文档库 最新最全的文档下载
当前位置:文档库 › 实验五 IIR滤波器的设计与信号滤波

实验五 IIR滤波器的设计与信号滤波

实验五 IIR滤波器的设计与信号滤波
实验五 IIR滤波器的设计与信号滤波

实验五IIR滤波器的设计与信号滤波

一、实验目的

设计IIR滤波器,实现对存在加性干扰的时域离散信号进行滤波。

二、实验内容

已知带加性干扰的信号用x(n)表示,x(n)=x s(n)+η(n),式中x s(n)是有用的信号,是一个0~0.2πrad的带限信号。η(n)是一个干扰信号,其频谱分布在0.3πrad以上。要求设计一个巴特沃斯IIR数字滤波器对信号x(n)进行滤波,将干扰η(n)滤除。要求在x s(n) 所在的通带内滤波器幅度平坦,在0.2πrad处幅度衰减不大于1dB,在噪声所在的0.3πrad 以上的频带内滤波器幅度衰减大于等于

40 dB。

三、实验步骤

1. 根据题目要求确定要设计的数字滤波器的技术指标(低通滤波器指标:w p=0.2πrad ,w s=0.3πrad,αp=1dB,αs=40dB);

2. 用双线性变换法频率转换公式,将上面的技术指标转换为巴特沃斯模拟滤波

器的技术指标;

3. 调用MATLAB函数buttord和butter,设计该模拟滤波器;

4. 用双线性变换法将设计的模拟滤波器转换为数字滤波器,求出该滤波器的系统函数并画出它的直接型网络结构图;

5. 画出该滤波器的幅度特性曲线;

6. 根据1所确定的技术指标,调用MATLAB函数buttord和butter,直接设计数字滤波器,观察设计结果与上面用双线性变换法的设计结果是否相同。

8. 滤波仿真:调用MATLAB工具箱函数filter对下面给出的带加性干扰的信号x(n)进行滤波,观察滤波效果(绘制滤波前后信号的时域和频域波形)。

实验信号为心电图信号采样序列,人体心电图信号在测量过程中往往受到工业高频干扰,所以必须经过低通滤波处理后,才能作为判断心脏功能的有用信息。下面给出一实际心电图信号采样序列样本x(n),其中存在高频干扰。在实验中,以x(n)作为输入序列,滤除其中的干扰成分。

x(n):={-4, -2, 0, -4, -6, -4, -2, -4, -6, -6,

-4, -4, -6, -6, -2, 6, 12, 8, 0, -16,

-38, -60, -84, -90, -66, -32, -4, -2, -4, 8,

12, 12, 10, 6, 6, 6, 4, 0, 0, 0,

0, 0, -2, -4, 0, 0, 0, -2, -2, 0,

0, -2, -2, -2, -2, 0}

四、实验用MATLAB函数简介

filter

功能:一维数字滤波器直接Ⅱ型实现函数。

调用格式:yn=filter(B, A, xn):按直接Ⅱ型实现结构对输入信号向量xn滤波,返回滤波器输出信号向量yn,调用参数B和A分别为滤波器系统函数的分子和分母多项式系数向量。其实质是求解差分方程:

A(1)y(n)=B(1)x(n)+B(2)x(n-1)+…+B(M+1)x(n-M)-A(2)y(n-1)-…-A(N+1)y(n-N 如果A(1)不等于1时,则对系数关于A(1)归一化后计算输出信号y(n)。当A=1时,对应FIR-DF的直接Ⅱ型实现。

五、实验报告要求

1. 写出所设计的数字滤波器的主要技术指标、系统函数、网络结构;

2. 写出两种IIR数字滤波器的设计原理、步骤;

3. 写出仿真滤波试验的结果。

六、实验程序

(1):用双线性变换法设计IIR数字滤波器的程序:

%输入信号及其波形

x=[-4,-2,0,-4,-6,-4,-2,-4,-6,-6,-4,-4,-6,-6,-2,6,12,8,...

0,-16,-38,-60,-84,-90,-66,-32,-4,-2,-4,8,12,12,10,6,6,6,...

4,0,0,0,0,0,-2,-4,0,0,0,-2,-2,0,0,-2,-2,-2,-2,0];

n=0:55;

subplot(2,2,1);

stem(n,x,'.');

axis([0 60 -100 50]);

hold on;

n=0:60;

m=zeros(61);

plot(n,m);

xlabel('n');

ylabel('x(n)');

title('心电图信号采样序列x(n)');

X=fft(x,256);

subplot(2,2,2)

k=0:255;

plot(2*k/256,abs(X))

xlabel('k');

ylabel('X(k)');

title('心电图信号采样序列的频谱');

%用双线性变换法滤波器设计IIR-DF

T=1;

Wp=0.2*pi;Ws=0.3*pi;Rp=1;Rs=40;

Omegap=2*tan(Wp/2)/T; %模拟波器通带截止频率

Omegas=2*tan(Ws/2)/T; %模拟波器通带截止频率

Fs=1/T; %采样频率

[N,Wc]=buttord(Omegap,Omegas,Rp,Rs,'s'); %计算巴特沃斯模拟滤波器阶数N 及%3dB截止频率Wc

[Z,P,K]=buttap(N); %求butterworth归一化原型H(p),零极点增益形式[b,a]=zp2tf(Z,P,K); % 转换成归化系统函数形式,H(p)为分子分母多项式形式[bt,at]=lp2lp(b,a,Wc); %去归一化转换为实际低通Ha(s)

% [b1,a1]=butter(N,Wc,'s');%可以代替以上三个步骤

[bb,ab]=bilinear(bt,at,Fs); %双线性变换得H(z),Fs为采样频率

%求数字滤波器的幅频特性

[H,w]=freqz(bb,ab,100); %对应采样间隔为0.02*pi

mag=abs(H);

db=20*log10((mag+eps)/max(mag));

subplot(2,2,3);

plot(w/pi,db);

axis([0,0.6,-50,10]);

grid on

title('滤波器的幅频响应曲线'); %用设计滤波器对输入信号进行滤波y=filter(bb,ab,x);

subplot(2,2,4);

n=0:55;

stem(n,y,'.');

axis([0 60 -100 50]);

hold on;

n=0:60;

m=zeros(61);

plot(n,m);

xlabel('n');

ylabel('x(n)');

title('进行滤波后的心电图信号'); 实验结果截图:

(2):直接设计IIR巴特沃斯数字滤波器的程序:

%直接设计巴特沃斯数字滤波器

Wp=0.2*pi;Ws=0.3*pi;Rp=1;Rs=40;

wp=Wp/pi;ws=Ws/pi;%求数字滤波器的归一化频率

[N,wc]=buttord(wp,ws,Rp,Rs); %计算巴特沃斯数字滤波器阶数N及3dB截止频率

[b1,a1]=butter(N,wc);%设计巴特沃斯数字滤波器

%求数字滤波器的幅频特性

[H,w]=freqz(b1,a1,100); %对应采样间隔为0.02*pi

mag=abs(H);

db=20*log10((mag+eps)/max(mag));

subplot(2,2,1);

plot(w/pi,db);

axis([0,0.6,-50,10]);

grid on

title('滤波器的幅频响应曲线');

%输入信号及其波形

x=[-4,-2,0,-4,-6,-4,-2,-4,-6,-6,-4,-4,-6,-6,-2,6,12,8,...

0,-16,-38,-60,-84,-90,-66,-32,-4,-2,-4,8,12,12,10,6,6,6,...

4,0,0,0,0,0,-2,-4,0,0,0,-2,-2,0,0,-2,-2,-2,-2,0];

n=0:55;

subplot(2,2,3);

stem(n,x,'.');

axis([0 60 -100 50]);

hold on;

n=0:60;

m=zeros(61);

plot(n,m);

xlabel('n');

ylabel('x(n)');

title('心电图信号采样序列x(n)');

%用设计滤波器对输入信号进行滤波

y=filter(b1,a1,x);

subplot(2,2,4);

n=0:55;

stem(n,y,'.');

axis([0 60 -100 50]);

hold on;

n=0:60;

m=zeros(61);

plot(n,m);

xlabel('n');

ylabel('x(n)');

title('进行滤波后的心电图信号'); 实验结果截图:

(3)用脉冲响应不变法设计IIR数字滤波器的程序:

%输入信号及其波形

T=1; %设置采样周期为1

fs=1/T; %采样频率为周期倒数

Wp=0.2*pi/T;

Ws=0.3*pi/T; %设置归一化通带和阻带截止频率Ap=1;

As=40; %设置通带最大和最小衰减

[N,Wc]=buttord(Wp,Ws,Ap,As,'s'); %调用butter函数确定巴特沃斯滤波器阶数

[B,A]=butter(N,Wc,'s'); %调用butter函数设计巴特沃斯滤波器

W=linspace(0,pi,400*pi); %指定一段频率值

hf=freqs(B,A,W); %计算模拟滤波器的幅频响应

subplot(2,1,1);

plot(W/pi,abs(hf)/abs(hf(1))); %绘出巴特沃斯模拟滤波器的幅频特性曲线 grid on;

title('巴特沃斯模拟滤波器');

xlabel('Frequency/Hz');

ylabel('Magnitude');

[D,C]=impinvar(B,A,fs); %调用脉冲响应不变法

Hz=freqz(D,C,W); %返回频率响应

subplot(2,1,2);

plot(W/pi,abs(Hz)/abs(Hz(1))); %绘巴特沃斯数字低通滤波器幅频特性曲线

grid on;

title('巴特沃斯数字滤波器');

xlabel('Frequency/Hz');

ylabel('Magnitude');

实验结果截图:

比较直接设计IIR数字滤波器和用双线性变换法设计IIR滤波器的结果是否相同?

实验要求:自己编写用脉冲响应不变法设计IIR数字滤波器的程序(调用impinvar,掌握方法即可)。

《数字信号处理》实验报告

题目IIR滤波器的设计与信号滤波学院理学院

专业信息安全(专门化)

班级10信安三班

学生姓名高凯强

学号1008105072

日期2012年12月12号

《数字信号处理》实验报告

题目用窗函数法设计 FIR滤波器学院理学院

专业信息安全(专门化)

班级10信安三班

学生姓名高凯强

学号1008105072

日期2012年12月12号

实验四 IIR数字滤波器设计

实验四IIR数字滤波器的设计与MATLAB实现 一、实验目的: 1、要求掌握IIR数字滤波器的设计原理、方法、步骤。 2、能够根据滤波器设计指标进行滤波器设计。 3、掌握数字巴特沃斯滤波器和数字切比雪夫滤波器的设计原理和步骤。 二、实验原理: IIR数字滤波器的设计方法:频率变换法、数字域直接设计以及计算机辅助等。这里只介绍频率变换法。由模拟低通滤波器到数字低通滤波器的转换,基本设计过程: 1、将数字滤波器的设计指标转换为模拟滤波器指标 2、设计模拟滤波器G(S) 3、将G(S)转换为数字滤波器H(Z) 在低通滤波器设计基础上,可以得到数字高通、带通、带阻滤波器的设计流程如下: 1、给定数字滤波器的设计要求(高通、带通、带阻) 2、转换为模拟(高通、带通、带阻)滤波器的技术指标 3、转换为模拟低通滤波器的指标 4、设计得到满足3步骤中要求的低通滤波器传递函数 5、通过频率转换得到模拟(高通、带通、带阻)滤波器 6、变换为数字(高通、带通、带阻)滤波器 三、标准数字滤波器设计函数 MATLAB提供了一组标准的数字滤波器设计函数,大大简化了滤波器设计过程。 1、butter 例题1 设计一个5阶Butterworth数字高通滤波器,阻带截止频率为250Hz ,设采样频率为1KHz. 图1 5阶Butterworth数字高通滤波器

2、cheby1和cheby2 例题2 设计一个7阶chebyshevII型数字低通滤波器,截止频率为3000Hz,Rs=30dB,采样频率为1KHz。 图2 7阶chebyshevII型数字低通滤波器 四、冲激响应不变法 一般来说,在要求时域冲激响应能模仿模拟滤波器的场合,一般使用该方法。冲激响应不变法一个重要的特点是频率坐标的变换时线性的,因此如果模拟滤波器的频响带限于折叠频率的话,则通过变换后滤波器的频率响应可不失真的反映原响应与频率的关系。 例题3 设计一个中心频率为500Hz,带宽为600 Hz的数字带通滤波器,采样频率为1K Hz。

实验五:FIR数字滤波器设计与软件实现

实验五:FIR数字滤波器设计与软件实现 一、实验指导 1.实验目的 (1)掌握用窗函数法设计FIR数字滤波器的原理和方法。 (2)掌握用等波纹最佳逼近法设计FIR数字滤波器的原理和方法。 (3)掌握FIR滤波器的快速卷积实现原理。 (4)学会调用MATLAB函数设计与实现FIR滤波器。 2.实验容及步骤 (1)认真复习第七章中用窗函数法和等波纹最佳逼近法设计FIR数字滤波器的原理; (2)调用信号产生函数xtg产生具有加性噪声的信号xt,并自动显示xt及其频谱,如图1所示; 图1 具有加性噪声的信号x(t)及其频谱如图 (3)请设计低通滤波器,从高频噪声中提取xt中的单频调幅信号,要求信号幅频失真小于0.1dB,将噪声频谱衰减60dB。先观察xt的频谱,确定滤波器指标参数。 (4)根据滤波器指标选择合适的窗函数,计算窗函数的长度N,调用MATLAB函数fir1设计一个FIR低通滤波器。并编写程序,调用MATLAB快速卷积函数fftfilt实现对xt的滤波。绘图显示滤波器的频响特性曲线、滤波器输出信号的幅频特性图和时域波形图。 (4)重复(3),滤波器指标不变,但改用等波纹最佳逼近法,调用MATLAB函数remezord 和remez设计FIR数字滤波器。并比较两种设计方法设计的滤波器阶数。 提示:○1MATLAB函数fir1的功能及其调用格式请查阅教材; ○2采样频率Fs=1000Hz,采样周期T=1/Fs; ○3根据图1(b)和实验要求,可选择滤波器指标参数:通带截止频率fp=120Hz,阻带截

至频率fs=150Hz ,换算成数字频率,通带截止频率p 20.24p f ωπ=T =π,通带最大衰为0.1dB ,阻带截至频率s 20.3s f ωπ=T =π,阻带最小衰为60dB 。 ○ 4实验程序框图如图2所示,供读者参考。 图2 实验程序框图 4.思考题 (1)如果给定通带截止频率和阻带截止频率以及阻带最小衰减,如何用窗函数法设计线性相位低通滤波器?请写出设计步骤. (2)如果要求用窗函数法设计带通滤波器,且给定通带上、下截止频率为pl ω和pu ω,阻带上、下截止频率为sl ω和su ω,试求理想带通滤波器的截止频率cl cu ωω和。 (3)解释为什么对同样的技术指标,用等波纹最佳逼近法设计的滤波器阶数低? 5.信号产生函数xtg 程序清单(见教材) 二、 滤波器参数及实验程序清单 1、滤波器参数选取 根据实验指导的提示③选择滤波器指标参数: 通带截止频率fp=120Hz ,阻带截至频率fs=150Hz 。代入采样频率Fs=1000Hz ,换算成数字频率,通带截止频率p 20.24p f ωπ=T =π,通带最大衰为0.1dB ,阻带截至频率

实验6 无限冲激响应数字滤波器设计

实验6无限冲激响应数字滤波器设计 实验目的: 掌握双线性变换法及脉冲相应不变法设计IIR数字滤波器的具体设计方法及其原理,熟悉用双线性变换法及脉冲响应不变法设计低通、高通和带通IIR数字滤波器的计算机编程。 实验原理: 在MATLAB中,可以用下列函数辅助设计IIR数字滤波器:1)利用buttord 和cheblord可以确定低通原型巴特沃斯和切比雪夫滤波器的阶数和截止频率; 2)[num,den]=butter(N,Wn)(巴特沃斯)和[num,den]=cheby1(N,Wn),[num,den]=cheby2(N,Wn)(切比雪夫1型和2型)可以进行滤波器的设计;3)lp2hp,lp2bp,lp2bs可以完成低通滤波器到高通、带通、带阻滤波器的转换;4)使用bilinear可以对模拟滤波器进行双线性变换,求得数字滤波器的传输函数系数;5)利用impinvar可以完成脉冲响应不变法的模拟滤波器到数字滤波器的转换。 例3-1 设采样周期T=250μs(采样频率fs =4kHz),用脉冲响应不变法和双线性变换法设计一个三阶巴特沃兹滤波器,其3dB边界频率为fc =1kHz。 [B,A]=butter(3,2*pi*1000,'s'); [num1,den1]=impinvar(B,A,4000); [h1,w]=freqz(num1,den1); [B,A]=butter(3,2/0.00025,'s');

[num2,den2]=bilinear(B,A,4000); [h2,w]=freqz(num2,den2); f=w/pi*2000; plot(f,abs(h1),'-.',f,abs(h2),'-'); grid; xlabel('频率/Hz ') ylabel('幅值/dB') 程序中第一个butter的边界频率2π×1000,为脉冲响应不变法原型低通滤波器的边界频率;第二个butter的边界频率2/T=2/0.00025,为双线性变换法原型低通滤波器的边界频率.图1给出了这两种设计方法所得到的频响,虚线为脉冲响应不变法的结果;实线为双线性变换法的结果。脉冲响应不变法由于混叠效应,使得过渡带和阻带的衰减特性变差,并且不存在传输零点。同时,也看到双线性变换法,在z=-1即Ω=π或f=2000Hz处有一个三阶传输零点,这个三阶零点正是模拟滤波器在ω=∞处的三阶传输零点通过映射形成的。 例2 设计一数字高通滤波器,它的通带为400~500Hz,通带内容许有0.5dB的波动,阻带内衰减在小于317Hz的频带内至少为19dB,采样频率为1,000Hz。 wc=2*1000*tan(2*pi*400/(2*1000)); wt=2*1000*tan(2*pi*317/(2*1000)); [N,wn]=cheb1ord(wc,wt,0.5,19,'s'); [B,A]=cheby1(N,0.5,wn,'high','s'); [num,den]=bilinear(B,A,1000); [h,w]=freqz(num,den); f=w/pi*500; plot(f,20*log10(abs(h))); axis([0,500,-80,10]); grid; xlabel('') ylabel('幅度/dB')

fir低通滤波器设计(完整版)

电子科技大学信息与软件工程学院学院标准实验报告 (实验)课程名称数字信号处理 电子科技大学教务处制表

电 子 科 技 大 学 实 验 报 告 学生姓名: 学 号: 指导教师: 实验地点: 实验时间:14-18 一、实验室名称:计算机学院机房 二、实验项目名称:fir 低通滤波器的设计 三、实验学时: 四、实验原理: 1. FIR 滤波器 FIR 滤波器是指在有限范围内系统的单位脉冲响应h[k]仅有非零值的滤波器。M 阶FIR 滤波器的系统函数H(z)为 ()[]M k k H z h k z -==∑ 其中H(z)是k z -的M 阶多项式,在有限的z 平面内H(z)有M 个零点,在z 平面原点z=0有M 个极点. FIR 滤波器的频率响应 ()j H e Ω 为 0 ()[]M j jk k H e h k e Ω -Ω ==∑ 它的另外一种表示方法为 () ()()j j j H e H e e φΩΩΩ=

其中 () j H e Ω和()φΩ分别为系统的幅度响应和相位响应。 若系统的相位响应()φΩ满足下面的条件 ()φαΩ=-Ω 即系统的群延迟是一个与Ω没有关系的常数α,称为系统H(z)具有严格线性相位。由于严格线性相位条件在数学层面上处理起来较为困难,因此在FIR 滤波器设计中一般使用广义线性相位。 如果一个离散系统的频率响应 ()j H e Ω 可以表示为 ()()()j j H e A e αβΩ-Ω+=Ω 其中α和β是与Ω无关联的常数,()A Ω是可正可负的实函数,则称系统是广义线性相位的。 如果M 阶FIR 滤波器的单位脉冲响应h[k]是实数,则可以证明系统是线性相位的充要条件为 [][]h k h M k =±- 当h[k]满足h[k]=h[M-k],称h[k]偶对称。当h[k]满足h[k]=-h[M-k],称h[k]奇对称。按阶数h[k]又可分为M 奇数和M 偶数,所以线性相位的FIR 滤波器可以有四种类型。 2. 窗函数法设计FIR 滤波器 窗函数设计法又称为傅里叶级数法。这种方法首先给出()j d H e Ω, ()j d H e Ω 表示要逼近的理想滤波器的频率响应,则由IDTFT 可得出滤波器的单位脉冲响应为 1 []()2j jk d d h k H e e d π π π ΩΩ-= Ω ? 由于是理想滤波器,故 []d h k 是无限长序列。但是我们所要设计的FIR 滤波 器,其h[k]是有限长的。为了能用FIR 滤波器近似理想滤波器,需将理想滤波器的无线长单位脉冲响应 []d h k 分别从左右进行截断。 当截断后的单位脉冲响应 []d h k 不是因果系统的时候,可将其右移从而获得因果的FIR 滤波器。

实验4 基于MATLAB的FIR数字滤波器设计

实验4 基于MATLAB 的FIR 数字滤波器设计 实验目的:加深对数字滤波器的常用指标和设计过程的理解。 实验原理:低通滤波器的常用指标: P P P for H Ω≤Ω+≤Ω≤-,1)(1δδ πδ≤Ω≤Ω≤ΩS S for H ,)( 通带边缘频率P Ω,阻带边缘频率S Ω ,通带起伏 P δ, 通带峰值起伏] )[1(log 2010dB p p δα--=, 阻带起伏s δ,最小阻带衰减])[(log 2010dB s S δα-=。 数字滤波器有IIR 和FIR 两种类型,它们的特点和设计方法不同。 在MATLAB 中,可以用b=fir1(N,Wn,’ftype’,taper) 等函数辅助设计FIR 数字滤波器。N 代表滤波器阶数;Wn 代表滤波器的截止频率(归一化频率),当设计带通和带阻滤波器时,Wn 为双元素相量;ftype 代表滤波器类型,如’high ’高通,’stop ’带阻等;taper 为窗函数类型,默认为海明窗,窗系数需要实现用窗函数blackman, hamming,hanning chebwin, kaiser 产生。 例1 用凯塞窗设计一FIR 低通滤波器,通带边界频率π3.0=Ωp ,阻带边界频率π5.0=Ωs ,阻带衰减 不小于50dB 。 解 首先由过渡带宽和阻带衰减 来决定凯塞窗的N 和 π2.0=Ω-Ω=?Ωp s , , S P P S Passband Stopband Transition band Fig 1 Typical magnitude specification for a digital LPF

IIR数字滤波器的设计实验报告

IIR数字滤波器的设计 一、实验目的: 掌握冲激相应不变法和双线性变换法设计IIR数字滤波器的原理和方法; 观察冲激相应不变法和双线性变换法设计IIR数字滤波器的频率特性; 了解冲激相应不变法和双线性变换法的特点和区别。 二、实验原理: 无限长单位冲激响应(IIR)数字滤波器的设计思想: a)设计一个合适的模拟滤波器 b)利用一定的变换方法将模拟滤波器转换成满足预定指 标的数字滤波器 切贝雪夫I型:通带中是等波纹的,阻带是单调的

切贝雪夫II型:通带中是单调的,阻带是等波纹的 1.用冲击响应不变法设计一个低通切贝雪夫I型数字滤波器通带上限截止频率为400Hz 阻带截止频率为600Hz 通带最大衰减为0.3分贝 阻带最小衰减为60分贝 抽样频率1000Hz 2.用双线性变换法设计切贝雪夫II型高通滤波器 通带截止频率2000Hz 阻带截止频率1500Hz 通带最大衰减0.3分贝 阻带最小衰减50分贝 抽样频率20000Hz 四、实验程序:

1) Wp=2*pi*400; Ws=2*pi*600; Rp=0.3; Rs=60; Fs=1000; [N,Wn]=cheb1ord(Wp,Ws,Rp,Rs,'s'); [Z,P,K]=cheb1ap(N,Rp); [A,B,C,D]=zp2ss(Z,P,K); [At,Bt,Ct,Dt]=lp2lp(A,B,C,D,Wn); [num1,den1]=ss2tf(At,Bt,Ct,Dt); [num2,den2]=impinvar(num1,den1,Fs); [H,W1]=freqs(num1,den1); figure(1) subplot(2,1,1); semilogx(W1/pi/2,20*log10(abs(H)));grid; xlabel(' 频率/ Hz'); ylabel(' 模拟滤波器幅值(db)'); [H,W2]=freqz(num2,den2,512,'whole',Fs); subplot(2,1,2); plot(W2,20*log10(abs(H)));grid; xlabel(' 频率/ Hz');

fir低通滤波器设计报告

滤波器设计原理 本文将介绍数字滤波器的设计基础及用窗函数法设计FIR 滤波器的方法,运用MATLAB 语言实现了低通滤波器的设计以及用CCS软件进行滤波效果的观察。读取语音文件,并加入一定的随机噪声,最后使用窗函数滤波法进行语音滤波,将加噪后的语音文件转换为.dat文件使其能和ccs软件链接,输出个阶段的时域和频域波形。 根据数字滤波器冲激响应函数的时域特性。可将数字滤波器分为两种,即无限长冲激响应( IIR) 滤波器和有限长冲激响应(FIR) 滤波器。IIR 滤波器的特征是具有无限持续时间的冲激响应;FIR 滤波器冲激响应只能延续一定时间。其中FIR 滤波器很容易实现严格的线性相位,使信号经过处理后不产生相位失真,舍入误差小,稳定等优点。能够设计具有优良特性的多带通滤波器、微分器和希尔伯特变换器,所以在数字系统、多媒体系统中获得极其广泛的应用。FIR数字滤波器的设计方法有多种,如窗函数设计法、最优化设计和频率取样法等等。而随着MATLAB软件尤其是MATLAB 的信号处理工具箱和Simulink 仿真工具的不断完善,不仅数字滤波器的计算机辅助设计有了可能而且还可以使设计达到最优化。 FIR滤波器的窗函数法的设计 采用汉明窗设计低通FIR滤波器 使用b=fir1(n,Wn)可得到低通滤波器。其中,0Wn1,Wn=1相当于0.5。其语法格式为 b=fir1(n,Wn); 采用:b=fir1(25, 0.25); 得到归一化系数:

或者在命令行输入fdatool进入滤波器的图形设置界面,如下图所示 得到系数(并没有归一化) const int BL = 26; const int16_T B[26] = { -26, 33, 126, 207, 138, -212, -757, -1096, -652, 950, 3513, 6212, 7948, 7948, 6212, 3513, 950, -652, -1096, -757, -212, 138, 207, 126, 33, -26 }; FIR滤波器的设计(Matlab) 技术指标为:采用25阶低通滤波器,汉明窗(Hamming Window)函数,截止频率为1000Hz,采样频率为8000Hz,增益40db。 下面的程序功能是:读取语音文件,并加入一定的随机噪声,最后使用窗函数滤波法进行语音滤波,将加噪后的语音文件转换为.dat文件使其能和ccs软件链接,输出个阶段的时域和频域波形。

实验四 用窗函数法设计FIR数字滤波器

实验四 用窗函数法设计FIR 数字滤波器 实验项目名称:用窗函数法设计FIR 数字滤波器 实验项目性质:验证性实验 所属课程名称:数字信号处理 实验计划学时:2 一. 实验目的 (1)掌握用窗函数法设计FIR 数字滤波器的原理与方法。 (2)熟悉线性相位FIR 数字滤波器的特性。 (3)了解各种窗函数对滤波特性的影响。 二. 实验容和要求 (1) 复习用窗函数法设计FIR 数字滤波器一节容,阅读本实验原理,掌握设计步骤。 (2) 用升余弦窗设计一线性相位低通FIR 数字滤波器,截止频率 rad c 4 π ω= 。窗口长度N =15,33。要求在两种窗口长度情况下,分别求出()n h ,打印出相应的幅频特性和相频特性曲线,观察3dB 带宽和20dB 带宽。总结窗口长度N 对滤波器特性的影响。 设计低通FIR 数字滤波器时,一般以理想低通滤波特性为逼近函数()ωj e H ,即 ()?????≤<≤=-π ωωωωωα ω c c j j d ,,e e H 0 其中2 1 -= N α ()() ()[]() a n a n d e e d e e H n h c j j j j d d c c --= = = ??- -- πωωπ ωπ ωαωω ωαωπ π ωsin 2121

(3) 33=N ,4πω=c ,用四种窗函数设计线性相位低通滤波器,绘制相应的幅频特性曲线,观察3dB 带宽和20dB 带宽以及阻带最小衰减,比较四种窗函数对滤波器特性的影响。 三. 实验主要仪器设备和材料 计算机,MATLAB6.5或以上版本 四. 实验方法、步骤及结果测试 如果所希望的滤波器的理想的频率响应函数为()ωj d e H ,则其对应的单位脉冲响应为 ()()ωπ ω ωπ πd e e H n h j j d d ?- = 21 (4.1) 窗函数设计法的基本原理是用有限长单位脉冲响应序列()n h 逼近 ()n h d 。由于()n h d 往往是无限长序列,而且是非因果的,所以用窗函数() n ω将()n h d 截断,并进行加权处理,得到: ()()()n n h n h d ω= (4.2) ()n h 就作为实际设计的FIR 数字滤波器的单位脉冲响应序列,其频率 响应函数()ωj e H 为 ()()n j N n j e n h e H ωω ∑-==1 (4.3) 式中,N 为所选窗函数()n ω的长度。 我们知道,用窗函数法设计的滤波器性能取决于窗函数()n ω的类型及窗口长度N 的取值。设计过程中,要根据对阻带最小衰减和过渡带宽度的

实验四数字滤波器的设计实验报告

数字信号处理 实验报告 实验四 IIR数字滤波器的设计学生姓名张志翔 班级电子信息工程1203班 学号 指导教师 实验四 IIR数字滤波器的设计 一、实验目的: 1. 掌握双线性变换法及脉冲响应不变法设计IIR数字滤波器的具体设 计方法及其原理,熟悉用双线性变换法及脉冲响应不变法设计低通、高通和带通IIR数字滤波器的MATLAB编程。 2. 观察双线性变换及脉冲响应不变法设计的滤波器的频域特性,了解双线性变换法及脉冲响应不变法的特点。 3.熟悉Butterworth滤波器、切比雪夫滤波器和椭圆滤波器的频率特性。 二、实验原理: 1.脉冲响应不变法 用数字滤波器的单位脉冲响应序列模仿模拟滤波器的冲激响应 ,让正好等于的采样值,即,其中为采样间隔,如果以及分别表示的拉式变换及的Z变换,则 2.双线性变换法 S平面与z平面之间满足以下映射关系:

s平面的虚轴单值地映射于z平面的单位圆上,s平面的左半平面完全映射到z平面的单位圆内。 双线性变换不存在混叠问题。 双线性变换是一种非线性变换,这种非线性引起的幅频特性畸变可通过预畸而得到校正。 三、实验内容及步骤: 实验中有关变量的定义: fc 通带边界频率; fr阻带边界频率;δ通带波动;At 最小阻带衰减; fs采样频率; T采样周期 (1) =0.3KHz, δ=0.8Db, =0.2KHz, At =20Db,T=1ms; 设计一个切比雪夫高通滤波器,观察其通带损耗和阻带衰减是否满足要求。 MATLAB源程序: wp=2*1000*tan(2*pi*300/(2*1000)); ws=2*1000*tan(2*pi*200/(2*1000)); [N,wn]=cheb1ord(wp,ws,0.8,20,'s'); %给定通带(wp)和阻带(ws)边界角频率,通带波动波动0.8,阻带最小衰减20dB,求出最低阶数和通带滤波器的通带边界频率Wn [B,A]=cheby1(N,0.5,wn,'high','s');%给定通带(wp)和阻带(ws)边界角频率,通带波动 [num,den]=bilinear(B,A,1000); [h,w]=freqz(num,den); f=w/(2*pi)*1000; plot(f,20*log10(abs(h)));

实验六、用窗函数法设计FIR滤波器分析解析

实验六 用窗函数法设计 FIR 滤波器 一、实验目的 (1) 掌握用窗函数法设计FIR 数字滤波器的原理和方法。 (2) 熟悉线性相位FIR 数字滤波器特性。 (3) 了解各种窗函数对滤波特性的影响。 二、实验原理 滤波器的理想频率响应函数为H d (e j ω ),则其对应的单位脉冲响应为: h d (n) = ?-π π ωωωπ d e e H n j j d )(21 窗函数设计法的基本原理是用有限长单位脉冲响应序列h(n)逼h d (n)。由于h d (n)往往是无 限长序列,且是非因果的,所以用窗函数。w(n)将h d (n)截断,并进行加权处理: h(n) = h d (n) w(n) h(n)就作为实际设计的FIR 数字滤波器的单位脉冲响应序列,其频率响应函数H(e j ω )为: H(e j ω ) = ∑-=-1 )(N n n j e n h ω 如果要求线性相位特性,则h (n )还必须满足: )1()(n N h n h --±= 可根据具体情况选择h(n)的长度及对称性。 用窗函数法设计的滤波器性能取决于窗函数w(n)的类型及窗口长度N 的取值。设计过程中,要根据对阻带最小衰减和过渡带宽度的要求选择合适的窗函数类型和窗口长度N 。 三、实验步骤 1. 写出理想低通滤波器的传输函数和单位脉冲响应。 2. 写出用四种窗函数设计的滤波器的单位脉冲响应。 3. 用窗函数法设计一个线性相位FIR 低通滤波器,用理想低通滤波器作为逼近滤波器,截止频率ωc =π/4 rad ,选择窗函数的长度N =15,33两种情况。要求在两种窗口长度下,分别求出h(n),打印出相应的幅频特性和相频特性曲线,观察3dB 带宽和阻带衰减; 4 用其它窗函数(汉宁窗(升余弦窗)、哈明窗(改进的升余弦窗)、布莱克曼窗) 设计该滤波器,要求同1;比较四种窗函数对滤波器特性的影响。 四、实验用MATLAB 函数 可以调用MATLAB 工具箱函数fir1实现本实验所要求的线性相位FIR-DF 的设计,调用一维快速傅立叶变换函数fft 来计算滤波器的频率响应函数。

FIR数字滤波器设计与使用

实验报告 课程名称:数字信号处理指导老师:刘英成绩:_________________实验名称: FIR数字滤波器设计与使用同组学生姓名:__________ 一、实验目的和要求 设计和应用FIR低通滤波器。掌握FIR数字滤波器的窗函数设计法,了解设计参数(窗型、窗长)的影响。 二、实验内容和步骤 编写MATLAB程序,完成以下工作。 2-1 设计两个FIR低通滤波器,截止频率 C =0.5。 (1)用矩形窗,窗长N=41。得出第一个滤波器的单位抽样响应序列h 1(n)。记下h 1 (n) 的各个抽样值,显示h 1 (n)的图形(用stem(.))。求出该滤波器的频率响应(的N 个抽样)H 1(k),显示|H 1 (k)|的图形(用plot(.))。 (2)用汉明窗,窗长N=41。得出第二个滤波器的单位抽样响应序列h 2(n)。记下h 2 (n) 的各个抽样值,显示h 2(n)的图形。求出滤波器的频率响应H 2 (k),显示|H 2 (k)|的 图形。 (3)由图形,比较h 1(n)与h 2 (n)的差异,|H 1 (k)|与|H 2 (k)|的差异。 2-2 产生长度为200点、均值为零的随机信号序列x(n)(用rand(1,200)0.5)。显示x(n)。 求出并显示其幅度谱|X(k)|,观察特征。 2-3 滤波 (1)将x(n)作为输入,经过第一个滤波器后的输出序列记为y 1(n),其幅度谱记为|Y 1 (k)|。 显示|X(k)|与|Y 1 (k)|,讨论滤波前后信号的频谱特征。 (2)将x(n)作为输入,经过第二个滤波器后的输出序列记为y 2(n),其幅度谱记为|Y 2 (k)|。 比较|Y 1(k)|与|Y 2 (k)|的图形,讨论不同的窗函数设计出的滤波器的滤波效果。 2-4 设计第三个FIR低通滤波器,截止频率 C =0.5。用矩形窗,窗长N=127。用它对x(n)进行滤波。显示输出信号y

实验四IIR数字滤波器设计及软件实现

实验四IIR数字滤波器设计及软件实现 1.实验目的 (1)熟悉用双线性变换法设计IIR数字滤波器的原理与方法; (2)学会调用MATLAB信号处理工具箱中滤波器设计函数(或滤波器设计分析工具fdatool)设计各种IIR数字滤波器,学会根据滤波需求确定滤波器指标参数。 (3)掌握IIR数字滤波器的MATLAB实现方法。 (4)通过观察滤波器输入输出信号的时域波形及其频谱,建立数字滤波的概念。 2.实验原理 设计IIR数字滤波器一般采用间接法(脉冲响应不变法和双线性变换法),应用最广泛的是双线性变换法。基本设计过程是:①先将给定的数字滤波器的指标转换成过渡模拟滤波器的指标;②设计过渡模拟滤波器;③将过渡模拟滤波器系统函数转换成数字滤波器的系统函数。MATLAB信号处理工具箱中的各种IIR数字滤波器设计函数都是采用双线性变换法。第六章介绍的滤波器设计函数butter、cheby1 、cheby2 和ellip可以分别被调用来直接设计巴特沃斯、切比雪夫1、切比雪夫2和椭圆模拟和数字滤波器。本实验要求读者调用如上函数直接设计IIR数字滤波器。 本实验的数字滤波器的MATLAB实现是指调用MATLAB信号处理工具箱函数filter对给定的输入信号x(n)进行滤波,得到滤波后的输出信号y(n)。

3.实验内容及步骤 (1)调用信号产生函数mstg产生由三路抑制载波调幅信号相加构成的复合信号st,该函数还会自动绘图显示st的时域波形和幅频特性曲线。三路信号时域混叠无法在时域分离。但频域是分离的,所以可以通过滤波的方法在频域分离,这就是本实验的目的。 (2)要求将st中三路调幅信号分离,通过观察st的幅频特性曲线,分别确定可以分离st中三路抑制载波单频调幅信号的三个滤波器(低通滤波器、带通滤波器、高通滤波器)的通带截止频率和阻带截止频率。要求滤波器的通带最大衰减为0.1dB,阻带最小衰减为60dB。 (3)编程序调用MATLAB滤波器设计函数ellipord和ellip分别设计这三个椭圆滤波器,并绘图显示其幅频响应特性曲线。

实验五FIR数字滤波器的设计

实验六 FIR 数字滤波器的设计 一、实验目的 1.熟悉FIR 滤波器的设计基本方法 2.掌握用窗函数设计FIR 数字滤波器的原理与方法。 二、实验内容 1.FIR 数字滤波器的设计方法 FIR 滤波器的设计问题在于寻求一系统函数)(z H ,使其频率响应)(ωj e H 逼近滤波器要求的理想频率响应)(ωj d e H ,其对应的单位脉冲响应为)(n h d 。 (1)用窗函数设计FIR 滤波器的基本原理 设计思想:从时域从发,设计)(n h 逼近理想)(n h d 。设理想滤波器)(ωj d e H 的单位脉 冲响应为)(n h d 。以低通线性相位FIR 数字滤波器为例。 ?∑--∞-∞=== ππωωωωω πd e e H n h e n h e H jn j d d jn n d j d )(21)()()( (6-1) )(n h d 一般是无限长的,且是非因果的,不能直接作为FIR 滤波器的单位脉冲响应。要想得到一个因果的有限长的滤波器h(n),最直接的方法是截断)()()(n w n h n h d =,即截取为有限长因果序列,并用合适的窗函数进行加权作为FIR 滤波器的单位脉冲响应。按照线性相位滤波器的要求,h(n)必须是偶对称的。对称中心必须等于滤波器的延时常数,即 ???-==2 /)1()()()(N a n w n h n h d (6-2) 用矩形窗设计的FIR 低通滤波器,所设计滤波器的幅度函数在通带和阻带都呈现出振荡现象,且最大波纹大约为幅度的9%,这个现象称为吉布斯(Gibbs )效应。为了消除吉布斯效应,一般采用其他类型的窗函数。 (2) 典型的窗函数 ① 矩形窗(Rectangle Window) )()(n R n w N = (6-3)

实验五 IIR数字滤波器设计与滤波(附思考题程序)

实验五 IIR 数字滤波器设计与滤波 1.实验目的 (1)加深对信号采样的理解, (2)掌握滤波器设计的方法; (3)复习低通滤波器的设计。 2.实验原理 目前,设计IIR 数字滤波器的通用方法是先设计相应的低通滤波器,然后再通过双线性变换法和频率变换得到所需要的数字滤波器。模拟滤波器从功能上分有低通、高通、带通及带阻四种,从类型上分有巴特沃兹(Butterworth )滤波器、切比雪夫(Chebyshev )I 型滤波器、切比雪夫II 型滤波器、椭圆(Elliptic )滤波器以及贝塞尔(Bessel )滤波器等。 典型的模拟低通滤波器的指标如下:,P S ΩΩ分别为通带频率和阻带频率,,P S δδ分别为通带和阻带容限(峰波纹值)。在通带内要求1()1P a H J δ-≤Ω≤,有时指标由通带最大衰减p α和阻带最小衰减s α给出,定义如下:20lg(1)p p αδ=-- 和20lg()s s αδ=- 第二种常用指标是用参数ε和A 表示通带和阻带要求,如图所示: 二者之间的关系为:21/2[(1)1]p εδ-=--和1/s A δ=,根据这几个参数可导出另外两个参数d ,k ,分别称为判别因子和选择性因子。 21d A = - /p s k =ΩΩ

BUTTERWORTH 低通滤波器:幅度平方函数定义为221()1(/)a N c H J Ω=+ΩΩ,N 为滤波器阶数,c Ω为截止频率。当c Ω=Ω 时,有()1/a H J Ω=3DB 带宽。 BUTTERWORTH 低通滤波器系统函数有以下形式: 11111()...() N c a N N N N N k H s s a s a s a k s s --=Ω==++++∏- 由模拟滤波器设计IIR 数字滤波器,必须建立好s 平面和z 平面的映射关系。使模拟系统函数()a H s 变换成数字滤波器的系统函数()H z ,通常采用冲激相应不变法和双线性变换法。冲激相应不变法存在频谱混叠现象,双线性变换法消除了这一线象,在IIR 数字滤波器的设计中得到了更广泛的应用。 s 平面和Z 平面的映射关系为1 121()1s Z s f Z T Z ---==+,将s j =Ω和jw z e =待入数字频率和等效的模拟频率之间的映射关系:tan()2 w Ω=,由于二者不是线性关系,所以称为预畸变。 3.实验内容及其步骤 实验的步骤: (1)给定数字滤波器的幅度相应参数。 (2)用预畸变公式将数字滤波器参数变换为相应的等效模拟滤波器参数。 (3)采用模拟滤波器设计方法设计等效模拟滤波器()a H s (4)采用双线性变换公式把等效模拟滤波器映射为所期望的数字滤波器。 其中第三步中模拟滤波器设计步骤为: 首先,根据滤波器指标求选择因子k 和判别因子d 其次,确定满足技术所需的滤波器阶数N, log log d N k ≥ 再次,设3db 截止频率c Ω

基于matlab的FIR低通高通带通带阻滤波器设计

基于matlab的FIR低通-高通-带通-带阻滤波器设计

————————————————————————————————作者:————————————————————————————————日期:

北京师范大学 课程设计报告 课程名称: DSP 设计名称:FIR 低通、高通带通和带阻数字滤波器的设计姓名: 学号: 班级: 指导教师: 起止日期: 课程设计任务书

学生班级: 学生姓名: 学号: 设计名称: FIR 低通、高通带通和带阻数字滤波器的设计 起止日期: 指导教师: 设计目标: 1、采用Kaiser 窗设计一个低通FIR 滤波器 要求: 采样频率为8kHz ; 通带:0Hz~1kHz ,带内波动小于5%; 阻带:1.5kHz ,带内最小衰减:Rs=40dB 。 2、采用hamming 窗设计一个高通FIR 滤波器 要求: 通带截至频率wp=rad π6.0, 阻带截止频率ws=rad π4.0, 通带最大衰减dB p 25.0=α,阻带最小衰减dB s 50=α 3、采用hamming 设计一个带通滤波器 低端阻带截止频率 wls = 0.2*pi ; 低端通带截止频率 wlp = 0.35*pi ; 高端通带截止频率 whp = 0.65*pi ; 高端阻带截止频率 whs = 0.8*pi ; 4、采用Hamming 窗设计一个带阻FIR 滤波器 要求: 通带:0.35pi~0.65pi ,带内最小衰减Rs=50dB ; 阻带:0~0.2pi 和0.8pi~pi ,带内最大衰减:Rp=1dB 。

FIR 低通、高通带通和带阻数字滤波器的设计 一、 设计目的和意义 1、熟练掌握使用窗函数的设计滤波器的方法,学会设计低通、带通、带阻滤波器。 2、通过对滤波器的设计,了解几种窗函数的性能,学会针对不同的指标选择不同的窗函数。 二、 设计原理 一般,设计线性相位FIR 数字滤波器采用窗函数法或频率抽样法,本设计采用窗函数法,分别采用海明窗和凯泽窗设计带通、带阻和低通。 如果所希望的滤波器的理想频率响应函数为)(jw d e H ,如理想的低通,由信号系统的知识知道,在时域系统的冲击响应h d (n)将是无限长的,如图2、图3所示。 H d (w) -w c w c 图2 图3 若时域响应是无限长的,则不可能实现,因此需要对其截断,即设计一个FIR 滤波器频率响应∑-=-=1 0)()(N n jwn jw e n h e H 来逼近)(jw d e H ,即用一个窗函数w(n)来 截断h d (n),如式3所示: )()()(n w n h n h d = (式1)。 最简单的截断方法是矩形窗,实际操作中,直接取h d (n)的主要数据即可。 )(n h 作为实际设计的FIR 数字滤波器的单位脉冲响应序列,其频率响应函数为: ∑-=-=1 0)()(N n jwn jw e n h e H (式2) 令jw e z =,则 ∑-=-=1 0)()(N n n z n h z H (式3), 式中,N 为所选窗函数)(n w 的长度。

实验四 窗函数法设计FIR数字滤波器

实验四 窗函数法设计FIR 数字滤波器 一、实验目的 1、掌握窗函数法设计FIR 数字滤波器的原理及具体方法。 2、掌握频率取样法设计FIR 数字滤波器的原理和基本方法。 3、学习利用窗函数法和频率取样法设计低通、带通、高通、带阻数字滤波器。 二、实验环境 计算机、MATLAB 软件 三、实验基础理论 窗函数设计FIR 滤波器 1.基本原理 窗函数设计法的基本思想为,首先选择一个适当的理想的滤波器()j d H e ω ,然后 用窗函数截取它的单位脉冲响应(n)d h ,得到线性相位和因果的FIR 滤波器。这种方法的重点是选择一个合适的窗函数和理想滤波器,使设计的滤波器的单位脉冲响应逼近理想滤波器的单位脉冲响应。 2.设计步骤 (1)给定理想滤波器的频率响应()j d H e ω ,在通带上具有单位增益和线性相位, 在阻带上具有零响应。一个带宽为()c c ωωπ<的低通滤波器由下式给定: π ωωωωωωω≤<=≤=-||,0)(,||,)(c j d c ja j d e H e e H 其中α为采样延迟,其作用是为了得到一个因果系统。 (2)确定这个滤波器的单位脉冲响应 ) ()) (sin()(a n a n n h c d --= πω 为了得到一个(n)h 长度为N 的因果的线性相位FIR 滤波器,我们令 2 1 -= N a (3)用窗函数截取(n)d h 得到所设计FIR 数字滤波器:)()()(n R n h n h N d = 3.窗函数的选择 常用的窗函数有矩形(Rectangular )窗,汉宁(Hanning )窗,海明(Hamming )窗、布莱克曼(Blackman )窗、凯瑟(Kaiser )窗等 表4-1 MATLAB 中产生窗函数的命令

FIR数字滤波器设计实验_完整版

班级: 姓名: 学号: FIR 数字滤波器设计实验报告 一、实验目的 1.掌握FIR 数字滤波器的设计方法; 2.熟悉MATLAB 信号处理工具箱的使用; 3.熟悉利用MATLAB 软件进行FIR 数字滤波器设计,以及对所设计的滤波器 进行分析; 4.了解FIR 滤波器可实现严格线性相位的条件和特点; 5.熟悉FIR 数字滤波器窗函数设计法的MATLAB 设计,并了解利用窗函数法 设计FIR 滤波器的优缺点; 6.熟悉FIR 数字滤波器频率采样设计法的MATLAB 设计,并了解利用频率采 样法设计FIR 滤波器的优缺点; 7.熟悉FIR 数字滤波器切比雪夫逼近设计法的MATLAB 设计,并了解利用切 比雪夫逼近法设计FIR 滤波器的优缺点。 二、实验设备及环境 1.硬件:PC 机一台; 2.软件:MATLAB (6.0版以上)软件环境。 三、实验内容及要求 1.实验内容:基于窗函数设计法、频率采样设计法和切比雪夫逼近设计法,利用MATLAB 软件设计满足各自设计要求的FIR 数字低通滤波器,并对采用不同设计法设计的低滤波器进行比较。 2.实验要求: (1)要求利用窗函数设计法和频率采样法分别设计FIR 数字低通滤波 器,滤波器参数要求均为:0.3c w π=。其中,窗函数设计法要求分别利用矩形窗、汉宁窗和布莱克曼窗来设计数字低通滤波器,且 21N ≥,同时要求给出滤波器的幅频特性和对数幅频特性; 频率

采样法要求分别利用采样点数21N =和63N =设计数字低通滤波器,同时要求给出滤波器采样前后的幅频特性,以及脉冲响应及对数幅频特性。 (2)要求利用窗函数设计法和切比雪夫逼近法分别设计FIR 数字低通 滤波器,滤波器参数要求均为: 0.2π, 0.25dB, 0.3π, 50dB p p s s ωαωα==== 其中,窗函数设计法要求利用汉明窗来设计数字低通滤波器,且 66N ≥,同时要求给出滤波器理想脉冲响应和实际脉冲响应,汉 名窗和对数幅频特性; 切比雪夫逼近法要求采用切比雪夫Ⅰ型,同时要求给出滤波器的脉冲响应、幅频特性和误差特性。 (3)将要求(1)和(2)中设计的具有相同参数要求,但采用不同设 计方法的滤波器进行比较,并以图的形式直观显示不同设计设计方法得到的数字低通滤波器的幅频特性的区别。 四、实验步骤 1.熟悉MATLAB 运行环境,命令窗口、工作变量窗口、命令历史记录窗口,FIR 常用基本函数; 2.熟悉MATLAB 文件格式,m 文件建立、编辑、调试; 3.根据要求(1)的内容,设计FIR 数字低通滤波器,建立M 文件,编写、调试、运行程序; 4.根据要求(2)的内容,设计FIR 数字低通滤波器,建立M 文件,编写、调试、运行程序; 5.将要求(1)和(2)中设计的具有相同参数要求,但采用不同设计方法的滤波器进行比较分析; 6.记录实验结果; 7.分析实验结果; 8.书写实验报告。 五、实验预习思考题 1.FIR 滤波器有几种常用设计方法?这些方法各有什么特点?

FIR低通数字滤波器的设计要点

《DSP技术与应用》课程设计报告 课题名称:基于DSP Builder的FIR数字滤波器的设计与实现 学院:电子信息工程学院 班级:11级电信本01班 学号: 姓名:

题目基于DSP Builder的FIR数字滤波器的设计与实现 摘要 FIR数字滤波器是数字信号处理的一个重要组成部分,由于FIR数字滤波器具有严格的线性相位,因此在信息的采集和处理过程中得到了广泛的应用。本文介绍了FIR数字滤波器的概念和线性相位的条件,分析了窗函数法、频率采样法和等波纹逼近法设计FIR滤波器的思路和流程。在分析三种设计方法原理的基础上,借助Matlab仿真软件工具箱中的fir1、fir2和remez子函数分别实现窗函数法、频率采样法和等波纹逼近法设计FIR滤波器。然后检验滤波器的滤波效果,采用一段音频进行加噪声然后用滤波器滤,对比三段音频效果进而对滤波器的滤波效果进行检验。仿真结果表明,在相频特性上,三种方法设计的FIR滤波器在通带内都具有线性相位;在幅频特性上,相比窗函数法和频率采样法,等波纹逼近法设计FIR滤波器的边界频率精确,通带和阻带衰减控制。

Abstract FIR digital filter is an important part of digital signal processing, the FIR digital filter with linear phase, so it has been widely applied in the collection and processing of information in the course of. This paper introduces the concept of FIR digital filter with linear phase conditions, analysis of the window function method and frequency sampling method and the ripple approximation method of FIR filter design ideas and processes. Based on analyzing the principle of three kinds of design methods, by means of fir1, fir2 and Remez function of Matlab simulation software in the Toolbox window function method and frequency sampling method and respectively realize equiripple approximation method to design FIR filter. Then test the filtering effect of the filter, using an audio add noise and then filter, test three audio effects and comparison of filter filtering effect. Simulation results show that the phase frequency characteristic, three design methods of FIR filter with linear phase are in the pass band; the amplitude frequency characteristics, compared with the window function method and frequency sampling method, equiripple approximation method Design of FIR filter with accurate boundary frequency, the passband and stopband attenuation control.

相关文档
相关文档 最新文档