文档库 最新最全的文档下载
当前位置:文档库 › 高等数学(无穷级数)习题及解答

高等数学(无穷级数)习题及解答

高等数学(无穷级数)习题及解答
高等数学(无穷级数)习题及解答

练习11 1

练习11 2

练习11 3

练习11-4

高等数学求极限的常用方法附例题和详解

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和 0x x →的极限。要特别注意判定极限是否存在在: (i )数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推 论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (ii ) A x x f x A x f x =+∞ →= -∞ →? =∞ →lim lim lim )()( (iii)A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (iv)单调有界准则 (v )两边夹挤准则(夹逼定理/夹逼原理) (vi )柯西收敛准则(不需要掌握)。极限)(lim 0 x f x x →存在的充分必要条件是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f

高等数学基本公式整理(级数部分)

常数项级数: 是发散的调和级数:等差数列:等比数列:n n n n q q q q q n n 1312112 )1(3211111 2+++++=++++--=++++- 级数审敛法: 散。存在,则收敛;否则发、定义法: 时,不确定时,级数发散时,级数收敛,则设:、比值审敛法: 时,不确定时,级数发散时,级数收敛,则设:别法): —根植审敛法(柯西判—、正项级数的审敛法n n n n n n n n n n s u u u s U U u ∞→+∞→∞→+++=?? ???=><=?? ???=><=lim ;3111lim 2111lim 1211 ρρρρρρρρ 。的绝对值其余项,那么级数收敛且其和 如果交错级数满足—莱布尼兹定理: —的审敛法或交错级数1113214321,0lim )0,(+∞ →+≤≤?????=≥>+-+-+-+-n n n n n n n n u r r u s u u u u u u u u u u u 绝对收敛与条件收敛: ∑∑∑∑>≤-+++++++++时收敛 1时发散p 级数: 收敛; 级数:收敛; 发散,而调和级数:为条件收敛级数。收敛,则称发散,而如果收敛级数; 肯定收敛,且称为绝对收敛,则如果为任意实数; ,其中111)1(1)1()1()2()1()2()2()1(232121p n p n n n u u u u u u u u p n n n n 幂级数:

0010)3(lim )3(1111111221032=+∞=+∞=== ≠==><+++++≥-<++++++++∞→R R R a a a a R R x R x R x R x a x a x a a x x x x x x x n n n n n n n n 时,时,时,的系数,则是,,其中求收敛半径的方法:设称为收敛半径。 ,其中时不定 时发散时收敛 ,使在数轴上都收敛,则必存收敛,也不是在全 ,如果它不是仅在原点 对于级数时,发散 时,收敛于 ρρρρρ 函数展开成幂级数: +++''+'+===-+=+-++-''+-=∞→++n n n n n n n n n x n f x f x f f x f x R x f x x n f R x x n x f x x x f x x x f x f ! )0(!2)0()0()0()(00lim )(,)()! 1()()(! )()(!2)())(()()(2010)1(00)(20000时即为麦克劳林公式:充要条件是:可以展开成泰勒级数的余项:函数展开成泰勒级数:ξ一些函数展开成幂级数: )()!12()1(!5!3sin )11(!)1()1(!2)1(1)1(121532+∞<<-∞+--+-+-=<<-++--++-+ +=+--x n x x x x x x x n n m m m x m m mx x n n n m 欧拉公式: ??? ????-=+=+=--2sin 2cos sin cos ix ix ix ix ix e e x e e x x i x e 或 三角级数: 。 上的积分=在任意两个不同项的乘积正交性:。 ,,,其中,0],[cos ,sin 2cos ,2sin ,cos ,sin ,1cos sin )sin cos (2)sin()(00101 0ππω???ω-====++=++=∑∑∞ =∞= nx nx x x x x x t A b A a aA a nx b nx a a t n A A t f n n n n n n n n n n n n 傅立叶级数:

高等数学下册典型例题精选集合.doc

最新高等数学下册典型例题精选集合 第八章 多元函数及其微分法 最大者泄义域,并在平面上画出泄义域的图形。 A - 77 Z[ = J4x_),的定义域是y 2 < 4x z 2二丿 的定义域是 从而z = :)-的定义域是Z]=』4x-护 与z? = / 1 定义域 的公共部分,即 V4x >y>0 x 2 > y>0 例 2 设 z 二 x+y + /(x 一 y),当 y = 0吋 z = ,求 z. 解:代入y = 0时Z = F,得〒=兀+ /(兀),即/(兀)=亍一匕 所以 z = (x- y)2 +2y. 2 2 例3求lim —— >4o J ,+)" +1 _ [ lim(Jx 2 + y 2 +1 +1) = 2 XT O V 尸0 例1求函数z 解:此函数可以看成两个函数Z 严』4x-y2与Z2 =的乘积。 兀-">0,即兀2 >y >0o y>0 lim (* + )(J 兀2 + y2 + ] 4- 1) 解: XT O 原式=厂0 (J 对 + )厂 +1 -1)( J 兀~ + + ] + 1)

法2化为一元函数的极限计算。令衣+八]=(,则当 x —0, y —?0 吋,t ―> 1 o 『2 _1 原式=lim --------- = lim(r +1) = 2。 t —I / — ] i ―I 例 4 求 lim r 兀+厂 ,T() 丿 解:法1用夹逼准则。因为2 | xy \< x 2 2 + y 2,所以 2 9 0<

而lim凶=0,从而lim| |=0 XT O 2 XT O厂 + \厂 〉?T O 〉?T O兀十〉 于是lim「1=0 牙-叮兀.+ y 尸0 丿 法2利用无穷小与有界函数的乘积 是无穷小的性质。 因为2|xy|< x2 + y2所以—^― Q +y =lim( AT O 〉?T O 尢y ?x) = 0 例5研究lim^- :护+y 解:取路径y二二一x + kxSke R± ,则lim 小 = [由k是任意非零 F *+y k yTO 丿 的常数,表明原极限不存在。a, 又limx = 0 XT O 〉T() 所以

级数与幂级数及其应用习题

第十章 级数与幂级数及其应用 一、填空题: 1. 级数1 1 (1)3n n n -∞ =-∑= 2. 级数 1 11 2 n n ∞ -=∑= . 3. 级数 11 (1) n n n ∞ ==+∑ 4. 级数1 8(1)9n n n n ∞ =-=∑ 5. 幂级数 ∑∞ =13 n n n n x 的收敛半径为 6. 级数 1 3()4n n ∞ =-=∑ 7. 设级数 ∑∞ =11 n p n ,当p 时,级数收敛. 8. 级数=+-++-+--ΛΛ)3 1 21()3121()311(12n n . 9. 级数 1 1 2 n n n ∞ -==∑ . 10. 幂级数1 n n x n ∞ =∑的收敛区间是 . 11. 级数1 (ln 3)2n n n ∞ =∑的和为 . 12. 级数1 1147 k k k +∞ -=∑= . 13. 如果级数 1 (3) n n n a x ∞ =-∑,在 1.1x =-处收敛,则该级数在5x =处 (填“收敛” 或“发散”).

14. 当p 时,级数 2 1 p n n ∞ =∑收敛。 15. 将函数x e 在1x =处展开成Taylor 级数得 16. 级数2 2 3 3 4 4 12222x x x x L +++++的收敛域是 . 二、单项选择题: 1. 下列级数中属于条件收敛的是( ) (A )1 1 (1)n n n n ∞ =+-∑ (B ) 1(1)sin n n n n n π ∞ =-∑ (C )21(1)n n n ∞=-∑ (D )1(1)31 n n n ∞ =-+∑ 2. .若级数 ∑∞ =1 n n u 收敛于s , 则级数 )(11 +∞ =+∑n n n u u ( ) (A )收敛于s 2 (B )收敛于12u s + (C )收敛于12u s - (D )发散 3. 下列级数条件收敛的是( ) (A)11n n -∞ =(B)112(1)3n n n n ∞-=-∑(C)12 1 (1)n n n -∞ =-∑ (D)11(1)n n ∞-=-∑ 4. 若级数 (1) 1n n n a x x ∞ =-=-∑在处收敛,则该级数在2x =处( ) (A )条件收敛 (B )绝对收敛 (C )发散 (D ) 无法判断 5. 级数 21sin n n n α∞ =? ? ∑(α为常数) ( ) (A)绝对收敛 (B)条件收敛 (C)发散 (D)收敛性与α取值有关 6. 幂级数12 n n n x n ∞ =∑的收敛域为 ( ) (A )(2,2)- (B )[2,2]- (C )(2,2]- (D )[2,2)- 7.设级数 ∑ ∞ =1 1 n n p ,(0)p > 则 ( ) (A )当1≥p 时级数收敛,当1

p 时级数收敛,当1≤p 时级数发散

同济第六版《高等数学》教案WORD版-第11章 无穷级数

第十一章 无穷级数 教学目的: 1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件。 2.掌握几何级数与P 级数的收敛与发散的条件。 3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法。 4.掌握交错级数的莱布尼茨判别法。 5.了解任意项级数绝对收敛与条件收敛的概念,以及绝对收敛与条件收敛的关系。 6.了解函数项级数的收敛域及和函数的概念。 7.理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法。 8.了解幂级数在其收敛区间内的一些基本性质(和函数的连续性、逐项微分和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些常数项级数的和。 9.了解函数展开为泰勒级数的充分必要条件。 10.掌握,sin ,cos x e x x ,ln(1)x +和(1)a α +的麦克劳林展开式,会用它们将一些简单函 数间接展开成幂级数。 11. 了解傅里叶级数的概念和函数展开为傅里叶级数的狄利克雷定理,会将定义在[-l ,l]上的函数展开为傅里叶级数,会将定义在[0,l]上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和的表达式。 教学重点 : 1、级数的基本性质及收敛的必要条件。 2、正项级数收敛性的比较判别法、比值判别法和根值判别; 3、交错级数的莱布尼茨判别法; 4、幂级数的收敛半径、收敛区间及收敛域; 5、,sin ,cos x e x x ,ln(1)x +和(1)a α +的麦克劳林展开式; 6、傅里叶级数。 教学难点: 1、比较判别法的极限形式; 2、莱布尼茨判别法; 3、任意项级数的绝对收敛与条件收敛; 4、函数项级数的收敛域及和函数;

幂级数习题课

第十四章 幂级数习题课 一 疑难解析与注意事项 1.如何求缺项幂级数的收敛半径 答:如果一个幂级数有无限多个项的系数为零这样的幂级数称为缺项幂级数,对这种幂 级数,不能直接用公式1lim n n n n a a ρρ+→∞? ? = ? ??? .常用方法是: 1)进行变量替换.将原幂级数变为一个无缺项的幂级数.计算出后一幂级数的收敛半 径,再根据两变量之间的关系得出原幂级数的收敛半径. 例如幂级数2112n n n x ∞ =∑,可令2 y x =,化为幂级数112n n n y ∞=∑,而幂级数112 n n n y ∞ =∑的收 敛半径为2R =,从而当22x <时,原幂级数收敛,当2 2x >时,原幂级数发散,由此推 出原幂级数的收敛半径为R = 2)对缺项幂级数需要按照类似于定理14.2来求. 例如求幂级数2202 n n n x ∞ =∑(缺项幂级数)的收敛半径.对于幂级数 220 2n n n x ∞ =∑ ,因为222 22222lim 4 2n n n n n x x x ++→∞ = ,当 2 14 x <时,即2x <,220 2n n n x ∞ =∑ 收敛,则原来级数绝对收敛;当2 14 x >时,即2x >,220 2n n n x ∞ =∑ 发散,则原来级数发散,所以收敛半径2=R . 2.如何求幂级数的收敛域 答:1)首先求幂级数的收敛半径R ; 2)写收敛区间(),R R -; 3)讨论端点处的收敛性,即讨论 n n n a R ∞ =∑, () n n n a R ∞ =-∑的收敛性,如果两个都收敛, 则幂级数的收敛域为[],R R -,如果两个都发散,则收敛域为(),R R -,如果其中一个收敛,一个发散,则收敛域为[),R R -( () n n n a R ∞ =-∑收敛),(],R R -( n n n a R ∞ =∑收敛). 3.幂级数在()R R ,-内每一点都绝对收敛,那么在端点处敛散性如何 答:1)幂级数在()R R ,-端点处可能收敛可能发散.

高等数学(级数)期末试卷

《高等数学》--级数期末考试试卷 班级 学号 姓名 一、填空:本大题共8小题,每题2分,共16分。 1、写出几何级数 ,通项为 。 2、写出调和级数 ,通项为 。 3、写出p 级数 ,第100项为 。 4、设级数1 n n u ∞ =∑收敛于s ,a 为不等于零的常数,则级数1 n n au ∞ ==∑ 。 5、已知级数1 2!n n n ∞ =∑收敛,则2lim !n n n →∞= 。 6、若级数1 n n u ∞=∑发散,则原级数1 n n u ∞ =∑ (填敛散性)。 7、将函数()sin f x x =展开成马克劳林级数为 。 8、将函数()cos f x x =展开成幂级数为 。 二、选择题:本大题共8小题,每小题3分,共24分。在每小题给出的四个选项 中,只有一项是符合题意要求的。 9、lim 0n n u →∞ =是级数 1 n n u ∞ =∑收 敛的------------------------ --------------------------------------------------------------------------------------------( ) A 、充分条件 B 、必要条件 C 、充要条件 D 既非充分又非必要条件

10、设级数1 n n u ∞=∑收敛,级数1 n n v ∞=∑发散,则级数1 ()n n n u v ∞ =+∑------( ) A 、收敛 B 、绝对收敛 C 、发散 D 、敛散性不定 11、下列级数收敛的是----------------------------------------------------( ) A 、1n n ∞ =∑ B 、1ln n n ∞ =∑ C 、11n n n ∞ =+∑ D 、1 1 (1)n n n ∞ =+∑ 12、下列级数的发散的是-------------------------------------------------( ) A 、1n ∞ = B 、111 248+++ C 、0.001 D 、13 ()5n n ∞ =∑ 13、若级数1 n n u ∞ =∑收敛,n s 是它的前n 项部分和,则1 n n u ∞ =∑的和为( ) A 、n s B 、n u C 、lim n n s →∞ D 、lim n n u →∞ 14、幂级数0! n n x n ∞ =∑的收敛区间为 -----------------------------------( ) A (-1,1) B 、(0,)+∞ C 、(,)-∞+∞ D 、(1,2) 15、被世界公认的微积分的创始人为----------------------------( ) A 、阿基米德和刘徽 B 、牛顿和庄子 C 、莱布尼兹和牛顿 D 、欧拉 16、若幂级数0n n n a x ∞ =∑的收敛区间为(1,2)-则-------------------( ) A 、在1x =-处收敛 B 、在4x =处不一定发散 C 、在2x =处发散 D 、在0x =处收敛

高数典型例题解析

第一章函数及其图形 例1:(). A. {x | x>3} B. {x | x<-2} C. {x |-2< x ≤1} D. {x | x≤1} 注意,单选题的解答,有其技巧和方法,可参考本课件“应试指南”中的文章《高等数学(一)单项选择题的解题策略与技巧》,这里为说明解题相关的知识点,都采用直接法。 例2:函数的定义域为(). 解:由于对数函数lnx的定义域为x>0,同时由分母不能为零知lnx≠0,即x≠1。由根式内要非负可知即要有x>0、x≠1与同时成立,从而其定义域为,即应选C。 例3:下列各组函数中,表示相同函数的是() 解:A中的两个函数是不同的,因为两函数的对应关系不同,当|x|>1时,两函数取得不同的值。 B中的函数是相同的。因为对一切实数x都成立,故应选B。 C中的两个函数是不同的。因为的定义域为x≠-1,而y=x的定义域为(-∞,+∞)。 D中的两个函数也是不同的,因为它们的定义域依次为(-∞,0)∪(0,+∞)和(0,+∞)。例4:设

解:在令t=cosx-1,得 又因为-1≤cosx≤1,所以有-2≤cosx-1≤0,即-2≤t≤0,从而有 。 5: 例 f(2)没有定义。 注意,求分段函数的函数值,要把自变量代到相应区间的表达式中。 例6:函数是()。 A.偶函数 B.有界函数 C.单调函数 D .周期函数 解:由于,可知函数为一个奇函数而不是偶函数,即(A)不正确。 由函数在x=0,1,2点处的值分别为0,1,4/5,可知函数也不是单调函数;该函数显然也不是一个周期函数,因此,只能考虑该函数为有界函数。 事实上,对任意的x,由,可得,从而有。可见,对于任意的x,有 。 因此,所给函数是有界的,即应选择B。 例7:若函数f(x)满足f(x+y)=f(x)+f(y),则f(x)是()。 A.奇函数 B.偶函数 C.非奇非偶函数D.奇偶性不确定

高数第七章无穷级数知识点

高数第七章无穷级数知识 点 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第七章 无穷级数 一、敛散性判断(单调有界,必有极限;从上往下,具有优先顺序性): 1、形如∑∞ =-11 n n aq 的几何级数(等比级数):当1p 时收敛,当1≤p 时发散。 3、? ≠∞ →0lim n n U 级数发散; 级数收敛 lim =?∞ →n n U 4、比值判别法(适用于多个因式相乘除):若正项级数 ∑∞ =1 n n U ,满 足条件l U U n n n =+∞→1 lim : 当1l 时,级数发散(或+∞=l ); 当1=l 时,无法判断。 5、根值判别法(适用于含有因式的n 次幂):若正项级数∑∞ =1n n U ,满 足条件λ =∞→n n n U lim : 当1<λ时,级数收敛; 当1>λ时,级数发散(或+∞=λ); 当1=λ时,无法判断。 注:当1,1==λl 时,方法失灵。

6、比较判别法:大的收敛,小的收敛;小的发散,大的发散。(通过不等式的放缩) 推论:若∑∞ =1n n U 与∑∞ =1 n n V 均为正项级数,且 l V U n n n =∞→lim (n V 是已知敛散 性的级数) 若+∞<

高数 级数

《高等数学(下)》自学、复习参考资料Ⅲ ——使用前请详细阅读后面所附的“使用指南” 授课教师:杨峰(省函授总站高级讲师) 强烈建议同志们以《综合练习》为纲,仔细掌握其中的所有习题内容!各章复习范围: 第一部分《矢量代数与空间解析几何》 ————第八章第一至六节、第八节(即是除了第七节之外都要复习)第二部分《多元函数微积分》 ————第九章第一至五节(其中第四节只要求“全微分”) ————第十章第一至三节、第五节(即是第四、六节暂不作要求)第三部分《级数论》 ————第十一章都要复习 敬告学员——本门课程复习资料我们是根据听课和教研的基本情况结合自己的理解、加工,尽量全面、系统地整理出来,但是也只能供大家参考使用而已,并不能代表考试的任何信息,特此说明。不便之处,敬请原谅! 另外,以后象这样的数理学科,众所周知,其难度较大,数字稍作变化,许多同志未必能做出来。因此,这些科目的面授课建议大家都能克服困难,积极地参加,以获取准确的知识和复习信息,否则光是依赖网上复习参考资料,随时有不能一次通过的危险。

第十一章 级数 一、常数项级数的概念与性质(了解) 1、无穷级数的概念 设有无穷数列 ,,,,,21??????n u u u 则式子 ,21???++???++n u u u 称为无穷级数,简称级数。记作 ∑∞ =1 n n u 。即 , 211 ???++???++=∑∞ =n n n u u u u 其中,,,,,21??????n u u u 叫做级数的项,而n u 叫做级数的一般项或通项,各项都是常数的级数称为常数级数。 例如 ???++???+++n 321, ???++???+++n 3 1 31313132。 就是常数项级数。 2、级数的收敛与发散 定义 设级数,21 ???++???++n u u u 当n 无限增大时,

幂级数的部分练习题及答案

题目部分,(卷面共有100题,349.0分,各大题标有题量和总分) 一、选择 (10小题,共22.0分) (2分)[1] (2 分)[2] 函数项级数∑ ∞ =1n n n x 的收敛域是 (A) []1,1- (B) [)1,1- (C) ()1,1- (D) (]1,1- 答( ) (2分)[3] 设级数()n n n x b 20-∑∞ =在2-=x 处收敛,则此级数在 4=x 处 (A)发散; (B)绝对收敛; (C)条件收敛; (D)不能确定敛散性。 答:( ) (3分)[4]设级数()n n n x a 30+∑∞ =在1-=x 处是收敛的,则此级数 在1=x 处 (A)发散; (B)绝对收敛;

(C)条件收敛; (D)不能确定敛散性。 答:( ) (2分)[5]设级数()n n n x a 10-∑∞ =的收敛半径是1,则级数在3 =x 点 (A)发散; (B)条件收敛; (C)绝对收敛; (D)不能确定敛散性。 答:( ) (2 分)[6]如果81 lim 1=+∞→n n n a a ,则幂级数∑∞ =03n n n x a (A)当2x 时,发散; (D) 当 2 1 >x 时,发散; 答( ) (2分)[7]若幂级数∑∞ =0n n n x a 的收敛半径为R,那么 (A)R a a n n n =+∞ →1 lim , (B) R a a n n n =+∞ →1 lim ,

(C)R a n n =∞ →lim , (D)n n n a a 1lim +∞ →不一定存在 . 答( ) (3分)[8] 若幂级数∑∞ =0n n n x a 在2=x 处收敛,在3-=x 处发 散,则 该级数 (A)在3=x 处发散; (B)在2-=x 处收敛; (C)收敛区间为(]2, 3- ; (D)当3>x 时发散。 答( ) (2分)[9] 如果()x f 在0x 点的某个邻域内任意阶可导,那么 幂级数()()()∑∞ =?? ? ? ??-000!n n n x x n x f 的和函数 (A) 必是()x f , (B)不一定是()x f , (C)不是()x f , (D)可能处处不存在。 答( )。

大学高数常用公式大全

高等数学公式 导数公式: 基本积分表: 三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x += =+-=+=, , ,  a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(2 2 = '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 ππ

高等数学试题库

高等数学试题库 第二章 导数和微分 一.判断题 2-1-1 设物体的运动方程为S=S(t),则该物体在时刻t 0的瞬时速度 v=lim lim ()()??????t t s t s t t s t t →→=+-0000与 ?t 有关. ( ) 2-1-2 连续函数在连续点都有切线. ( ) 2-1-3 函数y=|x|在x=0处的导数为0. ( ) 2-1-4 可导的偶函数的导数为非奇非偶函数. ( ) 2-1-5 函数f(x)在点x 0处的导数f '(x 0)=∞ ,说明函数f(x)的曲线在x 0点处的切 线与x 轴垂直. ( ) 2-1-6 周期函数的导数仍是周期函数. ( ) 2-1-7 函数f(x)在点x 0处可导,则该函数在x 0点的微分一定存在. ( ) 2-1-8 若对任意x ∈(a,b),都有f '(x)=0,则在(a,b)内f(x)恒为常数. ( ) 2-1-9 设f(x)=lnx.因为f(e)=1,所以f '(e)=0. ( ) 2-1-10(ln )ln (ln )'ln x x x x x x x x x 2224 3 21 '=-=- ( ) 2-1-11 已知y= 3x 3 +3x 2 +x+1,求x=2时的二阶导数: y '=9x 2 +6x+1 , y '|x=2=49 所以 y"=(y ')'=(49)'=0. ( ) 二.填空题 2-2-1 若函数y=lnx 的x 从1变到100,则自变量x 的增量 ?x=_______,函数增量 ?y=________. 2-2-2 设物体运动方程为s(t)=at 2 +bt+c,(a,b,c 为常数且a 不为0),当t=-b/2a 时, 物体的速度为____________,加速度为________________. 2-2-3 反函数的导数,等于原来函数___________. 2-2-4 若曲线方程为y=f(x),并且该曲线在p(x 0,y 0)有切线,则该曲线在 p(x 0,y 0) 点的切线方程为____________. 2-2-5 若 lim ()() x a f x f a x a →-- 存在,则lim ()x a f x →=______________. 2-2-6 若y=f(x)在点x 0处的导数f '(x)=0,则曲线y=f(x)在[x 0,f(x 0)]处有 __________的切线.若f '(x)= ∞ ,则曲线y=f(x)在[x 0,f(x 0)]处有 _____________的切线. 2-2-7 曲线y=f(x)由方程y=x+lny 所确定,则在任意点(x,y)的切线斜率为 ___________在点(e-1,e)处的切线方程为_____________. 2-2-8 函数

(完整版)高数第七章无穷级数知识点,推荐文档

第七章 无穷级数 一、敛散性判断(单调有界,必有极限;从上往下,具有优先顺序性): 1、形如∑∞ =-11 n n aq 的几何级数(等比级数):当1p 时收敛,当1≤p 时发散。 3、? ≠∞ →0lim n n U 级数发散; 级数收敛 lim =?∞ →n n U 4、比值判别法(适用于多个因式相乘除):若正项级数 ∑∞ =1 n n U ,满足 条件l U U n n n =+∞→1 lim : ①当1l 时,级数发散(或+∞=l ); ③当1=l 时,无法判断。 5、根值判别法(适用于含有因式的n 次幂):若正项级数∑∞ =1n n U ,满足 条件λ =∞ →n n n U lim : ①当1<λ时,级数收敛; ②当1>λ时,级数发散(或+∞=λ); ③当1=λ时,无法判断。 注:当1,1==λl 时,方法失灵。 6、比较判别法:大的收敛,小的收敛;小的发散,大的发散。(通过不等式的放缩)

推论:若∑∞ =1n n U 与∑∞ =1 n n V 均为正项级数,且l V U n n n =∞→lim (n V 是已知敛散 性的级数) ①若+∞<

关于高等数学经典方法与典型例题归纳

2014年山东省普通高等教育专升本考试 2014年山东专升本暑期精讲班核心讲义 高职高专类 高等数学 经典方法及典型例题归纳 —经管类专业:会计学、工商管理、国际经济与贸易、电子商务 —理工类专业:电气工程及其自动化、电子信息工程、机械设计制造及其自 动化、交通运输、计算机科学与技术、土木工程 2013年5月17日星期五 曲天尧 编写 一、求极限的各种方法 1.约去零因子求极限 例1:求极限1 1 lim 41--→x x x 【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。 【解】6)1)(1(lim 1 ) 1)(1)(1(lim 2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限 例2:求极限1 3lim 32 3+-∞→x x x x 【说明】 ∞ ∞ 型且分子分母都以多项式给出的极限,可通过分子分母同除来求。 【解】3131lim 13lim 3 11323= +-=+-∞→∞→x x x x x x x 【注】(1) 一般分子分母同除x 的最高次方;

(2) ???? ???=<∞>=++++++----∞→n m b a n m n m b x b x b a x a x a n n m m m m n n n n x 0lim 01101 1ΛΛ 3.分子(母)有理化求极限 例3:求极限)13(lim 22 +- ++∞ →x x x 【说明】分子或分母有理化求极限,是通过有理化化去无理式。 【解】 1 3) 13)(13(lim )13(lim 2 2 22222 2+++++++-+=+-++∞ →+∞ →x x x x x x x x x x 例4:求极限3 sin 1tan 1lim x x x x +-+→ 【解】x x x x x x x x x x sin 1tan 1sin tan lim sin 1tan 1lim 3030 +-+-=+-+→→ 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子........... 是解题的关键 4.应用两个重要极限求极限 两个重要极限是1sin lim 0=→x x x 和e x n x x x n n x x =+=+=+→∞→∞→1 0)1(lim )11(lim )11(lim ,第一个重要极限过 于简单且可通过等价无穷小来实现。主要考第二个重要极限。 例5:求极限x x x x ?? ? ??-++∞→11lim 【说明】第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑X 1 + ,最后凑指数部分。 【解】22 21212112111lim 121lim 11lim e x x x x x x x x x x x =???? ????????? ??-+???? ??+=??? ??-+=??? ??-+--+∞→+∞→+∞→ 例6:(1)x x x ??? ??-+∞→211lim ;(2)已知82lim =?? ? ??-++∞ →x x a x a x ,求a 。 5.用等价无穷小量代换求极限 【说明】 (1)常见等价无穷小有:

高等数学基本公式整理(级数部分)

常数项级数: 是发散的 调和级数:等差数列:等比数列:n n n n q q q q q n n 1 312112 )1(3211111 2 +++++= ++++--= ++++-ΛΛΛ 级数审敛法: 散。 存在,则收敛;否则发、定义法: 时,不确定 时,级数发散 时,级数收敛 ,则设:、比值审敛法: 时,不确定时,级数发散 时,级数收敛 ,则设:别法):—根植审敛法(柯西判—、正项级数的审敛法n n n n n n n n n n s u u u s U U u ∞ →+∞→∞ →+++=?? ? ??=><=?? ? ??=><=lim ;3111lim 2111lim 1211Λρρρρρρρρ 。的绝对值其余项,那么级数收敛且其和 如果交错级数满足—莱布尼兹定理:—的审敛法或交错级数1113214321,0lim )0,(+∞ →+≤≤?????=≥>+-+-+-+-n n n n n n n n u r r u s u u u u u u u u u u u ΛΛ绝对收敛与条件收敛: ∑∑∑∑>≤-+++++++++时收敛 1时发散p 级数: 收敛; 级数:收敛; 发散,而调和级数:为条件收敛级数。收敛,则称发散,而如果收敛级数;肯定收敛,且称为绝对收敛,则如果为任意实数;,其中11 1 )1(1)1()1()2()1()2()2()1(232121p n p n n n u u u u u u u u p n n n n Λ ΛΛΛ 幂级数:

01 0)3(lim )3(111 1111 221032=+∞=+∞ === ≠==><+++++≥-<++++++++∞→R R R a a a a R R x R x R x R x a x a x a a x x x x x x x n n n n n n n n 时,时,时,的系数,则是,,其中求收敛半径的方法:设称为收敛半径。 ,其中时不定 时发散时收敛 ,使在数轴上都收敛,则必存收敛,也不是在全 ,如果它不是仅在原点 对于级数时,发散 时,收敛于 ρρρ ρρΛΛΛΛ函数展开成幂级数: Λ ΛΛ Λ+++''+'+===-+=+-++-''+-=∞→++n n n n n n n n n x n f x f x f f x f x R x f x x n f R x x n x f x x x f x x x f x f ! )0(!2)0()0()0()(00 lim )(,)()!1() ()(! )()(!2)())(()()(2010)1(00)(2 0000时即为麦克劳林公式:充要条件是:可以展开成泰勒级数的余项:函数展开成泰勒级数:ξ一些函数展开成幂级数: ) ()!12()1(!5!3sin )11(! )1()1(!2)1(1)1(1 21532+∞<<-∞+--+-+-=<<-++--++-+ +=+--x n x x x x x x x n n m m m x m m mx x n n n m ΛΛΛΛΛ 欧拉公式: ??? ????-=+=+=--2sin 2cos sin cos ix ix ix ix ix e e x e e x x i x e 或 三角级数: 。 上的积分=在任意两个不同项的乘积正交性:。 ,,,其中,0],[cos ,sin 2cos ,2sin ,cos ,sin ,1cos sin ) sin cos (2)sin()(00101 0ππω???ω-====++=++=∑∑∞ =∞ =ΛΛnx nx x x x x x t A b A a aA a nx b nx a a t n A A t f n n n n n n n n n n n n 傅立叶级数:

张卓奎《高等数学(第3版)》第十章无穷级数-本章提要

第10章 无穷级数 一、常数项级数的概念 常数项级数 设给定一个数列12,,,, n u u u ,表达式 1 n n u ∞ =∑称为常数项无穷级 数.121n n s u u u u =+++ +称为该级数的(前n 项)部分和. 级数收敛 如果部分和数列{}n s 有极限,即若lim n n s s →∞ =,则称该级数收敛,s 为其和,并记为 1 n n u s ∞ ==∑,否则,称级数发散. 二、常数项级数性质 (1)如果级数 1n n u ∞ =∑收敛于s ,则级数 1 n n ku ∞ =∑(k 为常数)也收敛,且收敛于ks ; (2)如果级数 1 1 , n n n n u v ∞ ∞ ==∑∑分别收敛于s 和σ,a 和b 为任意实数,则 1 ()n n n au bv ∞ =+∑也 收敛,且收敛于as b σ+; (3) 在级数中去掉(加上或改变有限项),级数敛散性不变; (4) 收敛级数加括号后仍然收敛,且收敛于原来的和; (5) 级数 1 n n u ∞ =∑收敛的必要条件是:0lim =∞ →n n u . 三、常数项级数的审敛法 1.正项级数 收敛充要条件 数列{}n s 有上界 1 n n u ∞ =∑收敛。 比较审敛法 n n v u ≤(1,2, n =),当 1 n n v ∞ =∑收敛时? 1 n n u ∞ =∑收敛; 当 ∑∞ =1 n n u 发散时? ∑∞ =1n n v 也发散。 (极限形式) lim n n n u l v →∞=,当0l <<+∞时, 1n n u ∞ =∑与 ∑∞=1 n n v 同时收敛或发散; 当0l =时,若 1 n n v ∞ =∑收敛? 1 n n u ∞=∑必收敛; 当l =+∞时,若 1 n n u ∞ =∑发散? 1 n n v ∞ =∑必发散。

高等数学经典求极限方法

求极限的各种方法 1.约去零因子求极限 例1:求极限1 1 lim 41--→x x x 【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。 【解】6)1)(1(lim 1 ) 1)(1)(1(lim 2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限 例2:求极限1 3lim 32 3+-∞→x x x x 【说明】 ∞ ∞ 型且分子分母都以多项式给出的极限,可通过分子分母同除来求。 【解】3131lim 13lim 3 11323= +-=+-∞→∞→x x x x x x x 【注】(1) 一般分子分母同除x 的最高次方; (2) ???? ??? =<∞>=++++++----∞→n m b a n m n m b x b x b a x a x a n n m m m m n n n n x 0lim 01101 1 3.分子(母)有理化求极限 例3:求极限)13(lim 22+-++∞ →x x x 【说明】分子或分母有理化求极限,是通过有理化化去无理式。 【解】1 3) 13)(13(lim )13(lim 2 2 22222 2 +++++++-+=+-++∞ →+∞ →x x x x x x x x x x 01 32lim 2 2 =+++=+∞ →x x x 例4:求极限3 sin 1tan 1lim x x x x +-+→ 【解】) sin 1tan 1(sin tan lim sin 1tan 1lim 3030 x x x x x x x x x x +++-=+-+→→

相关文档
相关文档 最新文档