文档库 最新最全的文档下载
当前位置:文档库 › 设计年径流量的计算

设计年径流量的计算

设计年径流量的计算
设计年径流量的计算

4设计年径流量的计算

4.1正常年径流量的计算

在一个年度,通过河川某一断面的水量,称为该断面以上流域的年径流量。河川径流在时间上的变化过程有一个以年为周期循环的特性,这样,我们就可以用年为单位分析每年的

径流总量以及径流的年际与年分配情况,掌握它们的变化规律,用于预估未来各种情况下的

变化情势。

河川径流量是以降水为主的多因素综合影响的产物,表现为任一河流的任一断面上逐年的天然年径流量是各不相同的,有的年份水量一般,有的年份水量偏多,有的年份则水量偏

少。年径流量的多年平均值称为多年平均径流量

多年平均径流量Q=EQ i/n 刀Q各年的年径流量之和n 年数。

在气候和下垫面基本稳定的条件下,随着观测年数的不断增加,多年平均年径流量Q趋

向于一个稳定数值,这个稳定数值称为正常年径流量。

显然,正常年径流量是反映河流在天然情况下所蕴藏的水资源,是河川径流的重要特征值。在气候及下垫面条件基本稳定的情况下,可以根据过去长期的实测年径流量,计算多年

平均年径流量来代替正常年径流量。

但是正常年径流量的稳定性不能理解为不变性,因为流域没有固定不变的因素。就气候和下垫面条件来说,也是随着地质年代的进展而变化,只不过这种变化非常缓慢,可以不用

考虑,但是大规模的人类活动,特别是对下垫面条件的改变将使正常年径流量发生显著变化。

根据观测资料的长短或有无,正常年径流量的推算方法有三种:有长期实测资料,有短期实测资料和无实测资料。

4.1.1 有长期实测资料时正常年径流量的推算

有长期实测资料的含意是:实测系列足够长,具有一定的代表性,由它计算的多年平均值基本上趋于稳定。由于各个流域的特性不同,其平均值趋于稳定所需的时间也是不会相同。对于那些年径流的变差系数Cv 变化较大的河流,所需观测系列要长一些,反之则短些。所谓代表性一般是指在观测系列中应包含有特大丰水年,特小枯水年及大致相同的丰水年群和枯水年群。

当满足以上条件时,可用算术平均法直接计算出正常年径流量。

Q=£Q i/n

n ---- 为观测年数

Q i --- 为,某年的年径流量

此法的关键是分析资料的代表性,即在实测资料的系列中必须包含河川径流变化的各种特征值,同时还要同临近有更长观测资料的流域进行对比分析,进一步确定实测资料的代表性。

根据我国河流的特点和资料条件,一般具有二三十年以上可作为有长期资料处理。

4.1.2 有短期实测资料时正常年径流量的推算短期实测资料是指一般仅有几年或十几年的实测资料,且资料的代表性较差。此时,如果利用算数平均法直接计算将会产生很大的误差,

因此,计算前必须把资料系列延长,提高

其代表性。

延长资料的方法,主要是通过相关分析,即通过建立年径流量与其密切相关的要素(称为参证变量)之间的相关关系,然后利用有较长观测系列的参证变量来展延研究变量年径流量的系列。

4.1.2.1 参证变量的选择

展延观测资料系列的首要任务是选择恰当的参证变量,参证变量的好坏直接影响精度的高低。一般参证变量应具备以下三个条件:

(1)参证变量与研究变量在成因上是有联系的。当需要借助其他流域资料时,参证流域与研究流域也需具备同一成因的共同基础)。

(2)参证变量的系列要比研究变量的系列长。

(3)参证变量与研究变量必须具有一定的同步系列,以便建立相关关系。

当有好几个参证变量可选时,可以选择与研究变量关系最好的作为首选参证变量,也可以同时选择好几个参证变量,建立研究变量与所选参证变量间的多元相关关系。总之,以研究成果精度的高低作为评判参证变量选择好坏的标准。

目前,水文上常用的参证变量是年径流量资料和年降水量资料。

4.1.2.2 利用年径流资料展延插补资料系列在研究流域附近有长期实测年径流量资料,或研究站的上、下游

有长期实测年径流量资

料的水文站。经分析,证明其径流形成条件相似后,可用两者的相关方程延长插补短期资料。当资料很少,不足以建立年相关时,也可先建立月相关,展延插补月径流量,然后计算年径流量。

例4 —1今有某河流拟在乙站处修建水库,乙站流域面积F= 1200kmf,具有1956—1959

年、1964 —1966年共7年实测年径料,需展延插补该站系列,以提供水库水文设计依据。乙

站上游的甲站,流域面积F=820km2,有1952—1971年共20年较长系列,经分析甲站可作为参证站。甲、乙两站各年实测年平均流量如表(单位:m/S)

首先用两站同期实测资料(1956 —1959年、1964 —1966年)点绘相关图

可见,两站相关点据密集,可通过相关点群中心定一条单一曲线,乙站缺测资料年份即可用

此相关线插补和外延,最后可得20年资料。计算20年的算术平均值即为乙站正常年径流量;成果见表

4.1.2.3利用年降水资料展延插补资料系列

一般降水资料容易取得,资料系列也较径流资料为长,当不能用径流资料延长时,可用

流域或流域外降水资料进行展延插补。但必须分析降水与径流的关系地好坏。一般在湿润地

区降水充沛,径流系数大,径流量与降水量间的相关关系较密切,而在干旱地区或半干旱地

区,蒸发量大,大部分降水消耗于蒸发,年径流量与年降水量之间的关系不够密切,此时,可适当增加参证变量,如降雨强度等。当资料很少时,也可通过建立月降水量与月径流量间的相关关系,然后推算年径流量。

例4—2 某河支流有甲、乙两站(图4 —3),甲站流域面积为992kmf,有1953 一1955 年、1959 —1969年实测年径流量资料,而甲、乙两站同时具有较长期的降水资料(表4—3)。

需插补甲站缺测年份流量资料。

由于乙站无实测径流资料,甲站缺测年份只能采用本流域的降雨径流关系插补。甲站以

上流域平均降水量,可用甲乙两站年降水量算术平均值求得。甲站以上年径流深h用下式计

算,

h=QT/F/1000 (mm)

5

以甲站各年径流深与流域平均雨深点绘关系(图4—4),由图可见,关系尚密切,可以定线使用。根据年降雨径流相关图,就可以由甲站以上平均雨量资料插补甲站缺测年份之年径

年四年短期径流资料,需延长甲站径流系列。甲站实测各月平均流量及三站相应年份各月降

雨量如表4—5、表4—6。

甲站实测流量资料较短,流域其他站又无实测流量资料,故用流域三个雨量站资料,点

绘出流域月平均降雨深与甲站平均径流深相关图,由图可见,相关点群较为散乱。但仔细分

析各月相关点的分布尚有一定的规律,11月至次年1月为该河的枯水季节;由于此期间蒸

发量较大,且农业用水较多,相关线偏右。2月至5月,相关点在两相关线之中,为此,根

据点群的分布规律,可定出三组相关线。

关图上相应曲线插补各月径流资料。其他步骤同上例。

上述三个例子的相关分析都属图解相关法,即利用研究变量和参证变量的同步资料,点

绘经验相关点据,然后根据点群的分布情况和趋势,通过点群中心,目估定出一条平均线。这种方法简便、灵活,可以在目估定线时,充分考虑个别点据的偏离,合理定线。由误差理论可知,每于个点据出现在不位同置的机率是不同的,考虑到这种情况,对个别偏离很大的

点据,不能与其他集中的点据一律看待,相关线应根据大多数点据定出。

4.1.3 无实测资料时正常年径流量的推求

由于我国的水文站网还不是很完善,只在一些较大的河流上有水文观测站,而在实际工作中常常遇到的小流域,根本没有径流量的观测资料,甚至连降雨资料也没有。因此,在计

算正常年径流量时,需要利用一些特殊的方法,常用的方法有等值线图法、水文比拟法、径

流系数法和水文查勘法。

4.1.3.1 等值线图法

把相同数值的点连接起来的线叫等值线。在地图上把观测到的水文特征值标记出来,然

后把相同数值的各点连成等值线,即可构成该特征值的等值线图。水文特征值的等值线图表

示水文特征值的地理分布规律。

闭合流域多年径流量的主要影响因素是气候因素,而气候因素有地区性,即降雨量与蒸发量具有地理分布规律。因此,受降雨量和蒸发量影响的多年平均年径流量也具有地理分布规律。所以说我们利用这一特点绘制多年平均年径流量的等值线图,并用它来推算无实测资

料地区的多年平均年径流量。

由于径流量的多寡与流域面积的大小有直接关系,为了消除这项影响,多年平均年径流量等值线图一般以径流深或径流模数为度量单位。

河川任一断面的径流量是由该断面以上流域面积上各点的径流汇集而成,所以不能将多年平均年径流深值点绘在该观测断面处,而应点绘在与多年平均年径流深最接近流域平均值的那一点。在实际工作中,一般点绘在流域面积的形心处(可作不同方向平分流域的直线,其交点即为形心)。在山区,径流量有随高程增加而增大的趋势,因此应将多年平均年径流深值点绘在流域平均高程处。目前,各省(区)编制的水文手册一般都绘有本省(区)的多年平均年径流深和各种频率的年径流深等值线图。

应用等值线图推求多年平均年径流深时,先在图上勾绘出研究流域的分水线,再找出流域的形心,而后

根据等值线插读出形心处的多年平均年径流深值。如果流域面积较大或地形复杂,等值线分布不均匀,也可用加权平均法推算,即:

Y0=(y 1f 1+ y 2f 2+ y n f n)/F

式中y i ——相邻两径流深等值线的平均值,

f i ——相邻两等值线间面积;

F――流域面积,

Y0――多年平均年径流深。

等值线图法一般对大流域查算的结果精度高一些。对于小流域,因小流域可能不闭合和河槽下切不深,不能汇集全部地下径流,所以使用等值线图有可能导致结果偏大或偏小,应结合具体条件加以适当修正。

4.1.3.2. 水文比拟法

如前所述,水文现象具有地区性,如果某几个流域处在相似的自然地理条件下,则其水文现象具有相似的发生、发展、变化规律和相似的变化特点。与研究流域有相似自然地理特征的的流域称为相似流域(即参证流域)。水文比拟法就是以流域间的相似性为基础,将相似流域的水文资料移用至研究流域的一种简便方法。

其中移用相似流域研究资料的方法较多,如选择相似流域的径流模数、径流深度、径流量、径流系数以及降水径流相关图等。但是,地球上不可能有两个流域完全一致,或多或少存在一些差异,倘若相似流域与研究流域之间仅在个别因素上有些差异时,可以考虑不同的

修正系数加以修正。

若研究流域与相似流域的气象条件和下垫面因素基本相似,仅流域面积有所不同,这时只考虑面积的影响,则研究流域的正常年径流量有如下关系式:

Q研/F研=Q参/F参

如果使用径流深或径流模数,则不需需修正即可直接使用。

若两流域的年降水量有不同时,则

Q研/P研=Q参/P参

式中P研和P参一一分别为研究流域与参证流域的年降水量

水文比拟法是在缺乏等值线图时是一个较为有用的方法。即使在具有等值线图的条件下,而研究流域面积较小,它的年径流量受流域自身特点的影响很大,因此对研究流域影响水文特征值的各项因素进行一些分析,可以避免盲目地使用等值线图而未考虑局部下垫面因素所产生的较大误差。因此,对于较小流域,水文比拟法更有实际意义。

4.1.3.3. 径流系数法

当小流域(或附近)有年雨量资料,且雨量与径流关系密切时,可利用多年平均降雨量与径流量间的定量关系计算年径流量,即利用年降雨量的多年平均值乘以径流系数推求多年平均径流量。可由下式计算

之:

W= 1000X C X P XF

式中W■—多年平均径流总量,m

C——该地区年径流系数,与研究区植被、地形、地质、主河道长度等因素有关,可通过调查并参考省、地《水文手册》确定。

P ――研究地区多年平均降雨量(mm,可从省、地区的《水文文手》查出,或向附近水文站、雨量站查询。

F ――研究流域的集水面积(km2)。本方法计算成果的准确程度取决于径流系数,如所选径流系数精度较高可获比较正确的结果。

4.1.3.4 水文查勘法

对于完全没有资料,也找不到相似流域的小河或间歇性河流,此时可进行水文查勘,收集水文资料,进行正正常年径流量的估算。这项任务一般是通过野外实地查勘访问,了解多年期间典型水位过程线,河道特性,建立水位流量关系曲线,从而推算出近似的流量过程线,并估算其正常年径流量。水文查勘工作,不仅对完全无资料的小河有必要,就是对有资料的大流域也是不可缺少的。

上述几种方法外,还可利用经验公式推求年正常径流量(或以多年平均年径流量代替)由于经验公式都是根据各地实测资料分析得出的,有其局限性,这些经验公式一般可以在当地的《水文手册》中查得。

但需要指出:是为满足工程设计或规划的需要,为慎重起见一般不只用一种方法计算,往往运用几种方法推算的成果相互验证,以保计算成果的精度。

4.2 径流的年际变化

4.2.1 基本概念正常年径流量反映了河流拥有水量的多少,但并不反映具体某一年的水量,这是因为径流量是一个随机变量,每年的数值都不相同所致,即径流量具有年际变化。

由于河川径流是流域自然地理因素综合影响的产物,而气候因素具有明显的年际变化特征,即使较为稳定的下垫面因素每年都不尽相同,因此,受其影响的河川径流量也具有明显

的年际变化。所谓年际变化就是径流量每年都不相同,有些年份大,有些年份小。每一条河川年径流的变化,都具有本流域自然地理条件所赋予的特点,这些特点主要是反映在径流年变化的幅度上。在雨量丰沛的地区如我国东南沿海及华南一带,年降水量变化小,因而年径流变化也小;而在雨量相对较少而且在时间分配上相当集中的地区,如华北、西北地区,降雨量的年际变化大,径流量的年际变化也大。

径流量的年际变化最好用成因分析法进行推求,但由于年径流量在时间上的变化是气候因素和自然地理因素共同作用、相互综合的产物,而这些影响因素本身又受其他许多因素的影响和制约,因果关系相当复杂,现阶段的科学水平,尚难完全应用成因分析法可靠地求出其变化规律,同时,前后相距几年的年径流之间并无显著的关系,各年径流间可认为彼此独

灌溉渠道设计流量计算

灌溉渠道设计流量计算 附录C 项目设计有关公式 C1 正常流量——设计典型年内的灌水高峰时期渠道需要通过的流量。该项为渠道纵横断面和渠系建筑物设计的依据。 加大流量——为满足特殊情况,短时内加大输水的要求,而予以增大的渠道设计流量。通常是根据正常流量,适当选择加大百分数来确定,该项指标为设计渠顶高程的依据。 最小流量——在河流水源不足,种植面积减小,或给灌水定额较小的作物供水时,出现渠道最小流量。该项指标主要用于校核下一级渠道水位的控制条件和奎水建筑物位置以及校核渠道中的淤积。 选择灌溉制度,确定灌溉方式及由支渠同时供水的下级渠道数目。 确定支渠及农渠应送至田间的净流量: Qbfn=ωb·qn……………………… 式中:Qbnt——支渠配给田间的净流量,m3/s; ωb_支渠控制的灌溉面积,万亩;

qn——灌水模数。 Qln==Qbfn/n·k·nf…………………… 式中:Qln——农渠净流量,m3/s; n——支渠以下同时灌水的斗渠数; k——斗渠以下同时灌水的农渠数; nf——田间水利用系数。 推算各级渠道的设计流量: 农渠毛流量:QLG=Qln+S1·L1…………… 式中:QLG——农渠毛流量,m3/s;Qln——农渠净流量,m3/s; S1——农渠每公里的渗水量,L/s/km; L1——农渠平均灌水长度取1/2的农渠长度,km。斗渠的毛流量:QdG=k·QLG+Sa·La………… 式中:QdG——斗渠毛流量,m3/s; k——斗渠以下同时灌水的农渠数; Sa——斗渠每公里的渗水量,L/s/km;La——斗渠最大平均工作渠段长度,km 支渠的毛流量:ObG=n·QdG+Sb·Lb………… 式中:ObG——支渠的毛流量,m3/s n——支渠以下同时灌水的斗渠数; Sb——支渠每公里的渗水量,L/s/km;Lb——支渠的工作长度,km。

生活给水设计秒流量的概率计算方法

生活给水设计秒流量的概率计算方法 摘要:本文分别介绍了国内外在计算生活给水设计秒流量时采用的常用概率理论方法,即亨特概率法和俄罗斯概率法。并对其理论原理,计算方法及特点进行了阐述。最后对两种方法进行比较。 关键词:给水设计秒流量概率法卫生器具 1 前 生活用水设计秒流量反映了给水排水系统瞬时高峰用水规律的设计流量。以L/s计。用于确定给水管管径和排水管管径,计算给水管系的水头损失和排水管道的坡度、充满度,以及选用水泵等 世界各国进行了不少水量方面的研究,并制定出各自室内给水管道流量的计算方法。室内给水管道流量的计算方法有平方根法、概率理论法 目前,国外应用的方法皆以概率为理论基础,概率计算是所有新的设计方法的基础。国外不仅早已建立了以概率理论为基础的秒流量计算式,而且在近几十年来,对用水工况进行了长期的大量的研究,至今己获得足够的可以更完善地加工整理设计秒流量计算方法的资料,这对我国设计秒流量计算方法的改进具有重要的参考价值。虽然许多国家均采用概率方法为基础,但由于对数据的选取以及处理方式不同,所产生的方法不同,以美国的亨特概率方法和俄罗斯的概率方法为代表 2 概率计算方 2.1 亨特概率方 2.1.1 亨特概率法的建立 [1 亨特概率法由美国的亨特(Roy B.Hunter)于1924年提出,并在1940年以后发展成熟,得到承认。其基本原理是将系统中卫生器具的使用看作一个随机变量,各种卫生器具的使用是独立的,使用中不存在相互联系,可用二项分布的数学模型来描述秒流量这一随机变量

假定某给水管段上连接有n个卫生器具,各个器具的开启和关闭相互独立,每个器具的额定流量为q0,则通过该计算管段的最大给水设计秒流量为q0n,最小给水流量为0,任意时刻通过该管段的给水秒流量q(0≤q≤q0)。设计系统应降低管材耗量,并保证不间断供水,以满足用水高峰时的用水量。假设用水高峰时每个卫生器具的使用概率为p,则不被使用的概率为(1-p),那么在用水高峰时,n个卫生器具中有i个同时使用的概率为 (2-1 亨特的定义,对根据于只有一种卫生器具构成单一系统,表示如下 (2-2 其中:Pm—至多有m个器具同时的概率值 m— 卫生器具同时使用个数设计值 p—用水高峰期单个卫生器具的使用概率 n—管段连接的卫生器具数 Pr—供水保证值,在亨特概率方法中采用0.99 由上式可以得知,在供水保证值Pr给出的情况下,可得在总卫生器具n个中,同时起作用的卫生器具数目r的值 由上式(2-2)知,n个卫生器具中有r个作用,r是0到n的任意数,把r从0到n的概率全部想加起来可得 (2-3 其中:式中符号同前 利用(式2.2)在已知N,P的条件下,可求出满足Pm≥0.99的m值。卫生器具同时使用个数设计值的概念与设计秒流量的概念想对应的计算管段的设计秒流量为 qg=q0 式中 qg——计算管段的设计秒流量,L/S

工程水文学习题年径流和年输沙量

第五章年径流及年输沙量分析与计算 本章学习的内容和意义:年径流及年输沙量的分析计算是为水利水电工程的规划设计服务的,年径流分析计算成果与用水资料相配合,进行水库调节计算,便可求出水库的兴利库容;多年平均输沙量计算成果为水库死水位的选择提供了重要依据。同时,年径流分析计算成果是进行水资源评价的重要依据,也是制定和实施国民经济计划的重要依据之一。年径流及年输沙量的分析计算主要包括年径流变化及其影响因素,设计年径流分析计算,设计年径流的年内分配;枯水流量分析计算;多年平均输沙量的估算。 本章习题内容主要涉及:年径流和年输沙量的资料审查;年径流量的频率分析计算;年径流量的相关分析及插补延长;设计年径流量的推求;设计年径流的年内分配;无资料地区设计年径流量及其年内分配的推求;枯水流量分析计算;年、月输沙量和设计年输沙量及其年内分配的分析计算。 一、概念题 (一)填空题 1、某一年的年径流量与多年平均的年径流量之比称为。 2、描述河川径流变化特性时可用变化和变化来描述。 3、下墊面对年径流的影响,一方面,另一方面。 4、对同一条河流而言,一般年径流流量系列Q i (m3/s)的均值从上游到下游是。 5、对同一条河流而言,一般年径流量系列C v值从上游到下游是。 6、湖泊和沼泽对年径流的影响主要反映在两个方面,一方面由于增加了,使年径流量减少; 另一方面由于增加了,使径流的年内和年际变化趋缓。 7、流域的大小对年径流的影响主要通过流域的而影响年径流的变化。 8、根据水文循环周期特征,使年降雨量和其相应的年径流量不被分割而划分的年度称为。 9、为方便兴利调节计算而划分的年度称为。 10、水文资料的“三性”审查是指对资料的、和进行审查。 11、对年径流系列一致性审查是建立在气候条件和下墊面条件稳定性上的,一般认为 是相对稳定的,主要由于受到明显的改变使资料一致性受到破坏。 12、当年径流系列一致性遭到破坏时,必须对受到人类活动影响时期的水文资料进行计算,使之状态。 13、流域的上游修建引水工程后,使下游实测资料的一致性遭到破坏,在资料一致性改正中,一定要将 资料修正到引水工程建成的同一基础上。 14、在缺乏实测径流资料时,年径流量的估算常用一些间接的方法(如参数等值线图法,经验公式法,

热水系统计算书

热水系统计算 一、热水系统: 1.1.本工程宿舍设全日制集中热水供应系统。 1.2. 耗热量计算: 冷、热水计算温度分别取值5℃和60℃; 宿舍热水总耗热量计算: 已知: 用水计算单位数m=324 (床位);热水用水定额qr=100升/每人每日;使用时间=24小时;冷水水温tl=5℃;热水水温tr=60℃;根据《给水排水设计手册》第一册,第二版《常用资料》的表5-28,插值计算得热水密度=0.98324kg/L ;再根据2009版《建筑给水排水设计规范》的表 5.3.1插值计算得小时变化系数Kh=4.534857 ;水的比热C=4.187kJ/kg℃; 计算: 设计小时耗热量Qh=(4.534857×324×100×4.187×(60-5)×0.98324)/24=1386189kJ/h=385kW。 1.3.设计小时总热水量: 已知: 设计小时耗热量=385000W ;设计热水温度=60℃;设计冷水温度=5℃; 计算: 根据《给水排水设计手册》第一册,第二版《常用资料》的表5-28,插值计算得热水密度=0.98324kg/L ;设计小时热水量=385000/(1.163×(60-5)×0.98324)=6121.51L/h ,即6.12立方米/小时。 2.本工程热水系统供水分区同冷水给水系统。其中3F~5F为供水一区,6F~11F为供水二区。 21.低区(3F~5F)宿舍热水耗热量计算: 已知: 用水计算单位数m=108 ;热水用水定额qr=100升/每人每日;使用时间=24小时;冷水水温tl=5℃;热水水温tr=60℃;根据《给水排水设计手册》第一册,第二版《常用资料》的表5-28,插值计算得热水密度=0.98324kg/L ;再根据2009版《建筑给水排水设计规范》的表5.3.1插值计算得小时变化系数Kh=4.8 ;水的比热C=4.187kJ/kg℃; 计算: 设计小时耗热量Qh=(4.8×108×100× 4.187×(60-5)×0.98324)/24=489079kJ/h=136kW。

设计秒流量的计算

附 1、5设计秒流量的计算 1、5、1设计流量计算 (1)最高日用水量Qd 最高日用水量按式(1-1)计算: 3(/)1000 d d mq Q m d = (1-1) 式中m —设计单位数(如人数、床位数等) q d 一用水定额,见表1-9、10 采用公式(1-1)应注意以下几点: 1)该公式适用于各类建筑物用水、汽车库汽车冲洗用水、绿化用水、道路浇洒用水。 2)对于多功能的建筑物,如商住楼、宾馆、大会堂、影剧院等,应分别按不同建筑物的用水量定额,计算各自的最高日用水量,然后将同时用水者叠加,取最大一组用水量作为整幢建筑物的最高日用水量。 3)对一幢建筑可用于几种功能时,应按耗水量最大的功能计算。 4)一幢建筑物的服务人数超过范围时,设计单位数应按实际单位数计算,如集体宿舍内附设公共浴室,该浴室还为其它人员服务时,其浴室用水量应按全部服务对象计算。 5)建筑物实际用水项目超出或少于范围时,其用水量应作相应增减。如医院、旅馆增设洗衣房时应增加洗衣房的用水量。 6)设计单位数应由建设单位或建筑专业提供。当无法取得数据时,在征得建设单位同 意下,可按卫生器具一小时用水量与每日工作时数来确定最高日用水量。 (2)工业企业生产用水量:应根据工业生产工艺、设备、工作制度、供水水质与水温等因 素并结合供水系统状况来选择与确定生产用水量。 (3)消防用水量:见第2章。 (4)最大小时生活用水量:最大小时用水量按式(1-2)计算: 3(/)d h Q Q K m h T = (1-2) 式中Qh —最大小时用水量3(/)m h Qd 最高日用水量3(/)m d 或最大班用水量3 (/)m 班; T —每日或最大班用水时间(h) K —小时变化系数,见表1-9,10 (5)生活给水设计秒流量: 1)住宅、集体宿舍、旅馆、宾馆、医院、幼儿园、办公楼、学校等建筑物生活给水设计秒流量,应按式(1-3)计算: 0.2(/)g g q KN L s = (1-3) 式中g q —设计秒流量(L/s) a,K —根据建筑物用途而定的系数,见表1-20; g N —计算管段的卫生器具给水当量总数,见表1-16

生活给水设计秒流量的概率计算方法

生活给水设计秒流量的概率计算方法 生活用水设计秒流量反映了给水排水系统瞬时高峰用水规律的设计流量。以L/s计。用于确定给水管管径和排水管管径,计算给水管系的水头损失和排水管道的坡度、充满度,以及选用水泵等。 世界各国进行了不少水量方面的研究,并制定出各自室内给水管道流量的计算方法。室内给水管道流量的计算方法有平方根法、概率理论法。 目前,国外应用的方法皆以概率为理论基础,概率计算是所有新的设计方法的基础。国外不仅早已建立了以概率理论为基础的秒流量计算式,而且在近几十年来,对用水工况进行了长期的大量的研究,至今己获得足够的可以更完善地加工整理设计秒流量计算方法的资料,这对我国设计秒流量计算方法的改进具有重要的参考价值。虽然许多国家均采用概率方法为基础,但由于对数据的选取以及处理方式不同,所产生的方法不同,以美国的亨特概率方法和俄罗斯的概率方法为代表。 2 概率计算方法 2.1 亨特概率方法 2.1.1 亨特概率法的建立[1]

亨特概率法由美国的亨特(Roy B.Hunter)于1924年提出,并在1940年以后发展成熟,得到承认。其基本原理是将系统中卫生器具的使用看作一个随机变量,各种卫生器具的使用是独立的,使用中不存在相互联系,可用二项分布的数学模型来描述秒流量这一随机变量。 假定某给水管段上连接有n个卫生器具,各个器具的开启和关闭相互独立,每个器具的额定流量为q0,则通过该计算管段的最大给水设计秒流量为q0n,最小给水流量为0,任意时刻通过该管段的给水秒流量q(0≤q≤q0)。设计系统应降低管材耗量,并保证不间断供水,以满足用水高峰时的用水量。假设用水高峰时每个卫生器具的使用概率为p,则不被使用的概率为(1-p),那么在用水高峰时,n个卫生器具中有i个同时使用的概率为: (2-1) 亨特的定义,对根据于只有一种卫生器具构成单一系统,表示如下: (2-2) 其中:Pm—至多有m个器具同时的概率值; m—卫生器具同时使用个数设计值;

流量计算公式

摘要:本文概述了目前用于管道直饮水系统管网设计秒流量的三种算法:传统公式算法、改造传统公式算法和概率公式算法,并比较了这三种算法的计算结果,分析了其中原因。指出传统公式算法和改造传统公式算法都不适用于管道直饮水系统管网的计算,而概率公式算法是一种较为合适的方法。 关键词:管道直饮水设计秒流量算法 0 前言 设计秒流量的计算是管网水力计算的基础,设计秒流量计算正确才能保证整个系统的正常运行。设计秒流量计算偏大,就会导致管径偏大、水泵流量偏大,造成经济上的浪费;同时,管网中的流速偏小,容易导致细菌繁殖,微粒沉积。而如果设计秒流量过小,则会使所选管径过小,造成水头损失过高,浪费能量,严重时出现断流,不能保证用水可靠性。所以,选择一个正确的设计秒流量计算方法至关重要。 1.设计秒流量计算方法概述 目前,用于管道直饮水系统设计秒流量的计算方法大致有三种: (1)算法一(传统公式算法) 即采用建筑生活给水管道设计秒流量计算公式 (1) 取=1.02,=0.0045,公式(1)成为: (2) 其中为设计秒流量(l/s),为当量总数,此公式为水工业工程设计手册《建筑和小区给水排水》[1]所采用。 (2)算法二(改造传统公式算法) 根据1981年出版的《室内给排水工程》[2],住宅生活用水秒不均匀系数与平均日用水量的关系为:

(3) 则 (4) 其中,为秒不均匀系数,为平均日用水量(m3/d)。 (3)算法三(概率公式算法) 关于概率公式算法,首先要引入一个重要概念——龙头使用概率。根据有关资料[3],龙头使用概率可表示为: (5) ——最高峰用水时龙头连续两次用水时间间隔(s); ——期间龙头放水时间(s)。 有了龙头的使用概率之后,可以用概率统计的方法计算出同时用水龙头数量,个龙头额定流量之和便是管道设计秒流量。 、和可用以下方法计算得到。设用水高峰期为下班后的某个半小时内,且此时段内的放水时间均匀分布,则此时龙头的使用概率为: (6) ——高峰期用水定额,l/s; ——管段负荷龙头总数;

住宅热水设计计算

住宅热水设计计算 一、概述: 1、目前国内住宅具有如下特点: ⑴、住宅分类,普通住宅:建筑面积小于80平方米,设一厨一卫。高尚住宅:建筑面积大(100 ~200平方米),室内外装修标准高,附设卫生间两个或两个以上 ⑵、每户居民人数平均3~4人。 ⑶、一般设有即热式燃气热水器或小容积式电热水器,部分大城市高标准商品住宅设有集中热水供应或每户设大容积式热水器。 ⑷、小管径新型冷热水管材得到普遍使用。 ⑸、对节水器具的使用提出了新的要求。 2、住宅热水用水量的分析:资料表明,洗浴用热水占户总用水量的30%,耗热量占整个家庭耗能的15%。如果采用合适的节水措施,可节约15%的用水量。 二、热水设计秒流量的计算方法: 1、平方根法: 规范规定的公式: q=α*0.2√Ng+k*Ng) (1) 其中:α=1.05; k=0.0045;Ng--卫生器具当量总数 公式(1)的推导及取值:公式 (1) 是根据给水秒不均匀系数确定的: Ks = 30 / √Qp’ q = (Qp’/24)*Ks*1/3.6=0.347√Qp’ = 0.347√So*N =bo √Ng ( l/s ) 其中:Ks-----给水秒不均匀系数; Qp’------平均日用水量; So-----单位当量的日用水量 Ng----- 卫生器具当量数 bo = 0.347 √So 公式 (1)使用条件: 按每户一个卫生间,每户5人计。 不同用水量标准的N、√So值和 bo值见表1。 根据上表,取bo=0.2, 并把bo随生活用水量标准的变化性质用系数α反

映出来,再加以修正,从而得出计算公式(1) 。 对于设有多个卫生间的“高尚住宅”,不同用水量标准的N、√So值和 bo 值见表2。每户使用人数同上。 2、平方根法的修改:从上表1~2可看出,当每户使用人数一定时,随着卫生器具当量总数的增加,用水量标准亦增大,但bo值增加很小,并且小于0.15;每户使用人数减少时,虽然卫生器具当量增加,用水量标准增大,但bo值也小于0.15。因此,仍按公式 (1) 计算设计秒流量明显不否合适,应考虑到卫生器具增多,卫生洁具同时使用率变小的因素,对于“高尚住宅”,建议bo的取值为0.15。并取消k值得修正。 由于公式(1)存在理论推导和实测资料两方面的缺陷,不能反映使用人数及用水量标准对设计流量的影响因素,且当Ng≥300时,(k*Ng)项值明显增加,从而失去了修正的意义。对多卫生间的高尚住宅,热水管道设计秒流量计算公式修改为: q=α*0.15√Ng (2) 3、概率法:给水设计秒流量的计算属于概率统计的范畴,采用概率法计算更能反映客观实际情况,这一方法在美欧发达国家得以采用。设计秒流量计算公式为:q=1.0+0.22p*Ng (3) 其中:Ng:卫生器具当量数,的取值应大于25; p:单位当量使用频率,p=0.017~0.055,p的取值与用水量标准、使用人数、卫生器具当量总数有关。p的取值应根据不同的使用工况经实测取得,但目前还难以做到。 三、不同使用工况热水设计秒流量的计算比较: 1、不同户型器具当量数及流量计算: (1) 、户内采用即热式热水器时,由于即热式热水器流量为定值(5~10 l/min),热水管均可采用DN15管道。热水设计秒流量可不计算。 (2) 、户内采用容积式热水器或集中热水供应时, 流量计算见表3 2、多栋住宅楼组成的小区器具当量数及流量计算: 某小区由10栋小高层(10层)组成,共800户,服务人口2880人,户型均为一厨二卫的高尚住宅,集中热水供应,竖向为一个给水区。计算简图见图1,有关计

污水设计流量计算

污水设计流量 1. 定义 污水设计流量是设计终了时的最大日最大时污水流量。包括生活污水和工业废水,此外在地下水位高的地区需要考虑地下水渗入量。注意不是瞬间流量,也不是平均流量。 2. 变化系数 日变化系数:一年中最大日污水量与平均日污水量的比值成为日变化系数K; 时变化系数:最大日中最大污水量与该日平均污水量的比值称为时变化系数K; 总变化系数:最大日最大时的污水量与平均日平均时污水量的比值称为总变化系数K; K=K×K(1-1) K也可按下式计算: K=2.7Q.(1-2) 3. 旱流污水设计流量 ①城镇旱流污水设计流量,应按下列公式计算: Q=Q+Q(1-3)式中:Q——截留井以前的旱流污水设计流量,L/s; Q——设计综合生活污水量,L/s; Q——设计工业废水量,工厂生产区生活污水和工业生产废水总和,L/s; ②工业废水量按式(1-4)计算: Q=Q+Q(1-4)式中:Q——工业生产区生活污水流量,L/s; Q——工业生产废水流量,L/s; ③城镇旱流污水总设计流量(工业直接排入管网),按下式计算: Q=Q+Q+Q(1-5)式中:Q——地下水渗入量,可根据地下水位的高低确定是否需要此项,L/s; 4. 居民综合生活污水量 综合生活污水量按下式计算: Q d=q d NK Z24×3600(1-6)式中:q——居民生活污水定额,可按当地相关用水定额的80~90%,L/d; N——设计人口; 注意:综合生活污水需加上公共建筑污水,可按照30%计算。 5. 设计人口 设计人口可按式(1-7)和式(1-8)计算: N=P·A(1-7) N=N(1+y)(1-8)

式中:P——人口密度; A——排水区域面积; N——初始人口数量; y——人口年均增长率; n——发展年限; 6.比流量 由式(1-5)和式(1-6)得: Q=q PAK24×3600(1-9)令: Q=Q AK(1-10)则有: Q=q P24×3600(1-11)Q称为比流量,其含义为单位排水面积(ha)的平均流量。 7. 工业废水量 ①工业生产区生活污水流量按下式计算: Q=25×3.0N+35×2.5N+40N+60N(1-12)式中:N——一般车间生活人数; N——热车间生活人数; N——一般车间使用淋浴人数; N——热车间使用淋浴人数; 25、35为生活用水定额,40、60为淋浴用水定额。具体参数以《建筑给水排水设计规 范》等为准。 ②工业生产废水流量按下式计算: (1-13) Q3=1000 K Z q M 3600T 式中:K——总变化系数,不同类型工业企业其数值各不相同,需要实际调查; q——单位产品产生废水量,m3/件; M——生产产品的日产量,件/d; T——每天生产时间,hr/d; 8. 地下水渗入量 因当地土质、地下水位、管道和接口材料以及施工质量等因素的影响,当地下水位高于排水管渠时,排水系统设计应适当考虑地下水渗入量。 地下水渗入量宜按调查资料确定,也可按平均日综合生活污水和工业废水总量的10~15%计,还可按每天每单位服务面积渗入的地下水量计。

第五章热水系统设计与计算

第五章热水系统设计与计算 5.1热水系统选择 5.1.1热水供应系统选择 建筑热水供应系统按热水供应围的大小,可分为集中热水供应系统、局部热水供应系统和区域热水供应系统。热水供应系统类型的选择,应根据使用要求、耗热量、用水点分布、热源种类等因素确定。综合考虑,本设计中采用集中热水供应方式。 5.1.2热水供应方式确定 本设计中采用间接加热方式,加热设备选用导流型容积式水加热器,热水管网采用半循环方式,打开配水龙头时只需放掉热水支管中少量的存水,就能获得规定水温的热水。并采用开式热水供水方式,即在所有配水点关闭后,系统的水仍与大气相通。该方式一般在管网顶部设有高位冷水箱和膨胀管或高位开式加热水箱。为了保证良好的循环效果,采用同程式循环系统。 5.2热水供应系统组成 热水供应系统的组成因建筑类型和规模、热源情况、用水要求、加热和储存设备的供应情况、建筑对美观和安静的要求等不同情况而异。典型的集中热水供应系统主要由热媒系统、热水供应系统、附件三部分组成。

5.3热水管道的布置与敷设 热水管道的布置与敷设除了应满足给(冷)水管布置敷设的要求外,还应注意由于水温高带来的体积膨胀、管道伸缩补偿、保温、排气等问题。 5.3.1热水管道的布置 热水管道的布置按热水流向分为上行下给和下行上给两种形式。根据《建筑给水排水设计规》GB 50015—2009规定根据生活给水管道的布置形式和相关规要求,确定下、上区热水管道的布置形式为均为下行上给式。另外,热水管道的布置按循环管路水流路径可分为异程和等程两种。规要求循环管道应采用同程布置方式,并设循环泵机械循环。 故本设计中建筑热水管道的布置采取下行上给的同程式布置。 5.3.2热水管道的敷设 本次设计中热水管道布置高度统一取1.3米,当要穿门时布置高度取2.5米。热给水管埋地深度0.4米,户外热水管做好保温措施,坡度取0.003。热回水管与热给水管布置方式相同,底层横干管埋深0.7米。 5.3.4热水管道管材选择 热水系统采用的管材和管件,应符合现行产品标准的要求。管道的工作压力和工作温度不得大于产品标准标定的允许工作压力和工作温度。 热水管道应选用耐腐蚀和安装连接方便可靠的管材,可采用薄壁铜管、薄壁不锈钢管、塑料热水管、塑料和金属复合热水管等。

万日流量的格栅设计计算

设计流量:平均日流量d Q =7万d m /3=h m /3=s m /3=800L/s 查表可得总k = 所以最大设计流量Q m ax = * =s m /3 为了减少格栅的负荷,我们采用两道格栅,所以每道格栅的 1.栅条的间隙数n ehv x Q n sin max = Qmax ——最大设计流量,m 3/s α——格栅倾角,度,取α=600 h ——栅前水深,m ,取h= e ——栅条间隙,m ,取e= n ——栅条间隙数,个 v ——过栅流速,m/s ,取v=s 则:350 .1*4.1*02.060sin *56.0sin m ax ≈==ehv X Q n 个

2.栅槽宽度B 栅槽宽度一般比格栅宽米,取米。 设栅条宽度S=10mm 则栅槽宽度 04 .135 *02.034*01.0)1(=+=+-=en n S B 3.通过格栅的水头损失h a g v h kh h sin 22001ζ== 34 )(e S ?=βζ 1h ——过栅水头损失,m 0h ——计算水头损失,m g ——重力加速度,2/m s k ——系数,格栅受污物堵塞后,水头损失增大的倍数,一般采用k=3 ξ——阻力系数,与栅条断面形状有关,34 )(e S ?=βζ,

当为矩形断面时,β=。 m g k kh h 16.060 sin 8.9*20.1*0.020.01(*42.2*3sin 20 2 12 ====)α υζ 4.栅后槽总高度H 设栅前渠道超高20.3h m = m h h h H 86.03.016.04.021=++=++= 5.栅槽总长度L 进水渠道渐宽部分的长度L 1,设进水渠宽B 1=,其渐宽部分展开角度α1=200,进水渠道内的流速为s 。 8 .0727.045.004.1tan 211 1=-=-=αB B L 栅槽与出水渠道连接处的渐窄 部分长度2L 4.028 .0212===L L 1 1 21tan 5.00.1αH L L L ++++= 1H 为栅前渠道深, 12H h h =+

径流分析计算大纲范本

FCD 11011 FCD 水利水电工程初步设计阶段径流分析计算大纲范本 水利水电勘测设计标准化信息网 1996年3月 1

水电站初步设计阶段 径流分析计算大纲 主编单位: 主编单位总工程师: 参编单位: 主要编写人员: 软件开发单位: 软件编写人员: 勘测设计研究院 年月 2

目次 1. 引言 (4) 2. 设计依据文件和规范 (4) 3. 基本资料 (4) 4. 径流分析计算内容和要求 (6) 5.径流特性分析 (6) 6.径流还原计算 (7) 7.径流系列代表性分析 (10) 8.径流系列计算 (11) 9.径流频率分析计算 (14) 10.径流年内分配 (18) 11.应提供的设计成果 (19) 3

1. 引言 2. 设计依据文件和规范 2.1 有关本工程径流计算的文件 (1) 规划与可行性研究阶段的设计报告、专题报告以及审查意见; (2) 初步设计任务书和项目任务书。 2.2 主要设计规范 (1) SDJ 214-83 水利水电工程水文计算规范(试行); (2) SL 44-93 水利水电工程设计洪水计算规范; (3) DL 5020-93 水利水电工程可行性研究报告编制规程 (4) DL 5021-93 水利水电工程初步设计报告编制规程 3. 基本资料 3.1 基本资料的收集和整理 3.1.1 流域自然地理特征资料 流域面积、地理位置(含经纬度)、地形、地貌、地质、土壤、植被、干流及主要支流分布、干流长度、坡度等。 3.1.2 水利和水土保持措施资料 与工程径流计算有关的已建大中型水库、引水蓄水工程、分洪滞洪工程、水土保持措施 4

用水量计算方法

用水量计算 3.6.1 居住小区的室外给水管道的设计流量应根据管段服务人数、用水定额及卫生器具设置标准等因素确定,并应符合下列规定: 1 服务人数小于等于表3.6.1中数值的室外给水管段,其住宅应按本规范第、条计算管段流量。居住小区内配套的文体、餐饮娱乐、商铺及市场等设施应按本规范第条和第条的规定计算节点流量; 表3.6.1 居住小区室外给水管道设计流量计算人数 注:1 当居住小区内含多种住宅类别及户内Ng不同时,可采用加权平均法计算;

2 表内数据可用内插法。 2 服务人数大于表3.6.1中数值的给水干管,住宅应按本规范第条的规定计算最大时用水量为管段流量。居住小区内配套的文体、餐饮娱乐、商铺及市场等设施的生活给水设计流量,应按本规范第条计算最大时用水量为节点流量; 3 居住小区内配套的文教、医疗保健、社区管理等设施,以及绿化和景观用水、道路及广场洒水、公共设施用水等,均以平均时用水量计算节点流量。 注:凡不属于小区配套的公共建筑均应另计。

3.6.1A 公共建筑区的给水管道应按本规范第条计算管段流量和按第条计算管段节点流量。 3.6.1B 小区的给水引入管的设计流量,应符合下列要求: 1 小区给水引入管的设计流量应按本规范第3.6.1、3.6.1A条的规定计算,并应考虑未预计水量和管网漏失量; 2 不少于两条引入管的小区室外环状给水管网,当其中一条发生故障时,其余的引入管应能保证不小于70%的流量; 3 当小区室外给水管网为支状布置时,小区引入管的管径不应小于室外给水干管的管径; 4 小区环状管道宜管径相同。

3.6.3 建筑物的给水引入管的设计流量,应符合下列要求: 1 当建筑物内的生活用水全部由室外管网直接供水时,应取建筑物内的生活用水设计秒流量; 2 当建筑物内的生活用水全部自行加压供给时,引入管的设计流量应为贮水调节池的设计补水量。设计补水量不宜大于建筑物最高日最大时用水量,且不得小于建筑物最高日平均时用水量; 3 当建筑物内的生活用水既有室外管网直接供水、又有自行加压供水时,应按本条第1、2款计算设计流量后,将两者叠加作为引入管的设计流量。 3.6.4 住宅建筑的生活给水管道的设计秒流量,应按下列步骤和方法计算:

建筑热水计算

5.3 耗热量、热水量和加热设备供热量的计算 5.3.1设计小时耗热量的计算: 1设有集中热水供应系统的居住小区的设计小时耗热量,当公共建筑的最大用水时时段与住宅的最大用水时时段一致时,应按两者的设计耗热量叠加计算,当公共建筑的最大用水时时段与住宅的最大用水时时段不一致时,应按住宅的设计小时耗热量加公共建筑的平均小时耗热量叠加计算。 2全日供应热水的住宅、别墅、招待所、培训中心、旅馆、宾馆的客房(不含员工)、医院住院部、养老院、幼儿园、托儿所(有住宿)等建筑的集中热水供应系统的设计小时耗电量应按下式计算: (5.3.1-1) 式中--设计小时耗热量(W); --用水计算单位数(人数或床位数); --热水用水定额(L/人·d或L/床·d)应按本规范表5.1.1-1采用; --水的比热,=4187(J/Kg·℃); --热水的温度,=60℃; --冷水温度,按本规范表5.1.4选用; --热水的密度(Kg/L); --小时变化系数,可按表5.3.1-1~表5.3.1-3采用。 表5.3.1-1 住宅、别墅的热水小时变化系数值 居住人数m ≤100150 200 250 300 500 1000 3000 ≥6000 5.12 4.49 4.13 3.88 3.70 3.28 2.86 2.48 2.34 表5.3.1-2 旅馆的热水小时变化变化系数值 居住人数m ≤150300 450 600 900 ≥6000 6.84 5.61 4.97 4.58 4.19 3.90

表5.3.1-3 医院的热水小时变化变化系数值 居住人数m ≤5075 100 200 300 500 4.55 3.78 3.54 2.93 2.60 2.23 注:招待所、培训中心、宾馆的客房(不含员工)、养老院、幼儿园、托儿所(有住宿)等的建筑K h可参照表5.1.3-2选用;办公楼的K h见表3.1.10。 3 定时供应热水的住宅、旅馆、医院及工业企业生活间、公共浴室、学校、剧院、体育馆 (场)等建筑的集中热水供应系统的设计小时耗热量应按下式计算: (5.3.1-2) 式中--设计小时耗热量(W); --卫生器具热水的小时用水定额(L/h),应按本规范表5.1.1-2采用; --水的比热,C=4187(J/Kg·℃); --热水的温度(℃),按本规范表5.1.1-2采用 --冷水温度(℃),按本规范表5.1.4采用; --热水的密度(Kg/L); --同类型卫生器具数; --卫生器具的同时使用百分数:住宅、旅馆、医院、疗养院病房,卫生间内浴盆或淋浴器可按70%~100% 计,其他器具不计,但定时连续供水时间应不小于2h。工业企业生活间、公共浴室、学校、剧院、体 育馆(场)等的浴室内淋浴器和洗脸盆均按100%计。住宅一户带多个卫生间时,只按照一个卫生间计 算。 4具有多个不同使用热水部门的单一建筑或具有多种使用功能的综合性建筑,当其热水由同一热水供应系统供应时,设计小时耗热量,可按同一时间内出现用水高峰的主要用水部门的设计小时耗热量加其他部门的平均小时耗热量计算。 5.3.2设计小时耗热量可按下式计算: (5.3.2) 式中--设计小时耗热量(L/h);

年径流量的计算例题

基本步骤: 1. 分析资料的代表性,少于20年的短系列加以延展; 2. 计算经验频率,绘制经验频率曲线; 3. 计算径流量均值Q 及C v 和C s 的值; 4. 用适线法确定理论频率曲线; 5. 推求不同设计频率的年径流量。 例题: 某河某站年平均流量资料如下表,试用适线法估计参数,并推求频率为5%,10%和95%的设计年平均流量。 解: 1)将实测年平均流量按大小次序排列,利用公式 计算 经验频率P ,列表计算如下。并将x 和P 对应点绘在概率格纸上,见频率曲线图。 %1001?+=n m P

2)计算系列的多年平均流量: 3)计算模比系数x x K i i = ,也列于表中。 4)用矩法公式求偏态系数(无偏估计量): 5)取Cv=0.2,Cs=2Cv 进行PIII 曲线的配线:查PIII 型频率曲线的模比系数p K 值表,求出不同频率P 对应的p K ,则x K x p p ?=。 6)将频率P 和对应的p x 绘于同一个概率格纸上,并与经验频率比较,结果符合不太满意。改变参数,分别取Cs =3Cv 和Cs =3.5Cv ,重复步骤5),计算不同频率对应的年径流量Xp ,结果绘于概率格纸上。 频率曲线选配计算表 x x x 第三次配线与经验点据配合较好,即为采用的频率曲线 ) /(586.3328 4 .9403s m x == 1878 .01289526 .01)1-(1 2===∑=--n i i V n k C

7)根据第三次配线频率曲线,可求相应频率的设计年平均流量p p K x x ?=,分别得到如下结果: X 5% =45.68 m 3/s X 10%=42.65 m 3/s X 95%=24.18 m 3/s

9.1.城市污水设计流量计算

<第2 节> 地市污水量规化计算 城市污水量包括城市生活污水量和部分工业废水量,它与城市规划年限、发展规模有关,是城市污水管道系统规划设计的基本数据。 生活污水量的大小取决于生活用水量。在城市人民生活中,绝大多数用过的水都成为污水流入污水管道。根据某些城市的实测资料统计,污水量约占用水量的80~100%。生活污水量和生活用水量的这种关系符合大多数城市的情况。如果已知城市用水量,在城市污水管道系统规划设计时,可以根据当地的具体条件取城市生活用水量的80~lOO %作为城市生活污水量。在详细规划中也可以根据城市规模、污水量标准和污水量的变化情况计算生活污水量。 工业废水量则与工业企业的性质、工艺流程、技术设备等有关。 一、居住区生活污水量的计算 1.居住区平均日污水量的计算 Q p = 3600 240?N q (L/s) 2.居住区最高日最高时污水量的计算 Q 1 = Q p K z (L/s) 3. 总变化系数K z 的计算 总变化系数K z = K d ? K h = 11.07.2p Q 当Q ≤5L/s 时,K z = 2.3;当Q ≥1000L/s 时,K z = 1.3; 当5L/s <5Q <1000L/s 时,按公式计算或者查表 式中 q 0———居住区生活污水量标准(升/人?曰)( L/cap ?s) K d ———曰变化系数 = 平均日污水量 最高日污水量 K h ———时变化系数 = 最高日平均时污水量最高日最高时污水量 K z ———总变化系数 =曰变化系数?时变化系数 二、公共建筑污水设计流量 公共建筑的污水量可与居民生活污水量合并计算,此时应选用综合生活污水量定额,也可以单独计算。公共建筑排放的污水量比较集中,例如公共浴室、旅馆、医院、学校住宿区、洗衣房、餐饮娱乐中心等。若有条件获得充分的调查资料,则可以分别计算这些公共建筑各自排出的生活污水量。其污水量定额可参照《建筑给水排水设计规范》中有关公共建筑的用水量标准采用。 公共建筑污水设计流量Q 。用下式计算: Q 2 = ∑3640024?h g g K q N (L/s) 式中q g ——各公共建筑最高日污水量标准,L /(用水单位·d); N g ——各公共建筑在设计使用年限终期所服务的用水单位数;

用水量计算

用水量计算
3.6.1 居住小区的室外给水管道的设计流量应根据管段服务人数、 用水定额及卫 生器具设置标准等因素确定,并应符合下列规定: 1 服务人数小于等于表 3.6.1 中数值的室外给水管段,其住宅应按本规范第 3.6.3、3.6.4 条计算管段流量。居住小区内配套的文体、餐饮娱乐、商铺及市场 等设施应按本规范第 3.6.5 条和第 3.6.6 条的规定计算节点流量; 表 3.6.1 居住小区室外给水管道设计流量计算人数 每户 Ng 3 4 5 6 7 8 9 10
qokh 350 400 450 500 550 600 650 700
10200 9100 8200 7400 6700 6100 5600 5200
9600 8700 7900 7200 6700 6100 5700 5300
8900 8100 7500 6900 6400 6000 5600 5200
8200 7600 7100 6600 6200 5800 5400 5100
7600 7100 6650 6250 5900 5550 5250 4950
— 6650 6250 5900 5600 5300 5000 4800
— — 5900 5600 5350 5050 4800 4600
— — — 5350 5100 4850 4650 4450
注:1 当居住小区内含多种住宅类别及户内 Ng 不同时,可采用加权平均法计 算; 2 表内数据可用内插法。 2 服务人数大于表 3.6.1 中数值的给水干管,住宅应按本规范第 3.1.9 条的规定 计算最大时用水量为管段流量。居住小区内配套的文体、餐饮娱乐、商铺及市场 等设施的生活给水设计流量,应按本规范第 3.1.10 条计算最大时用水量为节点 流量; 3 居住小区内配套的文教、 医疗保健、 社区管理等设施, 以及绿化和景观用水、 道路及广场洒水、公共设施用水等,均以平均时用水量计算节点流量。

室内给排水、热水、消防系统计算步骤(精)

一、建筑内部给水系统设计计算步骤 1. 初步确定系统方案 ⑴给水系统——生活、生活~生产、生产~消防、 ⑵供水方式: H0与估算的H 比较确定 H0>H H0稍<H H0<H ⑶管路图式:下行上给、上行下给、中分 ⑷建筑物的性质:重要——环状、暗装。 不重要——枝状、明装。 2. 管道平面布置 地下室、底层、标准层、顶层、屋面、水箱间 内容包括:引入管、干管、立管、支管、卫生设备、水池、水泵、水箱。(并向建筑、结构、暖通、电气提供地沟、立管位置、水箱位置) 3. 绘制计算草图 ⑴可不按比例画,但应按实际布置位置情况画; ⑵画出水池、水泵、水箱及室外管网示意图: ⑶以流量变化为节点,对计算管路编号; 上行下给从最高最远用水点至水箱,

下行上给从最高最远用水点至水水泵或室外管网。 ⑷其他管路编号(一张草图上编号不能重)。 ⑸标出管长。 4. 据建筑物类型确定设计秒流量计算公式及参数 5. 列表进行水力计算确定各管段的 计算管路:qg 、DN 、V 、I 、hy 其他管路:qg 、DN 、V 6、求计算管路的沿程水头损失、局部水头损失、水表水头损失。 7、求系统所需压力H 8、校核室外管网资用水头Ho 。最后确定供水方式 9、增压贮水调节设备设计计算(若 Ho>H 接第 10步) 水箱:容积、选定型产品、确定水箱的安装高度。 水泵:出水量、扬程、选产品类型和数量 水池:容积、几何尺寸、标高(最高水位、最低水位)提交给搞结构的。 10、绘制正式平面图 地下室、底层、标准层、顶层、屋面、水箱间 11、绘制正式系统图 标出管径、坡度、管件、附件、标高 12、局部放大图

设计秒流量的计算

附 设计秒流量的计算 1.5.1设计流量计算 (1)最高日用水量Qd 最高日用水量按式(1-1)计算: 3(/)1000 d d mq Q m d = (1-1) 式中m —设计单位数(如人数、床位数等) q d 一用水定额,见表1-9、10 采用公式(1-1)应注意以下几点: 1)该公式适用于各类建筑物用水、汽车库汽车冲洗用水、绿化用水、道路浇洒用水。 2)对于多功能的建筑物,如商住楼、宾馆、大会堂、影剧院等,应分别按不同建筑物的用水量定额,计算各自的最高日用水量,然后将同时用水者叠加,取最大一组用水量作为整幢建筑物的最高日用水量。 3)对一幢建筑可用于几种功能时,应按耗水量最大的功能计算。 4)一幢建筑物的服务人数超过范围时,设计单位数应按实际单位数计算,如集体宿舍内附设公共浴室,该浴室还为其它人员服务时,其浴室用水量应按全部服务对象计算。 5)建筑物实际用水项目超出或少于范围时,其用水量应作相应增减。如医院、旅馆增设洗衣房时应增加洗衣房的用水量。 6)设计单位数应由建设单位或建筑专业提供。当无法取得数据时,在征得建设单位同 意下,可按卫生器具一小时用水量和每日工作时数来确定最高日用水量。 (2)工业企业生产用水量:应根据工业生产工艺、设备、工作制度、供水水质和水温等因 素并结合供水系统状况来选择和确定生产用水量。 (3)消防用水量:见第2章。 (4)最大小时生活用水量:最大小时用水量按式(1-2)计算: 3(/)d h Q Q K m h T = (1-2) 式中Qh —最大小时用水量3(/)m h Qd 最高日用水量3(/)m d 或最大班用水量3 (/)m 班; T —每日或最大班用水时间(h) K —小时变化系数,见表1-9,10 (5)生活给水设计秒流量: 1)住宅、集体宿舍、旅馆、宾馆、医院、幼儿园、办公楼、学校等建筑物生活给水设计秒流量,应按式(1-3)计算: 0.2(/)g g q KN L s = (1-3) 式中g q —设计秒流量(L/s) a,K —根据建筑物用途而定的系数,见表1-20; g N —计算管段的卫生器具给水当量总数,见表1-16

相关文档