爆炸下限或高于爆炸上限都不会发生爆炸。因此,在进行爆炸测量

42i氮氧化物分析仪 中文说明书

热电42i氮氧化物分析仪 技术资料 方法标准:ISO7996-1985 方法名称:化学发光法 山东美吉佳环境科技有限公司

目录 第一章简介(性能和工作原理)第二章使用说明书 第三章设备保养维修操作规程 一、仪器安装 二、校准 三、日常维护保养 四、故障诊断和排除

简介 产品性能 42i 化学发光法分析仪结合检测技术,轻松利用菜单驱动软件和高级诊断提供了极其卓越的适应性和可靠性。42i 分析仪具有以下的特征: ·320*240液晶图像显示 ·菜单驱动软件 ·区域可定量程 ·用户自选单/双/自动量程模式 ·多重用户自定义模拟输出 ·模拟输入选择 ·高灵敏度 ·快速响应时间 ·全量程线性 ·独立NO-NO2-Nox量程 ·NO2 转化炉可替代选择 ·用户自选数字输入/输出容量 ·标准通讯特色包括RS232/485和以太网 ·C-Link, MODBUS协议,以及流动数据协议 工作原理 42 i 分析仪原理是基于一氧化氮(NO)与臭氧(O3)的化学发光反应产生激发态的NO2分子,当激发态的NO2分子返回基态时发出一定能量的光, 所发出光的强度于NO的浓度呈线性关系,42i分析仪就是利用检测光强来进行NO的检测, 其化学反应式如下: NO + O3 ──NO2 + O2+ h 仪器在进行二氧化氮(NO2)的检测时必须先将NO2转换成NO,然后再通过化学发光反应进行检测。NO2是通过钼转换器完成NO2到NO的转换. 其转换器的加热温度约为325℃(可选不锈钢转化器加热温度为625℃)。 如图1-1所示, 样品气通过标有SAMPLE的进气口被抽入42i分析仪,然后样气经颗粒物过滤器过滤,到达一电磁阀,由该电磁阀选择样气的路径是直接到达反应室(测NO方式),还是先经过NO2到NO转换器后再进入反应室(测

氧氮氢分析仪测定氮化锰铁中氮含量研究

氧氮氢分析仪测定氮化锰铁中氮含量研究 氮化锰铁是生产特殊合金钢、不锈钢、耐热钢必不可缺的合金剂,能提高钢的强度等机械性能,细化晶粒,稳定奥氏体。本文利用美国力可公司生产的氧氮氢分析仪(ONH836)测定氮化锰铁中氮元素含量,标样和分析试样的测定结果与强碱蒸馏分离-氨磺酸滴定法测定结果比较,数据稳定、可靠,是目前氮化锰铁测氮方法中较为快速的一种手段。 标签:氮化锰铁;热导法测氮;氧氮氢分析仪 1 前言 氮化锰铁是生产特殊合金钢、不锈钢、耐热钢必不可缺的合金剂,氮化锰铁的质量在一定程度上直接关系到成品钢的质量,因此对氮含量也有着较高的要求,是生产中的必检项目。2016年发布了冶金标准用蒸馏-中和滴定法测定氮化锰铁的氮含量的,但这种方法对于大批量检验来讲方法存在检验周期长、过程繁琐,测定装置清洗不方便,连接不好容易漏气造成结果偏低等缺点。本实验方法中采用力可氧氮氢测定分析仪直接测定氮化锰铁中氮含量进行了研究。 2 实验 2.1 仪器与试剂 实验仪器:ONH836氧氮氢联合测定分析仪(美国力可制造),高纯氦气(99.95%),粒状/稀土氧化铜,碱石棉,无水高氯酸镁(粒度1.2-2.0mm),锡囊φ5× 11mm,镍蓝(用75mLHAc+25mLNHO3+1.5mLHCL混酸处理,氮空白值<0.0005%),石墨内坩埚,石墨外坩堝,坩埚钳,电子天平、称样勺。 2.2 实验原理 电极炉中,利用石墨坩埚上通入较大电流产生2200℃高温使石墨坩埚中的试样被熔融,试样中的氢、氮元素分别生成H2、N2逸出,试样中氧元素与石墨坩埚中的碳元素结合生成CO和CO2与N2一起在氦气(载气)的作用下进入装有氧化铜的催化炉中,使CO全部转化为CO2,然后进入CO2红外检测池测定氧含量,再经过碱石棉除去CO2,在热导池中测定氮含量。由于气体的热导系数不同,从而使热敏元件的温度和阻值发生变化,通过电信号变化来测定氮含量。 2.3 实验方法 2.3.1 分析方法的建立 ①点击方法选择新建,输入方法名称;

氮氧化物相关知识

氮氧化物(nitrogen oxides)包括多种化合物,如一氧化二氮 (N2O)、一氧化氮(NO)、二氧化氮(NO2)、三氧化二氮(N2O3)、四氧化二氮(N2O4)和五氧化二氮(N2O5)等。除二氧化氮以外,其他氮氧化物均极不稳定,遇光、湿或热变成二氧化氮及一氧化氮,一氧化氮又变为二氧化氮。 造成大气污染的氮氧化物主要是一氧化氮(NO)和二氧化氮(NO2),因此,环境学中的氮氧化物一般就指这两者的总称。氮氧化物具有不同程度的危害。 氮氧化物与空气中的水结合最终会转化成硝酸和硝酸盐,硝酸是酸雨的成因之一;它与其他污染物在一定条件下能产生光化学烟雾污染。 大气中氮氧化物浓度增长,造成了氮沉降量的增加。根据酸雨监测数据,降水中NO3-与SO42-当量浓度比值1999年以来呈现上升趋势。NO3-与SO42-当量浓度比值增大,表明氮氧化物对酸性降水的贡献在增大,我国酸雨正在由硫酸型酸雨向硫酸/硝酸复合型过渡。同时,氮沉降产生更多的硝酸根和氮的氧化物,使土壤酸化,使水酸化和富营养化。1 U' P4 [& v. |! z. v7 c4 @ 氮氧化物的持续增加,还会加速细微颗粒物和二次气溶胶的形成。氮氧化物是光化学污染的前体物之一。在阳光照射下,NO2和VOCs(挥发性有机化合物)经由一连串的光化学反应生成O3和甲醛、乙醛等多种二次污染物,导致大气氧化性增强,并形成光化学烟雾,对大气环

境和人体健康造成危害。在我国一些人口密集、经济发达和机动车保有量大的城市,已经发现发生光化学污染的趋势,尤其是在北京、广州、上海等特大城市已经监测到了光化学污染的发生。 因此,减少大气中的氮氧化物对于保护生态、保持人们身体健康起到重要作用。而减排氮氧化物就是保护环境、改善民生的重大举措。 二氧化硫的硫主要来自燃料,而氮氧化物的氮来源是燃料和空气,既与燃烧温度有关,也与混合气体在高温区停留的时间有关。烟气中氮氧化物浓度的变化范围较大,准确测算不容易。随着燃料使用量和机动车保有量的增加,氮氧化物也会随之增加。据测算,全国氮氧化物的排放量年增长率为5%~8%。如果不采取进一步的氮氧化物减排措施,随着国民经济继续发展、人口增长和城市化进程的加快,未来中国氮氧化物排放量将持续增长。按照目前的发展趋势,到2030年我国氮氧化物排放量将达到3540万吨,势必造成严重的环境影响,因此必须切实加强氮氧化物排放控制。而减少氮氧化物最重要的政策措施就是总量控制。 测定尾气中NO、NO2、N2O、N2O4,用化学分析方法和仪器分析方法分别怎样做?用色谱做有啥优点和不足? 如果是硝酸合成中的尾气,最好采用红外气体分析,并且将氮氧化物转化成红外可以检测的形式。另外可以用激光分析法,可能也需要对气体进行适当的转化才好测定。采用色谱法,可能选择合适的色谱柱及分离条件是一个较为棘手的过程。如果是测定总氮氧化物,则可以采用化学发光法检测。

便携式氮氧化物检测仪

便携式氮氧化物检测仪 产品描述 HNAG900-NOX泵吸式便携氮氧化物气体检测仪是一种可连续监测氮氧化物气体的检测设备,仪表应用了EFM超低功耗的32位的ARM,传感器采用了世界最先进的进口固态电化学原传感器,传感器部分的运用了两级高精度的低温漂的放大器和高稳定的电源处理电路,气体检测仪的防护级别IP66,可以防雨淋与水溅,内置可更换的水汽、粉尘过滤器。电池容量1800毫安,过充、过放、过压、短路、过热保护,5级精准电量显示,USB通讯与充电接口、支持数据导出,实时曲线和历史曲线显示。

产品特点 ◆防水、防尘、防爆、防震,本安电路设计,抗静电,抗电磁干扰, ◆数据恢复功能,可以选择性恢复或全部恢复,免去误操作引起的后顾之忧 ◆进口传感器具有良好的抗干扰性能,使用寿命长达3年; ◆采用先进微处理器技术,响应速度快,测量精度高,稳定性和重复性好; ◆现场带背光大屏幕LCD显示,直观显示气体浓度/类型/单位/工作状态等; ◆全量程范围温度数字自动跟踪补偿,保证测量准确性; ◆大容量数据存储功能,标配30万条数据存储容量,更大容量可订制。支持实时存储、定时存储,或只存报警浓度数据和时间、也可通过USB或RS232接口将数据上传到电脑,用上位机软件分析数据和存储、打印。 产品参数 便携式氮氧化物NOX气体检测仪参数 ●工作电压电池供电/可充电波特率9600 ●测量气体氮氧化物NOX气体●检测原理电化学 ●采样精度±1%F.S●响应时间<5S ●重复性±1%F.S●工作湿度10-95%RH,(无冷凝)●工作温度-30~50℃●长期漂移≤±1%(F.S/年)●存储温度-40~70℃●预热时间10S ●工作电流≤50mA●工作气压86kpa-106kpa ●使用方式便携手持●质保期1年 ●输出接口多种●外壳材质防腐蚀塑料,铝合金 ●使用寿命3-5年●外型尺寸 ●228×84×50.5mm(L×W ×H)不计采样管 ●测量范围详见选型表 ●输出信号USB数据采集,30万组信息存储 氮氧化物NOX气体检测仪量程选择表 量程PPM精度PPM 0-100.01 0-500.1 0-1000.1 0-10000.1 0-70001 0-150001 其他特殊量程电话咨询技术工程师

几种氧分析仪原理及应用

1、电化学氧分析仪: 相当一部分的可燃性的、有毒有害气体都有电化学活性,可以被电化学氧化或者还原。利用这些反应,可以分辨气体成份、检测气体浓度。电化学气体传感器分很多子类: (1)原电池型气体传感器(也称:加伏尼电池型气体传感器,也有称燃料电池型气体传感器,也有称自发电池型气体传感器),他们的原理行同我们用的干电池,只是,电池的碳锰电极被气体电极替代了。以氧气传感器为例,氧在阴极被还原,电子通过电流表流到阳极,在那里铅金属被氧化。电流的大小与氧气的浓度直接相关。这种传感器可以有效地检测氧气、二氧化硫、氯气等。 (2)恒定电位电解池型气体传感器,这种传感器用于检测还原性气体非常有效,它的原理与原电池型传感器不一样,它的电化学反应是在电流强制下发生的,是一种真正的库仑分析的传感器。这种传感器已经成功地用于:一氧化碳、硫化氢、氢气、氨气、肼、等气体的检测之中,是目前有毒有害气体检测的主流传感器。 (3)浓差电池型气体传感器,具有电化学活性的气体在电化学电池的两侧,会自发形成浓差电动势,电动势的大小与气体的浓度有关,这种传感器的成功实例就是汽车用氧气传感器、固体电解质型二氧化碳传感器。 (4)极限电流型气体传感器,有一种测量氧气浓度的传感器利用电化池中的极限电流与载流子浓度相关的原理制备氧(气)浓度传感器,用于汽车的氧气检测,和钢水中氧浓度检测。 目前这种传感器的主要供应商遍布全世界,主要在德国、日本、美国,最近新加入几个欧洲供应商:英国、瑞士等。 2、顺磁式氧分析仪: 顺磁式氧分析仪:根据氧气的体积磁化率比一般气体高得多,在磁场中具有极高的顺磁特性的原理制成的一种测量气体中含氧量的分析仪器。顺磁式氧分析仪,也可叫做磁效应式氧分析仪、或磁式氧分析仪,我们通常通称为磁氧分析仪。它一般分为热磁对流式、压力机械式和磁压力式氧分析仪三种。 物质的磁特性:任何物质在外界磁场的作用下都会被磁化,呈现出一定的磁特性。物质在外加磁场中被磁化,其本身就会产生一个附加磁场,附加磁场与外磁场方向相同时,该物质就被外磁场吸引;附加磁场与外磁场方向相反时,则被外磁场排斥。因此,我们通常会将被外磁场吸引的物质称为顺磁性物质,或者说该物质具有顺磁性;而把被磁场排斥的物质称为逆磁性物质,或者说该物质具有逆磁性。气体介质处于磁场中也会被磁化,我们根据气体组分对磁场的吸引和排斥的不同,也将气体分为顺磁性和逆磁性。顺磁性气体有:O2、NO、NO2等;逆磁性气体有:H2、N2、CO2、CH4等。 磁性氧气传感器是磁性氧气分析仪的核心,但是目前也已经实现了“传感器化”进程。这种传感器只能用于氧气的检测,选择性极好。大气环境中只有氮氧化物能够产生微小的影响,但是由于这些干扰气体的含量往往很少,所以,磁氧分析技术的选择性几乎是唯一的! 当然磁氧根据传感器类型,又分为磁力机械式,热磁式氧分析仪,热磁式市场售价略低,

中国原子能科学研究院氧化锆氧量分析仪说明书

目录 1 概述 (1) 2 仪器测量原理 (2) 3 仪器主要技术参数 (3) 4 仪器简介 (3) 4.1 仪器组成 (3) 4.2 各部分简介 (4) 4.2.1 探头简介 (4) 4.2.2 变送器简介 (4) 4.2.2.1 基本结构 (4) 4.2.2.2 基本操作 (5) 4.2.2.3 基本设臵 (6) 5 仪器检验 (6) 6 仪器安装 (8) 6.1 安装前的准备 (8) 6.1.1 探头安装位臵的选择 (8) 6.1.2 炉体法兰的焊接 (9) 6.1.3 现场布线 (9) 6.2 安装 (10) 6.2.1 变送器的安装 (10) 6.2.2 探头的安装 (10) 6.3 现场连线 (11) 7 仪器校准 (11) 7.1 校准前的准备 (11) 7.2 校准方法 (11) 8 仪器日常维护与常见故障排除 (13) 8.1 仪器日常维护 (13) 8.2 常见故障的分析与排除 (13)

1 概述 氧化锆氧分析仪主要用于测定锅炉烟气中的氧分压即氧气的体积百分数含量(简称氧含量或氧量),对于保障锅炉运行安全、提高燃料燃烧效率及减少环境污染将起到重要作用。其应用场所主要有: ●火电厂锅炉; ●炼油厂加热炉和输油管道加热炉; ●冶炼厂加热炉和均热炉; ●化工、轻纺、食品加工、制药、水泥和采暖等企业的工业锅炉。 燃料燃烧效率与空气过剩系数密切相关。在燃烧过程中,当空气过剩系数太小即氧量不足时,由于燃料未充分燃烧而导致热效率降低,且排出的未完全燃烧气体也将对导致环境污染;而当空气过剩系数太大即氧量过多时,虽然能使燃料充分燃烧,但过剩空气带走的热量多,也导致热效率降低,同时过量氧气使烟气中硫化物和氮氧化物含量增大,同样导致环境污染。因此,通过安装氧化锆氧分析仪,在线实时监测烟气中的氧含量,调节空气和燃料的最佳配比,实现优化燃烧,在节能减排与安全环保等方面具有重要意义。 中国原子能科学研究院始建于1950年,是中国核科学技术的发祥地,是以核科学为主、多学科并存的综合性大型科研基地,是我国“两弹一艇”事业的摇篮。氧化锆开发研究室是院下属的集科研、产品开发和市场营销为一体的综合性实体,从事氧化锆测氧技术的研究已30余年,编写了国内本行业第一本专著:《氧离子固体电解质浓差电池与测氧技术》。该技术曾先后多次荣获国家发明奖及部科技成果奖。在这一系列科研成果的基础上,成功研制出ZO系列氧化锆氧分析仪。该产品曾在北京国际博览会上获同类产品最高质量奖,并在全国氧化锆氧分析仪行业质量评比中荣获一等奖。2001年,该产品通过ISO9001国际质量体系认证。此后,我院开发并推出了防硫型、高温型等多种型号的氧化锆氧分析仪,以满足不同用户的需求。

氮氧化物分析仪简易操作手册

Signal 4000VM 氮氧化物分析系统使用与日常维护 Signal 4000VM氮氧化物分析系统仪表选型为英国SIGNAL GROUP公司,Model 4000VM型加热化学发光法氮氧化物分析仪测量样本气体中氮氧化物含量。 为便于用户更好地使用此仪器减少故障发生,特作此简要操作手册,在日常使用中应注意以下几点:(本手册只提供简易操作与维护,详细信息请以原版英文手册为准) 一、准备 1.仪器使用交流220V/50-60Hz电源供电,在对仪器进行操作或维修时请确保人身安全,应有专业人员操作此仪器,维修或检查仪器前请先断电! 2.仪器零点气使用T40钢瓶气,纯度99.999%. 设定进气入口气压为5psi(0.345 bar, 34.5 kPa)到10 psi (0.7 bar, 70 kPa)。 3.仪器满量程气(标准气)使用AL8钢瓶气,纯度为980ppmNO/N2. 设定进气入口气压为5psi (0.345 bar, 3 4.5 kPa)到15 psi (1.03 bar, 103 kPa). 4.样本气体入口气压为-5psi(-0.345 bar, -34.5 kPa)到10 psi (0.7 bar, 70 kPa)之间。 5.仪器需使用T40钢瓶装的空气或氧气(99.995%)生成臭氧臭,需提供提供露点低于-12 oC的空气或氧气生成臭氧臭,进气入口气压为0 psi (0 bar, 0 kPa) 到 20 psi (1.4 bar, 140 kPa)。 6.仪器正常工作时需要保持真空泵和样气泵的开启。 7.仪器进气流量低于0.5l/min或高于5l/min,仪器将自动启动报警功能,液晶屏提示“STATUS warning”,此时请检查仪器进气量是否符合仪器进气要求。可能是由于过滤器堵塞、变湿通透性较差造成的,过滤器变色变脏请及时更换过滤器,滤料进行干燥,有条件的话直接更换滤料。(见图1 样品气进口样品气出口 硅胶颗粒 活性炭颗粒 纤维棉 气液分离器 PTFE过滤器 输水阀 图 1. 注意:作为一种预防措施变色硅胶颗粒,活性炭颗粒,纤维棉必须每周更换一次! 气液分离器内有明水时请及时打开输水阀,将液体排出。 PTFE过滤器应经常检查发现变黑/变色请及时更换,建议每月更换一次。 仪器由于堵塞或腐蚀的损坏行为不在保修之列!

氧分析仪说明书

注意事项 !使用及保存注意事项 ●仪器在使用过程中不可打开外壳,避免发生烫伤及触电危险。 ●仪器在使用、存放、及运输过程中应避免强烈震动,以免损坏氧化锆 传感器。 ●仪器在存放期间应保持清洁,要防止仪器受潮,进排气嘴应加盖防尘 帽,以防落入异物及灰尘。 请严格遵守注意事项,否则将造成人为测量误差或重大事故!!! 服务与保证

仪器自出厂之日起,仪器的保修期限为一年。凡在此期限内,工作人员在正常操作的情况下,仪器出现的软件或硬件的故障,我公司均负责免费维修及更换零部件。若由于工作人员违反操作规程、不严格按照使用说明操作仪器以及由于不可抗拒的因素而对仪器造成的损坏,我公司不负责免费维修。如需维修,我公司将根据损坏情况适当收取维修成本费用。 如有用户需要,我公司也可指派技术人员进行现场培训。 如果您对本公司的仪器在使用和操作过程中,还有什么疑问及要求请及时与我们联系,以便我们能给您提供更完善的服务。联系方式见封底。 一、概述

该氧分析仪是利用氧化锆氧浓度差电池作为检测传感器的氧量分析仪器。该仪器测控系统采用了最新型的单片机计算与控制系统,LED显示器;具有技术先进、精度高、响应快、性能稳定、功能齐全、操作方便、气体分析过程连续等特点;它不仅可测量锅炉燃烧过程中残余氧量,而且可以用于热力学研究,气体制造厂氧含量的连续监测、均热炉燃烧过程中的控制、化工、冶金、电子工业、医疗等方面的气体中氧含量的检测。 本公司生产的测量氧探头分为中温型、低温型、高温型,其基本参数及使用性能如下表1所示: 二、工作原理 2.1氧化锆原理图

仪器的工作原理如图1.0所示。它主要由气路系统、氧化锆传感器、微机测控系统三部分组成。 图1.0 测量原理框图 2.2氧化锆传感器 氧化锆传感器是由氧化锆陶瓷材料制成的氧浓度差电池,在高温时氧化锆具有氧离子的传导特性,当氧化锆管的两个电极之间的氧分压不同时,氧浓度差电池产生一个与氧浓度成比例的电势,电势大小按下式计算: E = ln 式中:R ——理想气体常数 F ——法拉第常数 T ——氧化锆加热炉绝对温度(K) n——电极反应的电子交换数目 P 0 ——空气中氧分压(20.9%) P ——样气中的氧分压 通过测量氧浓度差电池的电动势E 与温度T ,就可以计算出样气中的氧分压,即氧含量。浓度差电池的各种干扰电势,如本底电势、渗透效应、 RT 2n P 0 P

氮氧化物NOX检测仪技术参数

氮氧化物NOX检测仪技术参数 氮氧化物气体检测仪产品描述: 在线式氮氧化物气体检测仪,适用于各种环境中的氮氧化物气体浓度和泄露实时准确检测,采用进口电化学传感器和微控制器技术. 响应速度快,测量精度高,稳定性和重复性好等优点. 防爆接线方式适用于各种危险场所, 并兼容各种控制报警器, PLC, DCS等控制系统, 可以同时实现现场报警预警, 4-20mA 标准信号输出,继电器开关量输出; 完美显示各项技术指标和气体浓度值; 同时具有多种极强的电路保护功能, 有效防止各种人为因素, 不可控因素导致的仪器损坏; 氮氧化物气体检测仪产品特性: ★进口电化学传感器具有良好的抗干扰性能,使用寿命长达3年; ★采用先进微处理器技术,响应速度快,测量精度高,稳定性和重复性好; ★检测现场具有现场声光报警功能,气体浓度超标即时报警,是危险现场作业的安全保障; ★现场带背光大屏幕LCD显示,直观显示气体浓度/类型/单位/工作状态等; ★独立气室,传感器更换便捷,更换无须现场标定,传感器关键参数自动识别; ★全量程范围温度数字自动跟踪补偿,保证测量准确性; ★半导体纳米工艺超低功耗32位微处量器; ★全软件自动校准,传感器多达6级目标点校准功能,保证测量的准确性和线性,并且具有数据恢复功能; ★具备过压保护,防雷保护,短路保护,反接保护,防静电干扰,防磁场干扰等功能; 并且具有自动恢复功能,防止发生外部原因,人为原因,自然灾害等造成仪器损坏; ★全中文/英文操作菜单,简单实用,带温度补偿功能; ★PPM,%VOL,mg/m3三种浓度单位可自由切换; ★防高浓度气体冲击的自动保护功能;

型号:SK-500-NOX-A 检测气体:空气中的氮氧化物NOX 检测范围:0-100ppm、500ppm、1000ppm、5000ppm、0-100%LEL 分辨率:0.1ppm、0.1%LEL 显示方式:液晶显示 温湿度 : 选配件,温度检测范围:-40 ~120℃,湿度检测范围:0-100%RH 检测方式:扩散式、流通式、泵吸式可选安装方式:壁挂式、管道式检测精度:≤±3% 线性误差:≤±1% 响应时间:≤20秒(T90)零点漂移:≤±1%(F.S/年) 恢复时间:≤20秒重复 性: ≤±1% 信号输出:①4-20mA信号:标准的16位精度4-20mA输出芯片,传输距离1Km ②RS485信号:采用标准MODBUS RTU协议,传输距离2Km ③电压信号:0-5V、0-10V输出,可自行设置 ④脉冲信号:又称频率信号,频率范围可调(选配) ⑤开关量信号:标配2组继电器,可选第三组继电器,继电器无源触点,容量220VAC 3A/24VDC 3A 传输方式:①电缆传输:3芯、4芯电缆线,远距离传输(1-2公里) ②GPRS传输:可内置GPRS模块,实时远程传输数据,不受距离限制(选配) 接收设备:用户电脑、控制报警器、PLC、DCS、等 报警方式:现场声光报警、外置报警器、远程控制器报警、电脑数据采集软件报警等 报警设置:标准配置两级报警,可选三级报警;可设置报警方式:常规高低报警、区间控制报警 电器接口:3/4″NPT内螺纹、1/2″NPT内螺纹,同时支持2种电器连接方式 防爆标志:ExdII CT6(隔爆型)壳体材料:压铸铝+喷砂氧化/氟碳漆,防爆防腐蚀 防护等级:IP66 工作温度:-30 ~60℃工作电源:24VDC(12~30VDC)工作湿度:≤95%RH,无冷凝 尺寸重量:183×143×107mm(L×W×H)1.5Kg(仪 器净重) 工作压力:0 ~100Kpa 标准配件:说明书、合格证质保期:一年 应用场所 石油石化、化工厂、冶炼厂、钢铁厂、煤炭厂、热电厂、医药科研、制药生产车间、烟草公司、环境监测、

氧氮分析仪TC600操作规程

一、设备点检 1.载气检查 1.1入口压力:目测压力在规定范围内,如不在范围内,则通 过减压阀调整; 1.2系统压力:目测压力在规定范围内,如不在范围内,则报 仪器科; 1.3载气流量:在仪器工作状态下,载气流量应显示在规定范 围内。 2.动力气检查:目测压力在规定范围内,如不在范围内,则通过减压阀调整; 3.试剂更换、炉头清扫和漏气检查:见五日常点检; 4.凡进行了试剂更换或停电后重新启动,必须对仪器的工作环境进行检查,确认正常后,仪器才能投入生产分析; 5.每班点检后记录在如下的点检记录表上。 TC-600点检记录表 机名:氧氮分析仪型号:TC-600 序号点检项目点检基准点检 周期 早中夜 1 氦气入口压力20psi±2psi 1次/班 2 动力气入口压力40psi±4psi 1次/班 3 氦气系统压力1480~1500mmHg 1次/班 4 分析时流量450ml/分±10 ml 1次/班 5 净化栽气 干燥剂/CO2吸收剂 更换每月1次测量部分 干燥剂/CO2吸收剂 更换周1次 6 稀土氧化铜更换每月1次 7 天平检查天平自动校正1次/班 8 加样滑板清扫,涂油脂周1次 9 上、下电极用专用刷子清扫1次/5次分析 10 内循环冷却水水量在报警器以上、温度<35℃1次/班 11 除尘管玻璃棉2/3变黑更换1次/班 12 环境检查1.CO、CO2(H、L)≥1.5V 1次/班2.氮池输出<0.5V1次/班3.净化炉650℃±10℃1次/班4.氧化铜炉650℃±10℃1次/班 年月日点检者说明:“√”表示正常;“○”表示更换;“Δ”表示检修;“×”表示故障。

二、安全注意事项 1.试样燃烧结束后,不准用手直接拿坩锅,以防烫伤; 2.掉换试剂时,需将分析气体的载气关闭,以防试剂冲出; 3.掉换氧化铜、金属铜时,先将载气关闭,然后慢慢拿出管 子,注意管子很烫,防止烫伤。 三、技术参数: (一)1克试样时测试范围: 1.氧 0.000005~5.0% 2.氮 0.000005~ 3.0% (二)精度: 氧和氮 0.2μg/g或1.0%RSD (三)检出限: 氧和氮 0.001μg/g (四)一般试样称量:通常为1克 (五)天平显示精度及重现性: 0.0001~100克±0.0001克(六)所需气体: 1.载气 He≥99.99% 20psi±2psi 2.动力气 N 2 、Ar或压缩空气40Psi±4psi (七)所需化学试剂和材料: 1、无水过氯酸镁 2、钠石棉 3、金属铜车丝 4、金属铜屑 5、稀土氧化铜 6、Supelco过滤剂(氧水分离器) 7、石英棉 8、玻璃棉 9、石墨外坩埚 10、石墨内坩埚 (八)电源与炉子: 1.主机电源: 230V±10% 50/60HZ 40A 2.计算机电源:115/230V±10% 50/60HZ 5/3A 3.炉子形式脉冲炉,最大功率7.5千瓦(九)计算机与操作系统: 1.计算机:Pentium4 2.操作系统:Windows XP 必须无油无水 LECO 501-171 LECO 502-174 LECO 501-621 LECO 502-295 LECO 501-170 LECO 783-785-110 LECO 502-177 LECO 501-081 国产 国产 交流电单相

JPB-607A便携式溶解氧分析仪使用说明书.doc

JPB-607A 便携式溶解氧分析仪使用说明书 一、概述 JPB-607 型便携式溶解氧分析仪 (以下简称仪器 ),主要是为方便用户携带到现场操作而 设计的。该仪器可分为传感器和电子单元两个部份。传感器采用极谱型复膜氧电极。电 子单元为带有自动温度补偿的集成运算放大器组成。仪器采用 31/2 位液晶显示可显示溶解氧值和温度。 二、技术参数 2.1 仪器工作条件: 2.1.1 环境温度: (O~ 4O)℃; 2.1.2 相对湿度;不大干90%; 2.1.3 被测样品温度: (O~40)℃; 2.1.4 供电电源: 9F22 型 9 伏电池一节; 2.1.5 除地磁场外,无显著电磁场影响。 2.2 主要技术指标: 2.2.1 测量范围:溶解氧:(0~ 20.0)mg.L-1 温度: (0~40)℃ 2.2.2 电子单元的准确度:±0.1mg/L ±1个字 2.2.3 仪器准确度: 溶解氧:±0.1mg/L ±1 个宇 (校准温度与测量温度相同 ) ±0.5mg/L ±1个字标准温度与测量温度相差±10℃时 ) 温度:±1℃ 2.2.4 传感器响应时间:不大于3Os(2O℃时 90%响应 ) 2.2.5 传感器残余电流:不大于O.15mg.L-1 ±1个字; 2.2.6 电子单元的稳定性:在3h 内不超过±0.1mg/L ±1 个宇; 2.2.7 仪器稳定性:不超过±0.2mg.L-1 ±1个字/ 1h; 2.2.8 自动温度补偿范围: (0~40)℃; 2.2.9 外形尺寸 L×b×h,mm:165×72×35; 2.10 仪器重量 (kg): 0.3。 三、工作原理 仪器由极谱型复膜氧电极与带有微处理机电子单元两大部分组成。 极化电压输出 0.7 伏左右电压,施加于氧电极上,银接电源正极,黄金接电源负极。黄金 电极与 I-V 转换单元的集成运算放大器连接。在此单元中,来自于电极的电流讯号转换成 电压讯号,同时对电极的温度系数作部份补偿, I-V 单元的输出讯号,再送入温度补偿单 元中,对电极温度系数进行全补偿,最后由数字显示测量结果。 3.1 氧传感器氧传感器称氧电极。结构如图一所示。电极的阴极由Φ 4mm黄金片组成,阳极即参比电极为银电极,两极的空间充入电解液,顶端被聚四氟烯薄膜复盖,当 在金极与银极间加 0.7 伏左右极化电压后,渗透过薄膜的氧在黄金阴极上还原产生如下 反应: 阴极: O2+2H2O+4e→4OH- (1) 银阳极发生的反应如下: 阳极: 4Ag++4Cl-- 4e→4AgCl (2) 由于电极上发生氧化-还原反应,电子转移产生了正比于样品中氧分压的电流。无氧时,氧电极中没有电流,有氧时,电流大小可用下列公式表示: Pm l= K?N?F?A----?Cs (3)dm

氮氧化物的计算方法

氮氧化物的计算方法 燃烧产生的氮氧化物根实际燃烧条件关系密切,所以要准确估算是非常困难的。如果条件允许,尽量类比具备可比性同类型项目实测数据;在无实测情况下最好查阅相关书籍或相关研究成果计算方式,根据相关条件选择相近情况公式的计算结果准确率稍高,而且符合导则要求可找到依据出处;切记别拍脑袋。以下几种方法供大家参考。 传统方法 第一种方法: 《环境统计手册》-方品贤中的计算方法(第99和100页)和国家环保总局《关于排污费征收核定有关工作的通知》(环发[2003]64号)中氮氧化物的计算方法上述方法是一 产生10m3烟气。致的,假设了燃烧1kg煤 GNOx=1.63×B×(N×β+0.000938) 氮氧化物排放量,kg; GNOx— B–消耗的燃煤(油)量,kg; N–燃料中的含氮量,%;《环境保护实用数据手册》-胡名操和《环境统计手册》-方品贤统计数据一致。取0.85%。 β—燃料中氮的转化率,%。取70% 计算燃烧1t煤产生氮氧化物量为18.64kg。 第二种方法:根据N守恒,计算公式为:G,B×N/14×a×46 其中:G—预测年二氧化氮排放量; N—煤的氮含量(,),取0.85,; a—氮氧化物转化为二氧化氮的效率(%),取70%。

B—燃煤量。 计算燃烧1t煤氮氧化物产生量为19.55 kg。 第三种方法: 按照《环境保护实用数据手册》-胡名操中相关统计数据,工业锅炉燃烧1t煤产生的氮氧化物为9.08kg(第65页,表2-51);用烟煤作燃料,选锅炉铺撇式加煤产生的氮氧化物为7.5kg(第66页,表2-53);用无烟煤作燃料的锅炉燃烧,选可移动炉蓖产生的氮氧化物产生量为5kg(第67页,表2-57);美国典型的燃烧烟煤小型工业锅炉的氮氧化物7.5kg(第68页,表2-60)。 第四种计算方法: 采用《产排污系数手册》第十册:按燃烧1t煤来计算: 烟煤-层燃炉:2.94kg;285.7mg/m3;(第240页) 锅炉燃烧氮氧化物排放量 燃料燃烧生成的氮氧化物量可用下式核算: GNOx,1.63B(β?n+10,6Vy?CNOx) 式中:GNOx ~燃料燃烧生成的氮氧化物(以NO2计)量(kg); ); B ~煤或重油消耗量(kg β ~燃烧氮向燃料型NO的转变率(%),与燃料含氮量n有关。普通燃烧条件下,燃煤层燃炉为25~50%(n?0.4%),燃油锅炉为32~40%,煤粉炉取20~25%; n ~燃料中氮的含量(%); Vy ~燃料生成的烟气量(Nm3,kg); CNOx ~温度型NO浓度(mg,Nm3),通常取70ppm,即93.8mg,Nm3。 固定污染源监测质量保证与质量控制技术规范,试行,,HJ/T 373-2007, 中核定氮氧化物排放量 5.3.5 核定氮氧化物排放量

相关文档
相关文档 最新文档