文档库 最新最全的文档下载
当前位置:文档库 › 钢筋混凝土深受弯构件受剪承载力的计算_刘立新

钢筋混凝土深受弯构件受剪承载力的计算_刘立新

钢筋混凝土深受弯构件受剪承载力的计算_刘立新
钢筋混凝土深受弯构件受剪承载力的计算_刘立新

第四章受弯构件斜截面受剪承载力计算

第4章 受弯构件的斜截面承载力 教学要求: 1深刻理解受弯构件斜截面受剪的三种破坏形态及其防止对策。 2熟练掌握梁的斜截面受剪承载力计算。 3理解梁内纵向钢筋弯起和截断的构造要求。 4知道梁内各种钢筋,包括纵向受力钢筋、纵向构造钢筋、架立筋和箍筋等的构造要求。 4.1 概述 在保证受弯构件正截面受弯承载力的同时,还要保证斜截面承载力,它包括斜截面受剪承载力和斜截面受弯承载力两方面。工程设计中,斜截面受剪承载力是由计算和构造来满足的,斜截面受弯承载力则是通过对纵向钢筋和箍筋的构造要求来保证的。 图4-1 箍筋和弯起钢筋 图4-2 钢筋弯起处劈裂裂缝 工程设计中,应优先选用箍筋,然后再考虑采用弯起钢筋。由于弯起钢筋承受的拉力比较大,且集中,有可能引起弯起处混凝土的劈裂裂缝,见图4-2。因此放置在梁侧边缘的钢筋不宜弯起,梁底层钢筋中的角部钢筋不应弯起,顶层钢筋中的角部钢筋不应弯下。弯起钢筋的弯起角宜取45°或60° 4.2 斜裂缝、剪跨比及斜截面受剪破坏形态 4.2.1 腹剪斜裂缝与弯剪斜裂缝 钢筋混凝土梁在剪力和弯矩共同作用的剪弯区段内,将产生斜裂缝。 主拉应力:22 42τσσ σ++=tp ,

主压应力22 42τσσ σ+-=cp 主应力的作用方向与构件纵向轴线的夹角a 可按下式确定: στ α22-=tg 图4-3 主应力轨迹线 图4-4 斜裂缝 (a)腹剪斜裂缝;(b)弯剪斜裂缝 这种由竖向裂缝发展而成的斜裂缝,称为弯剪斜裂缝,这种裂缝下宽上细,是最常见的,如图4-4(b)所示。 4.2.2 剪跨比 在图4-5所示的承受集中荷载的简支梁中,最外侧的集中力到临近支座的距离a 称为剪跨,剪跨a 与梁截面有效高度h 0的比值,称为计算截面的剪跨比,简称剪跨比,用λ表示,λ=a/h 0。

第八章 受拉构件承载力计算

第八章受拉构件承载力计算 学习要求与目标 1.理解大、小偏心受拉构件的判别方法,掌握大、小偏心受拉构件正截面承载力的计算方 法。 2.了解偏心受拉构件的斜截面受剪承载力计算。 截面承受拉力作用的构件称为受拉构件,截面承受的拉力通过截面形心轴的构件称为轴心受拉构件。这类构件包括屋架没有节间荷载作用时的下弦杆,屋架中的受拉腹杆,圆形截面蓄水池的池壁等。轴向拉力作用点和截面形心之间存在偏心距的构件称为偏心受拉构件。这类构件包括工业厂房中使用的钢筋混凝土双肢柱的柱肢,混凝土屋架的上弦杆,矩形截面蓄水池的池壁等,如图8-1所示为常用的受拉构件。 图8-1 常用的受拉构件 第一节轴心受拉构件 轴心受拉构件受力较小时钢筋和混凝土共同承担外载荷的作用,随着构件承受的外荷载不断增加,截面承受的拉应力也不断增加,在轴向力增加的过程中混凝土很快达到其抗拉极限应变和抗卡设计强度而开裂;构件开裂的同时原来由混凝土承受的拉应力就转嫁给了截面上配置的钢筋,钢筋应力瞬间快速增加。随后伴随荷载的上升,截面所配的受拉钢筋的拉应力持续上升,最后达到屈服强度,构件达到承载力的极限状态(图8-2)。可见轴心受拉构件的承载力就等于截面配置的纵向受拉钢筋屈服时提供的总的拉力。 N≤f y A s(8-1) 式中N——构件截面承受的轴向拉力设计值; f y——钢筋抗拉力强度设计值; A s——轴向受拉钢筋的全部截面面积。

图8-2 轴心受拉构件破坏时截面应力图 第二节 矩形截面偏心受拉构件承载力计算 矩形截面偏心受拉构件正截面上所配钢筋,拉力较大的离轴向偏心拉力较近的用A s 表示,拉力较小的离轴向偏心力较远的钢筋用A ’s 表示。为了内力分析的方便假定,当截面承 受的轴向偏心拉力作用点在A s 和A ’s 之间,即偏心距e o ≤h 2 -a s 时,为小偏心构件。当截面承受的轴向偏心拉力作用点在A s 和A ’s 之外,即偏心距e o >h 2 -a s 时,为大偏心受拉构件。 一、大偏心受拉构件 1. 基本计算公式及适用条件 当满足式(8-2)时可以判定为大偏心受拉构件 e o >h 2 -a s (8-2) 大偏心受拉构件当采用不对称配筋时,在轴向偏心力作用下截面应力不均匀,轴向力N 作用的近侧拉力较大,混凝土最先开裂,钢筋受到的拉应力也较轴向力的远侧钢筋制的拉力大,同时截面另一侧由于偏心弯矩的作用出现压应力,随着受力过程的持续,首先A s 屈服,最后另一侧的A ’s 和受压混凝土分别达到各自的抗压设计强度f ’c 和f c 而破坏。大偏心受拉构件截面内力分布图如图8-3(b )所示。计算公式为式(8-3)和式(8-4)。 图 8-3 偏心受拉构件截面受力分布图

受弯构件地承载力计算

第三部分受弯构件的承载力计算 一、选择题 1.钢筋混凝土梁裂缝瞬间,受拉钢筋的应力 σ与配筋 S 率ρ的关系是: (A)ρ↑?σs↓ (B) ρ↑,σS↑ (C)σ S 与ρ关系不大 D.无法判断 2.受弯构件的纯弯曲段,开裂前混凝土与钢筋之间 的握裹应力 (A) ?0 (B) 均匀分布 (C)不 均匀分布 D.无法判断 3.少筋截面梁破坏时, A.εS>εY, εC=εCU 裂宽及绕度过大 (B) εS<εY,εC<εCU 裂宽及绕度过大 C.εS>εY,εC≥εCU 即受压区混凝土压碎 4.对适筋梁,受拉钢筋刚屈服时, A.承载力达到极限 B.受压边缘 混凝土达 C.εS=εY, εC<εCU D.εS<εY, εC=εCU 5.适筋梁从加载到破坏可分三个阶段,试填充: ①抗裂计算以 b 阶段为基础

②使用阶段裂缝宽度和挠度计算以 c 为基础。 ③承载能力计算以 f 阶段为依据。 A . (Ⅰ) (B) (Ⅰa ) C . (Ⅱ) D . (Ⅱa ) (E) (Ⅲ) (F ) (Ⅲa ) 6.受弯适筋梁,MY

4.3-偏心受压构件承载力计算

4.2 轴心受压构件承载力计算 一、偏心受压构件破坏特征 偏心受压构件在承受轴向力N和弯矩M的共同作用时,等效于承受一个偏心距为e =M/N的偏心力N的作用,当弯矩M相对较小时,e0就很小,构件接近于轴心受压,0 相反当N相对较小时,e0就很大,构件接近于受弯,因此,随着e0的改变,偏心受压 构件的受力性能和破坏形态介于轴心受压和受弯之间。按照轴向力的偏心距和配筋情 况的不同,偏心受压构件的破坏可分为受拉破坏和受压破坏两种情况。 1.受拉破坏 当轴向压力偏心距e0较大,且受拉钢筋配置不太多时,构件发生受拉破坏。在这 种情况下,构件受轴向压力N后,离N较远一侧的截面受拉,另一侧截面受压。当N 增加到一定程度,首先在受拉区出现横向裂缝,随着荷载的增加,裂缝不断发展和加 宽,裂缝截面处的拉力全部由钢筋承担。荷载继续加大,受拉钢筋首先达到屈服,并 形成一条明显的主裂缝,随后主裂缝明显加宽并向受压一侧延伸,受压区高度迅速减 小。最后,受压区边缘出现纵向裂缝,受压区混凝土被压碎而导致构件破坏(图 4.3.1)。此时,受压钢筋一般也能屈服。由于受拉破坏通常在轴向压力偏心距e0较 大发生,故习惯上也称为大偏心受压破坏。受拉破坏有明显预兆,属于延性破坏。 2.受压破坏 当构件的轴向压力的偏心距e0较小,或偏心距e0虽然较大但配置的受拉钢筋过 多时,就发生这种类型的破坏。加荷后整个截面全部受压或大部份受压,靠近轴向压力一侧的混凝土压应力较高,远离轴向压力一侧压应力较小甚至受拉。随着荷载 逐渐增加,靠近轴一侧混凝土出现纵向裂缝,进而混凝土达到极限应变εcu被压碎,受压钢筋的应力也达到f y′,远离一侧的钢筋可能受压,也可能受拉,但因本身截面应力太小,或因配筋过多,都达不到屈服强度(图4.3.2)。由于受压破坏通常在轴向压力偏心距e0较小时发生,故习惯上也称为小偏心受压破坏。受压破坏无明显预兆,属脆性破坏。

受力构件承载力计算

《建筑结构》补修课导学三 2008年06月17日 王启平 第三章 受弯构件承载力计算 受弯构件的两种破坏形式:1.沿弯矩最大截面破坏,称为正截面破坏;2.是沿剪力最大或弯矩和剪力都较大的截面破坏,破坏截面与构件的轴线斜交,称为斜截面破坏。 (a )正截面破坏 (b )斜截面破坏 图3-1 受弯构件的两种破坏形式 3.1一般构造要求 3.1.1截面形式 在受弯构件中,仅在截面的受拉区配置纵向受力钢筋的截面,称为单筋截面。同时在截面的受拉区和受压区配置纵向受力钢筋的截面,称为双筋截面。 3.1.2梁的构造要求 梁中一般配置纵向受力钢筋、弯起钢筋、箍筋和架立钢筋,如图3-3所示。 图 梁的配筋 1. 截面尺寸 梁高与跨度之比l h /称为高跨比。对于肋形楼盖的主梁为1/8~1/14,次梁为1/12~1/18;独立梁不小于1/15(简支)和1/20(连续)。 矩形截面梁的高宽比b h /一般取2.0~3.0;T 形截面梁的b h /.一般取2.5~4.0 (此处b 为梁肋宽)。为便于统一模板尺寸,通常采用矩形截面梁的宽度或T 形截面梁的肋宽b = 100、120、150、(180)、200、(220)、250和300mm ,300mm 以上的级差为50mm ,括号中的数值仅用于木模;梁的高度h = 250、300、750、800、900、1000mm 等尺寸。当

第 7 章 受拉构件的截面承载力

第 7 章受拉构件的截面承载力 7.1 轴心受拉构件正截面受拉承载力计算 1.三个受力阶段(与适筋梁相似) (1) 第Ⅰ阶段:未裂阶段——加载~混凝土受拉开裂前; (2) 第Ⅱ阶段:裂缝阶段——混凝土开裂~钢筋即将屈服; (3) 第Ⅲ阶段:破坏阶段——受拉钢筋开始屈服~全部受拉钢筋达到屈服。 2.计算公式 全部拉力由钢筋来承担。 Nu = fy As (7-1) 7.2 偏心受拉构件正截面受拉承载力计算 偏心受拉构件正截面受拉承载力计算,按纵向拉力N的位置不同,可分为大偏心受拉与小偏心受拉两种情况: (1) 当N作用在钢筋As合力点及As′合力点范围以外时,属于大偏心受拉; (2) 当N作用在钢筋As合力点及As′合力点范围以内时,属于小偏心受拉。 7.2.1 大偏心受拉构件正截面的承载力计算 1.计算公式图7-1 当N作用在钢筋As合力点及As′合力点范围以外时,截面虽开裂,但截面不会裂通,还有受压区。构件破坏时,钢筋As及As′的应力都达到屈服强度,受压区混凝土强度达到α1fc。 基本公式如下: Nu = fy As - fy′As′-α1fcbx (7-2) Nu e = α1fcbx(h0-x/2)+fy′As′(h0-as′) (7-3) 式中 Nu ——受拉承载力设计值; e ——轴拉力作用点至受拉钢筋As合力点之间的距离; e′——轴拉力作用点至受压钢筋As′合力点之间的距离; e = e0- h/2 + as (6-23) e′= e0 + h/2 - as′ x ——受压区计算高度; as′——纵向受压钢筋合力点至受压区边缘的距离。 2.适用条件 ① x ≤ξbh0 —→ 保证构件破坏时,受拉钢筋先达到屈服; ② x ≥ 2as′—→ 保证构件破坏时,受压钢筋能达到屈服。 若x<2as′时,取 x=2as′,则有As=N(e0 + h/2 - as′)/fy(h0-as′)

第8章受扭构件的扭曲截面承载力习题答案

第8章 受扭构件的扭曲截面承载力 8.1选择题 1.下面哪一条不属于变角度空间桁架模型的基本假定:( A )。 A . 平均应变符合平截面假定; B . 混凝土只承受压力; C . 纵筋和箍筋只承受拉力; D . 忽略核心混凝土的受扭作用和钢筋的销栓作用; 2.钢筋混凝土受扭构件,受扭纵筋和箍筋的配筋强度比7.16.0<<ζ说明,当构件破坏时,( A )。 A . 纵筋和箍筋都能达到屈服; B . 仅箍筋达到屈服; C . 仅纵筋达到屈服; D . 纵筋和箍筋都不能达到屈服; 3.在钢筋混凝土受扭构件设计时,《混凝土结构设计规范》要求,受扭纵筋和箍筋的配筋强度比应( D )。 A . 不受限制; B . 0.20.1<<ζ; C . 0.15.0<<ζ; D . 7.16.0<<ζ; 4.《混凝土结构设计规范》对于剪扭构件承载力计算采用的计算模式是:( D )。 A . 混凝土和钢筋均考虑相关关系; B . 混凝土和钢筋均不考虑相关关系; C . 混凝土不考虑相关关系,钢筋考虑相关关系; D . 混凝土考虑相关关系,钢筋不考虑相关关系; 5.钢筋混凝土T 形和I 形截面剪扭构件可划分为矩形块计算,此时( C )。 A . 腹板承受全部的剪力和扭矩; B . 翼缘承受全部的剪力和扭矩; C . 剪力由腹板承受,扭矩由腹板和翼缘共同承受; D . 扭矩由腹板承受,剪力由腹板和翼缘共同承受; 8.2判断题 1.钢筋混凝土构件在弯矩、剪力和扭矩共同作用下的承载力计算时,其所需要的箍筋由受弯构件斜截面承载力计算所得的箍筋与纯剪构件承载力计算所得箍筋叠加,且两种公式中均不考虑剪扭的相互影响。( × ) 2.《混凝土结构设计规范》对于剪扭构件承载力计算采用的计算模式是混凝土和钢筋均考虑相关关系;( × ) 3. 在钢筋混凝土受扭构件设计时,《混凝土结构设计规范》要求,受扭纵筋和箍筋的配筋强度比应不受限制( × )

4.2 轴心受压构件承载力计算

轴心受压构件承载力计算 按照箍筋配置方式不同,钢筋混凝土轴心受压柱可分为两种:一种是配置纵向钢筋和普通箍筋的柱(图4.2.1a),称为普通箍筋 柱;一种是配置纵向钢筋和螺旋筋(图)或 焊接环筋(图4.2.1c)的柱,称为螺旋箍筋柱或 间接箍筋柱。 需要指出的是,在实际工程结构中,几 乎不存在真正的轴心受压构件。通常由于荷 载作用位置偏差、配筋不对称以及施工误差 等原因,总是或多或少存在初始偏心距。但 当这种偏心距很小时,如只承受节点荷载屋 架的受压弦杆和腹杆、以恒荷载为主的等跨 多层框架房屋的内柱等,为计算方便,可近 似按轴心受压构件计算。此外,偏心受压构件垂直于弯矩作用平面的承载力验算也按轴心受压构件计算。 一、轴心受压构件的破坏特征 按照长细比的大小,轴心受压柱可分为短柱和长柱两类。对方形和矩形柱,当≤8时属于短柱,否则为长柱。其中为柱的计算长度,为矩形截面的短边尺寸。 1.轴心受压短柱的破坏特征 配有普通箍筋的矩形截面短柱,在轴向压力N作用下整个截面的应变基本上是均匀分布的。N较小时,构件的压缩变形主要为弹性变形。随着荷载的增大,构件变形迅速增大。与此同时,混凝土塑性变形增加,弹性模量降低,应力增长逐渐变慢,而钢筋应力的增加则越来越快。对配置HPB235、HRB335、HRB400、RRB400级热轧钢筋的构件,钢筋将先达到其屈服强度,此后增加的荷载全部由混凝土来承受。在临近

破坏时,柱子表面出现纵向裂缝,混凝土保护层开始剥落,最后,箍筋之间的纵向钢筋压屈而向外凸出,混凝土被压碎崩裂而破坏(图4.2.2)。破坏时混凝土的应力达到棱柱体抗压强度。当短柱破坏时,混凝土达到极限压应变=,相应的纵向钢筋应力值=E s=2×105×mm2=400N/mm2。因此,当纵向钢筋为高强度钢筋时,构件破坏时纵向钢筋可能达不到屈服强度。设计中对于屈服强度超过400N/mm2的钢筋,其抗压强度设计值只能取400N/mm2。显然,在受压构件内配置高强度的钢筋不能充分发挥其作用,这是不经济的。 2.轴心受压长柱的破坏特征 对于长细比较大的长柱,由于各种偶然因素造成的初始偏心距的影响是不可忽略的,在轴心压力N作用下,由初始偏心距将产生附加弯矩,而这个附加弯矩产生的水平挠度又加大了原来的初始偏心距,这样相互影响的结果,促使了构件截面材料破坏较早到来,导致承截能力的降低。破坏时首先在凹边出现纵向裂缝,接着混凝土被压碎,纵向钢筋被压弯向外凸出,侧向挠度急速发展,最终柱子失去平衡并将凸边混凝土拉裂而破坏(图4.2.3)。试验表明,柱的长细比愈大,其承截力愈低,对于长细比很大的长柱,还有可能发生“失稳破坏”。 由上述试验可知,在同等条件下,即截面相同,配筋相同,材料相同的条件下,长柱承载力低于短柱承载力。在确定轴心受压构件承截力计算公式时,规范采用构件

受压构件承载力计算复习题(答案)详解

受压构件承载力计算复习题 一、填空题: 1、小偏心受压构件的破坏都是由于 而造成 的。 【答案】混凝土被压碎 2、大偏心受压破坏属于 ,小偏心破坏属 于 。 【答案】延性 脆性 3、偏心受压构件在纵向弯曲影响下,其破坏特征有两 种类型,对长细比较小的短柱属于 破坏,对长细比较大的细长柱,属于 破坏。 【答案】强度破坏 失稳 4、在偏心受压构件中,用 考虑了纵向弯曲的 影响。 【答案】偏心距增大系数 5、大小偏心受压的分界限是 。 【答案】b ξξ= 6、在大偏心设计校核时,当 时,说明s A '不屈 服。 【答案】s a x '2 7、对于对称配筋的偏心受压构件,在进行截面设计时, 和 作为判别偏心受压类型的唯一依据。

【答案】b ξξ≤ b ξξ 8、偏心受压构件 对抗剪有利。 【答案】轴向压力N 9、在钢筋混凝土轴心受压柱中,螺旋钢筋的作用是使截面中间核心部分的混凝土形成约束混凝土,可以提高构件的______和______。 【答案】承载力 延性 10、偏心距较大,配筋率不高的受压构件属______受压情况,其承载力主要取决于______钢筋。 【答案】大偏心 受拉 11、受压构件的附加偏心距对______受压构件______受压构件影响比较大。 【答案】轴心 小偏心 12、在轴心受压构件的承载力计算公式中,当f y <400N /mm 2 时,取钢筋抗压强度设计值f y '=______;当f y ≥400N /mm 2时,取钢筋抗压强度设计值f y '=______N /mm 2。 【答案】f y 400 二、选择题: 1、大小偏心受压破坏特征的根本区别在于构件破坏时,( )。 A 受压混凝土是否破坏 B 受压钢筋是否屈服 C 混凝土是否全截面受压 D 远离作用力N 一侧钢筋是否屈服

第8章___受扭构件承载力计算1

第8章 受扭构件承载力计算 一、填空题 1、 素混凝上纯扭构件的承载力t t u W f T 7.0=介于__________和__________分析结果之间。t W 是假设________ 导出的。 2、 钢筋混凝土受扭构件随着扭矩的增大,先在截面________最薄弱的部位出现斜裂缝,然后形成大体连续的 _________。 3、 由于配筋量不同,钢筋混凝土纯扭构件将发生__________破坏、________破坏、___________破坏、_________ 破坏。 4、 钢筋混凝土弯、剪、扭构件,剪力的增加将使构件的抗扭承载力___________;扭矩的增加将使构件的抗剪承载 力_____________。 5、 为了防止受扭构件发生超筋破坏,规范规定的验算条件是_____________。 6、 抗扭纵向钢筋应沿__________布置,其间距______________。 7、 T 行截面弯、剪、扭构件的弯矩由___________承受,剪力由___________承受,扭矩由__________承受。 8、 钢筋混凝土弯、剪、扭构件箍筋的最小配筋率min ,sv ρ= __________,抗弯纵向钢筋的最小筋率ρ= __________, 抗扭纵向钢筋的最小配筋率tl ρ= ___________。 9、 混凝土受扭构件的抗扭纵筋与箍筋的配筋强度比ζ应在___________范围内。 10、为了保证箍筋在整个周长上都能充分发挥抗拉作用,必须将箍筋做成________形状。,且箍筋的两个端头应 ______________________。 二、判断题 1、钢筋混凝土构件受扭时,核芯部分的混凝土起主要抗扭作用。 ( ) 2、素混凝土纯扭构件的抗扭承载力可表达为t t u W f T 7.0=,该公式是在塑性分析方法基础上建立起来的。 ( ) 3、受扭构件中抗扭钢筋有纵向钢筋和横向箍筋,它们在配筋方面可以互相弥补,即一方配置少时,可由另一方多配置一些钢筋以承担少配筋一方所承担的扭矩。( ) 4、受扭构件设计时,为了使纵筋和箍筋都能较好地发挥作用,纵向钢筋与箍筋的配筋强度比值ζ应满足以下条件:0.6≤ζ≤1.7。 ( ) 5、在混凝土纯扭构件中,混凝土的抗扭承载力和箍筋与纵筋是完全独立的变量。( ) 6、矩形截面钢筋混凝土纯扭构件的抗扭承载力计算公式cor stl yv t t A S A f W f T ζ 2.135.0+≤只考虑混凝土和箍 筋提供的抗扭计算。 ( ) 7、在纯扭构件中,当t t W f T 175.0≤时,可忽略扭矩的影响,仅按普通受弯构件的斜截面受剪承载力公式计算箍 筋用量。 ( ) 8、在弯、剪、扭构件中,当0035.0bh f V t c ≤或05 .11 .0bh f V t c +≤ λ时,可忽略剪力的影响,按纯扭构件的受 承载力公式计算箍筋用量。 ( )

受弯构件的承载力计算

第三部分受弯构件的承载力计算 一、选择题1.钢筋混凝土梁裂缝瞬间,受拉钢筋的应力S与配筋率的关系是: (A) ↑?σs↓(B) ↑,σS↑(C)σS 与关 系不大D.无法判断 2.受弯构件的纯弯曲段内,开裂前混凝土与钢筋之间的握裹应力 (A) 0 (B) 均匀分布(C)不 均匀分布D.无法判断 3.少筋截面梁破坏时, A.S>Y, C=CU 裂宽及绕度过大(B) SY,C CU 即受压区混凝土压碎 4.对适筋梁,受拉钢筋刚屈服时, A.承载力达到极限B.受压边缘混凝土达 C . S= Y, C< CU D.S

②使用阶段裂缝宽度和挠度计算以 为基础。 ③承载能力计算以 f 阶 A . ( Ⅰ ) ( C . (Ⅱ) D . (Ⅱa ) (F ) (Ⅲa) 6.受弯适筋梁,MY

最新3受弯构件承载力计算汇总

3受弯构件承载力计 算

1 、一般构造要求 受弯构件正截面承载力计算 1 、配筋率对构件破坏特征的影响及适筋受弯构件截面受力的几个阶段 受弯构件正截面破坏特征主要由纵向受拉钢筋的配筋率ρ大小确定。配筋率是指纵受受拉钢筋的截面面积与截面的有效面积之比。 (3-1) 式中As——纵向受力钢筋的截面面积,; b——截面的宽度,mm; ——截面的有效高度, ——受拉钢筋合力作用点到截面受拉边缘的距离。

根据梁纵向钢筋配筋率的不同,钢筋混凝土梁可分为适筋梁、超筋梁和少筋梁三种类型,不同类型梁的破坏特征不同。 (1)适筋梁 配置适量纵向受力钢筋的梁称为适筋梁。 适筋梁从开始加载到完全破坏,其应力 变化经历了三个阶段,如图3.8。 第I阶段(弹性工作阶段):荷载很小 时,混凝土的压应力及拉应力都很小, 梁截面上各个纤维的应变也很小,其应 力和应变几乎成直线关系,混凝土应力 分布图形接近三角形,如图3.8(a)。 当弯矩增大时,混凝土的拉应力、压应 力和钢筋的拉应力也随之增大。由于混 凝土抗拉强度较低,受拉区混凝土开始 表现出明显的塑性性质,应变较应力增 加快,故应力和应变不再是直线关系, 应力分布呈曲线, 当弯距增加到开裂弯距时,受拉边缘纤维的应变达到混凝土的极限拉应变,此时, 截面处于将裂未裂的极限状态,即第I阶段末,用Ia表示,如图3.13(b)所示。这时受压区塑性变形发展不明显,其应力图形仍接近三角形。Ia阶段的应力状态是抗裂验算的依据。 第Ⅱ阶段(带裂缝工作阶段):当弯矩继续增加时,受拉区混凝土的拉应变超过其极其拉应变,受拉区 出现裂缝,截面即进入第Ⅱ阶段。裂缝出现后,在裂缝截面处,受拉区混凝土大部分退出工作,未开裂部分混凝土虽可继续承担部分拉力,但因靠近中和轴很近,故其作用甚小,拉力几乎全部由受拉钢筋承担,在裂缝出现的瞬间,钢筋应力突然增加很大。随着弯矩的不断增加,裂缝逐渐向上扩展,中和轴逐渐上移。由于受压区应变不断增大,受压区混凝土呈现出一定的塑性特征,应力图形呈曲线形,如图3.8?所示。第Ⅱ阶段的应力状态代表了受弯构件在使用时的应力状态,故本阶段的应力状态作为裂缝宽度和变形验算的依据。 当弯矩继续增加,钢筋应力不断增大,直至达到屈服强度,这时截面所能承担的弯矩称为屈服弯矩。 它标志截面即将进入破坏阶段,即为第Ⅱ阶段极限状态,以Ⅱa表示,如图3.8(d)所示。 第Ⅲ阶段(破坏阶段):弯矩继续增加,截面进入第Ⅲ阶段。这时受拉钢筋的应力保持屈服强度不变,钢筋的应变迅速增大,促使受拉区混凝土的裂缝迅速向上扩展,中和轴继续上移,受压区混凝土高度缩小,混凝土压应力迅速增大,受压区混凝土的塑性特征表现得更加充分,压应力呈显著曲线分布[图3.8(e)]。到本阶段末(即Ⅲa阶段),受压边缘混凝土压应变达到极限应变,受压区混凝土产生近乎水平的裂缝,混凝土被压碎,甚至崩脱[图3.8(a)],截面宣告破坏,此时截面所承担的弯矩即为破坏弯矩Mu,这时的应力状态作为构件承载力计算的依据[图3.8(f)]。

受扭构件承载力计算

第六章受扭构件承载力计算 思考题 6.1在实际工程中有哪些构件有扭矩作用? ①詹口竖向荷载作用的挑詹梁。 ②受水平作用的吊车梁。 ③现浇框架的边梁。 6.2在抗扭矩计算中如何避免少筋破坏和超筋破坏? 为了防止出现混凝土先压碎的超筋构件的脆性破坏,配筋率的上限以截面限制条件的形式给出 T≤0.2βfcWt 最小配箍率ρsumin对纯扭构件取:ρsvmin=0.28ft fyv 最小纵筋配筋率ρtl,min = 0.85 ft fyv 6.3什么是配筋强度比?配筋强度比的范围为什么要加以限制?即纵筋与箍筋的体积比和强度比的乘积 ξ=fyAstls / Fyv AstlUcor 加以限制才能保证构件破坏时纵筋和箍筋的强度都得以充分利用。 6.4《规范》抗扭承载力计算公式中βt 的物理意义是什么? Βt 称为剪扭构件混凝土强度降低系数。用来考虑剪扭构件混凝土抵抗剪力和扭矩之间的相关性。物理意义为随着同时作用的扭矩增大,物件的抗剪承受力逐渐降低;当扭矩达到纯扭构件的承载力时,其抗剪承载力下降为零。反之亦然。

6.5受扭构件中纵筋和箍筋的配置应注意哪些问题? ⑴剪扭构件中,箍筋的配筋率ρsv(ρ=Asv / Bs)不应小于0.28ft/ fyv ,箍筋间距应符合表5-1的规定。箍筋应做成封闭。箍筋末端应做成135°弯钩。其平直段长度不应小于5倍箍筋直径或50mm。当采用多肢箍筋受剪时,受扭所需箍筋应采用沿截面周面布置的封闭箍筋,受剪箍筋壳采用复合箍筋。(2)纵向钢筋的配筋率,不应小于受拉构件纵向受拉钢筋的最小 ρ之和。 配筋率和受扭纵向钢筋的最小配筋率 tl ,min

习题-第五章 受扭承载力计算

第5章 受扭构件承载力计算 一、填空题 1、素混凝土纯扭构件的承载力0.7u t t T f w =介于 和 分析结果之间。t w 是假设 导出的。 2、钢筋混凝土受扭构件随着扭矩的增大,先在截面 最薄弱的部位出现斜裂缝,然后形成大体连续的 。 3、由于配筋量不同,钢筋混凝土纯扭构件将发生 破坏、 破坏、 破坏和 破坏。 4、钢筋混凝土弯、剪、扭构件,剪力的增加将使构件的抗扭承载力 ;扭矩的增加将使构件的抗剪承载力 。 5、为了防止受扭构件发生超筋破坏,规范规定的验算条件是 。 6、抗扭纵向钢筋应沿 布置,其间距 。 7、T 形截面剪、扭构件的剪力由 承受,扭矩由 承受。 8、钢筋混凝土弯、剪、扭构件箍筋的最小配筋率,min sv ρ= ,抗弯纵向钢筋的最小配筋率ρ= ,抗扭纵向钢筋的最小配筋率tl ρ= 。 9、混凝土受扭构件的抗扭纵筋与箍筋的配筋强度比ζ应在 范围内。 10、为了保证箍筋在整个周长上都能充分发挥抗拉作用,必须将箍筋做成 形状,且箍筋的两个端头应 。 11、钢筋混凝土受扭构件计算中应满足10.6 1.7stl y st yv cor A f s A f u ζ??≤=≤??,其中 0.6ζ≤的目的是保证 在极限状态时屈服, 1.7ζ≤的目的是保证 在极限状态时屈服。 二、判断题 1、构件中的抗扭纵筋应尽可能地沿截面周边布置。 2、在受扭构件中配置的纵向钢筋和箍筋可以有效地延缓构件的开裂,从而大大提高开裂扭矩值。 3、受扭构件的裂缝在总体上成螺旋形,但不是连贯的。 4、钢筋混凝土构件受扭时,核芯部分的混凝土起主要抗扭作用。 5、素混凝土纯扭构件的抗扭承载力可表达为0.7U t t T f w =,该公式是在塑性分析方法基础上建立起来的。

8.受扭构件承载力计算 一、目的要求 1.掌握纯扭、剪扭、弯剪扭构件 ...

8.受扭构件承载力计算 一、目的要求 1.掌握纯扭、剪扭、弯剪扭构件的受扭承载力计算 2.掌握剪扭相关性的含义 3.受扭塑性抵抗矩的推导方法 4.掌握抗扭纵筋和箍筋的构造要求 二、重点难点 1.剪扭相关性的应用 2.弯剪扭构件受扭承载力的计算 三、主要内容 8.1概述 钢筋混凝土构件的扭转可分为两类:平衡扭转和协调扭转。 平衡扭转:若构件中的扭矩由荷载直接引起,其值可由平衡条件直接求出, 协调扭转:若扭矩是由相邻构件的位移受到该构件的约束而引起该构件的扭转, 这种扭矩值需结合变形协调条件才能求得,这类扭转称为协调扭转。 构件在扭矩作用下将产生剪应力和相应的主拉应力,当主拉应力超过混凝土的抗拉强度时,构件便会开裂,因此需要配置钢筋来提高构件的受扭承载力。 8.2 构件的开裂扭矩 8.2.1矩形截面构件的开裂扭矩 (1)匀质弹性材料受扭应力分布 由材料力学可知,匀质弹性材料的矩形截面受扭时, 截面上将产生剪应力τ (图8.2),截面剪应力的分布如图 8.3a 所示,最大剪应力产生在矩形长边中点。由微元体 平衡可知,主拉应力τσ=tp 其方向与构件轴线成450角。 当主拉应力超过混凝土的抗拉强度时,首先将在截面长边 中点处垂直于主拉应力方向上开裂,然后逐渐伸展,裂缝与纵轴线大致成450角。 (2)理想塑性材料受扭应力分布 对于理想的塑性材料来说,截面上某一点的应力达到强度权

限时,构件并不立即破坏,只意味着局部材料开始进入塑性状态,构件仍能承受荷载,直到截面上的应力全部达到强度极限时,构件才达到其极限受扭承载力,这时截面上剪应力的分布如图8.3b 所示。 (3)弹塑性材料受扭应力分布 由于混凝土既不是理想的弹性材料又不是理想的塑性材料,而是介于两者之间的弹塑性材料。与实测的开裂扭矩相比,按理想的弹性应力分布计算的值偏低,而按理想的塑性应力分布计算的值又馆高。要想准确地确定截面真实的应力分布是十分困难的,比较切实可行的办法是在按塑性应力分布计算的基础上,根据试验结果乘以一个降低系数。 设矩形截面的边长长边为h ,短边为b ,根据塑性力学理论,当截面上各点的剪应力都达到混凝土的抗拉强度六时,构件才达到其极限扭矩。为了便于计算,可近似将截面上的剪应力分布划分为四个部分,即两个梯形和两个三角形(8.3c)。计算各部分剪应力的合力及相应组成的力偶,对截面的扭转中心O 点取矩,可求得按塑性应力分布时截面所能承受的极限扭矩为 混凝土不是理想塑性材料。试验表明,对于高强度混凝土,其降低系数约为0.7,对于低强度混凝土,其降低系数接近0.8,为计算方便统一取0.7。又由于素混凝土构件的开裂扭矩和极限扭矩基本相同,因此可以得开裂扭矩的计算公式为T cr =0.7t t W f 受扭塑性抵抗矩t W 的计算公式也可以借助堆沙模拟法得到。设砂堆安息角各斜面均为α,沙堆体积为V ,则截面的受扭塑性抵抗矩为αtan 2V W t = 一般可取方便的α值,如取450,相应的1tan =α 矩形截面,取45=α0,则2 b H =,这样 )3(6 ])2(31[2)])((21[222 b h b H b b b h bH V W t -=?+-==

第7章受拉构件的截面承载力习题答案

第7章 受拉构件的截面承载力 7.1选择题 1.钢筋混凝土偏心受拉构件,判别大、小偏心受拉的根据是( D )。 A. 截面破坏时,受拉钢筋是否屈服; B. 截面破坏时,受压钢筋是否屈服; C. 受压一侧混凝土是否压碎; D. 纵向拉力N 的作用点的位置; 2.对于钢筋混凝土偏心受拉构件,下面说法错误的是( A )。 A. 如果b ξξ>,说明是小偏心受拉破坏; B. 小偏心受拉构件破坏时,混凝土完全退出工作,全部拉力由钢筋承担; C. 大偏心构件存在混凝土受压区; D. 大、小偏心受拉构件的判断是依据纵向拉力N 的作用点的位置; 7.2判断题 1. 如果b ξξ>,说明是小偏心受拉破坏。( × ) 2. 小偏心受拉构件破坏时,混凝土完全退出工作,全部拉力由钢筋承担。( ∨ ) 3. 大偏心构件存在混凝土受压区。( ∨ ) 4. 大、小偏心受拉构件的判断是依据纵向拉力N 的作用点的位置。( ∨ ) 7.3问答题 1.偏心受拉构件划分大、小偏心的条件是什么?大、小偏心破坏的受力特点和破坏特征各有何不同? 答:(1)当N 作用在纵向钢筋s A 合力点和's A 合力点范围以外时,为大偏心受拉;当N 作用在纵向钢筋s A 合力点和's A 合力点范围之间时,为小偏心受拉; (2)大偏心受拉有混凝土受压区,钢筋先达到屈服强度,然后混凝土受压破坏;小偏心受拉破坏时,混凝土完全退出工作,由纵筋来承担所有的外力。 2.大偏心受拉构件的正截面承载力计算中,b x 为什么取与受弯构件相同? 答:大偏心受拉构件的正截面破坏特征和受弯构件相同,钢筋先达到屈服强度,然后混凝土受压破坏;又都符合平均应变的平截面假定,所以b x 取与受弯构件相同。 3.大偏心受拉构件为非对称配筋,如果计算中出现'2s a x <或出现负值,怎么处理? 答:取'2s a x =,对混凝土受压区合力点(即受压钢筋合力点)取矩,

第七章 受拉构件承载力计算

第七章受拉构件承载力计算 一、填空题: 1、受拉构件可分为和两类。 2、小偏心受拉构件的受力特点类似于,破坏时拉力全部由 承受;大偏心受拉的受力特点类似于或构件。破坏时截面混凝土有存在。 3、偏心受拉构件的存在,对构件抗剪承载力不利。 4、受拉构件除进行计算外,尚应根据不同情况,进行、、 的计算。 5、偏心受拉构件的配筋方式有、两种。 二、判断题: 1、对于小偏心受拉构件,无论对称配还非对称配筋,纵筋的总用钢量和轴拉构件总用钢量相等。() 2、偏心受拉构件与双筋矩形截同梁的破坏形式一样。() 三、选择题: 1、偏心受拉构件破坏时,()。 A远边钢筋屈服 B近边钢筋屈服 C远边、近边都屈服 D无法判定 2、在受拉构件中,由于纵向拉力的存在,构件的抗剪能力将()。 A提高 B降低 C不变 D难以测定 3、下列关于钢筋混凝土受拉构件的叙述中,()是错误的。 A钢筋混凝土轴心受拉构件破坏时,混凝土已被拉裂,全部外力由钢筋来承担 B当轴向拉力N作用于合力及合力点以内时,发生小偏心受拉破坏 C破坏时,钢筋混凝土偏心受拉构件截面存在受压区 D小偏心受拉构件破坏时,只有当纵向拉力N作用于钢筋截面面积的“塑性中 心”时,两侧纵向钢筋才会同时达到屈服强度。 四、简答题: 1、简述钢筋混凝土大小偏心受拉构件的破坏特征。 2、轴向拉力对钢筋混凝土偏心受拉构件斜截面抗剪承载力有什么影响?计算公式中如何体现?对N值有无限制条件? 参考答案 一、填空题: 1、小偏心受拉大偏心受拉

2、轴拉钢筋受弯路大偏压受压区 3、轴向拉力N 4、正截面承载能力抗剪抗裂度裂缝宽度 5、对称配筋非对称配筋 二、判断题: 1、√ 2、× 三、选择题: 1、B 2、B 3、C 四、简答题: 1、(1)当纵向力N作用在钢筋合力点及合力点之间()时,为小偏心受拉。 在小偏心拉力作用下,构件破坏时,截面全部裂通,混凝土退出工作,拉力完全由钢筋承担,钢筋及的拉应力达到屈服。 (2)当纵向力N作用在钢筋与范围以外时,为大偏心受拉。 与大偏心受压构件的破坏基本相似,构件在纵向力拉力作用下,受拉截面部分开裂,受拉区的应力全部由承担,并首先达到屈服,然后压区的混凝土被压碎,受压钢筋也达到屈服。 2、偏心受拉构件同时承受较大的剪力作用时,需验算截面受剪承载力。纵向拉力N的存在,使截面的受剪承载力降低。纵向拉力引起的受剪承载力的降低,与纵向拉力几乎是成正比的。 对N值无限定条件。

偏心受压构件承载力计算

轴心受压构件承载力计算 一、偏心受压构件破坏特征 偏心受压构件在承受轴向力N和弯矩M 的共同作用时,等效于承受一个偏心距为 e0=M/N的偏心力N的作用,当弯矩M相对较小时,e0就很小,构件接近于轴心受压,相反当N相对较小时,e0就很大,构件接近于受弯,因此,随着e0 的改变,偏心受压构件的受力性能和破坏形态介于轴心受压和受弯之间。按照轴向力的偏心距和配筋情况的不同,偏心受压构件的破坏可分为受拉破坏和受压破坏两种情况。 1.受拉破坏 当轴向压力偏心距e0 较大,且受拉钢筋配置不太多时,构件发生受拉破坏。在这种情况下,构件受轴向压力N后,离N较远一侧的截面受拉,另一侧截面受压。当N增加到一定程度,首先在受拉区出现横向裂缝,随着荷载的增加,裂缝不断发展和加宽,裂缝截面处的拉力全部由钢筋承担。荷载继续加大,受拉钢筋首先达到屈服,并形成一条明显的主裂缝,随后主裂缝明显加宽并向受压一侧延伸,受压区高度迅速减小。最后,受压区边缘出现纵向裂缝,受压区混凝土被压碎而导致构件破坏(图4.3.1)。此时,受压钢筋一般也能屈服。由于受拉破坏通常在轴向压力偏心距e0 较 大发生,故习惯上也称为大偏心受压破坏。受拉破坏有明显预兆,属于延性破坏。 2.受压破坏 当构件的轴向压力的偏心距e0 较小,或偏心距e0 虽然较大但配置的受拉钢筋过多时,就发生这种类型的破坏。加荷后整个截面全部受压或大部份受压,靠近轴向压力一侧的混凝土压应力较高,远离轴向压力一侧压应力较小甚至受拉。随着荷载逐渐增加,靠近轴一侧混凝土出现纵向裂缝,进而混凝土达到极限应变εcu 被压碎,受压钢筋的应力也达到f y′,远离一侧的钢筋可能受压,也可能受拉,但因本身截面应力太小,或因配筋过多,都达不到屈服强度(图4.3.2)。由于受压破坏通常在轴向压力偏心距e0 较小时发生,故习惯上也称为小偏心受压破坏。受压破坏无明显预兆,属脆性破坏。

砌体构件承载力计算【最新版】

砌体构件承载力计算 第五章砌体构件承载力计算 学习本章的意义和内容:无筋砌体受压构件的破坏形态和影响受压承载力的主要因素,无筋砌体受压构件的承载力计算方法,梁下砌体局部受压承载力和梁下设置刚性垫块时的局部受压承载力验算方法以及有关的构造要求,无筋砌体受弯、受剪以及受拉构件的破坏特征及承载力的计算方法。 通过本章学习可以掌握土木工程中砌体结构构件计算的基本理论,为砌体结构设计奠定基础。 本章习题内容主要涉及:无筋砌体受压构件承载力的主要因素及承载力计算公式的应用;局部受压构件破坏的类型及公式的应用;砌体受拉、受弯、受剪构件的计算及应用范围。 一、概念题 (一)填空题: 1.无筋砌体受压构件按高厚比的不同以及荷载作用偏心矩的

有无,可分为____________、____________、____________、____________、____________。 2.在截面尺寸和材料强度等级一定的条件下,在施工质量得到保证的前提下,影响无筋砌体受压承载力的主要因素是____________和____________。 3.在设计无筋砌体偏心受压构件时,《砌体规范》对偏心距的限制条件是___________。为了减少轴向力的偏心距,可采用____________或____________等构造措施。 4.通过对砌体局部受压的试验表明,局部受压可能发生三种破坏,即____________、____________、____________。其中,____________是局部受压的基本破坏形态;____________是由于发生突然,在设计中应避免发生,____________仅在砌体材料强度过低时发生。 5.砌体在局部受压时,由于未直接受压砌体对直接受压砌体的约束作用以及力的扩散作用,使砌体的局部受压强度_______________________。局部受压强度用____________表示。 6.对局部抗压强度提高系数进行限制的目的是__________________________________。 7.局部受压承载力不满

钢筋混凝土受弯构件正截面承载力的计算

钢筋混凝土受弯构件正截面承载力的计算 §1概述 1、受弯构件(梁、板)的设计内容:图3-1 ①正截面受弯承载力计算:破坏截面垂直于梁的轴线,承受弯矩作用而 破坏,叫做正截面受弯破坏。 ②斜截面受剪承载力计算:破坏截面与梁截面斜交,承受弯剪作用而破 坏,叫做斜截面受剪破坏。 ③满足规范规定的构造要求:对受弯构件进行设计与校核时,应满足规 范规定的要求。比如最小配筋率、纵向 2 ①板 ⑴板的形状与厚度: a.形状:有空心板、凹形板、扁矩形板等形式;它与梁的直观 区别是高宽比不同,有时也将板叫成扁梁。其计算与 梁计算原理一样。 b.厚度:板的混凝土用量大,因此应注意其经济性;板的厚度 通常不小于板跨度的1/35(简支)~1/40(弹性约束) 或1/12(悬臂)左右;一般民用现浇板最小厚度60mm, 并以10mm为模数(讲一下模数制);工业建筑现浇板 最小厚度70mm。 ⑵板的受力钢筋:单向板中一般仅有受力钢筋和分布钢筋,双向 板中两个方向均为受力钢筋。一般情况下互相垂直的

两个方向钢筋应绑扎或焊接形成钢筋网。当采用绑扎 钢筋配筋时,其受力钢筋的间距:当板厚度h≤150mm 时,不应大于200mm,当板厚度h﹥150mm时,不应大 于1.5h,且不应大于250mm。板中受力筋间距一般不 小于70mm,由板中伸入支座的下部钢筋,其间距不应 大于400mm,其截面面积不应小于跨中受力钢筋截面 面积的1/3,其锚固长度l as不应小于5d。板中弯起钢 筋的弯起角不宜小于30°。 板的受力钢筋直径一般用6、8、10mm。 对于嵌固在砖墙内的现浇板,在板的上部应配置构造钢筋,并应符合下列规定: a. 钢筋间距不应大于200mm,直径不宜小于8mm(包括弯起钢筋在内), 其伸出墙边的长度不应小于l1/7(l1为单向板的跨度或双向板的短边跨 度)。 b. 对两边均嵌固在墙内的板角部分,应双向配置上部构造钢筋,其伸出 墙边的长度不应小于l1/4。 c. 沿受力方向配置的上部构造钢筋,直径不宜小于6mm,且单位长度内的 总截面面积不应小于跨中受力钢筋截面面积的1/3。 ⑶板的分布钢筋:其作用是: a.分布钢筋的作用是固定受力钢筋; b.把荷载均匀分布到各受力钢筋上; c.承担混凝土收缩及温度变化引起的应力。 当按单向板设计时,除沿受力方向布置受力钢筋外,还应在垂直受力方向布置分布钢筋。单位长度上分布钢筋的截面面积不应小于单位宽度上 受力钢筋截面面积的15%,且不应小于该方向板截面面积的0.15%,分布 钢筋的间距不宜大于250mm,直经不宜小于6mm,对于集中荷载较大的情 况,分布钢筋的截面面积应适当增加,其间距不宜大于200mm,当按双向 板设计时,应沿两个互相垂直的方向布置受力钢筋。 在温度和收缩应力较大的现浇板区域内尚应布置附加钢筋。附加钢筋的数量可按计算或工程经验确定,并宜沿板的上,下表面布置。沿一个方向增加的附加钢筋配筋率不宜小于0.2%,其直径不宜过大,间距宜取150~200mm,并应按受力钢筋确定该附加钢筋伸入支座的锚固长度。 ⑷板中钢筋的保护层及有效高度:保护层厚度与环境条件及混凝 土等级有关,在一般情况下,混凝土保护层取15mm,详见规范; 有效高度是指受力钢筋形心到混凝土受压区外边缘的距离,用

相关文档
相关文档 最新文档