文档库 最新最全的文档下载
当前位置:文档库 › 数值分析ch3 1

数值分析ch3 1

数值分析试题(08研)

数值分析试题 一. 填空题: 1. 设A=?? ????4311,则 ||A||1 = ,||A||∞ = _______,()A ρ=_________; 2. 已知函数()y f x =的观测数据为(0,1),(1,2),(2,3,则二次Lagrange 插值多项式22()L x a bx cx =++中a = , b =_____ , c =_____; 3. 为使求积公式012()()(0)()h h f x dx A f h A f A f h -≈-++?的代数精度尽量高,则0A =_____,1A =______,2A =______,其具有代数精度为_____次; 4. 设给出(1)2,(0)1,(1)0,(0)2f f f f '-====-,可求得其三次插值多项式 233()H x a bx cx d x =+++中a =____,b =_____ ,c =______ ,d =_____; 5.对3()31f x x x =++,差商[0,1,2,3]f = ;[0,1,2,3,4]f = 。 二.已知函数()y f x =的观测数据为: 1.构造差商表,并写出Newton 插值多项式(按降幂排列); 2.用最小二乘法求形如 2y a bx cx =++的经验公式使与题目数据拟合; 3.用复化梯形公式计算4 1()f x dx ?的近似值。 三.分别用下列方法求方程3310x x +-=在[0,1]内的根使误差小于110-: 1. Newton 法(取00.4x =); 2. 试证明用简单迭代格式3/)1(31k k x x -=+求其在[0.2,0.4]内的根是收敛的。 四. 用下列各种方法求解方程组Ax b =,即 ??????????-122111221????????321x x x =???? ??????-001 1.Gauss 消元法; 2.Doolittle 分解法; 3. 写出求Ax b =的解的Jacobi 迭代格式,并取(0)(0,0,0)T x =求(3)x ; 4. 判定矩阵A 对Jacobi 迭代的收敛性,并证明你的结论。 五.1.用2段Simpson 公式(5节点)计算?511dx x 的近似值(计算中取五位有效数字); 2.若使误差不超过610-,用复化梯形公式计算上述积分至少应取多少个节点?

数值分析试题及答案汇总

数值分析试题 一、 填空题(2 0×2′) 1. ?? ????-=? ?????-=32,1223X A 设x =是精确值x *=的近似值,则x 有 2 位 有效数字。 2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 , f [20,21,22,23,24,25,26,27,28]= 0 。 3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____, ‖AX ‖∞≤_15_ __。 4. 非线性方程f (x )=0的迭代函数x =?(x )在有解区间满足 |?’(x )| <1 ,则使用该迭代 函数的迭代解法一定是局部收敛的。 5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。 6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差商 公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。 7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=n i i x a 0)( 1 ;所以当 系数a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。 8. 要使 20的近似值的相对误差小于%,至少要取 4 位有效数字。 9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…)收 敛于方程组的精确解x *的充分必要条件是 ?(B)<1 。 10. 由下列数据所确定的插值多项式的次数最高是 5 。 11. 牛顿下山法的下山条件为 |f(xn+1)|<|f(xn)| 。 12. 线性方程组的松弛迭代法是通过逐渐减少残差r i (i =0,1,…,n )来实现的,其中的残差 r i = (b i -a i1x 1-a i2x 2-…-a in x n )/a ii ,(i =0,1,…,n )。 13. 在非线性方程f (x )=0使用各种切线法迭代求解时,若在迭代区间存在唯一解,且f (x )

总结求矩阵的逆矩阵的方法

总结求矩阵的逆矩阵的方法 课程名称: 专业班级: 成员组成: 联系方式:

摘要:矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快 捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法. 关键词:矩阵逆矩阵方法 Method of finding inverse matrix Abstract: Matrix in linear algebra is the main content,many prictical problems with the matrix theory is simple and fast. The inverse matrix andmatrix theory the important content, the solution of inverse matrix nature has become one of the main research contents of linear algebra. The paper will give some method of finding inverse matrix. Key words: Matrix inversematrix method

正文: 1.引言:矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法. 2.求矩阵的逆矩阵的方法总结: 2.1 矩阵的基本概念 矩阵,是由个数组成的一个行列的矩形表格,通常用大写字母表示,组成矩阵的每一个数,均称为矩阵的元素,通常用小写字母其元素表示,其中下标都是正整数,他们表示该元素在矩 阵中的位置。比如,或表示一个矩阵,下标表示元素位于该矩阵的第行、第列。元素全为零的矩阵称为零矩阵。 特别地,一个矩阵,也称为一个维列向量;而一个矩阵,也称为一个维行向量。 当一个矩阵的行数与烈数相等时,该矩阵称为一个阶方阵。对于方阵,从左上角到右下角的连线,称为主对角线;而从左下角到右上角的连线称为付对 角线。若一个阶方阵的主对角线上的元素都是,而其余元素都是零,则称 为单位矩阵,记为,即:。如一个阶方阵的主对角线上(下)方的元素都是零,则称为下(上)三角矩阵,例如, 是一个阶下三角矩阵,而则是一个阶上三角矩阵。今后我们用表示数域上的矩阵构成

华南理工大学数值分析试题-14年下-C

华南理工大学研究生课程考试 《数值分析》试卷C (2015年1月9日) 1. 考前请将密封线内各项信息填写清楚; 所有答案请按要求填写在本试卷上; 课程代码:S0003004; 4. 考试形式:闭卷; 5. 考生类别:硕士研究生; 本试卷共八大题,满分100分,考试时间为150分钟。 一、(12分)解答下列问题: 1)设近似值0x >,x 的相对误差为δ,试证明ln x 的绝对误差近似为δ。 2)利用秦九韶算法求多项式 542()681p x x x x x =-+-+ 在3x =时的值(须写出计算形式),并统计乘法次数。 (12分)解答下列问题: 1)设()235f x x =+,求[]0,1,2f 和[]0,1,2,3f 。 2)利用插值方法推导出恒等式: 33220,0[]j j i i x j i x i j =≠=-=-∑∏ 。

(1)设{}∞ =0)(k k x q 是区间[]1,0上带权1=ρ而最高次项系数为1的正交多项式族,其中1)(0=x q ,求1()q x 和2()q x 。 (2)求形如2y a bx =+的经验公式,使它与下列数据拟合: 四、(14分)对积分()10I f x dx = ?,试 (1)构造一个以012113,,424 x x x ===为节点的插值型求积公式; (2)指出所构造公式的代数精度; (3)用所得数值求积公式计算积分1 203x dx ?的精确值; (4)指出所得公式与一般的Newton-Cotes 型公式在形式上的重要区别。

(1)设?? ????=4321A ,计算1A 、()Cond A ∞和()A ρ。 (2)用列主元Gauss 消去法解方程组: 12312315410030.112x x x ????????????=????????????-?????? 六、(13分)对2阶线性方程组 11112212112222 a x a x b a x a x b +=??+=? (11220a a ≠ ) (1)证明求解此方程组的Jacobi 迭代与Gauss-Seidel 迭代同时收敛或同时发散; (2)当同时收敛时,试比较它们的收敛速度。

研究生数值分析试卷

2005~2006学年第一学期硕士研究生期末考试试题(A 卷) 科目名称:数值分析 学生所在院: 学号: 姓名: 注意:所有的答题内容必须答在答题纸上,凡答在试题或草稿纸上的一律无效。 一、(15分)设求方程 0cos 2312=+-x x 根的迭代法 k k x x cos 3 2 41+=+ (1) 证明对R x ∈?0,均有*lim x x k k =∞ →,其中*x 为方程的根. (2) 此迭代法收敛阶是多少? 证明你的结论. 二、(12分)讨论分别用Jacobi 迭代法和Gauss-Seidel 迭代法求解下列方程组的收敛性。 ??? ??=++-=++=-+. 022,1, 122321 321321x x x x x x x x x 三、(8分)若矩阵??? ? ? ??=a a a a A 000002,说明对任意实数0≠a ,方程组b AX =都是非病态的。(范数用∞?) 四、( 求)(x f 的Hermite 插值多项式)(3x H ,并给出截断误差)()()(3x H x f x R -=。 五、(10分)在某个低温过程中,函数 y 依赖于温度x (℃)的试验数据

为 已知经验公式的形式为 2bx ax y += ,试用最小二乘法求出 a ,b 。 六、(12分)确定常数 a ,b 的值,使积分 [ ] dx x b ax b a I 2 1 1 2 ),(?--+= 取得最小值。 七、(14分)已知Legendre(勒让德)正交多项式)(x L n 有递推关系式: ?? ? ? ???=+-++===-+),2,1()(1)(112)()(, 1)(1110 n x L n n x xL n n x L x x L x L n n n 试确定两点的高斯—勒让德(G —L )求积公式 ? -+≈1 1 2211)()()(x f A x f A dx x f 的求积系数和节点,并用此公式近似计算积分 ?=2 11 dx e I x 八、(14分)对于下面求解常微分方程初值问题 ?????==0 0)() ,(y x y y x f dx dy 的单步法: ??? ? ??? ++==++=+) ,() ,()2 121(1 21211 hk y h x f k y x f k k k h y y n n n n n n

逆矩阵的几种常见求法

逆矩阵的几种常见求法 潘风岭 摘 要 本文给出了在矩阵可逆的条件下求逆矩阵的几种常见方法,并对每种方法做了具体的分析和评价,最后对几种方法进行了综合分析和比较. 关键词 初等矩阵; 可逆矩阵 ; 矩阵的秩; 伴随矩阵; 初等变换. 1. 相关知识 1.1 定义1 设A 是数域P 上的一个n 级方阵,如果存在P 上的一个n 级方阵B ,使得AB=BA=E,则称A 是可逆的,又称A 是B 的逆矩阵.当矩阵A 可逆时,逆矩阵由A 唯一确定,记为1-A . 定义2 设()ij n n A a ?=,由元素ij a 的代数余子式ij A 构成的矩阵 11 2111222212n n n n nn A A A A A A A A A ?? ? ? ? ??? 称为A 的伴随矩阵,记为A *. 伴随矩阵有以下重要性质 AA *= A *A=A E. 注:注意伴随矩阵中的元素ij A 的排列顺序. 1.2 哈密尔顿-凯莱定理

设A 是数域P 上的一个n n ?矩阵,f A λλ=E-()是A 的特征多项式, 则 11122()10n n n nn f A A a a a A A E -=-++ ++ +-=()() (证明参见[1]) . 1.3 矩阵A 可逆的充要条件 1.3.1 n 级矩阵A 可逆的充分必要条件是A 0≠(也即()rank A n =); 1.3.2 n 级矩阵A 可逆的充分必要条件是A 可写成一些初等矩阵的乘积(证明参见[1]); 1.3.3 n 级矩阵A 可逆的充分必要条件是A 可以通过初等变换(特别只通过初等行或列变换)化为n 级单位阵(证明参见[1]); 1.3.4 n 级矩阵A 可逆的充分必要条件是存在一个n 级方阵B ,使得AB=E (或BA=E ); 1.3.5 n 级矩阵A 可逆的充分必要条件是A 的n 个特征值全不为0;(证明参见[2]); 1.3.6 定理 对一个s n ?矩阵A 作一初等行变换就相当于在A 的左边乘上相应的s s ?初等矩阵;对A 作一初等列变换就相当于在A 的右边乘上相应的n n ?初等矩阵.(证明参见[1]) 2.矩阵的求逆 2.1 利用定义求逆矩阵 对于n 级方阵A ,若存在n 级方阵B ,使AB=BA=E ,则1B A -=.

2015年研数值分析A卷

武 汉 大 学 2015-2016第一学期硕士研究生期末考试试题(A 卷) 科目: 数值分析 学生所在院: 学号: 姓名: 一、(12分)设方程230x x e -=,为求其最大正根与最小正根的近似值,试分别确定两个含根区间[,]a b 和两个迭代函数()g x ,使当0[,]x a b ?时,迭代格式1()n n x g x +=分别收敛于最大正根与最小正根。 二、(12分)用杜利特尔(Doolittle )分解算法求解方程 b Ax =,其中 211625608A ????=?????? 226768b ????=?????? 三、(14分)设方程组 123121113a a x a a x a a x 轾轾轾犏犏犏犏犏犏=-犏犏犏犏犏犏臌臌臌 其中a 为常数。 (1)分别写出Jacobi 迭代格式及 Gauss-Seidel 迭代格式; (2)导出Gauss-Seidel 迭代格式收敛的充分必要条件。 四、(12分)已知 )(x f y = 的数据如下: 求)(x f 的Hermite 插值多项式)(3x H 及其余项。 五、(12分)确定常数 a ,b 的值,使积分 2 1 320(,)I a b x ax bx dx 轾=--犏臌ò 取得最小值。

六、(12 求形如 y bx x =+ 的拟合曲线。 七、(14分)(1)对初值问题 00(,)[,]()dy f t y t a b dt y t y ì??= ??í??=?? 验证改进欧拉方法(也称预估-校正法)与微分方程是相容的; (2) 用改进欧拉方法求下面方程的数值解(取步长5.0=h ): (0)1 dy dt y ?=???=? [0,1]t ∈ (取5位有效数字计算) 八、(12分)设求积公式 ∑?=≈n k k k b a x f A dx x f 1)()(为高斯型求积公式, 并记 )())(()(21n n x x x x x x x ---= ω (1)问给定的求积公式的代数精度是多少次? (2)证明: 对任意次数小于等于1-n 的多项式)(x q ,必有?=b a n dx x x q 0)()(ω; (3)证明:n k A k ,,2,1,0 =>

总结求矩阵的逆矩阵的方法

总结求矩阵的逆矩阵的方法-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

总结求矩阵的逆矩阵的方法 课程名称: 专业班级: 成员组成: 联系方式:

摘要:矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数 研究的主要内容之一.本文将给出几种求逆矩阵的方法. 关键词:矩阵逆矩阵方法 Method of finding inverse matrix Abstract: Matrix in linear algebra is the main content,many prictical problems with the matrix theory is simple and fast. The inverse matrix andmatrix theory the important content, the solution of inverse matrix nature has become one of the main research contents of linear algebra. The paper will give some method of finding inverse matrix. Key words: Matrix inversematrix method

正文: 1.引言:矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法. 2.求矩阵的逆矩阵的方法总结: 2.1 矩阵的基本概念 矩阵,是由个数组成的一个行列的矩形表格,通常用大写字母表示,组成矩阵的每一个数,均称为矩阵的元素,通常用小写字母其元素表示,其中下标都是正整数,他们表示该元素 在矩阵中的位置。比如,或表示一个 矩阵,下标表示元素位于该矩阵的第行、第列。元素全为零的矩阵称为零矩阵。 特别地,一个矩阵,也称为一个维列向量;而一个矩阵,也称为一个维行向量。 当一个矩阵的行数与烈数相等时,该矩阵称为一个阶方阵。对于方阵,从左上角到右下角的连线,称为主对角线;而从左下角到右上角的连线称 为付对角线。若一个阶方阵的主对角线上的元素都是,而其余元素都是零,则称为单位矩阵,记为,即:。如一个阶

数值分析习题集及答案Word版

数值分析习题集 (适合课程《数值方法A 》和《数值方法B 》) 长沙理工大学 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式(3.3)求下列各近似值的误差限: ********12412324(),(),()/,i x x x ii x x x iii x x ++其中**** 1234 ,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设028,Y =按递推公式 1n n Y Y -=…) 计算到100Y .27.982(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字27.982). 8. 当N 充分大时,怎样求2 1 1N dx x +∞+?? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设 212S gt = 假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对 误差增加,而相对误差却减小. 11. 序列 {}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字), 计算到 10y 时误差有多大?这个计算过程稳定吗? 12. 计算6 1)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 -- 13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?

07(研)数值分析

数值分析试题 2007.12 一、简答下列各题:(每题4分,共20分) 1.为了提高计算精度,求方程x 2-72x+1=0的根,应采用何种公式,为什么? 2.设??? ? ??=2112A ,求)(A ρ和2)(A Cond 。 3.设??? ? ? ??=131122321A ,求A 的LU 分解式。 4.问23221)2(x x x x ++=是不是3R 上的向量范数,为什么? 5.求数值积分公式?-≈b a a b a f dx x f ))(()(的截断误差R[?]。 二、解答下列各题:(每题8分,共56分) 1.已知线性方程组??? ??=-+=-+=-+3 53231 4321 321321x x x x x x x x x ,问能用哪些方法求解?为什么? 2.解线性方程组b Ax =的Gauss-Seidel 迭代法是否收敛?为什么?其中: ???? ? ??--=211111112A 3.设]2,0[)(4C x f y ∈=,且0)0(,0)2(,2)1(,1)0(='===f f f f ,试求)(x f 的三次插值多项式)(3x H ,并写出余项)()()(33x H x f x R -=。 4.给定离散数据 试求形如3bx a y +=的拟合曲线。 5.求区间[0,1]上权函数为x x =)(ρ的正交多项式)(0x p ,)(1x p 和)(2x p 。 6.证明求积公式: ? +++-≈3 1 ) 5 3 2(5)2(8)532(5[91)(f f f dx x f

是Gauss 型求积公式。 7. 利用2=n 的复化Simpson 公式计算计算定积分 ,并估计误差][f R 。 三、(12分)已知方程0cos 2=-x x , 1.证明此方程有唯一正根α; 2.建立一个收敛的迭代格式,使对任意初值]1,0[0∈x 都收敛,说明收敛理由和收敛阶。 3.若取初值00=x ,用此迭代法求精度为510-=ε的近似根,需要迭代多少步? 四、(12分)已知求解常微分方程初值问题: ?? ?∈=='] ,[,)(),(b a x a y y x f y α 的差分公式: ?? ??????? =++==++=+α 0121211) 32 ,32() ,()3(4y hk y h x f k y x f k k k h y y n n n n n n 1.证明:此差分公式是二阶方法; 2.用此差分公式求解初值问题1)0(,10=-='y y y 时,取步长h=0.25,所得数值解是否稳定,为什么? ?1 0sin xdx

(完整版)数值分析第7章答案

第七章非线性方程求根 一、重点内容提要 (一)问题简介 求单变量函数方程 ()0f x = (7.1) 的根是指求*x (实数或复数),使得(*)0f x =.称*x 为方程(7.1)的根,也称*x 为 函数()f x 的零点.若()f x 可以分解为 ()(*)()m f x x x g x =- 其中m 为正整数,()g x 满足()0g x ≠,则*x 是方程(7.1)的根.当m=1时,称*x 为单根;当m>1时,称*x 为m 重根.若()g x 充分光滑,*x 是方程(7.1)的m 重根,则有 (1)() (*)'(*)...(*)0,(*)0m m f x f x f x f x -====≠ 若()f x 在[a,b]上连续且()()0f a f b <,则方程(7.1)在(a,b)内至少有一个实根,称[a,b]为方程(7.1)的有根区间.有根区间可通过函数作图法或逐次搜索法求得. (二)方程求根的几种常用方法 1.二分法 设()f x 在[a,b]上连续,()()0f a f b <,则()0f x =在(a,b)内有根*x .再设()0f x =在 (a,b)内仅有一个根.令00,a a b b ==,计算0001 ()2x a b =+和0()f x .若0()0f x =则*x x =,结束计算;若00()()0f a f x >,则令10,1a x b b ==,得新的有根区间11[,]a b ;若 00()()0 f a f x <,则令 10,10 a a b x ==,得新的有根区间 11[,]a b .0011[,][,]a b a b ?,11001()2b a b a -=-.再令1111 ()2x a b =+计算1()f x ,同上法得 出新的有根区间22[,] a b ,如此反复进行,可得一有根区间套 1100...[,][,]...[,] n n n n a b a b a b --????

数值分析习题

习题一 1.1 求下列各数的具有四位有效数字的近似值, 并指出其绝对误差限和相对误差限 )1.0ln(,121,101 1,1014321== = = x x x x 1.2 下列各数都是对准确值进行四舍五入得到的近似值, 指出它们的绝对误差限、相对误差限和有效数字的位 数。 3 * 5* 4* 3* 2* 1100.5,5000,50.31,3015.0,0315.0?=====x x x x x 1.3 为了使 3 1的近似值的相对误差不超过0.1%, 问应取几位有效数字? 1.4 怎样计算下列各题才能使得结果比较精确? (1) x x sin )sin(-+ε,其中ε充分小 (2) ? ++1 2 1N N x dx ,其中N 是充分大的正数 (3) x x sin cos 1-,其中x 充分小 (4) o 1cos 1- (5) 1001.0-e (6) )11010ln(84-- 1.5 求方程01562=+-x x 的两个根, 使至少具有四位有效数字。 习题二 2.1 证明方程043 =-+x x 在区间[1,2]内有且仅有一个根。如果用二分法求它具有五位有效数字的根,试问需对 分多少次?(不必求根) 2.2 用二分法求方程0134 =+-x x 在[0.3, 0.4]内的一个根, 精度要求2 10 2 1-?= ε。 2.3 找出下列方程的有根区间,选择适当的初始点用二分法求方程的根,精度要求2 10 -=ε。 (1) 02 =--x x ; (2) 06cos 2 =-++-x e x x ; (3) 01tan =--x x ; (4) 0sin 2=--x e x 。 2.4 考虑方程032 =-x e x ,将其改写为3 x e x ± =,取00=x ,用两种迭代公式迭代,分别收敛到1.0和-0.5附 近的两个根(取精度要求3 10-=ε)。

研究生《数值分析》教学大纲

研究生《数值分析》教学大纲 课程名称:数值分析 课程编号:S061005 课程学时:64 学时 课程学分: 4 适用专业:工科硕士生 课程性质:学位课 先修课程:高等数学,线性代数,计算方法,Matlab语言及程序设计 一、课程目的与要求 “数值分析”课是理工科各专业硕士研究生的学位课程。主要介绍用计算机解决数学问题的数值计算方法及其理论。内容新颖,起点较高,并加强了数值试验和程序设计环节。通过本课程的学习,使学生熟练掌握各种常用的数值算法的构造原理和过程分析,提高算法设计和理论分析能力,并且能够根据数学模型,提出相应的数值计算方法编制程序在计算机上算出结果。力求使学生掌握应用数值计算方法解决实际问题的常用技巧。 二、教学内容、重点和难点及学时安排: 第一章? 数值计算与误差分析( 4学时) 介绍数值分析的研究对象与特点,算法分析与误差分析的主要内容。 第一节数值问题与数值方法 第二节数值计算的误差分析 第三节数学软件工具----MATLAB 语言简介 重点:误差分析 第二章? 矩阵分析基础( 10学时) 建立线性空间、赋范线性空间、内积空间的概念,为学习以后各章打好基础。矩阵分解是解决数值代数问题的常用方法,掌握矩阵的三角分解、正交分解、奇异值分解,并能够编写算法程序。 第一节? 矩阵代数基础

第二节? 线性空间 第三节? 赋范线性空间 第四节? 内积空间和内积空间中的正交系 第五节矩阵的三角分解 第六节矩阵的正交分解 第七节矩阵的奇异值分解 难点:内积空间中的正交系。矩阵的正交分解。 重点:范数,施密特(Schmidt) 正交化过程,正交多项式,矩阵的三角分解, 矩阵的正交分解。 第三章? 线性代数方程组的数值方法( 12学时) 了解研究求解线性代数方程组的数值方法分类及直接法的应用范围。高斯消元法是解线性代数方程组的最常用的直接法,也是其它类型直接法的基础。在此方法基础上加以改进,可得选主元的高斯消元法、按比例增减的高斯消元法,其数值稳定性更高。掌握用列主元高斯消元法解线性方程组及计算矩阵的行列式及逆,并且能编写算法程序。掌握矩阵的直接三角分解法:列主元LU 分解,Cholesky分解。了解三对角方程组的追赶法的分解形式及数值稳定性的充分条件。掌握矩阵条件数的定义,并能利用条件数判别方程组是否病态以及对方程组的直接方法的误差进行估计。 迭代解法是求解大型稀疏方程组的常用解法。熟练掌握雅可比迭代法、高斯- 塞德尔迭代法及SOR 方法的计算分量形式、矩阵形式,并能在计算机上编出三种方法的程序用于解决实际问题。了解极小化方法:最速下降法、共轭斜量法。迭代法的收敛性分析是研究解线性代数方程组的迭代法时必须考虑的问题。对于上述常用的迭代法,须掌握其收敛的条件。而对一般的迭代法,掌握其收敛性分析的基本方法和主要结果有助于进一步探究新的迭代法。 第一节求解线性代数方程组的基本定理 第二节高斯消元法及其计算机实现 第三节矩阵分解法求解线性代数方程组 第三节? 误差分析和解的精度改进 第四节? 大型稀疏方程组的迭代法 第五节? 极小化方法 难点:列主元高斯消元法,直接矩阵三角分解。迭代法的收敛性,雅可比迭代法,高斯-塞德尔迭代法,SOR 迭代法。

求逆矩阵的方法

求逆矩阵的方法与矩阵的秩 一、矩阵的初等行变换 (由定理2.4给出的求逆矩阵的伴随矩阵法,要求计算矩阵A 的行列式A 值和它的伴随矩阵*A .当A 的阶数较高时,它的计算量是很大的,因此用伴随矩阵法求逆矩阵是不方便的.下面介绍利用矩阵初等行变换求逆矩阵的方法.在介绍这种方法之前,先给出矩阵初等行变换的定义.) 定义2.13 矩阵的初等行变换是指对矩阵进行下列三种变换: (1) 将矩阵中某两行对换位置; (2) 将某一行遍乘一个非零常数k ; (3) 将矩阵的某一行遍乘一个常数k 加至另一行. 并称(1)为对换变换,称(2)为倍乘变换,称(3)为倍加变换. 矩阵A 经过初等行变换后变为B ,用 A →B 表示,并称矩阵B 与A 是等价的. (下面我们把)第i 行和第j , ”;把第i 行遍乘k k ”;第j 行的k 倍加至第i 为“ + k ”. 例如,矩阵 A = ????? ?????321321321c c c b b b a a a ???? ? ?????321 3 21321 c c c a a a b b b ???? ??????32 1 321321c c c b b b a a a ???? ? ?????32 1321321 kc kc kc b b b a a a ???? ? ?????32 1 321321 c c c b b b a a a ??? ? ? ??? ??+++32 1 332 2113 21 c c c ka b ka b ka b a a a (关于初等矩阵内容请大家自己阅读教材) 二、运用初等行变换求逆矩阵 由定理2.7的推论“任何非奇异矩阵均能经过初等行变换化为单位阵”可知,对于任意一个n 阶可逆矩阵A ,经过一系列的初等行变换可以化为单位阵I ,那么用一系列同样的初等行变换作用到单位阵I 上,就可以把I 化成A -1.因此,我们得到用初等行变换求逆矩阵的方法:在矩阵A 的右边写上一个同阶的单位矩阵I ,构成一个n ?2n 矩阵 ( A , I ),用初等行变换将左半部分的A 化成单位矩阵I ,与此同时,右半部分的I 就被化成了1-A .即 ( A , I )初等行变换 ?→???( I , A -1 ) 例1 设矩阵 A = ???? ? ?????--23 2 311111 ③k ①,② ②+①k

数值分析试题1

数值分析试卷1 一、填空题(每空2分,共30分) 1. 近似数231.0=*x 关于真值229.0=x 有____________位有效数字; 2. 设)(x f 可微,求方程)(x f x =根的牛顿迭代格式是_______________________________________________; 3. 对1)(3++=x x x f ,差商=]3,2,1,0[f _________________; =]4,3,2,1,0[f ________; 4. 已知??? ? ??-='-=1223,)3,2(A x ,则=∞||||Ax ________________,=)(1A Cond ______________________ ; 5. 求解线性方程组?????=+=+045 11532121x x x x 的高斯—赛德尔迭代格式为_______________________________________;该迭代格式迭代矩阵的谱半径=)(G ρ_______________; 二、(12分)(1)设LU A =,其中L 为下三角阵,U 为单位上三角阵。已知 ?????? ? ??------=2100121001210012A ,求L ,U 。 (2)设A 为66?矩阵,将A 进行三角分解:LU A =,L 为单位下三角阵,U 为上三角阵,试写出L 中的元素65l 和U 中的元素56u 的计算公式。 三、给定数据表如下 x 0.20.40.60.81 1.2f(x)212523202124 (1) 用三次插值多项式计算f ( 0.7 ) 的近似值; (2) 用二次插值多项式计算f ( 0.95 ) 的近似值: (3) 用分段二次插值计算 f ( x ) )2.12.0(≤≤x 的近似值能保证有几位有

数值分析(研)试题答案

沈阳航空航天大学研究生试卷(A) 2011-2012 学年第一学期课程名称:数值分析出题人: 王吉波审核人: 一、填空题(本题40 分每空 4 分) 1.设l j (x) ( j 0 ,1, ,n) 为节点x0 , 1 , , x 的n 次基函数,则 l j ( x i ) x n 1, 0, i i j j 。 2.已知函数(x) x 1 f 2 x ,则三阶差商 f [1, 2, 3, 4] = 0 。 3.当n=3 时,牛顿- 柯特斯系数 1 (3) 3 (3) (3) C0 , C C ,则 1 2 8 8 (3) C 3 1 8 。 ( ) Bx( k) f k k 1 收敛的 4.用迭代法解线性方程组Ax=b时,迭代格式, 0,1,2 , x 充分必要条件是(B) 1或B 的谱半径小于 1 。 5.设矩阵 1 2 A ,则A 的条件数 Cond (A)2 = 3 。 2 1 6.正方形的边长约为100cm,则正方形的边长误差限不超过0.005 cm 才能使 其面积误差不超过1 2 cm 。 1 1 7.要使求积公式(0) ( ) 8. f (x)dx f A1 f x1 具有 2 次代数精确度,则 4 x 2/3 ,A1 3/4 。 1 9 18 9 - 27

18 45 0 - 45 其 中, A 8. 用杜利特尔(Doolittle )分解法分解 A LU , 9 0 126 9 27 -45 9 135 则 1 1 1 2 3 1 2 L , 1 - 2 1 0 3 U 9 18 9 9 -18 81 - 27 9 54 9

东南大学_数值分析_第七章_偏微分方程数值解法

第七章 偏微分方程数值解法 ——Crank-Nicolson 格式 ****(学号) *****(姓名) 上机题目要求见教材P346,10题。 一、算法原理 本文研究下列定解问题(抛物型方程) 22(,) (0,0)(,0)() (0) (0,)(), (1,)() (0)u u a f x t x l t T t x u x x x l u t t u t t t T ?αβ???-=<<≤≤???? =≤≤??==<≤?? (1) 的有限差分法,其中a 为正常数,,,,f ?αβ为已知函数,且满足边界条件和初始条件。关于式(1)的求解,采用离散化方法,剖分网格,构造差分格式。其中,网格剖分是将区域{}0,0D x l t T =≤≤≤≤用两簇平行直线 (0) (0)i k x x ih i M t t k k N τ==≤≤?? ==≤≤? 分割成矩形网格,其中,l T h M N τ==分别为空间步长和时间步长。将式(1)中的偏导数使用不同的差商代替,将得到不同的差分格式,如古典显格式、古典隐格式、Crank-Nicolson 格式等。其中,Crank-Nicolson 格式具有更高的收敛阶数,应用更广泛,故本文采用Crank-Nicolson 格式求解抛物型方程。 Crank-Nicolson 格式推导:在节点(,)2 i k x t τ +处考虑式(1),有 22(,)(,)(,)222 i k i k i k u u x t a x t f x t t x τττ??+-+=+?? (2) 对偏导数 (,)2 i k u x t t τ ?+?用中心差分展开 []2311+13 1(,)(,)(,)(,) ()224k k i k i k i k i i k i k u u x t u x t u x t x t t t t ττηητ++??+=--<

数值分析题库答案

1. 正方形的边长大约为100cm ,应怎样测量才能使面积误差不超过1cm 2? 2. 已测得某场地长l 的值为110=*l m ,宽d 的值为80=*d m ,已知 2.0≤-*l l m, 1.0≤-*d d m, 试求面积ld s =的绝对误差限与相对误差限.

3.为使π的相对误差小于0.001%,至少应取几位有效数字? 4.设x的相对误差界为δ,求n x的相对误差界. 5.设有3个近似数a=2.31,b=1.93,c=2.24,它们都有3位有效数字,试计算 p=a+bc的误差界和相对误差界,并问p的计算结果能有几位有效数字?

6. 已知33348 7.034.0sin ,314567.032.0sin ==,请用线性插值计算3367.0sin 的值,并估计截断误差. 7. 已知sin0.32=0.314567, sin0.34=0.333487, sin0.36= 0.352274,用抛物插值计算sin0.3367的值, 并估计误差. 8. 已知 1 6243sin ,sin π ππ== =请用抛物插值求sin50的值,并估计误差

9. . .6,8,7,4,1)(,5,4,3,2,1求四次牛顿插值多项式时设当==i i x f x 10. 已知4)2(,3)1(,0)1(=-=-=f f f , 求函数)(x f 过这3点的2次牛顿插 值多项式 . 11. 设x x f =)(,并已知483240.1)2.2(,449138.1)1.2(,414214.1)0.2(===f f f ,

试用二次牛顿插值多项式计算(2.15)f 的近似值,并讨论其误差 12. 设],[)(b a x f 在上有四阶连续导数,试求满足条件)2,1,0()()(==i x f x P i i 及 )()(11x f x P '='的插值多项式及其余项表达式. 13. 给定3201219(),,1,,44f x x x x x ====试求()f x 在1944?? ???? ,上的三次埃尔米特

研究生数值分析习题

1. 五个节点的Newton-Cotes 求积公式的代数精度为______,五个节点的求积公式最高代数精度为___________。(即Gauss 型求积公式) 2. 已知数值求积公式为3 11 ()[(1)4(2)(3)]3 f x dx f f f ≈++? , 则其代数精度为______。 3. 数值积分公式1 '12 ()[(1)8(0)(1)]9 f x dx f f f -≈-++?的代数 精度为_________。 4. 要使求积公式1 110 1 ()(0)()4 f x dx f A f x ≈ +?具有2次代数精度,则1x =___,1A =___。 5. 在Newton-Cotes 求积公式:() ()()()n b n i i a i f x dx b a C f x =≈-∑? 中,当系数()n i C 是负值时,公式的稳定性不能保证,所以实际应用中,当___________时的Newton-Cotes 求积公式不能使用。 ()8()7()10()6A n B n C n D n ≥≥≥≥ 6. 若用复化梯形公式计算1 0x e dx ?,要求误差不超过6 10-,利 用余项公式估计,至少用______个求积节点。 7. 对于Gauss 型求积公式3 1 ()()()b k k a k f x x dx A f x ρ=≈∑?,其中 ()x ρ为权函数,下列说法错误的是_________。

(A )该求积公式一定是稳定的; (B )3 1()k k k A f x b a ==-∑; (C )该求积公式的代数精度为5; (D )2 (35)()()0b a x x x x dx ωρ-=? ,其中3 1 ()()k k x x x ω==∏-。 8. 0{()}k k x ?∞ =是区间[0,1]上权函数 ()x x ρ=的最高系数为1的正交多项式族,其中0()1x ?=,则1 40()_______x x dx ?=?。 9. 构造代数精度最高的如下形式的求积公式,并求出其代数精度: 1 010 1 ()()(1)2 xf x dx A f A f ≈+? 10. 数值积分公式形如 1 ()()(0)(1)(0)(1)xf x dx S x Af Bf Cf Df ''≈=+++? (1)试确定参数A 、B 、C 、D ,使公式的代数精度尽量高; (2)设4 ()[0,1]f x C ∈,推导余项公式1 0()()()R x xf x dx S x =-?, 并估计误差。 11. 用8n =的复化梯形公式和复化Simpson 公式计算 1 x e d x -? 时, (1)试用余项估计其误差; (2)计算积分的近似值。

相关文档
相关文档 最新文档